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Abstract. In this study, we develop a flexible optimization framework for real-time ambu-

lance dispatching and relocation. In addition to ambulance redeployment, we consider a

general dispatching and relocation strategy by which the decision maker has the option

to (i) select any available ambulance to dispatch to a call or to queue the call and (ii)

send an idle ambulance to cover the location of an ambulance just dispatched to a call.

We formulate the problem as a stochastic dynamic program, and, because the state space

is unbounded, an approximate dynamic programming (ADP) framework is developed

to generate high-quality solutions. We assess the quality of our solutions by develop-

ing a lower bound on the expected response time and computing a lower bound on the

expected fraction of late calls of any relocation policy. We test the performance of our

policies and available benchmarks on an emergency medical services system in Mecklen-

burg County, North Carolina. The results show that our policies are near optimal and

significantly outperform available benchmarks. In particular, our ADP policy reduces the

expected response time and fraction of high-priority late calls by 12% and 30.6%, respec-

tively, over the best available static benchmarks in the case study. Moreover, the results

provide insights on the contribution of each dispatching, redeployment, and reallocation

strategy.
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1. Introduction
1.1. Motivation
Emergency medical services (EMS) provide out-of-

hospital acute medical care and transport the sick or

injured to hospitals for definitive care. Typically, EMS

providers’ performance is evaluated based on their

response time (National Association of State EMS Offi-

cials 2009), the amount of time that an ambulance takes

to arrive to the scene of a call once the call is received,

as reducing the response time is an essential factor

in lowering patient mortality rates (Wilde 2013). In

particular, a target for the proportion of urgent calls

whose response time is less than a threshold is a com-

mon measure of performance. For example, the U.S.

National Fire Protection Association suggests a target

that 90% of emergency medical calls be reached by a

first responder within four minutes, followed by an

advanced life support response within eight minutes

(NFPA 2010). Also, in North America, a common tar-

get is reaching 90% of urgent urban calls within nine

minutes (Fitch 2005).

Factors such as increased nonemergency calls, which

(by law) require that an ambulance be dispatched, and

insufficient funding have increased pressure on EMS

providers to “do more with less,” or, at best, to use

the same level of resources to achieve response time

targets set by municipalities or contracts (Ward 2014).

This has spurred EMS providers to better manage

their ambulances by using more complex dispatch-

ing and location policies. Studies of realistic settings

show that the performance of static policies, those that

send the closest ambulance and preassign a location

to each ambulance, can be quite poor (Maxwell et al.

2010). Recently, the availability of real-time informa-

tion to dispatchers via geographical information sys-

tems and the affordability of computing power has

facilitated using real-time ambulance management,

which provides a platform that enables EMS providers

to consider more sophisticated operational strategies

to improve the performance of ambulance deployment

policies. One potential strategy is ambulance reloca-

tion, which refers to repositioning idle ambulances in

real time to better respond to future calls. It is pos-

sible for some locations to be covered by more than

one ambulance; therefore, some ambulances might be

idle at their locations while providing no additional

coverage value. Note that an area is covered if an idle

ambulance can reach it in a specific time threshold.

Repositioning these ambulances to improve the cov-

erage level is a strategy we call “ambulance realloca-

tion.” This strategy can improve the performance of
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EMS systems because idle ambulances at other loca-

tions can compensate for a “coverage hole” caused

by dispatching the only ambulance covering a region.

A second type of strategy is to send an ambulance

that just finished service to a new location rather than

sending it to a preassigned base, which we call “ambu-

lance redeployment.” A third potential strategy is to

decide which ambulance should serve a call (if imme-

diately), which we call “ambulance dispatching,” as

sending the closest ambulance for every incident may

be suboptimal (Swersey 1994). This strategy can signif-

icantly improve the performance of the system, as sup-

ported by our numerical study. For example, suppose

a high-priority call arrives and the closest ambulance

is 20 minutes away from the call location; however,

another ambulance is currently in service just twomin-

utes away from the call location andwill be available in

three minutes. Sending the closest ambulance imme-

diately will result in a late call in this example and is

shown to be suboptimal in realistic settings. The aim of

this work is to develop a flexible mathematical frame-

work to explore a variety of strategies for real-time

ambulance operations management. Pursuant to this

goal, we formulate the problem as a stochastic dynamic

program and use an approximate dynamic program-

ming (ADP) approach to produce efficient real-time

dispatching and relocation policies.

1.2. Main Contributions and Results
In this study, we make the following contributions:

1. We develop a flexible optimization framework

by simultaneously considering general dispatching, re-

deployment, and reallocation strategies for real-time

stochastic dynamic ambulance operations manage-

ment. We consider a general dispatching rule upon

receiving a call in that the decision maker can send

any available ambulance in addition to not serving the

call immediately. Therefore, we let the model decide

which ambulance should immediately be dispatched

to a received call or the call has to wait for an ambu-

lance in the near future. EMS providers are also moti-

vated to spread out ambulances on the roads to meet

the performance standards. To improve coverage level,

we consider relocating an available ambulance to the

location of an ambulance just dispatched to serve a call,

and we name this “ambulance reallocation.”

2. To assess the quality of solutions produced by our

ADP approach, we develop a novel lower bound on the

expected response time of any relocation policy. To cre-

ate this bound, we consider a lower bounding system

as in Maxwell et al. (2014). However, instead of solv-

ing a maximum covering location problem (MCLP),

upon receiving a call in the original system, we reposi-

tion the available ambulances tominimize the expected

response time by solving a different p-median integer

program.

