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Designing market-based mechanism that benefits both the cloud customer and cloud provider in a cloud 

market is a fundamental but complex problem. Double auction is one such mechanism to allocate re- 

sources that prevents monopoly and is used to design an unbiased optimal market strategy for cloud 

market. This work proposes a truthful combinatorial double auction mechanism for allocation and pric- 

ing of computing resources in cloud. For resource allocation, utilitarian social welfare maximization prob- 

lem is formulated using Integer Linear Programming (ILP) and a near optimal solution is obtained using 

Linear Programming based padded method. For payment, truthful and novel schemes are designed for 

both customers and providers. Moreover, the proposed mechanism is individual rational, computationally 

tractable, weakly budget-balance and asymptotic efficient. Performance evaluation and comparative study 

exhibit that the proposed mechanism is effective on various performance metrics such as utilitarian so- 

cial welfare, total utility, customers’ satisfaction, providers’ revenue and hence is applicable in real cloud 

environments. 

© 2018 Elsevier Inc. All rights reserved. 

1

 

w  

o  

(  

M  

t  

t  

b  

p  

b  

c  

e  

e  

c

 

o  

d  

t  

g

d

b  

A  

s  

b  

(  

w  

p

 

i  

m  

b  

s  

m  

e  

n  

i  

f  

m  

i  

D  

h

0

. Introduction 

Cloud computing is a new computing based business model

here various resources such as CPU, Network, Storage, Mem-

ry etc. are offered as utility and are available on demand

 Buyya, 2009 ). Cloud service providers such as Amazon, Google,

icrosoft etc. use different pricing schemes to attract the cus-

omers i.e. they want to increase their revenue. Cloud users want

o use cloud services to execute their jobs or applications but

y paying optimal price with desired QoS. Economics based ap-

roach such as auction, bargaining, distributive justice etc. have

een widely used in various computing environments such as grid

omputing ( Buyya et al., 2002; Li et al., 2009 ), cloud computing

tc. ( Baranwal et al., 2017; Baranwal and Vidyarthi, 2014; Kumar

t al., 2017; Xu et al., 2011 ) to achieve objectives of providers and

ustomers both. 

Auctions, where price is determined by the supply and demand

f the resources ( Klemperer, 2004 ), are applications of mechanism

esign if one wants to design an auction with some desirable auc-

ion properties such as truthfulness, individual rationality, budget-
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alance etc. An auction mechanism basically consists of two parts:

llocation function and Payment scheme which need to be de-

igned carefully to achieve auction properties. Recently, auction has

een used for selling the underutilized and spare cloud resources

 AWS, 2016 ). Auctions are decentralized, easy to implement and

ell suited for distributed systems like grid computing, cloud com-

uting etc. 

In past, researchers have proposed resource allocation models

n cloud computing based on double auction. Most of the models

ainly focused on the allocation schemes and little attention has

een given to payment aspect. Some of the mechanisms have de-

igned pricing schemes which are either truthful for one-side of

arket or not truthful at all. Moreover, to the authors’ best knowl-

dge, there is not a single combinatorial double auction mecha-

ism in cloud which is budget-balanced and truthful for all partic-

pants. Keeping these issues in mind, this work proposes a truth-

ul double auction for a combinatorial/multi-unit multi-item cloud

arket being referred as T ruthful C ombinatorial/ M ulti unit multi

tem D ouble A uction for C loud Computing (TCMDAC). In TCM-

AC, each cloud user demands multiple types of Virtual Machines

VMs) in form of bundle as cloud users generally demand the

esources in the form of bundle ( Baranwal and Vidyarthi, 2015;

amimi et al., 2016 ) and each provider offers multiple units of

ultiple types of VMs. TCMDAC uses LP based padding method

or Cloud computing environment where a provider offers multiple

https://doi.org/10.1016/j.jss.2018.03.003
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types of VMs. A Virtual Padding User (VPU) is considered which

increases the competition among users and eliminates the users

with less credentials (i.e. users with less budget (less bid value) or

more required resources or both). It is assumed that VPU is hav-

ing unlimited budget. TCMDAC exhibits various interesting features

such as it supports the combinatorial bidding and it enables sim-

ple decision making to produce a near-optimal allocation. Truth-

ful payment for all users is designed using critical payments while

marginal cost is used to calculate the truthful payment for cloud

providers. The key contributions of this work are as follows: 

• To the best of authors’ knowledge, TCMDAC is the first truthful

combinatorial double auction for cloud market which is truthful

for all participants (cloud customers as well as cloud providers)

and weakly budget-balanced. 
• In TCMDAC, a LP (Linear programming) based padding method

is used. The generated allocations are near optimal, asymptotic

efficient and can be computed in polynomial time. 
• Novel payment schemes are designed for both customer and

provider in a way to achieve truthfulness and budget-balance. 
• It is shown theoretically as well as practically that TCMDAC

is individual rational, incentive compatible, weakly budget-

balanced and asymptotic efficient. 
• TCMDAC is compared with state of the art and the experimental

results show that it is effective, efficient and applicable in real

cloud environments. 

The outline of the paper is as follows. Section 2 gives an

overview of related work on double auction mechanisms in cloud

computing. Section 3 describes the system model and problem

formulation. Section 4 describes the proposed TCMDAC model.

Section 5 presents the performance evaluation and comparative

study through simulation. Section 6 concludes the work with some

possible future directions. 

2. Related work 

Auction, a market design mechanism, is very helpful for design-

ing and modeling the competitive market ( Klemperer, 2004 ). Its

various variants like single sided ( Zaman and Grosu, 2013 ), double

sided ( Baranwal and Vidyarthi, 2015; Kumar et al., 2017; Samimi

et al., 2016 ), forward auction ( Mashayekhy et al., 2015 ), reverse

auction ( Baranwal and Vidyarthi, 2016 ), first price auction, second

price auction ( Zaman and Grosu, 2012 ) etc. are quite useful in dif-

ferent market situations and have been used in cloud computing

for resource allocation. 

Double auction mechanisms, where bidding is done from both

the market players i.e. customer and provider, provide a concrete

and suitable framework for modeling the both side completion

in auction based cloud market. In addition, use of double auc-

tion instead of repeated single-sided auction reduces the computa-

tional burden and complexity on the provider side ( Wise and Mor-

rison, 20 0 0 ). One-sided auctions also reduce the possible trades

or transactions, especially in combinatorial auctions ( de Vries and

Vohra, 2003; Rothkopf et al., 1998 ). Double auction is a many-

to-many auction that prevents monopoly and can be used to de-

sign an unbiased optimal market strategy for a cloud market. It is

proven that in double auction, efficiency maximizing mechanism

yields more revenue compared to the single sided auction in the

long run ( Wise and Morrison, 20 0 0 ). Therefore, various benefits of

double auction e.g. dynamic pricing, efficient resource allocation,

supply and demand principle, less time consumption and consid-

eration of both side competitions make it suitable for the cloud

computing market ( Bratton et al., 1982; Cason and Friedman, 1996;

Kumar et al., 2017 ). 

Double auction based resource allocation and pricing mecha-

nisms have been applied in grid computing before cloud comput-
ng ( Grosu and Das, 2004; Izakian et al., 2010; Li et al., 2009 ).

i et al. (2009 ) considered combinatorial bidding and proposed

ombinatorial double auction based resource allocation and pric-

ng schemes for the grid market. Although the work claims the in-

entive compatible property through experimental studies, but the

ork does not satisfy incentive compatible property theoretically.

rosu and Das (2004 ) used three most popular double auctions

or resource allocation in grid: McAfee Double Auction (PMDA),

hreshold price Double Auction Protocol (TPDA) and Continuous

ouble Auction (CDA). Grosu and Das (2004 ) shows that CDA per-

orms better than PMDA and TPDA in terms of resource utiliza-

ion. Motivated by the work proposed by Grosu and Das (2004 ),

zakian et al. (2010 ) proposed a continuous double auction based

esource allocation for grid computing where grid users request

or the resources in an auction market for executing their jobs. In

zakian et al. (2010 ), a user’s bid value increases with the decrease

n the number of remaining resources or average mean remain-

ng time as it tries to finish its running tasks as soon as possi-

le by acquiring more resources which can be obtained by bidding

igher values. The provider’s bid value is determined by the total

orkload and fluctuates between its ask price and maximum price.

fter that, trading price is determined by taking an average of

ighest bid and lowest ask price. Economic efficiency and System

erformance were two criteria which were used in Izakian et al.

2010 ). Simulation results prove that the model performs better

n terms of fairness deviation, resource utilization and mean trade

rice. 

A Combinatorial Double Auction based resource Allocation

odel named CDARA in cloud computing environment has been

roposed in Samimi et al. (2016 ). The resource allocation has been

one using greedy schemes which approximate the solution by a

actor of 
√ 

M where M is the total resource quantity offered in the

arket. Average pricing mechanisms have been used for users and

roviders, previously used in Li et al. (2009 ). Two evaluation cri-

erion: economic efficiency and incentive compatibility have been

sed in experimental studies. Though the model claimed to be

ruthful as Li et al. (2009 ) through experimental studies, it is not

ruthful theoretically. The reason is that average pricing mecha-

ism used in Li et al. (2009 ) and Samimi et al. (2016 ) would leave

he scope for users and providers to manipulate the cloud market

y bidding falsely ( Baranwal and Vidyarthi, 2015 ). 

A Fair, Multi-attribute Combinatorial Double Auction Model

FMCDAM) for cloud environment is proposed in Baranwal and

idyarthi (2015 ). In FMCDAM, various QoS attributes were consid-

red along with price for winner determination and resource al-

ocation is done using greedy technique as used in Samimi et al.

2016 ). FMCDAM reduces the bidder drop problem by allocating

esources in a fair manner. Moreover, if a provider offers false QoS

ssurance then a penalty is imposed on the provider and its rep-

tation is decreased which lowers its winning chances in succes-

ive rounds. However, the mechanism does not maximize the so-

ial welfare and is not truthful either. 

One way to handle the wrong market manipulation is design-

ng a truthful auction mechanism which gives incentives to partici-

ants for revealing their true information. Another way, to stop the

alicious behavior of market participants, is feedback rating based

eputation system as proposed in Sun et al. (2013 ) and Wang et al.

2015 ). In Wang et al. (2015 ) the Winner Determination Prob-

em (WDP) problem is solved using Paddy Field Algorithm (PFA)

hereas Sun et al. (2013 ) solves the WDP problem using Group

earch Optimization Algorithm. A family of greedy based combi-

atorial double auction allocation mechanisms has been proposed

n Chichin et al. (2015b ). In this, the authors only designed the

llocation mechanism without proposing any pricing mechanisms.

wo types of sorting criteria are considered for homogeneous and

eterogeneous resources in cloud. Resource Relative Relation (RRR)
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unction and Resource Scarcity Factor (RSF) have been conceived as

orting criteria for homogeneous and heterogeneous resources re-

pectively. According to RRR function, a trade is more efficient if it

enerates more surpluses for less number of traded resources. RSF

onsiders the scarcity factor associated with the cloud resources.

ccording to RSF, a trade is more efficient if it generates more

urpluses for less number of traded scarce resources. All the sort-

ng criteria are evaluated in terms of allocative efficiency, resource

tilization and social welfare. Similar type of sorting criteria were

lso used in forward auction scenario for allocation of virtual ma-

hines among multiple users in Nejad et al. (2015 ). 

Double auction mechanisms proposed in Chichin et al. (2015a )

nd Sun et al. (2015 ) ensure the truthfulness for cloud users only

hereas mechanisms proposed in Wu et al. (2016 ) ensures the

ruthfulness for cloud providers only. Mechanisms proposed in

aranwal and Vidyarthi (2015 ), Chichin et al. (2015b ), Kumar et al.

