Int. J. Inf. Secur.
DOI 10.1007/s10207-015-0305-x

@ CrossMark

REGULAR CONTRIBUTION

Effectiveness and performance analysis of model-oriented security
requirements engineering to elicit security requirements: a
systematic solution for developing secure software systems

P. Salini! - S. Kanmani?

© Springer-Verlag Berlin Heidelberg 2015

Abstract Software systems are becoming more and more
critical in every domain of human society. These systems are
used not only by corporates and governments, but also by
individuals and across networks of organizations. The wide
use of software systems has resulted in the need to con-
tain a large amount of critical information and processes,
which certainly need to remain secure. As a consequence,
it is important to ensure that the systems are secure by
considering security requirements at the early phases of soft-
ware development life cycle. In this paper, we propose to
consider security requirements as functional requirements
and apply model-oriented security requirements engineering
framework as a systematic solution to elicit security require-
ments for e-governance software systems. As the result, high
level of security can be achieved by more coverage of assets
and threats, and identifying more traces of vulnerabilities in
the early stages of requirements engineering. This in turn will
help to elicit effective security requirements as countermea-
sures with business requirements.

Keywords Assets - Security requirements - Security
requirements engineering - Software systems - Threats -
Vulnerabilities

X P. Salini
salini@pec.edu

Department of Computer Science and Engineering,
Pondicherry Engineering College, Puducherry, India

Department of Information Technology, Pondicherry
Engineering College, Puducherry, India

Published online: 21 November 2015

1 Introduction

To develop secure software systems, it is essential to capture
the security requirements with business requirements, but
traditionally, one of the most ignored aspects of Software
Development Life Cycle (SDLC) is the Security Require-
ments Engineering (SRE) process. Many researchers are
working on SRE area; however, there is a lack in secu-
rity requirements elicitation and specification process. The
primary reason for this is that security is assumed to be a
technical issue and therefore best handled during the later
phases of SDLC.

As the idea of incorporating security into software from
the very beginning of development has gained acceptance,
various SRE methods were suggested. However, software is
still being developed by following the conventional SDLC
models or processes, and security analysis is done in the
implementation phase as a reason to fit the developers.

The common problem is that when security require-
ments are specified they tend to be accidentally replaced
with security-specific architectural constraints which may
unnecessarily constrain the security team from using the
most appropriate security mechanisms for meeting the true
underlying security requirements. During the software devel-
opment, since the analysis is on security mechanism rather
than security requirements, it leads to poor security require-
ments specification and security flaws. Thus, these issues
motivated us to propose and design a simple and usable
framework Model-Oriented Security Requirements Engi-
neering (MOSRE) to elicit and analyze the security require-
ments for software systems.

The main contribution of this paper is to compare the
effectiveness and performance of MOSRE framework with
the existing SRE methods, by identifying and specifying the
security requirements of a web application case study Elec-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-015-0305-x&domain=pdf

P. Salini, S. Kanmani

tronic voting (e-voting) system, which is a security critical
software system. For example, assume that an electronic vote
is discovered of being tampered by a attacker of a country.
This fraudulent act will not only have drastic consequences
for the country itself, but will also have enormous conse-
quences for the whole world. So, the highest achievable
security is never too much for an e-voting system. E-voting
systems play a critical role in today’s democratic societies
[1,21], as they are responsible for recording and counting the
votes. There are a number of reports describing the malfunc-
tioning of these systems, suggesting that their quality is not up
to the task. The e-governance initiatives take steps to ensure
its elections via e-voting are secure through a cost/benefit
analysis.

To build an e-voting system, tasks such as security require-
ments elicitation, specification, and security requirements
validation are essential to assure the security of the resulting
e-voting system. So the proposed MOSRE, a SRE frame-
work, is applied to identify security requirements of an
e-voting system. Security is an essential part of e-voting,
so not only the technical security and the data security are
important but also the security of procedures and personnel.
For example, many things can go wrong if polling station
officials are required to install software on a computer. In
addition, threats due to viruses on computers of persons who
vote from home are the challenges to be considered.

The proposal is to identify, categorize, and prioritize the
list of assets [2], threats, and vulnerabilities first and then
identify security requirements at the application, host, data-
base, and network levels in the earlier phases of SDLC of
software system (e-voting). This will help to design and build
an e-voting system which is less prone to vulnerabilities and
threats.

Security Requirements Engineering (SRE) is not only
a critical process, but also counterproductive if security
requirements are not analyzed and specified in the early stage
of software development. Therefore, at the early stage of the
SDLC, good requirements engineering is essential to elicit
security requirements similar to business requirements. Thus,
MOSRE will ensure the user system functionalities and secu-
rity, and minimize the vulnerabilities of the software systems.

2 Related works

The Secure Software Development Life Cycle (SSDLC)
process which is in practice in the industry for software sys-
tems is a multi-stage process consisting of design, coding,
testing, and deployment as shown in Fig. 1.

In SSDLC, the security aspects are considered only in
these stages and the developers need to solve the security
issues. Attimes, the security analyses are not formally carried
out by them which results in poor security mechanisms. Thus,

@ Springer

¥ ~

4. Deployment

4 ®

Fig. 1 Secure software development life cycle

the security of the whole system is compromised and it is also
extremely hard and expensive to rectify the defects at later
phases of software development. This is because of skipping
security in requirements engineering phase and considering
security requirements as non-functional requirements.

There is also a tremendous increase in not only the number
of attacks but also vulnerabilities through which attacks can
be performed on software systems. In order to protect sys-
tems from attacks exploited through vulnerabilities, attention
must be given to its security requirements. So, the security
should be integrated into all phases of the SDLC such as
requirements, design, implementation, and testing. Hence,
the SRE phase as depicted in Fig. 2 should be included in the
Requirements Engineering (RE) phase of SSDLC for early
identification and analysis of security requirements. Realiz-
ing security early in the RE phase is important so that security
problems can be tackled before going further in the process
and rework can be avoided [3].

Figure 2 shows the important activities need to be per-
formed in each phase for developing secure software systems.
In this section, we discuss the related works in security
requirements engineering, and the e-voting system and e-
governance in subsections.

The requirements engineers extract, analyze, specify, and
manage quality requirements such as interoperability, avail-
ability, performance, reliability, portability, and usability, but
many are at a loss when it comes to security requirements.
Most of requirements engineer are poorly trained to extract,
analyze, and specify security requirements and often confuse
security requirements with the architectural security mecha-
nisms that are traditionally used to solve security issues.

Thus, they end up specifying architecture and design
constraints rather than true security requirements. The few
trained requirements engineers are given only an overview
of the security mechanisms such as passwords and encryp-
tion rather than actual security requirements. This motivated
research in security requirements engineering, and many

Effectiveness and performance analysis of model-oriented security requirements engineering to...