3. We develop new basis functions that estimate the

expected response time of the calls in the system and

modify some of the available basis functions in the lit-

erature to enhance the performance of the ADP poli-

cies. In particular, we introduce new basis functions

that estimate a future state of the system in which a

busy ambulance becomes available, thus enabling the

ADP algorithm to react to the future coverage level.

These basis functions serve an important purpose in

that they allow the algorithm to delay or alter a dis-

patching or relocation decision in response to a sit-

uation by considering future costs of an appropriate

response when a new ambulance configuration has

emerged.

4. We measure the contribution of each strategy in

terms of a variety of objective functions such as the

expected discounted priority-adjusted response time

and the expected discounted priority-adjusted fraction

of late calls. We discover insights regarding the rela-

tive contribution of each strategy, as well as available

benchmarks.

We test the performance of six static benchmarks in

the literature on our data set to find the best static

benchmark in termsof expected response time and frac-

tion of late calls. Our analysis shows that the maxi-

mum expected covering location problem (MEXCLP)

and maximum covering location problem (MCLP) out-

perform other static benchmarks when the objective is

to minimize the expected fraction of late calls and the

expected response time, respectively. Thus, the static

policy, hereafter, refers to the MEXCLP (MCLP) when

the objective is to minimize the fraction of late calls

(response time).

In addition, we consider five dynamic benchmarks,

including a heuristic that has been reported to be effi-

cient in the literature. To analyze the contribution of

each dispatching, redeployment, and reallocation strat-

egy on performance improvement, we design three

dynamic benchmarks by adding each strategy to the

static policy one at a time; that is, Benchmark 1 builds

on the static policy by considering a general dispatch-

ing rule instead of sending the closest available ambu-

lance; Benchmark 2 builds on the static policy by con-

sidering a redeployment strategy after an ambulance

has finished serving a call; Benchmark 3 builds on the

static policy by sending an available ambulance to the

location of an ambulance just dispatched to serve a

call; Benchmark 4, which consists of redeployment and

reallocation strategies, is used to compute the opti-

mality gap as both lower bounds assume the clos-

est ambulance is dispatched; and Benchmark 5 uses

the dynamic heuristic relocation policy proposed by

Jagtenberg et al. (2015) to evaluate its performancewith

respect to our relocation strategies.

Our results show that when the ADP objective func-

tion is to minimize the expected response time, ADP
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policies generated by Benchmarks 1, 2, and 3 out-

perform the MCLP static benchmark by 2.7%, 6.8%,

and 1.3%, respectively. However, when the ADP objec-

tive function is tominimize the expected fraction of late

calls, the ADP policies produced in Benchmarks 1, 2,

and 3 outperform the MEXCLP static benchmark by

13.5%, 21.3%, and 9.8%, respectively. This shows that

each strategy can significantly improve the static bench-

marks. Note that the contribution of a redeployment

strategy is significantly greater than those of dis-

patching and reallocation strategies. Also, this obser-

vation is consistent in both ADP objective functions,

i.e., minimizing the response time and fraction of late

calls. Furthermore, the expected frequency with which

Benchmark 2deviates from the static benchmarks is sig-

nificantly greater than that of the other dynamic bench-

marks. The ADP approach that simultaneously con-

siders all three strategies outperforms both the static

and dynamic benchmarks. In particular, when theADP

objective is to minimize the expected fraction of late

calls, our ADP approach outperforms Benchmark 2 in

expected response time and fraction of late calls by 4.3%

and 14.5%, respectively. Benchmark 2 is similar to the

setting studied in Maxwell et al. (2010), where only

ambulance redeployment is considered. Our results

suggest that expanding the action space beyond rede-

ployment can significantly improve the performance of

the system, e.g., 14.5% improvement in the fraction of

late calls when the ADP objective is to minimize the

fraction of late calls. Furthermore, Benchmark 1, which

uses a general dispatching rule, provides novel insights

to the discussion around the optimality of policies that

deviate from sending the closest available ambulance.

Our results show that Benchmark 1 simultaneously

reduces the fraction of late calls and response time, as

our ADP policy shifts the entire response time distri-

bution toward shorter times (see Figure 1). This result

is different from that in Jagtenberg et al. (2016), where

deviating from sending the closest ambulance resulted

in an improvement on fraction of late calls, but signifi-

cant increase in response time.

2. Related Work
The literature on ambulance operationsmanagement is

quite rich. Therefore, we briefly discuss previousworks

related to our study and refer the reader to the follow-

ing survey papers and the references therein for a com-

prehensive review. Swersey (1994) and Brotcorne et al.

(2003) reviewed deterministic and probabilistic ambu-

lance location and relocation models. Also, Ingolfsson

(2013) provided a survey on the analytical stochastic

models focusing on ambulance station selection and

ambulance allocation to stations with respect to perfor-

mance measures such as response time.

Early models of the ambulance location problem

sought tominimize thenumberof ambulances required

to respond to future calls for a determined time thresh-

old or to maximize the demand covered using a fixed

fleet size; see Church and ReVelle (1974) and the refer-

ences therein. These approaches did not consider the

fact thatwhenanambulance isdispatched, the coverage

level might fall below a minimum threshold. One

possibility to address the unavailability of dispatched

ambulances over time includes considering multiple

coverage, i.e., demand points that are supposed to be

covered by more than one vehicle. Gendreau et al.

(1997) introduced the double standard model (DSM)

by including multiple coverage. Doerner et al. (2005)

extended their work with respect to capacity con-

straints and different demand density in each location.