2017 ), Lee et al. (2015 ), Li et al. (2009 ) and Samimi et al. (2016 )

ocus only on maximizing the social welfare whereas incentive

ompatibility has not been enforced for any participants. In some

orks, such as Sun et al. (2013 ) and Wang et al. (2015 ), rather than

ruthfulness a different approach has been adopted to stop mali-

ious behavior of participants. To the author’s best knowledge, a

ombinatorial double auction for cloud market has not been de-

igned so far which is truthful for all the participants i.e. cloud

sers as well as cloud providers. The proposed model is budget-

alanced, individual rational, truthful and asymptotic efficient. 

. System model and problem formulation 

In this section, the system model of the proposed TCMDAC, its

ssumptions and problem formulation is discussed in detail. 

.1. Cloud market for TCMDAC 

Combinatorial bidding is considered in this work which is quite

easonable in cloud market. It is because cloud resources (VMs) in

loud market are heterogeneous, substitute, complement and in-

errelated with each other. A user’s jobs may have different re-

ource requirements sometimes combination of VMs for their ex-

cution. Such type of requirements can be observed in web host

pplications ( Huang et al., 2014; Urgaonkar et al., 2007 ). In another

ase, when a user builds workflow applications in a cloud comput-

ng environment, specifically on the Platform-as-a-service (PaaS),

t needs to compose multiple types of services which are hosted

n different types of VMs. In the proposed model, the single-

inded cloud user is assumed as previously assumed in some

ther works also ( Baranwal and Vidyarthi, 2016; Samimi et al.,

016 ). This means, if a user will get all types of VMs, only then

t will be able to host its applications. Therefore, the users bid for

he combination of VM instances. As the complete bundle could

nsure the correct deployment of the application, no partial allo-

ation is allowed in the whole allocation process. Table 1 depicts

he list of symbols used in this work. 

A VM is itself a bundle of resources possibly CPU, memory, stor-

ge, bandwidth etc. These resource attributes define or describe

he characteristics of a VM. A cloud provider may provide various

ypes of VMs differing in their resource configuration such as num-

er of CPU cores, memory, available storage, OS type, geographical

egion etc. As an example, Microsoft Azure ( Microsoft, 2016 ) and

mazon EC2 ( AWS, 2016 ) provides different types of VMs. These

Ms can be relatively compared in terms of their resource config-

ration by assigning a weight to each type of VMs. Suppose K is

he set of all types of VMs available in the cloud market which

s known to each market participant a-priori to auction. To rep-

esent the relative resource configuration of different type of VMs
or comparing VMs of different types, a weight vector can be rep-

esented as W = ( w 1 , w 2 , . . ., w K ) wher e w k is any positiv e r eal

umber. It is assumed that there is a clear upward scaling (al-

hough not always proportional) from small instances to large in-

tances i.e. w 1 ≤ w 2 ≤ ���. . . ≤ w K . The values of these weights are

ssumed to be known by every provider ( CloudHarmony, 2010 ). 

Cloud provider 

Assume there are M cloud resource providers in the cloud

arket and M = 1 , 2 , . . . , M where M denotes the set of cloud

roviders. These providers participate in the auction for providing

loud services to the cloud users. A provider’s bid i.e. its offer-

ngs can be represented as a vector comprising its offered resource

uantity and quoted ask price/cost for each type of resource.

id 
p 
j 

= ( q p j , p p j ) where qp j is the resource vector that can be rep-

esented as: q p j = < qp 
j 
1 
, qp 

j 
2 
, . . . , qp 

j 
K 

> . Here qp 
j 

k 
represent the

umber of VMs of type k offered/provided by provider j . The sec-

nd vector in Bid profile of provider j is pp j , which is the per-unit

sk price/cost of each type of VM resources. pp j is a cost vector and

an also be represented as: p p j = < pp 
j 
1 
, pp 

j 
2 
, . . . , pp 

j 
K 

> where

pp 
j 

k 
represents the ask price of a single VM of type k offered by

he provider j . 

All types of VMs offered by the cloud provider j are differ-

nt and are scaled by weight vector W as described earlier. In

he proposed model, the weights have been used to calculate the

esources’ pricing. As weights of VMs are clearly upward scaled,

he per-unit prices of different types of VMs are considered ac-

ording to their weight vector in such a way that pp 
j 
1 

< pp 
j 
2 

<

. . . · · · pp 
j 
K 

∀ j ∈ M . In addition, a new term called marginal cost

ave been coined that is used to rank all units of VMs in ascend-

ng order of their per-unit ask prices. Suppose mc k [ q ] represent the

sk price of cheapest q -th unit of kth type of VM where q is the

mallest integer greater than or equal to q . Suppose p p j represents

he actual cost vector of provider j . While bidding, a provider’s bid

p j may or may not be equal to its actual valuations p p j e.g. a

rovider may falsely report its valuation (by bidding lower than

ts actual valuation) of resources in order to increase its chance of

inning. It can also misrepresent its offered quantities and QoS.

ormally, cloud resource provisioning and allocation happen over

he internet where the cloud providers and users are remotely lo-

ated. Thus, it is not possible to force providers or customers to bid

ruthfully ( Bratton et al., 1982 ). In order to avoid wrong manipu-

ation of whole market, proposed auction mechanism is designed

n such a way that it provides incentives to providers to report its

references truthfully. 

Designing a truthful mechanism depends upon the nature of

he bid attribute. A bid attribute can be categorized into verifi-

ble and non-verifiable attributes ( Pla et al., 2015 ) e.g. price is a

on-verifiable attribute because it is known only to the provider

nd cannot be checked by any other participants due to its sub-

ectivity. On the other hand, QoS and quantity of offered re-

ources come into the category of verifiable attributes i.e. values

f these attributes can be verified after allocation of resources.

he mechanism proposed in this work provides the incentives to

he providers to report only the ask prices truthfully. In case, if

rovider wins by falsely reporting the quantity offered, a penalty

echanism or a reputation mechanism can be applied which lower

he chances of winning of that provider in the successive auc-

ion rounds ( Baranwal and Vidyarthi, 2016, 2015; Ray et al., 2011 ).

herefore, the strategy space of a selfish user or provider is re-

tricted for misstating the valuation about bundles i.e. for all bid

rofiles of provider p j , q p j = q p j where q p j is the actual resource

uantity offered by provider j . In addition, the assumption regard-

ng the assured QoS after winning the auction suits the reserva-

ion and on-demand type instances in which the number of times

oS violation are very less. In case of any QoS violation, a penalty
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Table 1 

Notations. 

Notation Description Notation Description 

N Set of all cloud users M Set of all cloud providers 

N Number of cloud users M Number of cloud providers 

K Number of VM types K Set of VM types 

q u i Actual value of VM bundle requested by user i qu i 
k 

Number of k th type of VM requested by user i 

p u i Actual valuation of user i pu i Quoted bid price by user i 

q p j Actual set of VMs supplied by provider j qu i Quoted VM bundle requested by user i 

qp j Quoted set of VMs supplied by provider j qp j 
k 

Number of k th type of VM offered by provider j 

pp j 
k 

Ask price of a single VM of type k offered by the provider j pp j Quoted offer price by provider j . 

mc Marginal cost mc k [ q ] cost of cheapest q th unit of k th type of VM 

mc k − j 
[ q ] cost of cheapest q th unit of k th type of VM without j provider’s participation x final Final user allocation vector 

z final Final provider allocation matrix pay u Users’ payment vector 

pay p Provider’s payment vector U u 
i 

Utility of user i 

U p 
j 

Utility of provider j W Social welfare 

V PU V Virtual padding user q u V VM bundle of VPU V
qu V 

k 
Number of k th type of VM requested by V W̄ Social welfare with V

x ′ User allocation vector with V z ′ Provider allocation matrix with V
critical Val ue u 

i 
Critical value of user i N 

s Set of winning users in x ′ 
x ′′ Final user allocation vector z ′′ Final provider allocation matrix 

p p j Actual cost/valuation of provider j 
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mechanism can be imposed ( Baranwal and Vidyarthi, 2015 ). It is

also assumed that offered bid of a cloud provider is divisible i.e. it

can provide its resources to multiple users simultaneously. 

Cloud user 

Suppose there are N cloud users in the cloud market and N =
1 , 2 , . . . , N where N denote the set of all users. Depending upon

its requirements, a user estimates the number of resources re-

quired and formulates its total demand in the form of bundles of

virtual machines and estimates a bid price for the complete bun-

dle of VMs. A user i bids for bundle q u i = < qu i 
1 
, qu i 

2 
, . . . , qu i 

K 
>

where qu i 
k 

represents the number of VM instances of type k re-

quested by user i and qu i 
k 

≥ 0 . In addition, user specifies a bid

value pu i for the requested bundle. For each bundle qu i , the user

has some valuation p u i which is a function of qu i and P i.e. p u i =
f ( q u i , P ) where P is a set of factors that may be used while calcu-

lating the valuation such as budget, market price etc. The quoted

bid price of the user i.e. pu i may or may not be equal to his true

valuation p u i . We assume that the “request divisibility ” of cloud

users is allowed i.e. a cloud user can acquire his resources from

multiple providers. We also assume that a user can be untruthful

in terms of his bid price only, not in terms of required quantity i.e.

q u i = q u i where q u i is his actual required resource quantity. The

reason for the above assumption is that misreporting the required

bid quantity always results in zero utility for a user because in this

case user would not get the complete bundle if it wins. 

Cloud auctioneer 

Cloud Auctioneer is an entity (an individual, business organi-

zation or a broker firm) who holds the auction for trading of re-

sources in a cloud market. Auctioneer possesses all the technical

details of the market and its components such as cloud resource

configurations, nature of traded resources, total number of users

and providers in the cloud market. 

For simplicity, in this paper cloud Service User, cloud Service

Provider and cloud Auctioneer will be referred as user, provider

and auctioneer respectively 

3.2. Problem formulation 

Since aim of this work is to benefit both the users and

providers, the goal of the resource allocation problem is to maxi-

mize total social welfare i.e. the difference between the users’ total

payment and providers’ total revenue while satisfying the resource

availability constraint. If all users and providers bid truthfully, the

social welfare maximization problem �( N , M ) can be formulated
s an Integer Linear Programming (ILP) problem which is an NP-

ard Problem. 

( N , M ) : maximize W ( N , M ) = 

∑ 

i ∈N 
p u i x i −

∑ 

j∈M 

∑ 

k ∈K 
pp j 

k 
z jk 

(1)

Subject to
 

i ∈N 
qu 

i 
k x i = 

∑ 

j∈M 

z jk ∀ k ∈ K (2)

 i ∈ { 0 , 1 } ∀ i ∈ N (3)

 jk ∈ 

{
0 , 1 , .. ., qp j 

k 

} ∀ j ∈ M , k ∈ K (4)

In the above formulation, in Eq. (1) W( N , M ) i.e. social wel-

are is the objective to be maximized. First constraint, i.e. Eq. (2) ,

pecifies that the number of requested resource should be equal

o number of offered resources in the final allocation. Eqs. (3) and

4) depict that decision variables x i and z jk should be integers. x i 
s 1 if user i wins otherwise 0. z jk denotes the allocated quantity

f kth type of VM of provider j and it should not exceed the total

umber of VMs of kth type at provider j . 

.2.1. Designing target and objectives 

In complex scheduling situations, such as combinatorial dou-

le auctions where bidders bid in the form of bundles, economic

fficiency and computational efficiency conflict with each other

 Xia et al., 2005 ). Also, a double auction mechanism can’t be eco-

omically efficient and truthful at the same time ( McAfee, 1992 ).

mong all the above properties, two properties i.e. individual ratio-

al and budget balance are necessary for sustainable auctions i.e.

idders will not take part in auction voluntarily if they incur loss

y participating in the auction and the auctioneer will not perform

uction in long run if the mechanism does not satisfy budget bal-

nce property. The above problem is solved keeping in mind the

conomic properties one needs to satisfy. 