* Business
Requirements Testin g

* Threat
Modeling i

* Determine DESIgN « Security * Penetration * Configuration
Exploitability = Architectural Controls Testing Review

* Risk Review . Static Analysis * Fuzz * Security
Assesment « Design Review 'I;estlnq Monitoring

* Securit i * Dynamic
Requirgments Coding Analysis Deployment

« Specification

SRE

Fig. 2 Important activities in each phase of SSDLC

SRE methods, framework and process are proposed in the
literature with varying characteristics.

2.1 Security requirements engineering methods

Many SRE processes have been proposed, and some of the
methods are McGraw’s secure SDLC process [4], trustwor-
thy computing security development life cycle or Microsoft
SDLC [5], Comprehensive, Lightweight Application Secu-
rity Process (CLASP) [6], Security Quality Requirements
Engineering (SQUARE) [7], Security Requirements Engi-
neering Framework (SREF) [8], Security Requirements
Engineering Process (SREP) [9] and secure tropos [10]. A
comparison of security requirements engineering methods is
given in detail in [31].

The SRE methods can be grouped under three categories:

(i) Methods applied not only to RE phase but to the entire
SDLC
The Tropos material by Giorgini et al. [11] method is a
self-contained life cycle approach. If anyone was using
Tropos for software development, then one would use it
throughout the development cycle. CLASPis alife cycle
process that suggests a number of activities across the
development life cycle in order to improve security. It
has the Core Artifacts approach, it is not inconsistent
with SQUARE, the goals and some of the process steps
are similar, but it has a different process to arrive at
security requirements.

(i) Processes aimed for SRE phase
SQUARE is aimed at only SRE phase, and it is useful to
asses the quality of the identified security requirements,
but it lacks in identifying assets. The SREP is a quite
partially similar method to SQUARE and meant for SRE
phase but incorporates consideration of the common cri-
teria and notions of reuse. SREF is also for RE phase,
but the artifacts suggested are probably too complex for
regular developers [12]. SREP and SREF are two exist-

ing system SRE methods considered in this paper for
comparing with MOSRE framework.

(iii) Methods that could be applied within SRE processes
Fernandez’s misuse cases and attack patterns [13] are
consistent with SQUARE, since they are part of the
SQUARE process. However, there is less detail on how
to use these specifically in the requirements area than
the SQUARE process provides. Weiss’s security pat-
terns [38] are also consistent with SQUARE and can
be used as part of the process. The security patterns
could be used to help, to identify, and document secu-
rity requirements. The security patterns developed by
Rosado et al. [14] fall into the architecture domain and
would be most useful once security requirements are
identified.

In order to compare the effectiveness and performance
of MOSRE, we have implemented the existing Haley and
his colleagues framework—SREF—-to the elicit security
requirements of an e-voting system. Haley et al. [8] describe
an iterative process consisting of four stages that integrate RE
and SRE. Iteration between requirement and design activi-
ties is an important part of the SREF. Fulfilling a security
requirement might lead to new assets, thus resulting in new
security requirements. The four stages are given below:

1. Identify functional requirements.

2. Identify security goals.
In this stage, three activities are done to identify the secu-
rity goals which are as follows:

(a) Identify candidate assets:
Identify anything that has a value to the organization.
(b) Generate threat descriptions:
Security goals can be found by connecting the CIA
concerns to the assets, which can be violated by cer-
tain actions to cause harm. Then applying prevention
to the resulting threat descriptions leads to the secu-
rity goals.

@ Springer

P. Salini, S. Kanmani

Step1 Step 2 Step3 Step 4
Identify the Objective Identify the . Select an Elicitation
of the Software System stakeh'glders Identify the Assets Technique
Step 8 Step 7 Step 6 Step5
Identify the Securi Generate Use Cases Elicit Non-Security o
Goal!'syl Objecﬁvesty Diagram Goals and Obtain High level
Requirements | Architecture Diagram
Step 11
Sep9 Step'10 Categorize and Prioritize ke
Identify Threats and Perform Risk Threats and Generate Misuse
Vulnerabilities Assessment Vulnerabilities for Cases Diagram
Mitigation
Step 14
Step 16 Step 15 P Step 13
Develop UML Generate Structural Generate Use Cases Identify Securi
Diagrams Analysis models Diagram considering entify Security
Security Requirements Requirements

Fig. 3 MOSRE framework: a 16 step process

(c) Apply management principles:
Principles can be separation of duties, separation of
function, etc.

3. Identify security requirements.
Security requirements are constraints on functions of
the system, where these constraints operationalize one
or more security goals. They draw problem diagrams to
demonstrate the functional requirements and to support
capturing the security requirements in terms of con-
straints on the functions. The security requirements are
denoted textually.

4. Construct satisfaction arguments.
They verify that the system can satisfy the security
requirements specified in the early stage of software
development. Therefore, at the early stage of the SDLC,
good requirements engineering is essential to elicit
non-functional requirements and functional requirements
such as business and security requirements. This will
ensure the user system functionalities and security by
minimizing the vulnerabilities of the software applica-
tions.

Haley et al. consider security requirements elicitation and
analysis, using their security engineering framework. It cov-
ers only confidentiality, integrity, availability, and account-
ability goals. They evaluated the framework by applying it
to a security requirements analysis within an air traffic con-
trol technology evaluation project. The framework for SRE
does not consider completeness of the set of requirements,
conflicting requirements, or interaction between security and
other non-functional requirements.

@ Springer

The limitations with the existing methods such as SREP
and SREF have motivated us to propose and design Model-
Based Security Requirements Engineering Framework
(MSREF) [32] and same was applied for online trading
system [33]. Since they lack in identifying effective num-
ber of security requirements, we improved and proposed
MOSRE for web applications [34,35]. Our proposed frame-
work MOSRE for developing secure software systems has
16 steps as depicted in Fig. 3.

MOSRE was designed in order to improve the complete-
ness, consistency, correctness, and traceability of security
requirements specification. The MOSRE has six tasks of
RE, namely: inception, elicitation, elaboration, negotiation,
validation, and specification. MOSRE has been applied to
e-voting system in [34], and this paper extends with the
empirical analysis and discussion on the experimental results
obtained by comparing with the existing SRE methods.

2.2 E-voting system and e-governance

E-voting is currently being employed in some countries,
including the Netherlands, Belgium, and Brazil, and the trend
is expected to proliferate as the part of e-governance. This
e-voting method takes a form of visiting a voting place in
person and voting through a computer or terminal installed
at the location after which the voting result is sent to a tallying
place for computerized tallying. Voters go to the polling sta-
tions and submit their ballot electronically using the voting
terminal [15,16] and [17]. These systems are highly depen-
dent on the security and correctness of the software running
on the voting terminal.

Effectiveness and performance analysis of model-oriented security requirements engineering to...

Estonia became the first country that allowed online vot-
ing and plans to implement it for elections [18]. The very
first Internet voting in the USA took place in real-life situa-
tion during the Democratic Presidential Primary in Arizona.
The General Affairs Office of Japan announced that a pro-
posal for revising the election law for public offices will be
submitted to the Diet in order to allow electronic voting and
vote counting.