Gendreau et al. (2001, 2006) developed dynamic mod-

els to formulate the ambulance repositioning problem,

where the objective function is to maximize the total

covered demand. Because these approaches require

solving an integer program every time the dispatcher

makes a decision, they are computationally very inten-

sive. Also, these models are deterministic and do not

capture the effect of randomness in the system.

Berman (1981a, b) used Markov decision theory to

minimize the long-run cost of repositioning ambu-

lances. They provided an exact dynamic programming

approach to find available ambulances to compensate

for coverage level drop induced by dispatched ambu-

lances. However, these exact formulations are tractable

only in oversimplified settings for a small number of

ambulances over a small network of routes. Restrepo

et al. (2009) used an Erlang loss function to compute

the fraction of late calls, those not responded to within

a time threshold, and embedded it into an optimiza-

tion model to minimize the percentage of late calls by

static deployment of ambulances. McLay and Mayorga

(2013) formulated the ambulance dispatching problem

as a Markov decision process to optimally dispatch

ambulances to prioritized patients. Alanis et al. (2013)

developed a two-dimensional Markov chain model to

analyze ambulance repositioning according to a com-

pliance table, which suggested where to reposition an

ambulance based on the number of available ambu-

lances. (In this setting, the closest ambulance is dis-

patched to serve the call. After the ambulance finishes

its service, thedecisionmaker seeks to repositionambu-

lances in such a way that maintains a configuration of

the available ambulances similar to the one suggested

by the compliance table.) Andersson and Varbrand

(2007) measured the ability of an ambulance to cover a

future call by introducing a “preparedness function,”

which approximates the value function in a dynamic

program. However, to apply it to real-time applica-

tions even with small sets of available ambulances

and relocation destinations, the dynamic relocation
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problem must be solved heuristically. van Barneveld

et al. (2016) designed a heuristic dynamic reposition-

ing policy by minimizing the “unpreparedness func-

tion,” which returns the expected penalty that the next

request generates. In that setting, the best relocation

policy is found in terms of a “motion” from an origin

base to a destination base. To prevent long transition

times, a linear bottleneck assignment problem is solved

to determine howavailable ambulances shouldmove to

reach the new configuration.

Mason (2013) developed a dynamic repositioning

policy that relocates ambulances in demand zones

when coverage levels drop below a threshold. How-

ever, repositioning idle ambulances every time cov-

erage levels fall below a certain level may result in

shortage of available ambulances at times of dispatch.

Therefore, to limit the repositioning time, a neighbor-

hood search strategy is developed to solve the base

allocation problem, which leads to solutions that differ

only slightly from the initial base locations. Jagtenberg

et al. (2015) developed a heuristic approach to real-time

ambulance relocation by maximizing the expected

marginal contribution of each available ambulance to

the coverage level. van Barneveld (2016) extended the

MEXCLP to incorporate a nonnegative, nondecreasing

function of response time into the objective function

to calculate performance measures related to response

time instead of coverage level. By solving the extended

formulation for different levels of available ambu-

lances, compliance tables are obtained offline, and

when the number of available ambulances changes,

an assignment problem is carried out to reconfigure

the system, i.e., move the ambulances to new positions

according to the compliance tables. Sudtachat et al.

(2016) modified the steady-state probabilities calcu-

lated by Alanis et al. (2013) and incorporated them into

an integer program to maximize the coverage level in

a single type ambulance and call priority system with

a zero-length queue. The resulting nested compliance

policy, when out of compliance, requires at most one

vehicle movement at a time to reconfigure accordingly.

Bélanger et al. (2016) modified the double standard

model to consider multiperiod and dynamic settings

with and without relocations. In the multiperiod set-

tings, ambulances are relocated only between periods

and returned to the same base throughout the period.

In the dynamic settings, the double standard model is

solved whenever an ambulance is dispatched if a cer-

tain amount of time has passed since the last relocation

and a secondary coverage level falls below a threshold.

To make ambulance redeployment decisions in an

uncertain dynamic setting, Maxwell et al. (2010) devel-

oped an ADP approach based on approximate policy

iteration. They formulated the ambulance redeploy-

ment problem as a dynamic program and approxi-

mated the value function by an affine combination

of basis functions. They used an iterative simulation-

based procedure to estimate tunable parameters of

the approximation. The objective was to minimize

the fraction of late calls only through redeployment.

Their model, however, does not consider ambulance

reallocation and uses a myopic dispatching rule; i.e.,

the closest ambulance is sent to a call, calls are served

in decreasing order of priority, and a first-come, first-

served strategy is considered for each priority. Schmid

(2012) also used ADP to model real-time ambulance

dispatching and relocation. Our study is different in

both the problem scope andmethodology used. In par-

ticular, Schmid (2012) did not consider the relocation

of idle ambulances and assumed that an ambulance

must be immediately dispatched to a call. In terms of

ADP, Schmid (2012) used a general ADP framework

basedonaggregationandpostdecision states.However,

we develop an ADP approach specific to ambulance

operationsmanagement by exploiting novel basis func-

tions, as well as developing a lower bound on expected

response time.

There is another stream of research related to our

work: the literature on approximate dynamic program-

ming. Many researchers have used ADP to come up

withhigh-quality solutions for avariety of applications,

e.g., allocating resources in service systems (Adelman

2007), resource allocation in healthcare (Bertsimas et al.

2013, Khademi et al. 2015), and supply chain manage-

ment (Lai et al. 2010, Van Roy et al. 1997).