Asymptotic efficiency 

Economic efficiency of a double auction mechanism is mea-

ured in the terms of total social welfare generated by the mech-

nism. An efficient mechanism maximizes the total social welfare.

 double auction mechanism is 100% efficient if the actual wel-

are generated by the mechanism is equal to the welfare gener-

ted theoretically i.e. there is no loss of welfare in the mechanism.
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nother term i.e. asymptotic efficiency is a weaker notion of effi-

iency. A mechanism is said to be asymptotic efficient when wel-

are loss converges to zero as maximal social welfare approaches

nfinity ( Xia et al., 2005 ). 

Incentive compatibility 

Incentive compatibility or truthfulness ensures that bidding

ruthfully (revealing true information) is a dominant strategy for

ach participant i.e. for any user i , U u 
i 
( p u i ) ≥ U u 

i 
( p u i ) ∀ p u i and for

ny provider j , U p 
j 
( p p j , q p j ) ≥ U p 

j 
( p p j , q p j ) ∀ p p j , q p j where U u 

i 
is

tility of user i and U p 
j 

is utility of provider j . 

Budget-balance 

Budget-balance property ensures that the total payment done

y users should be equal to the total payment received by the

roviders. i.e. 
∑ 

i ∈N pa y i = 

∑ 

j∈M 

pa y j where pay i is payment paid

y user i and pay j is payment received by provider j . If 
∑ 

i ∈N pa y i −
 

j∈M 

pa y j ≥ 0 , then the mechanism is said to be weak budget-

alance. 

Individual rational 

A mechanism is said to be individual rational if utility of all par-

icipants is always non-negative i.e. a user doesn’t pay more than

he bid valuation and a provider doesn’t get payments less than

ts actual valuation (reservation, ask price or cost) i.e. U u 
i 

≥ 0 and

 

p 
j 

≥ 0 ∀ i ∈ N and ∀ j ∈ M 

Computational efficiency 

A double auction mechanism is said to be computationally

ractable if the allocation and payments can be calculated in poly-

omial time. 

. TCMDAC: the proposal 

The proposed TCMDAC model contains several phases detailed

s below. 

Start of auction 

Cloud auctioneer starts the auction by inviting users and

roviders to submit their bids. 

Submission of bids 

All users and providers, participating in double auction, report

o the auctioneer with their bids. Each user bids the combinato-

ial requests whereas each provider advertises its resources cou-

led with per-unit ask prices. After submission, auctioneer closes

he auction and calculates the allocation and payment output vec-

or for both users and provider. 

Resource allocation 

As discussed earlier, designing an efficient, individual ratio-

al, truthful and budget-balance double auction mechanism is im-

ossible even in simple environments ( McAfee, 1992; Myerson,

981 ). Some works such as Chu and Shen (20 08, 20 06, 20 07 ) and

uang et al. (2002 ) designed truthful double auction mechanisms

or combinatorial/single-unit environment in which each user has

ombinatorial requests for resources and each seller offers single

nit of a particular type of commodity. If we extend these mech-

nisms for multi-unit settings in cloud, then the mechanism loses

udget-balance property and incur a budget-deficit ( Chu, 2009 ). A

ouble auction mechanism for bundle/multi-unit environments is

roposed in Chu (2009 ) by designing a padding method to recover

he budget-deficit by inserting a gap between the resource require-

ents and resource offers. This gap is filled with the help of a

irtual user who has unlimited budget and large resource require-

ents. According to supply-demand principle, consideration of Vir-

ual Padding User (VPU) increases the total resource requirements

f users which results in higher equilibrium price, higher buying

rice, less traded quantities and low selling price thus generating

udget-surplus ( Chu, 2009 ). 

Motivated by Chu (2009 ) which considers the multi-unit en-

ironment for a single type of commodity only, this work uses
adding method but for cloud computing environment where a

rovider offers multiple types of VMs. A VPU V is considered

hich increases the competition among users and eliminates the

sers with less credentials (i.e. users with less budget (less bid

alue) or more required resources or both). It is assumed that

PU is having unlimited budget. The requested quantities by VPU

s set as the maximum quantity of each type of VM offered

y any provider i.e. q u V = qu V 1 , qu V 2 , . . . , q u V K where q u V 
k 

=
ax ( qp 

j 

k 
) ∀ k ∈ K, j ∈ M . The intuition behind the use of VPU

with such requirements is that normally, a provider with the

argest supply has the largest power in manipulating the prices.

ut large size of V may also result in large efficiency loss. There-

ore V with suitable resource demands is designed. In Theorem 9 ,

t is shown that for each type of resources, the above designed VPU

elps in designing the mechanism as incentive compatible, individ-

al rational and budget-balance. The social welfare maximization

roblem with consideration of VPU V is �̄( N , M , V ) which can be

epicted as below. 

�̄( N , M , V ) : maximize W̄ ( N , M , V ) 
= 

∑ 

i ∈N 
p u i x i −

∑ 

j∈M 

∑ 

k ∈K 
p p jk z jk (5) 

Subject to: 
 

i ∈N 
qu 

i 
k x i + qu 

V 
k = 

∑ 

j∈M 

z jk ∀ k ∈ K (6)

 ≤ x i ≤ 1 ∀ i ∈ N (7)

 ≤ z jk ≤ qp j 
k 
∀ j ∈ M , k ∈ K (8)

The difference between the �( N , M ) and �̄( N , M , V ) is the

onsideration of VPU V and relaxation of some constraints i.e. val-

es of decision variables x i and z jk can be fractional rather than in-

eger. Let the solution generated by solving the �̄( N , M , V ) prob-

em is ( x ′ , z ′ ). After finding the solution ( x ′ , z ′ ), critical values of all

sers are calculated. Here, critical values for a user i can be defined

sing equation below. 

ritical V al ue u i = inf { q p i | x ′ i = 1 } (9)

Critical value for a user is equal to the minimum value, it can

id while remaining in solution ( x ′ , z ′ ) with x ′ 
i 
= 1 for padded

ptimization problem �̄( N , M , V ) , given the bids of others are

nchanged. To find the critical value, a binary search over a de-

ned range of values is performed. As the mechanism have to

e individual rational, a user payment cannot be more than its

ctual valuation i.e. critical V al ue u 
i 

≤ p u i ∀ i ∈ N . Therefore, upper

ound for the critical value is its actual valuation. Lower bound

f critical value is established using Theorem 6 i.e. critical V al ue u 
i 

≥
 

k ∈K m c k [ 
∑ 

u ∈N qu u 
k 
x ′ u + qu V 

k 
] ∗ ( qu i 

k 
) . CRITICAL-VALUE function,

iven in Algorithm 3 , lists the procedure to calculate the critical

alues for all users. 

After finding the critical values for all cloud users, a new set of

inning users N 

s is constructed where a user i ∈ N 

s if x ′ 
i 
= 1 . The

ew set of winning users N 

s contains those users who bid higher

han their critical values. The interesting point here is that users

n N 

s are more competitive and eligible as compared to the losing

sers. As VPU has the largest valuation among all competing users,

t always wins in padded optimization problem �̄( N , M , V ) . This

auses some less eligible users (less valuation or more requested

uantity or both) to lose who may winners without considering

PU. After finding the new winning set, the set of winning users

re allowed to trade with all providers without considering VPU

. The problem again can be formulated as a linear programming
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Algorithm 1 

TCMDAC-ALLOC. 

1: Input : Bid u 
i 

= ( q u i , p u i ) ∀ i ∈ N ; vector of users’ requests (resource bundle, valuation) 

2: Input : Bid p 
i 

= ( q p i , p p i ) ∀ i ∈ N ; vector of providers’ offers (resource bundle, valuation) 

3: Input : Marginal cost m c k ∀ k ∈ K
4: consider a VPU V with q u V = qu V 1 , qu V 2 , . . . , q u V K Where qu V 

k 
= max ( qp j 

k 
) ∀ k ∈ K, j ∈ M 

5: reformulate the problem �( N , M ) into �̄( N , M , V ) using Eqs. (5) –( 8 ). 

6: solve �̄( N , M , V ) and the obtained solution is ( x ′ , z ′ ) 
7: criticalValue u = CRITICAL-VALUE( Bid u 

i 
, ( x ′ , z ′ ) , q u V ,mc k ) 

8: initialize N 

s = φ. 

9: for i = 1 to N

10: if p u i > critical Val ue u 
i 

11: N 

s = N 

s ∪ { i } 
12:re-allocate with new set of user in N 

s by solving �̄( N 

s , M ) . Let the resultant solution is ( x ′′ , z ′′ ) 
13: for i ∈ N
14: if x ′ 

i 
= x 

′′ 
i 

= 1 

15: x f inal 
i 

= 1 

16: else 

17: x f inal 
i 

= 0 

18: z f inal = z ′′ 
19: OUTPUT : Final Allocation output for user and provider ( x final , z final ) 
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based optimization problem �̄( N 

s , M ) as below. 

�̄( N 

s , M ) : maximize W̄ ( N 

s , M ) = 

∑ 

i ∈ N s 
p u i x i −

∑ 

j∈M 

∑ 

k ∈K 
p p jk z jk 

(10)

Subject to ∑ 

i ∈ N s 
qu 

i 
k x i = 

∑ 

j∈M 

z jk ∀ k ∈ K (11)

0 ≤ x i ≤ 1 ∀ i ∈ N 

s (12)

0 ≤ z jk ≤ qp j 
k 
∀ j ∈ M , k ∈ K (13)

Let the solution generated after solving the above problem is

( x ′′ , z ′′ ). If x ′ 
i 
= x 

′′ 
i 

= 1 then x 
f inal 
i 

= 1 , otherwise x 
f inal 
i 

= 0 . Here, it

can be shown that if x ′ 
i 
= 1 , then x 

′′ 
i 

= 1 will also be true. This can

be justified by the fact that removal of VPU V from the users’ set

increases the chance of winning of users who are already winners.

As VPU V has the largest demand, its removal from the users’ set

leave enough resource quantity for the remaining users. Here z ′′ is

a M × K matrix where z 
′′ 
jk 

represent the number of VMs of type k

allotted or offered by provider j . The whole allocation is presented

in Algorithm 1 . 

Designing of pricing scheme 

After allocation phase, trading prices are calculated by design-

ing separate payment schemes for both users and providers. The

payment schemes are different for users and providers because

they have separate bidding configuration and allocation. The pric-

ing schemes are designed for both user and provider in such a way

that the mechanism is truthful, individual rational and budget-

balance. TCMDAC-PAY function gives the payment output vector

pay u and pay p where pa y u = { pay u 
1 
, pay u 

2 
, . . . , pay u 

N 
} and pa y p =

{ pay 
p 
1 
, pay 

p 
2 
, . . . , pay 

p 
M 

} . 
Cloud user’s payment scheme 

Critical value schemes have been designed to determine the

payments of cloud users. In critical payment method, a user’s

payment doesn’t depend upon its own bid rather on the bids of

other users. If a user loses, it pays zero. If a user wins, it al-

ways pays equal to the critical value below which its bid have lost

( Lehmann and O’ Callaghan, 2002 ). Equation below describes the

payment mechanism for cloud user. 

pay u i = 

{
critical V al ue u 

i 
, x f inal 

i 
= 1 

0 , otherwise 

}
∀ i ∈ N (14)
Cloud provider’s payment scheme 

Critical payments method applied in cloud users’ case is not

pplicable to the case of cloud provider. The reason is that criti-

al payments require that the participant should be single minded

.e. a provider would like to allocate its resources fully or par-

ially if it wins in the auction ( Lehmann and O’ Callaghan, 2002 ),

hile cloud provider’s offers are divisible. The payments for cloud

roviders are calculated using marginal values of resources offered

y various providers. The idea is motivated by the work proposed

n Loertscher and Mezzetti (2013 ) which considers the concept of

arginal value to provide truthful double auction for a market

ut in Loertscher and Mezzetti (2013 ) both buyer and seller trades

ultiple unit of a homogeneous good unlike our work. The pay-

ent of provider j can be calculated as given in equation below.

pay p 
j 
= 

∑ 

k ∈K 
pay p 

jk 
= 

∑ 

k ∈K 

z jk ∑ 

t=1 

mc k − j [ 1 + S k − t ] (15)

here S k = 

∑ 

j∈M 

z jk is the total number of VMs of type k allotted

o the winning users in allocation which is equal to 
∑ 

i ∈ N s qu i 
k 
x 
′′ 
i 

here x 
′′ 
i 

is final user allocation vector. 