The first electronic voting was enforced in Okayama in
order to select a mayor and a councilman of Nimi-city
[19]. As a part of e-governance in India, the Government of
Karnataka is considering the introduction of e-voting along
with the general polling pattern in practice in the ensuing
local bodies elections slated during 2013. Online voting is
hoped to increase the polling percentage with more num-
ber of urban literates taking part in the electoral process
[20].

The analysis of Diebold AccuVote-TS carried out by
Kohno et al. [17] was one of the first paper in security analysis
and mechanism for e-voting system. Diebold violates con-
fidentiality and the integrity of the ballots and anonymity
of voters. The security analysis of the Secure Electronic
Registration and Voting Experiment (SERVE) given by Jef-
ferson et al. [22] points many architectural and conceptual
weaknesses. Thus they recommended shutting down the
development of SERVE immediately. An independent secu-
rity assessment of a complete voting system, including both
the hardware and the software components, was done by
Feldman et al. [23].

The risks and benefits of electronic voting with the current
voting procedures and problems are given in [37].The respon-
sibilities and privileges of the actors involved in e-voting is
presented in [24]. The work focuses on Internet voting and
provides a description of the role of each actor together with
the clear indication of what each actor is expected to do with
the system processes and defining an operational framework
and to talk about secure-voting system. These related works
concentrate on security analysis at either design or imple-
mentation phase. The existing systems use various forms of
cryptographic and security protocols to ensure that these cri-
teria are met in their implementation of an online election
system. Most of the research works are on analysis of secu-
rity mechanism of e-voting system and making the system
vulnerable. Security of e-voting process and the state-of-the
art technology into the election process with risks are given
by Rubin [36].

MOSRE proposes a modeling in terms of use case and
misuse case and provides a step to assess the threat and
vulnerabilities for e-voting system. In [25,26], the authors
discuss the need for procedural security in electronic elec-
tions. In [27,28], an approach to measure relative security
attack is explained. However, our work is to analyze secu-
rity requirements in the early stage of system development

and consider security requirements as one of the functional
requirements.

3 Eliciting security requirements for an e-voting
system

In this section, a detailed discussion is given on each step of
MOSRE framework, which is iterative and covers all phases
of RE to elicit security requirements for an e-voting sys-
tem extracted from [35] to analyze the effectiveness and
performance of MOSRE with existing SRE methods. The
functional requirements considering security requirements
for an e-voting system are elicited and specified in the SRS
as the work product of SRE phase. The client with respect to
e-voting system is the election department. With the details
given by the client, the requirements team sketched the work-
flow for the e-voting process in three parts with one or more
processes as given below:

Part 1: Pre-voting

— Voters registration

— Candidates registration

— Processing candidates for eligibility
Part 2: Voting

— E-voting

Part 3: Post-voting

Approval of votes and ballots

— Registration of paper votes
Counting electronic and paper votes
Declaration of results

The first part of e-voting process is pre-voting, where vot-
ers are registered and the candidates register with their details
and are processed for valid candidatures. The second part is
electronic voting which happens on a particular day, and the
voters cast their votes. The last part is post-voting, where
the votes are approved, the electronic and paper votes are
counted, and the results are declared. Since the analysis of
the e-voting system is only used for validating the MOSRE
framework, the security requirements of first and second part
of e-voting system from [35] are only considered in this
paper. The work product obtained for each step of MOSRE
for an e-voting system is discussed below.

3.1 Step 1: Identify the objective of the e-voting system

The main objective of the software system is to establish a
secure electronic ballot vote resolution for political elections

@ Springer

P. Salini, S. Kanmani

in India. The e-voting shall simplify voting and give higher
accessibility than current paper-based ballot. It should guar-
antee economical resource usage and facilitate the put into
effect of direct democracy. It should also uphold the present
high level of trait at holding elections, supported on the prin-
ciple of secret ballots.

An online voting application has to be developed with
a high level of security. The detailed objectives of e-voting
system are:

(i) to build an online system which would enable voters to

cast their votes on chosen candidate,

(ii) to check and validate users logging into the voting sys-
tem,

(iii) to create a database to store votes and user information
on the system,

(iv) to enable the system to tally the votes casted according
to candidate,

(v) to create admin to manage the election system effec-
tively and

(vi) todisplay voting results, for the administrator to analyze
and declare the results.

3.2 Step 2: Identify the stakeholders

Stakeholders for the e-voting system are people from the
voters community, candidates, political reference group,
security experts, election officers, government representa-
tives, developers, and RE team and others who are interested
in giving different views and ideas, and read the software
system requirements specification.

3.3 Step 3: Identify the assets
With the objective of the e-voting system, the business assets

identified are authentication data, list of candidates, voters
register, registration process, registration period, vote, the

Public Network

Firewall

Web Server

Fig. 4 High-level network architecture for e-voting system

@ Springer

Firewall

right to vote, ballot, voting process, casting of a vote count-
ing process, counting result, election report, voter’s secret,
the number of votes cast for each candidate, and reporting
process, and the system assets are application software, data-
base, network, server, and voter’s system.

3.4 Step 4: Select an elicitation technique

There are many elicitation technique exists such as brain-
storming, interview with the customers, surveys, or question-
naires, observation and focus groups. In this analysis, brain-
storming was one of the techniques used for elicitation of
requirements such as business, security, and non-functional
requirements. The members of the brainstorming session are
the stakeholders. The requirements team arranges for meet-
ing, and all stakeholders attend the meeting at a common
place. They give their ideas, suggestions, resolve conflicts,
and help in categorizing and prioritizing the requirements.

3.5 Step 5: Obtain high level of architecture diagram of
e-voting system

With the help of the objective of the software system, the
number of tiers in the application can be identified. A rough
architecture diagram with a high level of abstraction is drawn.
This diagram helps to analyze the data flow and the entry
points in the system. The high-level network architecture for
e-voting system is depicted in Fig. 4. The systems use a three-
layer architecture, where front-end servers are separated from
the application and database servers.

The front-end web server receives requests from voters,
admin, and reverse-proxies to the application server, which
hosts election software and stores both blank and completed
ballots. A database server stores voter credentials and tracks
voted ballots. Multiple firewall reduces the attack and com-
plicate attacks by disallowing outbound connections.

Application Server Database Server

Effectiveness and performance analysis of model-oriented security requirements engineering to...

3.6 Step 6: Elicit non-security goals and requirements

The next step is to elicit non-security goals and require-
ments: in each part of the e-voting system, the business goals
(BG) and high-level requirements (HLR) are identified. The
following are some of the sample non-security goals and
requirements for the e-voting system [35].