3. Problem Formulation
This section presents an infinite-horizon Markov deci-

sion process formulation of the problem. LetL :� {0, 1,
2, . . . , L} be the set of call locations, and let B :� {0, 1,
2, . . . ,B} be the set of all ambulance bases. We assume

a total of N ambulances are available and atmost J calls
are tracked. This assumption is not restrictive because

one may consider a large J.

3.1. State Space
An ambulance i is represented by mi � ( fi , oi , di , ti),
where fi is the status of the ambulance, oi is the original

location of the ambulance, di is the destination of the

ambulance, and ti is the start time of the latest move-

ment of the ambulance. For the purposes of this work,

it is sufficient to consider six possibilities for the status

of an ambulance, i.e., fi ∈ {0, 1, 2, 3, 4, 5}, where 0 shows

that the ambulance is available at base, 1 shows that

the ambulance is going to a call location, 2 shows that

the ambulance is serving a call on the scene, 3 shows

that the ambulance is going to the hospital, 4 shows

that the ambulance has finished serving a call, and

5 shows that the ambulance is being reallocated and

going to another base or the ambulance is going to a

base after finishing service. Note that if ambulance i
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is idle in a location, the original location is set to the

current location and the destination to null. Similarly,

when an ambulance is serving a call on scene, we set

the original location to the call location and destination

to null. We let vector m � (m
1
,m

2
, . . . ,mN) ∈ M repre-

sent the state of all ambulances. A call j is represented
by c j � (g j , l j , p j , q j), where g j is the status, l j is the

location, p j is the priority, and q j is the arrival time of

the call. In particular, g j ∈ {0, 1}, where 0 shows that

the call is waiting for service, and 1 shows that the

call is assigned to an ambulance. When an ambulance

reaches the call scene, the call is removed from the list.

Alignedwith literature, we consider two priority levels

for a call, p j ∈ {0, 1}, where 0 shows that the priority of

a call is low, and 1 shows that the priority of the call is

high (Maxwell et al. 2010). Extending the framework of

this study to consider more priority levels is straight-

forward. We let vector c � (c
1
, c

2
, . . . , c J) ∈ C represent

the state of all calls.

Without loss of generality, we assume that decisions

are made at transition times. In our model, transition

times are associated with the following events: call j
arrives, ambulance i is in transit to call j, ambulance i
arrives at the location of call j, ambulance i is finished
serving call j at scene, ambulance i is finished serving

call j at hospital, and ambulance i arrives at a base.

Let E be the set of all possible events. Therefore, the

state space of the system is represented by S :� {s �

(τ, e ,m , c): e ∈ E, m ∈M, c ∈ C}, where τ corresponds

to the current time.

3.2. Action Space
The action space is described in four cases. We assume

that dispatching, reallocating, and redeploying the

ambulances are nonpreemptive. One can relax this

assumption by defining an event “consider preemp-

tion,” which occurs with a certain frequency, and upon

occurrence, one may preempt any of the ambulance

services and reconsider actions. However, Maxwell

et al. (2010) showed that considering only the service

preemption of ambulances that are returning to base

significantly increases the computational effort, while

its benefit may be marginal.

Case 1. If call j arrives, the decision maker has two

types of decision: (i)which ambulance should be imme-

diatelydispatched to serve the call (if any) and (ii)which

ambulances should be reallocated to other bases (if

any). Note that in this case, an ambulance is not nec-

essarily dispatched upon receiving a call immediately.

If this happens, the call will join the queue and will

be served later. The rationale for considering reallo-

cation decisions is that by spreading out the ambu-

lances over the area, it is likely that a location is

covered by only one ambulance; thus, sending the

ambulance to a call may cause a coverage hole. Since

coverage level does not decrease unless an idle ambu-

lance becomes unavailable, reallocation decisions are

considered when an ambulance is dispatched. Because

multiple reallocations in short intervals are expensive

and could become a burden on the ambulance crew

(van Barneveld et al. 2016, Jagtenberg et al. 2015), we

assume that reallocations are limited to at most one

ambulance upon dispatching an ambulance. Let M(s)
be the set of available ambulances, i.e.,M(s) :� {i: fi � 0};
let B

1
(s) represent the location of the ambulance just

dispatched to a call; and let M
1
(s) represent the set

of all available ambulances right after dispatching

ambulance i when the state is s. If no ambulance is dis-

patched upon receiving a call, we setB
1
(s) � � and do

not consider ambulance reallocation. Note that when

ambulances are in transit toward a base ( fi � 5), they

are not considered available because of the nonpreemp-

tion assumption. It is possible to use the event “consider

preemption” to preempt an ambulance that is moving

toward a base and dispatch it to a call. However, the

benefit of such preemptionsmay bemarginal (Maxwell

et al. 2010).

Define Xi , j � 1 if ambulance i is assigned to call j and
Xi , j � 0 otherwise. Also, define Yi , b � 1 if ambulance i is
reallocated to location b and Yi , b � 0 otherwise. There-

fore, if event e is of the type “a call arrives,” and J
1
(s)

denotes a set that points to the index of the call, the

action space is given by

A
1
(s) :�

{
(Xi , j ,Yi , b):

∑
i∈M(s)

Xi , j ≤ 1, j ∈ J
1
(s);∑

i∈M
1
(s)

Yi , b ≤ 1, b ∈B
1
(s)

}
,

where the first constraint ensures that at most one

ambulance is assigned to a received call j, and the sec-

ond constraint ensures that at most one ambulance is

reallocated to the locationof thedispatched ambulance.