As the allocation maximizes the total surplus, providers bid are

orted in ascending order according to their offered prices. For

 winning provider p j , payment is calculated using marginal cost

unctions mc and m c − j where m c − j represents the marginal cost

ector of VMs when provider j is not participating. If provider j

ins, the offered price or cost of provider j is less than the cost

f non-winning providers as providers are arranged in increasing

rder of their cost/ask prices. Therefore, when provider j is not

articipating, this results in the winning of one or more than one

roviders with higher bid prices (as providers are sorted in as-

ending order and provider j has lower offer/ask price than new

inning providers) who successfully allocate their VMs. Moreover,

rovider j will get paid the offered price of new winning providers

n order to achieve individual rationality and incentive compat-

bility. In other words, each provider gets the amount equal to

he harm caused by him to other providers which is measured

y the marginal cost of providing the resources by new winning

roviders. For example, it gets paid the S k -th lowest marginal value

f its competitors for the first unit of kth type of VM, ( S k − 1) -th

owest for the second unit and lowest for S k -th unit where S k is

he total traded VMs of type k . The payment scheme for the same

as been described in Algorithm 2 . 
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Algorithm 2 

TCMDAC-PAY. 

1: Input : Allocation Output = ( x final , z final ) 

2: Input : Critical value vector = criticalValue u 

3: Input : Marginal cost m c k ∀ k ∈ K
//user’s truthful payments using critical value pricing mechanism 

4:for each i ∈ N
5: if x f inal 

i 
= 1 

6: pay u 
i 

= critical Val ue u 
i 

7: else 

8: pay u 
i 

= 0 

//provider truthful payment mechanism based on marginal values 

9: for each k ∈ K
10: S k = 

∑ 

j∈M 

z jk 
11: for each provider j ∈ M 

12: if 
∑ 

k ∈K z 
f inal 

jk 

 = 0 

13: pay p 
j 

= 

∑ 

k ∈K pay p 
jk 

= 

∑ 

k ∈K 
∑ z jk 

t=1 
mc k − j 

[ 1 + S k − t ] 

14: else 

15: pay p 
j 

= 0 

16: OUTPUT : Payment output vector for users and providers ( pay u , pay p ) . 

Algorithm 3 

CRITICAL-PAY. 

1: Input : Bid u 
i 

= ( q u i , p u i ) ∀ i ∈ N ; vector of requests (resource bundle, valuation) 

2: Input : ( x ′ , z ′ ) ; Solution of padded optimization problem �̄( N , M , V ) 
3: Input : q u V ; VPU V resource quantity 

4: Input : Marginal cost m c k ∀ k ∈ K
5:for all i ∈ N do 

6: lb = 

∑ 

k ∈K m c k [ 
∑ 

u ∈N qu u 
k 
x ′ u + qu V 

k 
] ∗ ( qu i 

k 
) 

7: ub = p u i 
8: while ( ub − lb ) ≥ 1 do 

9: mid = � ( lb + ub ) � / 2 
10: Bid u 

i 
= ( q u i , mid ) 

11: find ( x ′ , z ′ ) by solving �̄( N , M , V ) with updated user bid 

12: if x ′ 
i 
= 1 then 

13: ub = mid

14: if lb = ub − 1 then 

15: critical Val ue u 
i 

= mid

16: break 

17: else 

18: lb = mid

19: if lb = ub − 1 then 

20: critical Val ue u 
i 

= mid + 1 

21: break 

22: Ouput : critical Val u e u = ( critical Val ue u 1 , critical Val ue u 2 , , critical Val ue u N ) 
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Payments to cloud users and providers 

Allocation and payment functions’ generated outcome is ( x,

ay u ) for user and ( z, pay p ) for provider. After the final allocation

nd payments using TCMDAC-ALLOC and TCMDAC-PAY, the cloud

sers pay to the cloud auctioneer. After that, cloud auctioneer pays

o the cloud providers as per the prices calculated using TCMDAC-

AY. 

End of auction 

The whole round of auction ends after complete payment pro-

ess. 

Utility of user i can be calculated using equation below. 

 

u 
i = p u i x i − pay u i (16) 

As a cloud user is single-minded, it will pay only if it gets its re-

uested complete bundle, otherwise its payment will be zero. Sim-

larly, utility of a provider will be derived from its payment and

he quantity of resources offered in final allocation. The utility of

rovider j can be calculated using equation below. 

 

p 
j 

= pay p 
j 
−

∑ 

k ∈K 
pp j 

k 
z jk (17) 

Properties of TCMDAC 

heorem 1. TCMDAC is truthful for all cloud users. 
roof. The proof of truthfulness for all the participants is derived

rom Vickrey (1961 ), Clarke (1971 ) and Groves’s (1973 ) arguments.

f user does not win, it pays zero and its utility will be zero,

therwise it pays the critical payment which is independent of

ts bid value pu i and depends on the valuations of its competi-

ors i.e. valuation of other users. This critical payment is equal to

he minimum bid value it can bid in order to win in the auc-

ion. If user i bids higher than critical V al ue u 
i 
, then it successfully

btains its resource bundle in the optimal solution �̄( N 

s , M ) . If

t bids lower than this critical payment, it loses in the auction,

 / ∈ N 

s ( Lehmann and O’Callaghan, 2002 ). This critical payment

ethod ensures incentive compatibility as proven in Lehmann and

’Callaghan (2002 ). In order to prove the mechanism truthful for

sers, we consider different use cases and proved that bidding

ruthfully is always in the best interest of user u i i.e. user’s util-

ty will be maximum when it bids its actual valuation. 

(a) If cloud user wins i.e. x 
f inal 
i 

= 1 , then there are two possible

cases: 

1. If p u i < p u i i.e. user underbids its actual valuation, then

there are two further cases: 
• If p u i ≥ critical V al ue u 

i 
, then user wins and acquires its

VM resource bundle in an optimal solution ( x ′ , z ′ ) to

�̄( N , M , V ) . In that case x ′ = 1 and enters into set

N 

s . Accordingly, it also wins in the final allocation i.e.

x ′′ = 1 . In this case total traded quantity of each type

of VM is 
∑ 

j∈M 

z jk = 

∑ 

i ∈N qu i 
k 
x 
′ 
i 
+ qu V 

k 
∀ k ∈ K and

lowest � ∑ 

i ∈ N qu i 
k 
x ′ i + qu V 

k 
� − th offer price determines

the marginal price of kth type of VM where � x � is the

smallest integer greater than or equal to x . The users

in set N 

s will now trade with the providers by solv-

ing �̄( N 

s , M ) which generates the final allocation

( x ′′ , z ′′ ). In the final allocation, a total 
∑ 

i ∈ N s qu i 
k 
x 
′′ 
i 

VMs of type k are allocated to users which is equal

to 
∑ 

j∈M 

z 
′′ 
jk 

. At this point, marginal cost price of

kth type of VM is the lowest 
∑ 

i ∈ N s qu i 
k 
x 
′′ 
i 

− th offer

price which is significantly lower than the marginal

prices to the optimal solution �̄( N , M , V ) be-

cause 
∑ 

i ∈N qu i 
k 
x 
′ 
i 
+ qu V 

k 
≥ ∑ 

i ∈ N s qu i 
k 

≥ ∑ 

i ∈ N s qu i 
k 
x 
′′ 
i 

and also m c k [ 
∑ 

i ∈N qu i 
k 
x 
′ 
i 
+ qu V 

k 
] ≥ m c k 

∑ 

i ∈ N s qu i 
k 

≥
m c k 

∑ 

i ∈ N s qu i 
k 
x 
′′ 
i 

. The above inequality ensures that if

the user wins in the optimal solution of �̄( N , M , V ) ,
it also wins in the final allocation to problem

�̄( N 

s , M ) . Therefore, when user bids higher than

its critical value critical V al ue u 
i 
, it acquires its bun-

dle in �̄( N , M , V ) and also in �̄( N 

s , M ) at price

critical V al ue u 
i 
. In this case, the utility will remain the

same. 
• If p u i < critical V al ue u 

i 
, user will lose if it bids lower

than its critical payment i.e. x ′ = 0 and is not able to

win in the final allocation. This results in zero util-

ity for the user. Therefore, in this case, false bidding

results in a decrease in its utility. 

2. If p u i > p u i , then it will be always be a winner because

it further increases the chance of winning it as allocation

algorithm chooses the user with higher valuation to max-

imize the social welfare. This bidding case also results in

no change in its utility as it is paying the same price as

when it bids p u i = p u i . This is because its payment that

is equal to critical payment calculated using Eq. (9) de-

pends upon the bid values of its competitors i.e. other

cloud users. 

(b) Cloud user loses i.e. x 
f inal 
i 

= 0 , then there are two cases: 
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1. If p u i < p u i , then it will still be a loser in the auction be-

cause lowering the valuation further lowers the chance of

winning in the auction. This is due to the LP based allo-

cation algorithm design as it will select only those users

who have high valuation as it is designed to maximize

the total social welfare (sum of valuations). Therefore, its

utility will remain zero. In this case also, false bidding

brings no change in its utility. 

2. If p u i > p u i , then there are two further cases: 
• It may still be the loser when it does not qualify

the winning bid’s amount i.e. higher than the bids

of other users. Then, its utility will remain zero and

there is no change in its utility by bidding falsely. 
• Suppose the user wins by bidding greater than its ac-

tual valuation and pays the critical payment which

will be greater than its valuation p u i . But in that case

it will pay more than its valuation which brings neg-

ative utility for him. Therefore, this case represents a

reduction in its utility by bidding falsely. 

All the above cases prove that if the user bids different than

its actual valuations (whether greater than or less than), then the

utility of the user either remains the same or is decreased. If user’s

valuation is higher than its critical payment, it prefers to win and

gets its requested resources (trade), which can be achieved by bid-

ding truthfully. If its actual valuation is lower than its critical pay-

ment, it prefers not to trade which can also be achieved by report-

ing its valuation truthfully and when its actual valuation equals its

critical payment, it is indifferent to trading. This proves that bid-

ding truthfully is always the users’ dominant strategy and the pro-

posed mechanism is incentive compatible for all cloud users. �

Theorem 2. TCMDAC is individual rational for cloud user. 

Proof. In TCMDAC, the payments of cloud users depend upon the

critical value pricing. If a user wins, it will pay its critical payment

which is always less than its valuation. If it doesn’t win, it pays

zero and its utility will be zero. Therefore, in each case, a user’s

utility will be always greater than or equal to zero i.e. U u 
i 

≥ 0 .

Therefore, the proposed mechanism is individual rational for all

cloud users. �

Theorem 3. The proposed mechanism in TCMDAC induces a feasible

allocation in which each cloud user either acquire whole requested re-

source bundle or nothing and each cloud provider offers discrete units

of VM resources. 