Part 1: Pre-voting

— BG 1.1 Voters registration

— HLR 1.1.1 Approve or reject the application
— HLR 1.1.2 Update the electoral roll

— BG 1.2 Candidates registration

HLR 1.2.1 Submission of candidate detail

HLR 1.2.2 Verification of candidate against the elec-
toral roll

HLR 1.2.3 Duplication check for candidate

HLR 1.2.5 Approval of candidate by representatives
from party

— BG 1.3 Processing candidates for Eligibility

— HLR 1.3.1 View candidates list

— HLR 1.3.2 Approve/reject candidate

— HLR 1.3.3 Edit candidates details

— HLR 1.3.4 Publish approved party’s candidates

— HLR 1.3.5 Publish candidates list to the general pub-
lic

— HLR 1.3.6 Notification of candidature to the candi-
dates

Part 2: Voting
— BG 2.1 E-voting

— HLR 2.1.1 Voter’s authentication

— HLR 2.1.2 Check voter against the electoral roll

— HLR 2.1.3 The system presents valid elections based
on voter rights

— HLR 2.1.4 Voter selects election and cast vote

— HLR 2.1.5 System makes a mark off against the voter
in the electoral roll and flags whether the vote has
been cast in a controlled or uncontrolled environment

— HLR 2.1.6 Vote is stored securely

Part 3: Post-voting
— BG 3.1 Approval of votes and ballots

— HLR 3.1.1 Approval of votes and ballots received in
a cover envelope

— BG 3.2 Registration of paper votes
— HLR 3.2.1 Entry of paper vote by scanning of ballots

— BG 3.3 Counting electronic and paper votes

— HLR 3.3.1 Unofficial vote tally occurs once the voting
has been officially closed

— HLR 3.3.2 Check and count total votes for each can-
didate

— BG 3.4 Declaration of results

— HLR 3.4.1 Announce election results
— HLR 3.4.2 Generate election reports

With the HLR, the low-level non-security requirements
are defined. Some of the important low-level functional
requirements (LLFR) and low-level non-functional require-
ments (LLNFR) for Parts 1 and 2 of the e-voting process are
listed below:

— LLFR 1.1.1 Enter voter’s details

— LLFR 1.1.2 Proof of voter identity

— LLFR 1.1.3 Submit application

— LLFR 1.1.4 Check for voter citizenship and age

— LLFR 1.1.5 Check for voter duplication

— LLFR 1.1.6 Approve the application of voter registration

— LLFR 1.1.7 Update the electoral roll of new voter

— LLFR 1.1.8 Notify voter and provide smart card

— LLFR 2.1.1 Voter listed in electoral roll

— LLFR 2.1.2 Select election

— LLFR 2.1.3 Select voting options

— LLFR 2.1.4 Cast vote

— LLFR 2.1.5 Store vote and make a mark off electoral roll

— LLFR 2.1.6 Notify voter

— LLFR 2.1.7 Store exception

— LLFR 2.1.8 Notify voter

— LLNFR 1.1.1 The system should be available for voters’
registration

— LLNFR 2.1.1 Scalable for performance of e-voting in

peak hours

LLNFR 2.1.2 A voter should not receive messages about

previous votes

3.7 Step 7: Generate use cases diagram

The next step is to generate use cases diagram. A sample use
case diagram generated is given for Part 1 of the e-voting
process in Fig. 5. It depicts the use case diagram with the
functional requirements and actors.

Use case name—voters registration

Purpose—to register eligible and valid voter
Actors—voters and election system

Preconditions—the voter must be connected to the Inter-
net via a browser, and the electoral roll should be open
for updates.

Post-conditions—the voter details and identity are stored
in the system.

@ Springer

P. Salini, S. Kanmani

Edit Or
Delete Detail ~

Voter

Get Notification

Fig. 5 Use case diagram for Part 1 of e-voting system

3.8 Step 8: Identify the security goals/security objectives

The security goals/objectives can be identified with respect
to assets, business goals, and organizational principles. The
following are the important and sample security objectives
[35] for e-voting system to protect the security of data, sys-
tem, and person who are involved in the election.

— Authenticity—ensuring that the voters identity while reg-
istering and administrator identity to accept/decline the
voter.

— Confidentiality—ensuring that the voter’s credentials and
vote are secret.

— Anonymity—ensuring that votes must not be associated
with voter identity.

— Integrity—ensuring that each voter’s details and his vote
are recorded as intended.

— Auditability—ensuring that the election records are reli-
able and demonstrably authentic.

— Disclosability—ensuring that the system and the process
to be open for external inspection and auditing.

— Availability—ensuring that the system protects against
accidental and malicious denial-of-service attacks.

— Uniqueness—ensuring the voter’s unique identity and no
voter able to vote more than once.

— Non-coercibility—ensuring that voters are not able to
prove how they voted.

@ Springer

Approve
Or Reject

_
Cregiaton <

Publish £
Candidate Detail

e

Election System

— Accountability—ensuring that system operations are
logged and audited.

— Reliability—ensuring that the system minimizes acci-
dental bugs and omits malicious code.

— Accuracy—ensuring that voting systems record voter’s
details and the votes correctly.

— Secrecy/privacy—ensuring that the identity of the candi-
date to whom the voter has voted.

3.9 Step 9: Identify threats and vulnerabilities

The threats to the system will be from internal and the exter-
nal users such as legitimate users, system developers, system
operators, hostile individuals, criminal organizations, protest
groups, foreign intelligence services, terrorist organizations,
and other internal users. The possible methods of electronic
threats to the system are hacking, malicious software, denial-
of-service, domain name service attacks, vote buying/selling
and coercion, theft or forgery of election details, deliberate
repudiation of transactions, and accidental damage by users,
operators, equipment, and natural disasters. Some of the sam-
ple threats and vulnerabilities [35] for Parts 1 and 2 of the
e-voting process are as follows:

Threats

— The voter details get corrupted by buffer overflow.
— Code injection to change the behavior of the election
system at the time of registration.

Effectiveness and performance analysis of model-oriented security requirements engineering to...

Table 1 Threats and the rate of

. . Threats D R E A D Total
risk for e-voting system

The voter detail gets corrupted by buffer overflow 3 32 3 3 14

Code injection to change the behavior of the election system at the 3 2 2 2 2 11
time of registration

SQL injection leads theft of voters or candidates details of election 3 32 32 13
system

A malware accesses to the selected voting options at the voter’s PC 3 32 2 2 12

Authentication token from the smart card can be forged 3 32 32 13

Brute force attack against the credentials of the voter and election 3 32 32 13
officer

Man-in-the-middle, voter contest modification between the electoral 3 3 2 3 3 14

roll service and the authentication service

— SQL injection leads theft of voters or candidates details
of election system.

— Brute force attack against the credentials of the voter and
election officer.

— Session hijack is easy on unprotected sessions.

— Man-in-the-middle in selection of eligible candidates
from the electoral roll after the candidates registration
process.

— A malware access to the selected voting options at the
voter’s PC.

— Authentication token from the smart card can be forged.

— Man-in-the-middle, voter contest modification between
the electoral roll service and the authentication service.

— Authentication token replay attack.

— Voter impersonation and vote casting.

— A malware modifies the client application at the voter’s
PC.