Case 2. Let Q(s) denote the set of all calls waiting

in the queue for ambulance assignment; i.e., Q(s) :�

{ j: g j � 0}. If Q(s)�� and event e is of the type “ambu-

lance i has finished serving a call at scene” or “ambu-

lance i has finished serving a call at hospital,” the

decision is where to redeploy the ambulance. LetM
2
(s)

denote the set of ambulances available for redeploy-

ment in state s, and Zi , b �1 if ambulance i is redeployed
to location b, and Zi , b � 0 otherwise. We setM

2
(s)� {i}

in this case. The action space is presented by

A
2
(s) :�

{
(Zi , b):

∑
b∈B

Zi , b � 1, i ∈M
2
(s)

}
,

where the constraint ensures that ambulance i is rede-
ployed to only one location.

Case 3. If Q(s),� and event e is of type “ambulance i
has finished serving a call at scene,” “ambulance i has
finished serving a call at hospital,” or “ambulance i has
arrived at a base,” the decision is to dispatch an avail-

able ambulance to a call in the queue or to redeploy it



Nasrollahzadeh, Khademi, and Mayorga: Real-Time Ambulance Dispatching and Relocation
6 Manufacturing & Service Operations Management, Articles in Advance, pp. 1–14, ©2018 INFORMS

to a location. If there is more than one call in the queue,

the calls are served in decreasing order of priority, and

within a given priority level, they are served based on

a first-come, first-served rule. Let J
3
(s) denote the set

that points to the highest-priority call with the longest

waiting time in thequeue, and letM
3
(s)denote the set of

available ambulances for redeployment when the state

is s. Set M
3
(s) � {i} in this case. The action space is

given by

A
3
(s) :�

{
(Xi , j ,Zi , b):

∑
i∈M(s)

Xi , j ≤ 1, j ∈ J
3
(s);∑

b∈B
Zi , b � 1−Xi , j , i ∈M

3
(s), j ∈ J

3
(s)

}
,

where the first constraint considers dispatching an

ambulance to call j in the queue, and the second con-

straint ensures that the ambulance that has just become

available will be redeployed to a location if it is not

already assigned to a call.

Case 4. If an event is of type “ambulance i is in transit

to call j” or “ambulance i arrives at the location of

call j,” we set A(s)��.

3.3. Transitions
We assume that call arrivals in location l follow a non-

homogeneous Poisson process with rate λτl at time τ.
If an ambulance arrives at call j scene, it completes

the service at the scene with probability ρ j , and it

will transfer the patient to a hospital with probability

1 − ρ j . We assume that travel times are deterministic,

and the time required to serve a call at scene or taking

a patient to hospital follows an arbitrary distribution

with a finite mean, independent of call location. Note

that if the destination is a hospital, in addition to travel

time, our historical data also consider both the service

time on scene before going to hospital and the time

that it takes to hand over the patient to hospital person-

nel. We estimate all of the distributions using historical

data fromMecklenburg County, North Carolina. Let sκ
be the state of the system when the κth event happens.

The evolution of state sκ can then be characterized by

action aκ, a random element ω(sκ , aκ), and a function F,
i.e., sκ+1

� F(sκ , aκ , ω(sκ , aκ)).

3.4. Objective Function
We consider minimizing the expected discounted pri-

ority-adjusted total response time and the expected dis-

counted priority-adjusted fraction of late calls as the

primary ADP objective functions for the optimization

framework.Wealso report otherperformancemeasures

such as response time of late calls and fraction of late

high-priority calls in our case study. Let h(sκ , aκ , sκ+1
)

denote the cost of a transition from sκ to sκ+1
, when

action aκ is taken. Tominimize the expected discounted

priority-adjusted response time, define

h(sκ , aκ , sκ+1
)

�



w
1
(τ(sκ+1

) − q j)
if a high-priority call j arrives and
the event e(sκ+1

) is of the form
“ambulance i arrives at the scene of call j,”

w
2
(τ(sκ+1

) − q j)
if a low-priority call j arrives and
the event e(sκ+1

) is of the form
“ambulance i arrives at the scene of call j,”

0 otherwise,

where (τ(sκ+1
) − q j) measures the response time of

call j, and w
1
and w

2
are priority adjustment weights.

This cost structure is flexible in that w
1
and w

2
can

be tuned to capture the relative importance of high-

priority versus low-priority calls.

Similarly, to minimize the long-run priority-adjusted

fraction of late calls, define

h(sκ , aκ , sκ+1
)

�



w
3
(�{τ(sκ+1

)−q j≥4})
if a high-priority call j arrives and
the event e(sκ+1

) is of the form
“ambulance i arrives at the scene of call j,”

w
4
(�{τ(sκ+1

)−q j≥4})
if a low-priority call j arrives and
the event e(sκ+1

) is of the form
“ambulance i arrives at the scene of call j,”

0 otherwise,

where 4 denotes the given time threshold, and

�{τ(sκ+1
)−q j≥4} is an indicator function that takes a value

of one if the call is not responded to within the time

threshold. The cost structure can capture the relative

importance of call priorities by tuning w
3
and w

4
. Note

that one might use different time thresholds for differ-

ent priorities.