Proof. In the proposed payment mechanism, if i ∈ N 

s ,user i wins

in auction and successfully acquires its resource bundle in the so-

lution ( x ′ , z ′ ) to problem �̄( N 

s , M ) . If i / ∈ N 

s , user i loses and it

gets nothing. Also, the total number of VMs allotted in the final

allocation is 
∑ 

i ∈ N s qu i 
k 
x 
′′ 
i 

= 

∑ 

j∈M 

z jk for k ∈ K which is definitely

an integer value. As all providers’ resources are ranked according

to their offered price from low to high, each provider also offers

discrete units of resource quantities. Therefore, the allocation gen-

erated by TCMDAC mechanism is feasible. �

Before proving the truthfulness for providers, first we will prove

the following lemma 

Lemma 1. For any user i ∈ N 

s , x 
p 
i 

= 1 in the optimal solution ( x p , z p )

to �̄( N 

s , M\{ j} ) for any j ∈ M if qu V 
k 

> ma x j∈M 

{ qp 
j 

k 
} − 1 , ∀ k ∈

K. 

Proof. At the optimal solution of ( x ′ , z ′ ) to �̄( N 

s , M , V ) , for

each k ∈ K, a total of 
∑ 

i ∈ N s qu i 
k 
x ′ 

i 
+ qu V 

k 
= 

∑ 

j∈M 

z jk units of
Ms of type k are allocated to winning users and the highest

sk price among the traded units is m c k [ 
∑ 

i ∈N qu i 
k 
x ′ 

i 
+ qu V 

k 
] .

f i ∈ N 

s , x 
p 
i 

= 1 . If we compare the solution to �̄( N , M , V )
t x 

p 
i 

= 1 and x 
p 
i 

= 1 − ε for small ε > 0 , then we have p u i ≥
 

k ∈K qu i 
k 

∗ m c k [ 
∑ 

i ∈N qu i 
k 
x ′ 

i 
+ qu V 

k 
] for all feasible allocations.

lso, we have assumed that VPU V has the largest demand i.e.

u V 
k 

= max ( qp 
j 

k 
) ∀ k ∈ K, j ∈ M and qu V 

k 
≥ qp 

j 

k 
∀ k ∈ K, j ∈ M ,

nd m c k [ 
∑ 

i ∈N qu i 
k 
x ′ 

i 
+ qu V 

k 
] ≥ m c k [ 

∑ 

i ∈N qu i 
k 
x ′ 

i 
+ qp 

j 

k 
] ∀ k ∈ K, j ∈

 and m c k [ 
∑ 

i ∈N qu i 
k 
x ′ 

i 
+ qu V 

k 
] ≥ m c k [ 

∑ 

i ∈ N s qu i 
k 

+ qp 
j 

k 
] ∀ k ∈

, j ∈ M . In addition, we have an another inequal-

ty which is always true i.e. m c k [ 
∑ 

i ∈ N s qu i 
k 
x 

p 
i 

+ qu V 
k 

] ≥
c k − j 

[ 
∑ 

i ∈ N s qu i 
k 
x 

p 
i 

] ∀ j ∈ M when qu V 
k 

> 0 ∀ k ∈ K. Also, we

ave 
∑ 

i ∈ N s qu i 
k 

≥ ∑ 

i ∈ N s \{ u } qu i 
k 
x 

p 
i 

+ qu u 
k 

≥ ∑ 

i ∈ N s qu i 
k 
x 

p 
i 

, Thus we

ave the following inequalities: 

p u i ≥
∑ 

k ∈K 
qu 

i 
k ∗m c k 

[ ∑ 

i ∈ N S 
qu 

i 
k + qp j 

k 

] 

∑ 

k ∈K 
qu 

i 
k ∗ m c k 

[ ∑ 

i ∈ N S \ { u } 
qu 

i 
k x 

p 
i 

+ qu 

u 
i + qp j 

k 

] 

∑ 

k ∈K 
qu 

i 
k ∗ m c k 

[ ∑ 

i ∈ N s 
qu 

i 
k x 

p 
i 

+ qp j 
k 

] 

∑ 

k ∈K 
qu 

i 
k ∗ mc k − j 

[ ∑ 

i ∈ N s 
qu 

i 
k x 

p 
i 

] 

In �̄( N 

s , M\{ j} ) , if x p 
i 

< 1 , we could always increase x 
p 
i 

to 1 to

chieve a higher social welfare. Therefore, x 
p 
i 

= 1 must be in the

ptimal solution of �̄( N 

s , M\{ j} ) . �

heorem 4. In TCMDAC, bidding truthfully is dominant strategy for

ach provider and non-uniform pricing scheme is forced on each

rovider. 

roof. In the proposed mechanism, all the providers, who suc-

essfully allocate their resources to cloud users, get paid from the

uctioneer/market maker. For each provider, if a provider wins,

t will get paid by the auctioneer the cost equal to the cost of

arming other providers. For simplicity, we prove the truthful-

ess property for any VM type k which can be generalized for

ll k ∈ K. We will consider all the cases and prove that revealing

rue offers cost/ask prices is the dominant strategy. As explained

n Eq. (17) , utility of a provider j is as: U p 
j 

= pay 
p 
j 
− ∑ 

k ∈K pp 
j 

k 
z jk ,

here pay 
p 
j 

= 

∑ 

k ∈K pay 
p 

jk 
= 

∑ 

k ∈K 
∑ z jk 

t=1 
mc k − j 

[ 1 + S k − t ] . Putting

he value of pay 
p 
j 
, we get the following expression: U p 

j 
=

 

k ∈K 
∑ z jk 

t=1 
mc k − j 

[ 1 + S k − t ] − ∑ 

k ∈K pp 
j 

k 
z jk which can be written

s: U p 
j 

= 

∑ 

k ∈K ( 
∑ z jk 

t=1 
mc k − j 

[ 1 + S k − t ] − pp 
j 

k 
z jk ) . As earlier stated,

s the providers are always truthful in terms of resource quan-

ity, we can ignore the term z jk . Then, the utility of a provider

 becomes: U p 
j 

= 

∑ 

k ∈K ( 
∑ z jk 

t=1 
mc k − j 

[ 1 + S k − t ] − pp 
j 

k 
) . In order to

rove the mechanism truthful, we consider different use cases and

o prove that bidding truthfully is in best interest of any provider

 . 

a) A cloud Provider wins i.e. non-zero quantity of VMs are allo-

cated to the winning users in the auction. This case can be fur-

ther categorized into two cases. 
• Among all possible allocations i.e. z jk =

{ 1 , 2 , . . . , t, . . . , qp 
j 

k 
− 1 } ∀ k ∈ K i.e. total t number of

VMs are allocated to users where t ≤ qp 
j 

k 
− 1 and
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mc k − j 
[ S k − t ] < pp 

j 

k 
< mc k − j 

[ S k − t + 1 ] . If pp 
j 

k 
= pp 

j 

k 
, then a

total t number of VMs of type k are allocated among users.

In this case, provider j will replace the cost of t units of

highest cost VMs provided by other providers. If pp 
j 

k 
< pp 

j 

k 
,

then its chance of winning increases and more resources

can be allocated if mc k − j 
[ S k − t ] < pp 

j 

k 
< mc k − j 

[ S k − t + 1 ] is

true. But this will decrease the overall utility of provider

j . The reason is that as z jk is increased, the value of

mc k − j 
[ S k − z jk + 1 ] is decreased, as the values in mc f 

j 

k 
are in

ascending order of marginal prices. Therefore, bidding less

than its actual ask price lowers its utility. If pp 
j 

k 
> pp 

j 

k 
, the

winning chance of providers will decrease and there will al-

ways be less number of resources allocated as compared to

the case when pp 
j 

k 
= pp 

j 

k 
. If reported ask prices are higher

than the highest marginal cost of VMs i.e. pp 
j 

k 
> mc k − j 

[ S k ] ,

then the provider will lose and no VM will be allocated

which bring its utility to zero. Therefore, in each case, a

provider utility will either remain same or is decreased

when it reports its ask prices falsely. 
• z jk = qp 

j 

k 
∀ k ∈ K i.e. a provider successfully allocates its

full available capacity and it will replace the offers of

other providers if its ask prices are lower i.e. pp 
j 

k 
<

mc k − j 
[ S k − z jk + 1 ] . If pp 

j 

k 
= pp 

j 

k 
, then provider will al-

locate all of its available VMs if and only if pp 
j 

k 
<

mc k − j 
[ S k − z jk + 1 ] . Then, the provider will allocate all of

its available capacity in order to increase its utility. The

provider j will replace z jk units of VMs of highest cost pro-

vided by other providers. If pp 
j 

k 
< pp 

j 

k 
, there will be no

change in the allocation as all the available capacity of

provider j has been already allocated. Therefore, there will

be no change in its utility. If pp 
j 

k 
> pp 

j 

k 
, the winning chance

of providers will be decreased and there will always be less

number of resources allocates as compared to the case when

pp 
j 

k 
= pp 

j 

k 
. Therefore, in all three cases, the utility will re-

main same or is decreased if a provider bids falsely. 

b) Cloud provider loses when pp 
j 

k 
> mc k − j 

[ S k ] : If the true ask

prices are higher than the highest marginal price of the re-

sources, then the provider will not prefer to win in the auc-

tion which also can be achieved by bidding pp j and qp j truth-

fully. This is because the social welfare maximizing allocation

would select the providers with the minimum cost and re-

source offers of provider j would not be allocated to any user

i.e. z jk = 0 ∀ k ∈ K. 

1. If pp 
j 

k 
> pp 

j 

k 
, then it will still be a loser in the auction be-

cause higher the valuation, lower the chance of winning in

the auction. Therefore, its utility will remain zero. In this

case also, false bidding brings no change in its utility. 

2. If pp 
j 

k 
< pp 

j 

k 
, then there are two further cases: 

• It may still be the loser when it does not qualify

marginal cost of allocated quantities. Then, its utility will

remain zero and there is no change in its utility by bid-

ding falsely. 
• Suppose the provider lowers its valuations in such a

way that mc k − j 
[ S k − t ] < pp 

j 

k 
< mc k − j 

[ S k − t + 1 ] or pp 
j 

k 
<

mc k − j 
[ S k − z jk + 1 ] . In this case its payment will be equal

to mc k − j 
[ S k − t + 1 ] and mc k − j 

[ S k − t + 1 ] < pp 
j 

k 
. There-

fore, utility of the provider will be negative in this case.