— Denial-of-service attack over the voting platform.

— Man-in-the-middle, ballot template modification
between voter and voting servers.

— A malware modifies the voting options at the voter’s PC.

— Change of vote while storing.

— Decrypted storage of votes—alteration at counting.

Vulnerabilities

— Weak or blank passwords, passwords that contain every-
day words.

— Missing or weak validation at the server of the election
system.

— Lack of password complexity enforcement and without
proper encryption.

— Data transfer as plain-text without encryption.

— Failure to check for malicious code and validate cookie
input.

— Failure to encode output leading to potential cross-site
scripting issues.

— Failure to check for SQL entities of the voter’s and can-
didate’s details at the time of registration.

— Exposing an administration function through the
customer-facing web application.

The list of threats and vulnerabilities can be gathered
and identified for e-voting system from the standards such
as Online Web Application Security Project (OWASP) [39]
, National Vulnerability Database (NVD) [40], and Web
Application Security Consortium (WASC) [41].

3.10 Step 10: Perform risk assessment

The next step is to assess and determine the risk when the
threats and vulnerabilities occur. The impact of threats and
vulnerabilities is analyzed, and risk determination process is
carried out. Risk assessment is done by using the Microsoft
method [29] of risk analysis for an e-voting system.

In the Table 1, threats and the level of risk by the
threat to e-voting system are presented. In DREAD method
[(Damage Potential 4+ Reproducibility + Exploitability +
Affected Users + Discoverability)/5] in Table 1, count the
values 1-3 for a given threat, i.e., 1 for low, 2 for medium,
and 3 for high. The result can fall in the range of 5-15. The
threats with overall ratings of 12—15 are considered as high
risk, 811 as medium risk, and 5—7 as low risk. This method
is followed by Microsoft for threat analysis of the software
developed in the design phase. Common Vulnerability Scor-
ing System (CVSS) [42] can also be used to rate the risk by
the vulnerability, because CVSS provides a universal open
and standardized method for rating IT vulnerabilities.

3.11 Step 11: Categorize and prioritize the threats and
vulnerabilities for mitigation

From Table 1, the threats are categorized under the security

goals it affects and based on the level of risk they are priori-
tized. If a threat is rated high, it causes a significant damage

@ Springer

P. Salini, S. Kanmani

Table 2 Categorization and
prioritization of threats and

vulnerabilities for e-voting
system

Threats Category Priority

The voter detail gets corrupted by buffer overflow Integrity High

Code injection to change the behavior of the election system at Reliability Medium
the time of registration

SQL injection leads theft of voters or candidates details of Integrity, availability High
election system

A malware accesses to the selected voting options at the voters Confidentiality High
PC

Authentication token from the smart card can be forged Confidentiality High

Brute force attack against the credentials of the voter and Confidentiality High

election officer

Man-in-the-middle, voter contest modification between the

Integrity, Authentication High

electoral roll service and the authentication service

to the security of e-voting system; consequently high prior-
ity is given to this threat in Table 2. The high risk need to
be addressed as soon as possible and medium threats need
to be addressed, but with less urgency. In the next step, with
the identified threats it will be able to identify misuses of the
system and generate misuse cases diagram for an e-voting
system.

3.12 Step 12: Generate misuse case diagram for the
e-voting system

The next step is to generate misuse cases diagram and to
demonstrate a sample misuse case diagram for Part 1 of the
e-voting system. Fig. 6 depicts the misuse case diagram with
misuses, functional requirements, and actors.

Misuse case name—misuse of e-voting system
Purpose—for analyzing how e-voting system is misused
by the hacker

Actors—voters and hackers

Preconditions—the voter and hackers must be connected
to the Internet via a browser, the voter is authenticated,
and the registration process is started
Post-conditions—the voter details are stored in the sys-
tem

3.13 Step 13: Identify security requirements

The sample security requirements [35] for Part 1 and Part 2
of e-voting system with respect to BG 1.1 and BG 2.1 are
listed below:

SR 1.1.1 It should not be possible to insert, delete, or mod-
ify any voter detail without authorization in the
election system.

@ Springer

SR 1.1.2 It should be ensured that the election system
presents an authentic registration to the voter.

SR 1.1.3 The solution for voter registration in an uncon-
trolled environment should issue a message to
inform the voter whether the vote has been suc-
cessfully registered.

SR 1.1.4 The election system should provide the e-voter
with ‘end-to-end’ proof that the voter’s application
is received and recorded.

SR 1.1.5 The election system should ensure that the voter’s
choice is accurately represented in the vote and that
the sealed vote is successfully stored.

SR 2.1.1 Toallow for a delay in messages when passing over
the election channel, the acceptance of electronic
votes into the election system should remain open
for a configurable period of time after the end of
the polling phase.

SR 2.1.2 The voter can, at any time up to the point of vote
casting, abort his polling process without losing
his right to vote due to timeout or errors during
communication.

SR 2.1.3 A voter should only be able to vote in contests that
he/she is entitled to vote in.

SR 2.1.4 The e-voting components of the election system
should be configurable to require authentication
for every contest, every vote or every session.

SR 2.1.5 The voter authentication should expire after an
idle period. The length of the idle time-out period
should be configurable.

3.14 Step 14: Generate use cases diagram considering
security requirements

The security requirements are gathered; for better under-
standing, the use case diagram of the applications should
be developed that encompasses the security requirements of

Effectiveness and performance analysis of model-oriented security requirements engineering to...

< <threateng

Registration >

Voter <<

< <threate

Fig. 6 Misuse case diagram for Part 1 of e-voting system

the system. The sample use case diagram generated for the
e-voting system considering security requirements is shown
in the Fig. 7.

3.15 Step 15: Generate structural analysis models

The structural view for Part 1 of e-voting system can show the
flow of each process while a voter starts his voting process.
The processes are explained below.

Secure voter client In the voter computer, the voter regis-
tration on the client side should be encrypted, to guarantee
voter’s details integrity, even from insider attacks.

Voter registration Accessible web application handles all
the interaction with the voter. It presents the user interface,
downloads the secure voter client, and acts as a proxy to the
electoral database.

Voter registration server In this server, each voter details
are collected and stored securely.

Pre-processing server The server pre-processes the
encrypted voter details before being sent to the storage, by
eliminating duplicates and verifying the voter against the
electoral roll. In the next step, the specification can be added

W> >

Buffer Overflow

Code Injection

Hacker

Session Hijack

Brute Force

with the detailed UML diagrams which are improved in iter-
ations.

3.16 Step 16: Develop UML diagrams

With the use case diagrams developed for the e-voting sys-
tem considering security requirements, the structural analysis
models such as data flow diagram, overall structural diagram,
and UML diagrams such as class, activity, and sequence dia-
grams for e-voting system can be developed. By iterations,
the level of abstraction of the diagrams can be decreased.
Along with these steps, validation and specification of
security requirements can be done in parallel. These steps
help to elicit and analyze the security requirements in RE
phase, thereby reducing the burden of the developers to
solve security issues. The elicited security requirements and
generated UML diagrams can be used for the later phases
such as design, implementation, and testing, to develop a
vulnerability-free system. These requirements can also be
used to generate test cases and perform penetration testing.