3.5. Optimality Equation
Let Jπ(s) denote the expected total discounted cost

when s
0
� s under policy π ∈ P, where P denotes the

set of all stationary nonanticipative policies; that is,

Jπ(s)�Ɛ

{ ∞∑
κ�1

γτ(sκ)h(sκ , π(sκ), sκ+1
)
��� s

0
� s

}
, s ∈S, π∈P,

where π(sκ) denotes the action selected by policy π in

state sκ at time τ(sκ), and 0 ≤ γ < 1 is a discount fac-

tor. The decision maker solves for v(s) � infπ∈Π{ Jπ(s)},
where Π ⊆ P denotes the set of admissible policies

under consideration and v(s) satisfies the Bellman opti-

mality equation

v(s)� min

a∈A(s)

{
Ɛa(h(s , a , s′)+ γ(τ(s

′)−τ(s))v(s′) | s)
}
,

∀ s ∈ S, (1)
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where the expectation is taken with respect to action

a and s′ � F(s , a , ω(s , a)) (Puterman 2005). Moreover, a

stationary optimal policy exists, which is myopic rela-

tive to the optimal value function.

4. Approximate Solutions and
Performance Guarantee

Solving formulation (1) to optimality is impractical

because of the curse of dimensionality. The state space

of the system, S, is unbounded, and the traditional

methods do not apply. Section 4.1 adapts approxi-

mate policy iteration to produce high-quality solu-

tions, which provide an upper bound on the optimal

value function, and Section 4.3 computes lower bounds

on the long-run fraction of late calls and response time

under any relocation strategy to assess the quality of

the solutions.

4.1. Upper Bound
The standard policy iteration algorithm starts with an

arbitrary policy π0

. At iteration n, it evaluates πn
by cal-

culating vn(s) for all s ∈ S by solving vn(s) � Lπn vn(s),
where Lπn vn(s) � Ɛ{h(s , a , s′) + γτ(s′)−τ(s)v(s′)}. Next, it

improves the policy by choosing a myopic policy rel-

ative to vn
, i.e., πn+1(s) ∈ arg mind∈DMD {Ɛ(h(s , a , s′) +

γτ(s
′)−τ(s)vn(s′))}, where d ∈DMD

denotes a decision rule

in the set of stationary Markovian deterministic poli-

cies (DMD
). This iterative procedure is continued until

πn+1 � πn
(Puterman 2005). Because the state space is

unbounded, the policy evaluation and improvement

steps are intractable in this problem. To overcome this

issue, the value function is approximated by an affine

combination of basis functions, i.e., v(s) ≈ v̂(s) � α
0
+∑K

k�1
αkφk(s), where each φk(s) is a basis function,

and αk is its associated weight in the approximation.

Thequality of the approximationdepends on the choice

of basis functions, which should be able to character-

ize the optimal value function (Powell 2007). Section 4.2

discusses our choice of basis functions in detail. There-

fore, by replacing the value function with its approxi-

mation, the policy improvement step at iteration n of

the approximate policy iteration involves solving

πn(s) ∈ arg min

a∈A(s)

{
Ɛa(h(s , a , s′)+ γ(τ(s

′)−τ(s)) v̂(s′) | s)
}
,

∀ s ∈ S, (2)

where Ɛa( · ) denotes the expectation with respect to

action a. We use Monte Carlo simulation to approxi-

mate Ɛa( · ) via a sample average. Starting from state s
and taking action a, we simulate the system for one

step and use v̂(s) as the cost-to-go estimate. Because the

simulation is evaluated only until the next event, enu-

merating all trajectories is manageable. The next event

could be a call arrival or a busy ambulance complet-

ing one stage of its transition, which is either reaching

a call scene, finishing service (at scene or hospital), or

arriving at a location after finishing service.

Solving formulation (2) involves enumerating all

actions for a given state. In our setting, this is manage-

able because if the event is “call j arrives,” the decision
maker has to determine which ambulance should be

immediately dispatched to the call (if any) and which

ambulance should be reallocated to the location of the

ambulance just dispatched (if any). Let |M(s)| denote
the number of available ambulances. The size of the

action set will be 1+ |M(s)|(|M(s)| − 1). If the event is of
the type “ambulance becomes available after serving

a call” and no calls are in the queue, then the deci-

sion maker determines which location the ambulance

should be redeployed to. This is equal to the number

of locations, denoted by |B|, which in our case study

is 40. If there are calls in the queue and the event is

of type “ambulance becomes available after serving a

call” or “ambulance has just arrived at its location,”

then the decision maker determines which ambulance

to dispatch to the call based on a first-come, first-served

rule, and if the decision is not to dispatch, which loca-

tion the ambulance should be redeployed to, which is

at most |M(s)| + |B|. Once the expectation is estimated

for all actions, the decision that yields the smallest

value is chosen by the policy. Formulation (2) provides

v̂-improving decision rules for a fixed state s. However,

solving it for each state is not possible because the state

space is unbounded. Therefore, to evaluate a policy, we

use formulation (2) upon visiting a state on the fly in

the Monte Carlo simulation; that is, it is solved only for

states observed in simulation. In the settings of inter-

est, our computational experiments demonstrate that

solving formulation (2) for a state is instantaneous.

Algorithm 1 (Approximate policy iteration)
Set n � 0, ε > 0 and α � α0

.

while |v̂n(s) − v̂n−1(s)| > ε or n , 0 do
Policy improvement: Find a myopic policy induced

by v̂n(s) by solving formulation (2).

Policy evaluation: Use Monte Carlo to simulate

the system; find actions for each state visited

by the simulation via solving formulation (2);

calculate Cr(s), the total discounted cost for each

initial state s and replication r.
Projection: Use Cr(s) from the Monte Carlo

simulation and solve formulation (3)

to estimate αn+1

for the next iteration.

Set n← n + 1.