This case also proves a decrease in its utility by bidding
falsely. 
f  
All the above cases prove that if the provider bids different

han its actual valuations (whether greater than or less than),

hen its utility either remains the same or is decreased. If pp 
j 

k 
<

c k − j 
[ S k − z jk + 1 ] , provider j will allocate all of its available VMs

n order to maximize the U p 
j 

, which can also be achieved by truth-

ully reporting pp 
j 

k 
and z jk . If mc k − j 

[ S k − t ] < pp 
j 

k 
< mc k − j 

[ S k − t + 1 ]

here t ∈ { 1 , 2 , . . . , t, . . . , qp 
j 

k 
− 1 } , the pr ovider will pr efer t o al-

ocate t units of VMs in order to maximize its utility which can

lso be achieved by reporting pp 
j 

k 
and z jk truthfully. If provider’s

eported cost are higher than the highest marginal cost of allo-

ated quantity i.e. pp 
j 

k 
> mc k − j 

[ S k ] , then it will not prefer to offer

ny VM because it will results in a negative utility. Therefore, it

ill remain truthful to obtain non-negative utility. This proves that

idding truthfully becomes the providers’ dominant strategy. This

roves that the proposed mechanism is incentive compatible for

ll cloud providers. �

heorem 5. TCMDAC is Individual rational for all cloud providers. 

roof. In TCMDAC, if a cloud provider wins, it always gets paid

n amount which is always greater than or equal to its actual ask

rice/cost. If it doesn’t win, it will get nothing. This always re-

ults in a non-negative utility for the provider i.e. U p 
j 

≥ 0 ∀ j ∈ M .

herefore, the proposed mechanism is individual rational for all

roviders. �

heorem 6. TCMDAC is WBB (weak budget-balance). 

roof. Budget-balance property ensures that total payment done

y the users should be equal or greater than the total pay-

ent received by the providers. i.e. 
∑ 

i ∈N pa y i − ∑ 

j∈M 

pa y j ≥ 0 .

o prove the budget-balance, lets first calculate the lower bound

n the payments done by all winning users and then calculate

he upper bound on the payments or rewards paid to all win-

ing providers. If the difference is positive, then the mechanism

s weak budget-balance. By the definition of critical V al ue u 
i 
, for user

 , if p u i > critical V al ue u 
i 
, x ′ 

i 
= 1 in the optimal solution of ( x ′ , z ′ )

o �̄( N , M , V ) . As long as the p u i > critical V al ue u 
i 
, the solu-

ion ( x ′ , z ′ ) remains same and also the surviving user set N 

s . Also,

ccording to Lemma 1 , p u i > 

∑ 

k ∈K qu i 
k 

∗ m c k [ 
∑ 

i ∈N qu i 
k 
x ′ 

i 
+ qu V 

k 
] ≥

 

k ∈K qu i 
k 

∗ m c k [ 
∑ 

i ∈ N s qu i 
k 

+ qu V 
k 

] . Therefore, as long as pu i ap-

roaches critical V al ue u 
i 

the term 

∑ 

k ∈K qu i 
k 

∗ m c k [ 
∑ 

i ∈ N s qu i 
k 

+ qu V 
k 

]

emains unchanged because ( x ′ , z ′ ) remains same. Therefore, in

he limit case, critical V al ue u 
i 

≥ ∑ 

k ∈K qu i 
k 

∗ m c k [ 
∑ 

i ∈ N s qu i 
k 

+ qu V 
k 

] .

lso 
∑ 

i ∈ N s qu i 
k 

= 

∑ 

j∈M 

z 
′′ 
jk 

where z 
′′ 
jk 

≤ qp 
j 

k 
. In the final alloca-

ion ( x ′′ , z ′′ ), total 
∑ 

i ∈ N s qu i 
k 

units of VMs of type k ∈ K are allo-

ated to the winning users. The payments from all the users is no

ess than the total payments when 

∑ 

i ∈ N s qu i 
k 

units of VM of type

 ∈ K are traded at per unit price m c k [ 
∑ 

i ∈ N s qu i 
k 

+ qu V 
k 

] for all

 ∈ K. After setting the lower bound for user side, we consider the

rovider side and find out an upper bound for payments received

y all providers. According to Lemma 1 , the maximum payment

f per unit of traded VM of type k is mc k − j 
[ S k ] = mc k − j 

[ 
∑ 

i ∈ N s qu i 
k 
] .

s mc k and mc k − j 
are monotonic increasing function and qu V 

k 
>

 ∀ k ∈ K, therefore mc k − j 
[ 
∑ 

i ∈ N s qu i 
k 
] ≤ m c k [ 

∑ 

i ∈ N s qu i 
k 

+ qu V 
k 

] =
 c k [ 

∑ 

j∈M 

z ′ 
jk 

] . Accordingly, the total payments received by all

roviders i.e. 
∑ 

j∈M 

pa y j is no more than the total payment when
 

i ∈ N s qu i 
k 

units of VM of type k ∈ K are traded at per unit price

 c k [ 
∑ 

i ∈ N s qu i 
k 

+ qu V 
k 

] for all k ∈ K. Therefore, total payment paid

y all users is always greater than or equal to the total pay-

ents paid to all providers i.e. the difference between the revenue

rom the users and the payments to the providers is always non-
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negative. Thus, the proposed TCMDAC mechanism is weak budget-

balanced. �

Theorem 7. TCMDAC is computationally tractable. 

Proof. Here, in this section the worst-case complexity of TCMDAC

is discussed. TCMDAC model mainly contains two phases i.e. allo-

cation phases and pricing phase. In allocation phase, VPU is con-

sidered in problem �̄( N , M , V ) . VPU’s resource quantity determi-

nation phase would take O( MK ) as there are total K types of VMs

and there are total M providers and for each type of VM, maxi-

mum quantity is chosen by screening all providers’ offered quan-

tity. Solving problem �̄( N , M , V ) takes polynomial time O( p ) as

it can be solved using any Linear Programming (LP) based meth-

ods. Therefore, the total computational time complexity of the

allocation phases is O( MK ) + O(p) . The payment phase further

contains two different pricing mechanisms. These schemes use

the marginal values of resources provided by various providers.

Marginal cost ( mc k − j 
[ q ] ) construction takes O( KM log ( M )) as all

providers are sorted according to their ask prices and this re-

peats for each type of VM. User’s payment is derived using critical

value pricing by doing binary search over a fix range whose upper

bound is a user valuation. Binary search complexity is O ( log ( 1 ε ) ),

if the given accuracy is ε. For each user, �̄( N , M , V ) is solved

with complexity O( p ). Therefore, total complexity of user’s pricing

mechanism will be ( N log ( 1 ε )) × O (p) . For providers’ payment cal-

culation, marginal values are directly used in the payment process.

One extra thing is to calculate the total allocated quantity i.e. S k for

each type of VM which have O( M + Z ) where Z is the upper bound

of z jk . Therefore, the total computational time complexity of pric-

ing of providers is O( M + Z ) . In conclusion, upper bound of overall

complexity of TCMDAC is O( KM log ( M) ) + ( N log ( 1 ε )) O (p) which is

polynomial. Therefore, TCMDAC is computationally tractable. �

Theorem 8. TCMDAC is asymptotically efficient as the providers’ total

resources compared with resource demand becomes more and more

sufficient, given bounded cost distributions of workload for all VM

types. 

Proof. We have to prove that the allocation ( x, w ) converges to

optimal solution( x ∗, w 

∗) of social welfare maximization problem

�̄( N , M ) on the condition that the total offered resources be-

comes more and more efficient. To prove this, we first fix the

number of users and their demand. After that we increase the

number of resources provided by the cloud providers and check

the total social welfare generated afterwards. We assume that ask

price is randomly generated between the interval [ pp 
j 

k 
, pp 

j 

k 
] . Ac-

cording to proposed allocation method as p u i < 

∑ 

k ∈K qu i 
k 

pp 
j 

k 
then

in that case, x ′ 
i 
= x 

′′ 
i 

= x ∗
i 

= 0 i.e. in both methods, user i does

not win in auction. If we increase the supply, there may be a

cases that more providers with cheap ask price will offer their

resources. In that case, the inequality may be true: p u i > qu i 
k 

∗
m c k [ 

∑ 

i ∈N qu i 
k 
x ′ 

i 
+ qu V 

k 
] > 

∑ 

k ∈K qu i 
k 

pp 
j 

k 
. By proposed mechanism,

user i will win in TCMDAC. As p u i > qu i 
k 

∗ m c k [ 
∑ 

i ∈N qu i 
k 
x ′ 

i 
+ qu V 

k 
] ,

user i also wins in optimal allocation. Further, when more and

more resource capacity is available, more providers with their

lower pp 
j 

k 
values offer their resources which helps some users to

win in the auction. This results in the increment in the total social

welfare. When offered resource is enough, ( x, z ) and ( x ∗, z ∗) are

equal. �

Theorem 9. TCMDAC mechanism is incentive compatible, individual

rational, weakly budget balanced and asymptotic efficient if qu V 
k 

=
ma x j∈M 

{ qp 
j 

k 
} ∀ k ∈ K. 
roof. From Theorem 1–8 , it can be shown that TCMDAC is incen-

ive compatible, individual rational, weakly budget balanced, com-

utationally feasible and asymptotic efficient. 

The above properties also hold true even when qu V 
k 

>

ma x j∈M 

{ qp 
j 

k 
} − 1 ∀ k ∈ K. The VPU’s resource quantity that has

een considered in TCMDAC is qu V 
k 

= ma x j∈M 

{ qp 
j 

k 
} − 1 ∀ k ∈ K.

e consider the maximum quantity of offered resources from all

roviders because a provider with the largest resource offers has

he largest power in manipulating the price. Accordingly, a VPU V
ith qu V 

k 
> ma x j∈M 

{ qp 
j 

k 
} − 1 ∀ k ∈ K may also be used for ensur-

ng truthfulness and budget-balance. But large quantity can cause

arger loss of efficiency. Therefore, we have considered the mini-

um quantity values of VPU among all possible quantity values. �

. Performance evaluation 

Evaluating the performance of the proposed model (user sat-

sfaction, cost benefits, revenue etc.) on real cloud environments

uch as Amazon EC2 ( Amazon, 2016 ), Google App Engine, Microsoft

zure ( Microsoft, 2016 ) etc. is tedious, challenging and time con-

uming process ( Calheiros et al., 2011 ). The reason is that cloud

xhibits varying supply and demand patterns and contains het-

rogeneous resources, whereas cloud users have heterogeneous

nd competing resource requirements. Therefore, the performance

valuation is constrained by infrastructure’s rigidity. Further, it is

ery complicated and time consuming process to re-configure the

enchmarking parameters across cloud infrastructure over multi-

le test runs ( Calheiros et al., 2011 ). Another approach to evaluate

he performance is to use CloudSim ( Calheiros et al., 2011 ) which

s a well-known java based simulator though it doesn’t support

he auction implementation. CloudSim is extended by CloudAuc-

ion ( Samimi et al., 2016 ) that creates environment for combinato-

ial double auction. But this supports greedy based resource alloca-

ion and first price only. Proposed model can’t be evaluated using

loudAuction ( Samimi et al., 2016 ) and CloudSim ( Calheiros et al.,

011 ) because it is based on LP-based padded optimization method

nd truthful pricing using critical and marginal values. 

Because of unavailability of dedicated simulator and real data,

CMDAC has been simulated in MATLAB. We considered different

loud market environment and analyzed and compared the perfor-

ance of TCMDAC with other models. The resource demand was

ept high and resource supply low as it best suits the current cloud

arket scenario with less number of cloud providers in compari-

on to number of cloud users. Each experiment was run for 20 iter-

tions and the average is taken for all performance measures. TCM-

AC is compared with four models: CDARA ( Samimi et al., 2016 ),

S-VRAP ( Chichin et al., 2015a ), CDAGC and OPTIMAL mechanism. 

Details of models used for comparison 

CDARA: Samimi et al. (2016 ) proposed a double auction based

esource allocation model named CDARA for cloud computing envi-

onment. Samimi et al. (2016 ) applied greedy heuristics for allocat-

ng the resources in approximated manner. CDARA model adopts

he average pricing mechanisms earlier proposed in grid settings

 Li et al., 2009 ). Here, the noticeable point during allocation is that

 particular type of VM requested by a user is matched with all

ypes of VMs available with cloud providers by comparing respec-

ive resource attribute values. Our allocation method is different

rom CDARA. In our proposed model TCMDAC, we abstract the re-

ource attribute values and derive a weight value for each type of

M using one or more resource attribute values as described in the

roblem model. Therefore, we have modified the CDARA algorithm

y adding weights to VMs and abstracting the resource attributes

alues. During allocation, we match the supply and demand for

ach type of VM separately. The main modification is that during

llocation, a particular type of VM requested by user is matched
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Fig. 1. Total social welfare with increasing number of providers. 
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ith the same type of VM offered by a cloud provider. As CDARA

onsiders combinatorial bid on provider side also, we have gener-

ted a single combinatorial bid using some discount values from

he input bids. For example, if a provider provides 3 VMs of type 1

nd 2 VMs of type 2 in offering and their per-unit, ask price is 1$

or type 1 VM and 2$ for type 2 VM. As the bundle price is always

ess than the total price of items, suppose discount rate is 20% of

he total cost. Then in that case, combinatorial bid value will be

3 × 1$ + 2 × 2$) × 0.8 = 5.6$. 