4 Evaluation and discussion

In this section, we discuss about the experimental setup and
results obtained by evaluating the effectiveness and perfor-

@ Springer

P. Salini, S. Kanmani

< <threatens

5l /
Registration =
Voter

Validate
User Data
<<uses>>
< <yseq
Check Strong g
Password
>

AN
<<uses>>

Encrypt Session
V4

< > >
\Luses <<lses>>

>

Buffer Overflow

Code Injection

Hacker

<<mitigates>>

Brute Force

L<uses>>

7 Check
Encrypt Data Malicious code

Fig. 7 Use case diagram for e-voting system considering security requirements

mance of MOSRE framework to elicit and specify security
requirements. Further, the results obtained with the proposed
SRE method (MOSRE) are compared with other existing
methods such as (i) SREF, (ii) SREP (iii) MSREEF, and (iv)
Without using SRE methods.

4.1 Experimental setup

The evaluation was conducted by 30 people: academic users
such as 6 professors, 6 research scholars, 10 postgraduate
students, and 8 industry professionals. They acted as one
of the stakeholders such as voter, candidate, election offi-
cer, requirements analyst, developer, security expert, tester,
designer to participate, provide their views and idea, and
to identify security requirements. They were divided into
five groups and performed security requirements analysis for
five different e-voting software systems using SREF, SREP,
MSREF, MOSRE framework and without using any SRE
methods respectively.

@ Springer

Four groups applied different SRE methods and identified
the security requirements and business requirements which
are considered as functional requirements in the MOSRE
framework. The last group identified functional and non-
functional requirements for e-voting system without using
any SRE methods. Each group prepared Software Require-
ments Specifications (SRS) for e-voting systems as the
product of RE phase. These 30 participants are considered to
be valid participants, because they have developed require-
ments specifications in the past in both academic and industry
settings, but none has worked with security in the context to
requirements analysis and specifications.

Two evaluation studies were conducted on the results
obtained by applying MOSRE and other SRE methods. The
SRS of five e-voting systems developed by the different
groups with the respective SRE methods have been exam-
ined. The effectiveness and performance of MOSRE were
evaluated and compared with SRE methods such as SREF,
SREP, and MSREF.

Effectiveness and performance analysis of model-oriented security requirements engineering to...

Table 3 Parameters to analyze

the effectiveness of MOSRE Parameters

Qualitative analysis values

Measured in counts

Assets
Threats

Vulnerabilities

High, medium, low
Very high, high, medium, low, very low
Very high, high, medium, low, very low

Number of assets
Number of threats

Average number of vulnerabilities

Table 4 SR types to categorize

. . . . SR types
identified security requirements

Identification
Authentication
Authorization
Integrity

Intrusion detection
Confidentiality
Availability

4.1.1 Comparative analysis of effectiveness with existing
SRE methods

MOSRE framework was evaluated by analyzing its effec-
tiveness in identifying assets, threats, and vulnerabilities and
compared with existing SRE methods. The parameters con-
sidered to analyze the effectiveness of MOSRE are shown
in Table 3. They were assigned qualitative values as given
by the NIST for risk assessment and measured by count val-
ues.

The evaluation methodology used was to examine the cov-
erage of assets, threats, and vulnerabilities at each level of
qualitative values in the SRS of respective e-voting system
listed by adopting the existing and proposed SRE methods
and without using SRE methods respectively.

4.1.2 Comparative analysis of performance of MOSRE with
existing SRE Methods

The number of security requirements identified and the time
taken by each SRE method to elicit business and secu-
rity requirements for the e-voting system are analyzed, and
thereby the performance of MOSRE was compared with
other SRE methods.

The collected SRS were examined for the number of secu-
rity requirements identified under each category of security
requirement types [30] given in Table 4. The performance
is high if more number of security requirements are identi-
fied for the software system being developed. The total time
needed in person-days for each SRE method to elicit security
requirements was obtained.

14

= High = Medium

" Low

Number of Assets Identifled

Without SRE SREF SREP
SRE Methods

MSREF MOSRE

Fig. 8 Effectiveness of MOSRE in identifying assets

14
=VeryHigh =High =Medium =Low =VeryLow

il

SRE Methods

12

10

8

Number of Threats Identlfled

0
Without SRE SREF

Fig. 9 Effectiveness of MOSRE in identifying threats

4.2 Result analysis

The results obtained were analyzed to understand the effec-
tiveness and the performance of MOSRE with the existing
SRE methods.

4.2.1 Effectiveness comparison of MOSRE with other SRE
methods

The effectiveness of MOSRE was computed based on the
number of assets, threats, and vulnerabilities identified in
each e-voting system.

From the chart shown in Figs. 8, 9, and 10, it is clear
that more number of assets, threats, and vulnerabilities are
identified by using MOSRE framework than using existing
SRE methods.

@ Springer

P. Salini, S. Kanmani

" VeryHigh mHigh = Medium = Low = VerylLow

Identifled

N W A GO N ® ©

Average Number of Vulnerabllitles

Without SRE SREF SREP
SRE Methods

MSREF MOSRE

Fig. 10 Effectiveness of MOSRE in identifying vulnerabilities

It is found that higher coverage of assets, threats, and vul-
nerabilities is identified by using MOSRE framework than
existing SRE methods at each level, thereby increasing the
effectiveness of MOSRE in identifying the security require-
ments for developing secure e-voting system. SREP method
lacks in framing objective of the software system and to iden-
tify the stakeholders, thus less number of important assets
are identified and secured. They also fail to elicit business
requirements, reducing the identification of threats and vul-
nerabilities. It is also found that less number of vulnerabilities
are covered by using SREEF, since they do not analyze and
identify vulnerabilities of software systems. MSREF identi-
fied less threats and vulnerabilities, due to lack of an activity
to obtain the artifacts of the software system. From the results
of examining the SRS of the group those who adopted “with-
out SRE method,” it is clear that the SRE activity need to
be performed systematically in iterative fashion at the early
stages of SDLC.

4.2.2 Performance comparison of MOSRE with other SRE
methods

The number of security requirements identified by using each
SRE method by different group of participants were gathered
from the SRS and categorized under security requirement
types as tabulated in Table 4.

Table 5 shows that more number of security require-
ments were identified in each category of SR types by using
MOSRE. The performance was computed based upon the
total number of identified security requirements to the time
taken to complete the requirements analysis and specifica-
tion which was normalized for person-days with respective
SRE methods.

In Fig. 11, though the time to implement SREF, SREP and
without using SRE method is less than MOSRE, they fail
to identify all security requirements of the system. MOSRE
helped to elicit more security requirements for e-voting sys-
tem which in turn will be cost effective since quality such
as security requirements plays a major role for an effective
secure software system and it decides the security level of the
software system. Thus, the performance of MOSRE is high
when compared with the methods to elicit security require-
ments.