Next, we develop an algorithmic approach to esti-

mate α� (α
0
, α

1
, . . . , αk) and consequently derive high-

quality solutions. Consider an appropriately large

finite horizon, initialize α � α0

, and evaluate the policy

associated with it for states in Ŝ, where Ŝ is a sub-

set of S. We construct Ŝ by sampling states that are

more likely to be visited by the optimal policy and
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update v̂n(s) at iteration n of the algorithm (de Farias

and Van Roy 2004). For the policy evaluation step, we

propose the following procedure. Start from an initial

state s, use Monte Carlo simulation to simulate the sys-

tem, and upon observing a state, find actions by solv-

ing formulation (2), and calculate the total discounted

cost for that realization of the system. Let Cr(s) denote
the total discounted cost of the realization of the sys-

tem, starting from state s in replication r, i.e., the sim-

ulated value function for state s in replication r. Let Rs
be the total number of replications of the Monte Carlo

simulation for state s. To estimate α, solve the following

optimization problem:

min

α

∑
s∈Ŝ

Rs∑
r�1

(
Cr(s) − α

0
−

K∑
k�1

αkφ(s)
)

2

, (3)

which minimizes the squared error between the ap-

proximate value function and the simulated value

function. Note that formulation (3) is a regression

model, and computational experiments in our case

study show that solving it is instantaneous. This pro-

cedure continues until convergence in some norm is

achieved. Algorithm 1 formalizes this approach.

4.2. Basis Functions
This section describes the basis functions {φk( · ): k �

1, . . . ,K} used for the value function approximation.

Jagtenberg et al. (2015) noted that basis functions in

the ambulance relocation literature may not produce

high-quality solutions in general, but our computa-

tional results show that our ADP approach based on

the following basis functions produces near-optimal

solutions.

4.2.1. Response Time. This novel basis function esti-

mates the expected response time of a call when the

state of the system is s. To that end, let rl(s) denote
the expected response time of a call in region l in

state s, and set φ
1
(s) � ∑

l∈L λ
τ
l rl(s). Response time is

comprised of travel time of an ambulance to reach a call

plus potential waiting time of a call in queue for ambu-

lance assignment. To estimate the expected waiting

time of a call in a region, we develop an M/G/c queue-
ing system for each region and estimate the expected

waiting time in the queue. Let Nl(s) denote the num-

ber of available ambulances (the number of servers

in the M/G/c queuing system) that cover location l
when the state of the system is s. We consider a region

covered by ambulance i, if the time that it takes for

an available ambulance to reach to the center of the

region,
¯l, is less than a threshold 4. Therefore, Nl(s) �∑

i∈M(s) �{t(oi , ¯l)≤4}, where t(x , y) denotes the travel time

between locations x and y. We estimate the service rate

of an ambulance in region l, µl(s), by considering the

average travel time in region l plus the average time

that an ambulance spends on scene plus the average

time of handing over a patient to hospital personnel.

Because ambulances in a region may also serve other

regions, we adjust the arrival rate of calls in region l
by summing over call arrival rates of regions covered

by an available ambulance in region l, using λ′l , τ(s) �∑
u∈L

∑
i∈Ml (s) λ

τ
u�{t(oi , ū)≤4}, where Ml(s) denotes the set

of available ambulances that cover region l; i.e.,Ml(s) :�
{i ∈M(s): t(oi , ¯l) ≤ 4}, and λτl is the call arrival rate in

region l at time τ. We use µl(s) and λ′l , τ(s) to compute

the expectedwaiting time in queue in an M/M/c queu-
ing system in region l, i.e., W q , l

(M/M/c)(s). The expected

waiting time in the queue in an M/G/c queuing system
is then approximated by

W q , l
(M/G/c) ≈

1+ cv2

l

2

W q , l
(M/M/c) ,

where cvl denotes the coefficient of variation of the

service time in region l (Allen 1980). Let t̄ l
denote the

average travel time within region l; then,

rl(s)��{Ml (s)��}
[
W q , l

M/G/c(s)+ t̄ l
]
+�{Ml (s),�}

[
min

i∈Ml (s)
t(oi , ¯l)

]
.

Note that the queuing theory approach may not accu-

rately estimate arrival rates, service rates, and the num-

ber of the servers for a region. To overcome this issue,

we calibrate the model by scaling the arrival rates and

find the scaling factor through experimentation.

4.2.2. Future Response Time. Ambulances in transit

can serve a (currently in queue or future) call after

their service is finished. Therefore, the destinations of

the busy ambulances are as important as their current

locations. This is the underlying motivation for the sec-

ond and the fourth basis functions. Let ®s denote the

state that corresponds to the earliest time when one

of the following events occur: an ambulance finishes

serving a call (at scene or hospital) or an ambulance

arrives at a base. The future response time in state ®s
is important because it evaluates the trade-off between

immediate and future cost. Given that the current state

of the system is s � (τ, e ,m , c), we construct a new

state ®s(s) � (®τ(s), ®e(s), ®m(s), ®c(s)), where ®τ(s) denotes
the time that the future state ®s will be visited, and

(®e(s), ®m(s), ®c(s)) denotes predicted future event, ambu-

lance status, and call status at time ®τ(s). Also, ®s( · )
is determined by searching the earliest time that a

busy ambulance becomes available. Predicting future

events, ambulance statuses, call statuses, and the ear-

liest time that a busy ambulance becomes available is

possible by searching the future event list in the simu-

lation. We then set φ
2
(s) � φ

1
(®s). This basis function is

novel in that ®s computes the state that corresponds to

the earliest time that an ambulance becomes available,

compared to Maxwell et al. (2010), where the future

state is computed by replacing the locations of all busy

ambulances with their destinations.
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4.2.3. Uncovered Call Rate. The third basis function

computes the rate of uncovered calls. Recall that Nl(s)
is the number of available ambulances in region l in

state s, and calls arrive with rate λτl from location l
at time τ. If no ambulance covers region l, then the

call may be late (Restrepo et al. 2009). We define the

uncovered call rate by φ
3
(s)�∑

l∈L λ
τ
l �{Nl (s)�0}.