DS-VRAP ( Chichin et al., 2015a ): Another model that we have

onsidered for comparison is DS-VRAP (Double sided Virtual Re-

ource Allocation Problem) proposed in Chichin et al. (2015a ). In

S-VRAP, a combinatorial greedy allocation scheme is proposed.

ere, a notion of candidate is introduced and there can be a

aximum M × N candidates where M and N are the number of

roviders and users. These candidates are sorted using cand id ate −
urpl us density v al ue which is defined as the surplus induced by

he candidate per unit of traded resource. For cloud users, truth-

ul pricing mechanisms using critical payment is proposed whereas

wo payment schemes i.e. proportional value based and user based

ricing schemes is proposed for providers. The proportional pay-

ents schemes were earlier proposed in Stößer et al. (2010 ). In

ser based pricing scheme for provider, users’ payment is directly

aid to providers based on the offered resource quantity. In pro-

ortional value based pricing mechanism, surplus generated from

he market is distributed among all winning providers proportional

o their contributions. The double auction mechanism proposed in

S-VRAP satisfies the truthfulness for users only. Also, the model

enerates approximated result. The proposed model considers cer-

ain constraints such as request indivisibility, resource bundling

nd demand aggregation. In the model, a cloud user can get its re-

ources from a single provider only whereas a single provider can

llocate its resources to multiple users. In TCMDAC, we relax the

onstraint of request indivisibility i.e. we assume that a user can

cquire its resources from multiple providers. 

CDAGC: In order to do detailed analysis and comparison, a

odel of combinatorial double auction is designed inspired from

DARA ( Samimi et al., 2016 ), DS-VRAP ( Chichin et al., 2015a ) and

 Zaman and Grosu, 2013 ) named as CDAGC ( C ombinatorial D ouble

 uction with G reedy Allocation and C ritical Payments in cloud

omputing). CDAGC consists of two parts: allocation function and

ayment scheme. Allocation is similar as in CDARA except one

odification. CDAGC considers the constraint of request indivisibil-

ty i.e. if a cloud user wins, it can obtain its resources from a single

rovider only. CGAGC’s Payment mechanism for seller is user-based

ricing scheme(S-BPS) which was used previously in Chichin et al.

2015a ). For winning users, critical payments were calculated using

he method proposed in Zaman and Grosu (2013 ) which ensures

hat CDAGC is truthful for all cloud users. 

OPTIMAL: We compared the results of TCMDAC with OPTIMAL

echanism to find the gap between the TCMDAC solution and

ptimal solution. In OPTIMAL mechanism, social welfare maxi-

ization problem i.e. �( N , M ) is solved in an optimal manner

 Xia et al., 2005 ). For payments, first pricing is used for both user

nd provider ( Klemperer, 2004 ). In first price double auction, if a

ser wins, it pays its quoted bid price whereas a provider gets the

mount equal to its quoted ask price multiplied by the offered re-

ource quantity. Although this mechanism optimally allocates the

esources among users and providers, but the mechanism is not

ruthful for any participant. Table 2 compares all the models in

erms of auction properties and their assumptions. 

.1. Simulation settings and data generation 

In current cloud market, each provider has some service limita-

ions, e.g., Microsoft Azure has default limitation of maximum 20
Ms for each user ( Microsoft, 2016 ). Therefore, we fixed the max-

mum number of VMs provided by a provider to 10 and the re-

ource quantity offered is uniformly generated in the range [1,10].

n order to generate feasible allocation for CDAGC and DS-VRAP,

he resource quantity required by users is uniformly generated

n the range [1,5]. A cloud market is considered with various

roviders and 4 different types of VMs. For providers’ bid gener-

tion, we analyzed the VM pricing of real cloud providers. For this,

he data is collected from CLOUDORADO ( cloudorado, 2016 ) which

s an online platform for comparing all cloud providers in terms of

heir resource configuration and pricing. We observed the pricing

atterns of various types of VM from all cloud service providers

nd generated the prices of VM accordingly. To give the impor-

ance to each VM, the weights for differentiating various types

f VMs are considered as w 1 ≤ w 2 ≤ ��� ≤ w K i.e. weights are up-

ard scaled. The value of w 1 is randomly taken between [1, 2],

 2 is randomly taken between [ w 1 × 1.5, w 1 × 1.8], w 3 is randomly

aken between [ w 2 × 1.5, w 2 × 1.8] and so on. On the provider side,

he weighted VM concept is implemented in a similar manner.

ince pp 
j 
1 

< pp 
j 
1 

< · · · pp 
j 
K 

, where pp 
j 

k 
be the price of VM of

ype k where k ∈ K, the values of pp 
j 
1 

is randomly generated be-

ween [1, 2], pp 
j 
2 

between [ pp 
j 
1 

× 1 . 5 , pp 
j 
1 

× 1 . 8 ] , pp 
j 
3 

between

 pp 
j 
2 

× 1 . 5 , pp 
j 
2 

× 1 . 8 ] and so on. In double auction it is neces-

ary that a user’s valuation should be greater than the equivalent

esource bundle cost of offering provider. 

We assume that most of the allocations satisfy the above condi-

ion. Therefore, larger users’ bid values have been taken in experi-

ents and generated using uniform distribution in the range [100,

00]. Table 3 presents the parameter settings for the simulation. 

.2. Results 

For the exhaustive evaluation, the whole study is done in differ-

nt market settings. As the double auction based mechanism de-

ends upon the demand and supply, we consider different values

or it in the experiments. First, number of users is fixed and num-

er of providers is varied. After that, the number of providers is

xed and the number of users is varied. Then, both the number of

sers and providers are varied in equal proportion. Lastly, various

egree of competition on both sides of the market is enabled to

nalyze the behavior of TCMDAC model by applying different de-

and and supply. 

In the first experiment, the number of users is fixed to 100 and

he number of providers is varied from 10 to 100. Various per-

ormance metrics have been used to compare the performance of

CMDAC and other models. Figs. 1 and 2 show the social welfare

nd users’ satisfaction of all five models with increasing number of

loud providers. Here, users’ satisfaction is used as a performance

etric which is calculated as the ratio of total valuation of winning
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Table 2 

Comparison of TCMDAC with other models in terms of auction properties and system settings. 

Property/model CDARA DS-VRAP CDAGC OPTIMAL TCMDAC 

Allocation Greedy Greedy Greedy ILP based optimal allocation LP and padding based allocation 

Users’ payment Average pricing Critical payment Critical payment First pricing Critical value based payment 

Providers’ payment Average pricing Proportional value pricing Buyer based pricing First pricing Marginal cost based payment 

Request indivisibility No Yes Yes No No 

Truthfulness for user No Yes Yes No Yes 

Truthfulness for provider No No No No Yes 

Individual rational No Only for cloud users Yes Yes Yes 

Budget-balance Strong Weak Weak Weak Weak 

Asymptotic efficient No No No Yes Yes 

Combinatorial bidding – provider Yes No No No No 

Table 3 

Simulation parameters. 

Parameter types Description 

Types of VMs 4 (VM1, VM2,VM3,VM4) 

User’s requested quantity VM1[1,5], VM2[1,5], VM3[1,5], VM4[1,5] 

User’s bid valuation [10 0,50 0] 

Weight vector VM1[1,2],VM2[w1 × 1.5,w1 × 1.8], VM3[w2 × 1.5,w2 × 1.8], VM4[w3 × 1.5,w3 × 1.8] 

Provider’s ask prices VM1[1,2],VM2[p1 × 1.5,p1 × 1.8], VM3[p2 × 1.5,p2 × 1.8], VM4[p3 × 1.5,p3 × 1.8] 

Provider’s offered quantity VM1[0,10], VM2[0,10], VM3[0,10], VM4[0,10] 

Number of iteration 20 

Fig. 2. Users’ satisfaction with increasing number of providers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Providers’ total cost with increasing number of providers. 
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users to the total valuation of all users i.e. 
∑ 

i ∈N p u i x i / 
∑ 

i ∈N p u i .
As number of cloud provider increases, more resources would be

available in the cloud market and will serve the users more effec-

tively leading to more winning users and higher social welfare in

all the models. 

From Figs. 1 and 2 , it can be observed that the social welfare

and user’s satisfaction in CDARA and TCMDAC are nearly equal and

outperforms DS-VRAP and CDAGC models. The reason is that in

DS-VRAP and CDAGC, a user can acquire its resources from a sin-

gle provider only. Therefore, some of the possible allocations are

rejected in these two models. As the OPTIMAL mechanism solves

the social welfare maximization problem in an optimal manner, it

generates highest social welfare among all mechanisms. Another

reason for less social welfare of TCMDAC as compared to OPTIMAL

method is that some of the efficient allocations/trades are sacri-

ficed in order to achieve incentive compatibility for all participants.

The social welfare and users’ satisfaction of CDARA, TCMDAC and

OPTIMAL does not change when providers are increased from 60–

70 to 100. It is because when the number of providers reaches 60–

70, demand of resources equals the supply resulting in no further

allocations. In CDAGC and DS-VRAP, resources are not fully utilized

due to the constraint of request indivisibility. Therefore, when the

number of providers in the market increases, more allocations hap-
en among users and providers, which further increases the total

ocial welfare and the users’ satisfaction. 

Fig. 3 shows the providers’ total cost of allocated resources

f five models which first is increased and then is decreased

or CDARA, TCMDAC and OPTIMAL. The reason for such a behav-

or is that during allocation, CDARA, TCMDAC and OPTIMAL se-

ect the provider with the minimum ask price. When demand is

ess and supply of resources is more, resources with lower cost

re allocated to the users. When the number of cloud providers

s increased, resource availability further is increased and more

roviders with lower costs are available to offer resources which

esults in an overall lower total reported costs/ask prices. This

oesn’t happen in the case of DS-VRAP and CGAGC. The reason

s less allocation in CDAGC and DS-VRAP due to request indivisi-

ility constraint even after oversupply of the resources. Therefore,

hen the number of providers are further increased, more alloca-

ions happen and more providers are able to win the auction in-

reasing the providers’ total cost. 

Users’ total payment and Providers’ revenue with varying num-

er of providers are examined in Figs. 4 and 5 . It can be seen

hat the OPTIMAL method results in highest payment because of

he first price schemes. TCMDAC, CDAGC and DS-VRAP payment

chemes are truthful and users will always pay less than their ac-

ual valuation. When number of providers are less, i.e. requested

uantities is more than the supply, TCMDAC generates higher pay-

ent. But when the number of providers is increased, more users

ith lower valuations wins in the auction. This results in lower-

ng their critical payments thus performing better when the sup-
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Fig. 4. Users’ total payment with increasing number of providers. 

Fig. 5. Providers’ total revenue with increasing number of providers. 

Fig. 6. Total number of winning user with increasing number of providers. 
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Fig. 7. Users’ total utility with increasing number of providers. 

Fig. 8. Providers’ total utility with increasing number of providers. 

Fig. 9. Total utility in market with increasing number of providers. 
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ly is efficient. When demand equals supply, total payment does

ot change further with increasing number of providers. Further,

t can be observed that the user’s payment of CDARA is not de-

reased due to average pricing. In case of provider revenue, it first

ncreased then decreased when offered resources becomes more

han required quantity. This is due to the fact that more providers

ith lower cost/ask prices will be able to offer the resources which

owers the total revenue of providers. Same as above, OPTIMAL

enerate least revenue because each provider will get paid the

mount equal to its actual cost/ask price multiplied by offered

uantity. 