From the results given in Figs. 8, 9, 10, 11 and Table 5, it
can be inferred that:

(i) MOSRE has improved the identification of assets,
threats, and vulnerabilities, thereby eliciting security
requirements;

(i1)) MOSRE has identified more number of assets, threats,
and vulnerabilities when compared to existing SRE

methods;
200 60
o 180
g 160 >0 T
s | =
g 140 - 40 g
@ 120 >
T 100 - 30 2
d »
5 & .~
; 60 20 ©
2 w0 g
10 Z
20
0! : . ' g)
WithoutSRE SREF SREP MSREF MOSRE
SRE Methods

=== Time Taken: day = 86400 secs —#-SRs - Security Requirements

Fig. 11 Performance of MOSRE to elicit security requirements

Table S Number of security

requirements identified by each SR types Without SRE SREF SREP MSREF MOSRE

SRE method Identification 1 2 5 3 6
Authentication 0 5 7 6 8
Authorization 2 6 8 7 9
Integrity 0 4 6 4 11
Intrusion detection 0 3 3 3 4
Confidentiality 2 3 6 7 11
Availability 0 1 1 1 1

@ Springer

Effectiveness and performance analysis of model-oriented security requirements engineering to...

(iii) In assets identification, MOSRE has given 10 % effec-
tiveness when compared to SREP and 19 % than
SREF;

(iv) Incase of threats, MOSRE is 18 % more effective than
SREP and 40 % than SREF;

(v) For vulnerabilities identification, MOSRE has resulted
in 28 % improvement than SREP and 55 % than SREF;

(vi) The performance of MOSRE is comparatively higher
than the existing SRE methods in identifying more
number of security requirements.

(vii) Though the time to implement MOSRE is high when
compared to other SRE methods, MOSRE helps
the developers to elicit and specify quality security
requirements rather to develop vulnerability or risky
software system;

(viii) The overhead of developers is also reduced since secu-
rity requirements are identified at the early stage of
software development.

With the MOSRE framework, the level of security is
improved since the threats and vulnerabilities are covered at
network, application, and database levels in the early stages
of software system development. Thus, the resultant secu-
rity requirements obtained with MOSRE framework were
very promising to attain threat- and vulnerability-free soft-
ware systems. However, it is not able to reach 100 % results.
It is due to the fact that the assessments are carried out at
very early phase (RE phase) of SDLC. It is also due to the
variations realized in design and implementation; it may be
possible to cover all threats and vulnerabilities by testing
phase.

5 Conclusion

The evaluation of MOSRE on web application was carried
out by a group of participants to elicit and specify security
requirements. The SRS gathered from the participants were
examined for the lists of assets, threats, and vulnerabilities
and compared with the SRS of existing SRE methods. On
investigating the SRS of MOSRE, it is found that the effec-
tiveness and performance are comparatively better than the
existing methods.

It is also inferred from the evaluation that MOSRE is
simple and understandable for the requirements engineers
to elicit security requirements, which guarantee the desired
level of protection to the software systems.

The identified security requirements can be reused with
the activities of any SRE methods to elicit effective secu-
rity requirements. We intend to extend further our work for
security requirements reusability, in order to reduce security
knowledge and dependency on security experts. It will help
to save time/cost and make better choices in applying secu-

rity requirements, since the framework allows requirements
engineers to exploit the accumulated knowledge. Thus, very
high level of security can be achieved for the software sys-
tems.

Acknowledgments We would like to acknowledge and thank the
reviewers and the editors for their valuable comments and suggestions
to improve our paper.

References

1. Balzarotti, D., Banks, G., Cova, M., Felmetsger, V., Kemmerer, R.,
Robertson, W., Valeur, F., Vigna, G.: Are your votes really counted?
Testing the security of real-world electronic voting systems. In:
ACM Proceedings of the international symposium on Software
testing and analysis, pp. 237-248 (2008)

2. Prosser, A., Kofler, R., Krimmer, R., Unger, M.K.: Security assets
in E-voting. In: Proceedings of the 1st international workshop on
electronic voting, pp. 171-180 (2004)

3. Sindre, G., Firesmith, D.G., Opdahl, A.L.: A reuse-based approach
to determining security requirements. In: Proceedings of 9th inter-
national workshop on requirements engineering: foundation for
software quality, pp. 16—17 (2003)

4. Viega, J., McGraw, G.: Building secure software. Addison-Wesley,
Boston (2001)

5. Lipner, S., Howard, M.: The trustworthy computing security devel-
opment life cycle. Microsoft Corporation. http://msdn.microsoft.
com/en-us/library/ms995349.aspx (2005)

6. Graham, D.: Introduction to the CLASP process. Build
security. https://buildsecurityin.us-cert.gov/daisy/bsi/articles/
best-practices/requirements/548.html (2006)

7. Mead, N.R., Houg, E.D., Stehney, T.R.: Security quality require-
ments engineering (SQUARE) methodology. Technical Report
CMU/SEI-2005-TR-009, Software Engineering Institute, Carnegie
Mellon University (2005)

8. Haley, C.B., Laney, R., Moffett, J.D., Nuseibeh, B.: Security
requirements engineering: a framework for representation and
analysis. IEEE Trans. Softw. Eng. 34(1), 133-152 (2008)

9. Mellado, D., Fernndez-Medina, E., Piattini, M.: A common criteria
based security requirements engineering process for the develop-
ment of secure information systems. Comput. Stand. Interfaces
29(2), 244-253 (2007)

10. Mouratidis, H., Giorgini, P., Manson, G.: When security meets soft-
ware engineering: a case of modeling secure information systems.
J. Inf. Syst. 30(8), 609-629 (2005)

11. Giorgini, P., Mouratidis, H., Zannone, N.: Modeling security and
trust with secure tropos. Integrating security and software engineer-
ing: advances and future visions. IGI Global, Pennsylvania (2007)

12. Tndel, I.A., Jaatun, M.G., Meland, P.H.: Security requirements for
the rest of US: a survey. IEEE Softw. 25(1), 20-27 (2008)

13. Fernandez, E.B.: A methodology for secure software design. In:
Proceedings of the international symposium, web services and
applications. www.cse.fau.edu/~ed/EFLVSecSysDes1 (2004)

14. Rosado, D.G., Gutirrez, C., Fernndez-Medina, E., Piattini, M.:
Security patterns and requirements for internet-based applications.
Internet Res. 16(5), 519-536 (2006)

15. Appel, A.W., Ginsburg, M., Hursti, H., Kernighan, B.W., Richards,
C.D., Tan, G., Venetis, P.: The New Jersey voting-machine law
suit and the AVC advantage DRE voting machine. EVT/WOTEQ9,
Electronic Voting Technology Workshop/Workshop on Trustwor-
thy Elections (2009)