We examine the relationship between the number of winning

sers and number of providers for all five models with vary-

ng number of providers as shown in Fig. 6 . As the number

f providers is increased, more resources available for allocation

hich results in a higher number of winning users for all the mod-

ls. When providers reach 60–65, requested quantities of resources

quals the total offered resource quantity. At this situations, all

sers in TCMDAC, CDARA and OPTIMAL successfully acquires the
esources and win in the auction and will remain same when the

umber of providers further increased. In case of CDAGC and DS-

RAP, less users will win due to the request indivisibility constraint

nd number of winning users keeps on increasing with the num-

er of providers. 

Fig. 7 , Fig. 8 and Fig. 9 presents the relationship between the

tility of the participant and the number of providers in the mar-

et. When number of providers is low, TCMDAC results in lesser

sers’ total utility as compared to CDARA model because some al-

ocations are rejected in order to achieve truthfulness. When the

umber of providers are increased, almost all users win the auc-

ion. TCMDAC method has highest utility as it has lesser payment

or all winning users as compared to CDARA and other models. Fur-

her, the utility does not change when the number of providers

re increased from 70 to 100. In case of providers’ utility, three

ricing mechanisms i.e. average pricing, proportional value pric-

ng and buyer based pricing depend upon the buyer’s valuations
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Fig. 10. Users’ satisfaction with increasing number of users. 

Fig. 11. Users’ total payment with increasing number of users. 

Fig. 12. Providers’ total revenue with increasing number of users. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Total social welfare with increasing number of users. 

Fig. 14. Total winning users with increasing number of users. 
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thus generate higher revenue and utility for winning providers as

compared TCMDAC. TCMDAC generates lowest revenue among all

models and also the lowest Providers’ utility. In terms of total util-

ity, when number of users is more and number of providers is less,

TCMDAC performs poor as compared to other models when there

are less available resources or less providers in the market. When

the number of providers are increased, TCMDAC’s total utility is

also increased and outperforms other models. Fig. 9 also verifies

the theoretical result that TCMDAC performs better when there is

sufficient supply of resources. 

After considering varying number of providers, the behavior of

TCMDAC and other models are examined with different number of

users. The performance metrics considered are users’ satisfaction,

users’ payment and providers’ revenue in this case. The number of

providers is fixed to 40 and the users are varied from 20 to 160.

Fig. 10 examines the relationship between the users’ satisfaction

and the number of users. Here, notable is that users’ satisfaction

is decreased as the number of cloud users is increased. The reason

for this being that more cloud users make the competition more

intense and more competitive users i.e. users with low valuation

also win in the final allocation, hence lowering the total valuation.

The above result is true for all five models. TCMDAC method has
lmost same user’s satisfaction as OPTIMAL method but outper-

orms CDAGC and DS-VRAP models. 

Figs. 11 and 12 show the change in users’ payment and

roviders revenue according to change in the number of users. As

inning users in CDAGC, DS-VRAP and TCMDAC pay the critical

ayment, the total payment would be less as compared to OPTI-

AL method in which all winning users pay their actual valua-

ions. Average pricing generates more payments as compared to

DAGC and DS-VRAP due to more number of winning users and

ore allocations. As number of users in the cloud market are in-

reased, more resources will be allocated to the requesting users

hich results in higher user payment. In case of providers’ rev-

nue, OPTIMAL offers lowest revenue because of first pricing. Here

lso, TCMDAC generates lower payments for winning providers for

heir offered resources. It is to be noted that TCMDAC generates

ruthful payments for providers in contrast to all other models. 

Fig. 13 presents the total social welfare of all five models with

arying number of users. It shows that TCMDAC performs well as

ompared to other three models in terms of social welfare. The

ocial welfare generated by TCMDAC method is nearly equal to

DARA and OPTIMAL method. As the number of cloud users are

ncreased, more and more resources are allocated to this increas-

ng demand which eventually increases the total social welfare. As

CMDAC and OPTIMAL method allocate the resource in an opti-

al manner, both of these methods would result in allocation with

igher number of winning cloud users as compared to CDAGC and

S-VRAP as shown in Fig. 14 . In CDAGC and DS-VRAP, the number

f winning users will be almost the same but lesser as compared

o TCMDAC, CDARA and OPTIMAL. Here also, OPTIMAL results in

ighest number of winning users as it optimally allocates the of-

ered resource to the requesting users. 
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Fig. 15. Users’ payment with increasing market size. 

Fig. 16. Providers’ revenue with increasing market size. 
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Fig. 17. Users’ utility with increasing market size. 

Fig. 18. Providers’ utility with increasing market size. 
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We increase the market size by increasing number of users and

roviders in an equal proportion and observe the behavior of TCM-

AC and other four models with increasing market size. 

Figs. 15 and 16 show the users’ total payment and providers’

evenue with increasing market size. From Fig. 15 , it can be ob-

erved that the OPTIMAL mechanism performs the worst by gen-

rating highest users’ payment among all five models. In OPTIMAL

ethod, first price mechanism is used for winning users i.e. a win-

ing user pays the amount equal to its actual valuation. Therefore,

t results in highest total payment among all the models. As TCM-

AC, DS-VRAP and CDAGC methods have critical payment based

ricing mechanisms (critical payments are always less or equal to

ts actual valuations), the total users’ payment will always less than

he OPTIMAL method. CDARA results in higher payment value due

o average pricing. In case of provider revenue, the average pricing,

roportional value pricing and buyer based pricing mechanisms

roposed in CDARA, DS-VRAP and CGAGC respectively produces

igher revenue for winning providers as compared to TCMDAC and

PTIMAL but these models are neither truthful nor individual ra-

ional. Among all five models, TCMDAC is the only model which

s truthful for cloud providers. In first price auction as adopted in

PTIMAL mechanism, a provider will get paid the amount equal

o their actual ask prices of resources. The optimal method with

rst price auction will always produce least revenue for providers.

s TCMDAC is individual rational and truthfulness, a provider will

et paid higher than its actual cost/ask price. Fig. 2 clearly shows

hat TCMDAC produces higher revenue for providers as compared

o OPTIMAL. 

Figs. 17 and 18 present the utility of cloud users and cloud

roviders with varying number of users and providers. As men-

ioned earlier, incentive compatibility and efficiency cannot be

chieved together in a double auction mechanism. If a mechanism

s truthful, it loses some efficiency. Similarly, if a mechanism is

fficient, it can’t ensure truthfulness. As TCMDAC mechanism en-

ures the truthfulness for both the cloud users and providers, it
oses some efficiency which results in lower utility as compared to

ther mechanisms. Further it can be seen from Fig. 17 that user’s

tility of TCMDAC is more as compared to DS-VRAP and CDAGC be-

ause DS-VRAP and CDAGC result in lesser allocations as compared

o TCMDAC. In case of providers’ utility, TCMDAC exhibits lowest

tility because of truthful pricing. CDAGC, CDARA and DS-VRAP

odels are not incentive compatible for providers and the pric-

ng mechanisms proposed for these have higher payment values

s already shown in Fig. 16 which results in higher utility for the

f providers. Although providers’ total utility in TCMDAC is lowest

mong all models, yet it is the only model which is truthful for

oth user and the provider. 

We examine the performance of TCMDAC model by varying the

upply and demand of resources available in the market. For this,

e take N = 50 and M = 20. Different degree of competition on

oth sides of market is considered to evaluate its effect on users’

atisfaction. Three patterns for demand i.e. half demand, normal

emand and double demand are considered. The same pattern is

dopted for supply of resources by considering half supply, normal

upply and double supply of resources. The normal demand/supply

s as default bids/offers, whereas half demand/supply is calculated

y cutting their total demand/supply to half. In a similar manner,

ouble demand/supply is twice of default bids/offers. Fig. 19 shows

hat user’s satisfaction is decreased when the users’ requests are

ncreased. This indicates that users are harder to win when com-

etition on their side increases. Another notable point is that users’

atisfaction is increased when the resource availability is increased.

his clearly shows that a user’s chance of winning is increased

hen the competition on provider side is increased. The above re-

ults demonstrate that TCMDAC competition on one side of market

s favorable for players on the other side of market whereas unfa-
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Fig. 19. users’ satisfaction with various demand/supply ( N = 50, M = 20). 

Fig. 20. Total computation time (allocation + payment) with increasing market size 

(in seconds). 
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vorable for players on its own side of market which is natural and

rational for two-sided market. 

The computation time (Allocation + Payment) observed for all

five models is shown in Fig. 20 . It can be seen that, CDARA model

takes very less time because of its greedy allocation scheme and

average pricing mechanism. DS-VRAP and CDAGC take consider-

ably more time due to critical payment calculation. This is because

for each winning user, first the user is removed from user’s par-

ticipating list and re-allocation is done without considering that

user. Therefore, each winning user’s payment calculation requires

re-allocation thus increasing the total computation time of mech-

anism. TCMDAC would take highest computation time among all

models due to its LP-based allocation mechanism and truthful pay-

ment calculations for all participants. As TCMDAC ensures truthful-

ness at both sides, the payment calculation and inclusion of VPU

will take more time as compared to other methods. Here, cloud

users’ payment is determined using critical values which are cal-

culated by binary search over a determined range of values. The

whole payments’ calculation process contains several re-allocations

which increases the total computation time of TCMDAC. For each

winning provider, payments are calculated using updated marginal

values. OPTIMAL mechanism considers one-shot allocation opti-

mally and first pricing calculation both of which takes less time

in comparison to others. 

From the aforementioned discussions and analysis, we can now

draw the conclusion that TCMDAC is an efficient and truthful

mechanism to allocate the cloud resources under the settings dis-

cussed in this paper. To make any mechanism truthful, we have to

give some incentives to participants to reveal the truth which in

turns reduces the utility ( Narahari, 2014 ). Therefore, TCMDAC lacks

in some metrics such as total utility and efficiency in some set-
ings, yet it is acceptable mechanism due to its incentive compati-

ility and budget-balance property. 

. Conclusion 

This work proposes a truthful combinatorial double auction

echanism, TCMDAC, for cloud market. While considering the het-

rogeneity of cloud resources, TCMDAC models the users’ demand

nd providers’ offers by considering combinatorial bidding by users

nd divisible offers by providers. The model exploits the benefits

f both double and combinatorial auctions which helps in prevent-

ng monopoly and enables competition at both side by considering

he interest of both the users and providers. Resources are allo-

ated to cloud users including the virtual user in order to maxi-

ize the total social welfare. After that the least efficient trades

re removed and more eligible users are allowed to participate in

he auction. Although this process loses some efficient allocations

s compared to OPTIMAL mechanisms, yet the allocation leads to

mplement a truthful mechanism for the whole cloud market. Af-

er generating the feasible allocations, truthful payments for cloud

sers are obtained by critical price method. For each cloud user,

ritical payments are calculated which denotes the minimum val-

es they can bid in order to win in the padded optimization prob-

em. For cloud providers, marginal value based truthful payment

chemes have been designed. Various auction properties of TCM-

AC such as asymptotic efficiency, individual rationality, compu-

ationally feasibility, incentive compatibility, utilitarian social wel-

are, budget-balance are discussed and comparative study is done

n the basis of these properties. The performance evaluation of

CMDAC indicates that the proposed model fits well for trading

omputing resources in the cloud market. Fig. 8 . 

It is assumed that a provider does not violate its reported QoS

hich can be relaxed in the future work and certain mechanisms

uch as penalty or reputation can be applied in that scenario. Some

ore flexible bid offers such as discounted bid profiles for user,

iered bid profiles for provider etc. can be considered. Additionally,

tatic bid profiles of users and provider are considered in this work

hich can be relaxed by considering Continuous Double Auctions

CDAs). In future, we aim to systematically consider these possibil-

ties to observe their effect on cloud market functioning. 
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