16. Hursti, H.: Diebold TSx evaluation: critical security issues with
diebold TSx. Black Box Voting. http://www.blackboxvoting.org/
BBVtsxstudy.pdf (2006)

@ Springer

http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://msdn.microsoft.com/en-us/library/ms995349.aspx
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/548.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/548.html
www.cse.fau.edu/~ed/EFLVSecSysDes1
http://www.blackboxvoting.org/BBVtsxstudy.pdf
http://www.blackboxvoting.org/BBVtsxstudy.pdf

P. Salini, S. Kanmani

18.
19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

Kohno, T., Stubbleeld, A., Rubin, A.D., Wallach, D.S.: Analysis of
an electronic voting system. In: IEEE symposium on security and
privacy. IEEE Computer Society, pp. 27-48 (2004)
http://www.emarketer.com

Mainichi newspaper. http://www.mainichi.co.jp (Japanese), June
24 (2002)

A NASSCOM eGovernance study on issues, challenges
and recommendations. www.egovreach.in/social/content/karnana
taka-proposing-e-vote

Caarls, S.: E-voting handbook: key steps in the implementation of
E-enabled elections. Council of Europe, Strasbourg (2010)
Jefferson, D., Rubin, A.D., Simons, B., Wagner, D.: A security
analysis of the secure electronic registration and voting experiment
(SERVE). http://www.servesecurityreport.org/paper.pdf (2004)
Feldman, A., Halderman, J., Felten, E.: Security analysis of the
diebold AccuVote-TS voting machine. In: Proceedings of the
USENIX/ACCURATE Electronic Voting Technology Workshop
(2007)

Lambrinoudakis, C., Kokolakis, S., Karyda, M., Tsoumas, V.,
Gritzalis, D., Katsikas, S.: Electronic voting systems: secu-
rity implications of the administrative workow. In: Mark, V.,
Stepankova, O., Retschitzegger, W. (eds.) DEXA2003. LNCS, vol.
2736, p. 467. Springer, Heidelberg (2003)

Xenakis, A., Macintosh, A.: Procedural security analysis of elec-
tronic voting. In: Rauterberg, M. (ed.) ICEC2004. LNCS. Springer,
Heidelberg (2004)

Xenakis, A., Macintosh, A.: Procedural security and social accep-
tance in E-voting. In: HICSS2005: Proceedings of the 38th
Annual Hawaii International Conference on System Sciences
(HICSS2005)-Track5, p. 118.1. IEEE Computer Society, Wash-
ington, DC, USA (2005)

Manadhata, P., Wing, J., Flynn, M., McQueen, M.: Measuring the
attack surfaces of two FTP daemons. In: QoP2006: Proceedings of
the 2nd ACM workshop on Quality of protection, pp. 3—-10. ACM
Press, New York (2006)

Howard, M., Pincus, J., Wing, J.: Measuring relative attack sur-
faces. Computer Security in the 21Ist Century, pp. 109-137,
Springer, US (2005)

@ Springer

29.

30.

31.

32.

33.

34.

35.

36.
37.
38.
39.
40.

41.
42.

Swiderski, F., Snyder, W.: Threat modeling. Microsoft Press, US
(2004)

Suleiman, H., Svetinovic, D.: Evaluating the effectiveness of the
security quality requirements engineering (SQUARE) method: a
case study using smart grid advanced metering infrastructure.
Requirements engineering. Springer, Berlin (2012)

Salini, P., Kanmani, S.: Survey and analysis on security require-
ments engineering. Int. J. Comput. Electr. Eng. 38(3), 1785-1797
(2012)

Salini, P, Kanmani, S.: A model based security requirements engi-
neering framework. Int. J. Comput. Eng. Technol. 1(1), 180-195
(2010)

Salini, P, Kanmani, S.: A model based security requirements
engineering framework applied for online trading system. In: Pro-
ceedings of IEEE international conference on recent trends in
information technology, pp. 1195-1202 (2011)

Salini, P., Kanmani, S.: Application of model oriented secu-
rity requirements engineering framework for secure E-voting. In:
Proceedings of CSI 6th international conference on software engi-
neering, IEEE, pp. 1-6 (2012)

Salini, P., Kanmani, S.: Security requirements engineering for spec-
ifying security requirements of an e-voting system as a legitimate
solution to e-governance. Int. J. Wirel. Mobile Comput. 7(4), 400—
413 (2014)

Rubin, A.D.: Security considerations for remote electronic voting.
Commun. ACM 45, 39-44 (2002)

Smith, R.G.: The risks and benefits of electronic voting. In: 15th
Australian Forum—Melbourne (2001)

Weiss, M.: Modeling security patterns using NFR analysis. Infor-
mation security and ethics: concepts, methodologies, tools, and
applications. Idea Group Publishing, Pennsylvania (2008)
OWASP. https://www.owasp.org

NVD. http://nvd.nist.gov/scap.cfm

WASC. http://www.webappsec.org/

CVSS. http://www.rst.org/cvss

http://www.emarketer.com
http://www.mainichi.co.jp
www.egovreach.in/social/content/karnanataka-proposing-e-vote
www.egovreach.in/social/content/karnanataka-proposing-e-vote
http://www.servesecurityreport.org/paper.pdf
https://www.owasp.org
http://nvd.nist.gov/scap.cfm
http://www.webappsec.org/
http://www.rst.org/cvss

	Effectiveness and performance analysis of model-oriented security requirements engineering to elicit security requirements: a systematic solution for developing secure software systems
	Abstract
	1 Introduction
	2 Related works
	2.1 Security requirements engineering methods
	2.2 E-voting system and e-governance

	3 Eliciting security requirements for an e-voting system
	3.1 Step 1: Identify the objective of the e-voting system
	3.2 Step 2: Identify the stakeholders
	3.3 Step 3: Identify the assets
	3.4 Step 4: Select an elicitation technique
	3.5 Step 5: Obtain high level of architecture diagram of e-voting system
	3.6 Step 6: Elicit non-security goals and requirements
	3.7 Step 7: Generate use cases diagram
	3.8 Step 8: Identify the security goals/security objectives
	3.9 Step 9: Identify threats and vulnerabilities
	3.10 Step 10: Perform risk assessment
	3.11 Step 11: Categorize and prioritize the threats and vulnerabilities for mitigation
	3.12 Step 12: Generate misuse case diagram for the e-voting system
	3.13 Step 13: Identify security requirements
	3.14 Step 14: Generate use cases diagram considering security requirements
	3.15 Step 15: Generate structural analysis models
	3.16 Step 16: Develop UML diagrams

	4 Evaluation and discussion
	4.1 Experimental setup
	4.1.1 Comparative analysis of effectiveness with existing SRE methods
	4.1.2 Comparative analysis of performance of MOSRE with existing SRE Methods

	4.2 Result analysis
	4.2.1 Effectiveness comparison of MOSRE with other SRE methods
	4.2.2 Performance comparison of MOSRE with other SRE methods

	5 Conclusion
	Acknowledgments
	References