4.2.4. Future Uncovered Call Rate. The fourth basis

function calculates the uncovered call rate for a future

state ®s, which is constructed in the same way discussed

in the second basis function, i.e., φ
4
(s)� φ

3
(®s).

4.2.5. Unreachable Calls. The fifth basis function

computes the number of calls for which an ambulance

is assigned but cannot reach the scene within the time

threshold 4, i.e.,

φ
5
(s)�

J∑
j�1

�{g j�1}

N∑
i�1

�{ fi�“ambulance i is going to call scene j”}

· �{ti+t(oi , ¯l)−g j≥4} ,

where ti is the time that ambulance i started to move

to the scene of call j. The above expression first checks

whether the call is assigned to an ambulance and then

checks whether the ambulance will fail to reach the call

locationwithin the time threshold (Maxwell et al. 2010).

4.2.6. Aggregated Delay Time. This novel basis func-

tion computes the aggregated delay time for calls in

the queue for which an ambulance is assigned but is

not going to reach to the call scene within the time

threshold 4, i.e.,

φ
6
(s)�

J∑
j�1

�{g j�1}

N∑
i�1

�{ fi�“ambulance i is going to call scene j”}

· �{ti+t(oi , ¯l)−g j≥4}(ti + t(oi , ¯l) − g j ≥ 4).

The indicator function �{ fi�“ambulance i is going to call scene j”} ·
�{ti+t(oi , ¯l)−g j≥4} ensures that only late calls are counted.

4.3. Lower Bound
This section provides a lower bound on the expected

total response time for a broad class of relocation poli-

cies over a finite time horizon. The bound is based

on a lower bounding system in which the call arrival

process is exactly the same as in the original system,

and the number of available ambulances just before

the arrival of a call is greater than or equal to that in

the original system under policy π. This is achieved

by computing a stochastic lower bound on the service

time distribution of ambulances in the original system,

which is independent of the ambulance configuration

in an EMS system, and thus the relocation policies

(Maxwell et al. 2014). Therefore, we simulate a multi-

server queuing system (ambulances resemble servers

and calls resemble customers) with the bounding ser-

vice time distribution, where calls arrive according to

the same process as the original system. However, just

before the arrival of a call, the available ambulances

are repositioned to minimize the expected response

time by solving an integer program. Because we use

the same bounding system as Maxwell et al. (2014), the

same set of assumptions hold true.

Let D be the (random) number of calls over a hori-

zon, and let T denote the (random) total response time

over the same horizon. The goal is to compute a lower

bound on Ɛ(T) independent of relocation policy π,
which is given by

Ɛ(T)� Ɛ

( ∞∑
j�1

T j�{ j≤D}

)
�

∞∑
j�1

Ɛ(�{ j≤D}Ɛ[T j | A j , τ j ,C j])

≥
∞∑
j�1

Ɛ(�{ j≤D}ν(A j))� Ɛ

( D∑
j�1

ν(A j)
)
,

where T j is the response time of the jth call, τ j is the

arrival time of the jth call, C j is the configuration of

ambulances at time τ j , A j is the number of available

ambulance at time τ j , and ν: {0, 1, . . . ,A} → [0,∞] is a
decreasing function such that Ɛ(T j | A j , τ j ,C j) ≥ ν(A j).
Maxwell et al. (2014) constructed a bounding system

by a coupling of the ambulance dynamics such that

the number of available ambulances in the bounding

system, Ã j , at the arrival time of the jth call satis-

fies Ã j ≥ A j for all j almost surely. Therefore, Ɛ(T) ≥
Ɛ(∑D

j�1
ν(A j)) ≥ Ɛ(

∑D
j�1
ν(Ã j)).

Having ν( · ) allows us to approximate the above

expectation by simulating the bounding system. Let

ν(A j) denote the minimum response time when A j
ambulances are available at the arrival time of the jth
call. For 1 ≤A j ≤A, ν(A j) is the optimal objective func-

tion of the following integer program:

ν(A j)� min

L∑
l�1

dl

|A j |∑
k�1

L∑
b�1

ykbl t(b , l) (4)

s.t.

|A j |∑
k�1

L∑
b�1

ykbl � 1, ∀ l ,

ykbl ≤ xkb , ∀ b , l , k ,
L∑

b�1

xkb � 1, ∀ k ,

xkb ∈ {0, 1}, ykbl ∈ {0, 1},
∀ b , l � 1, 2, . . . ,L and ∀ k � 1, 2, . . . , |A j |,

where ykbl is an indicator taking a value of 1 if ambu-

lance k is stationed at base b and is assigned to serve

location l, xkb takes a value of 1 if ambulance k is sta-

tioned at base b, t(b , l) denotes the travel time between

base b and location l, and dl denotes the proportional

call arrival rate in location l. The first constraint ensures
that each location is served by exactly one ambu-

lance, and the third constraint prevents an ambulance
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from being located at different bases at the same time.

Thus, formulation (4) seeks to minimize the expected

response time to the demand. We set ν(0) � ν(1). We

also use the “cover bound” developed inMaxwell et al.

(2014) to assess the quality of our solutions when the

ADP objective function is minimizing the expected

fraction of late calls.

5. Case Study: Mecklenburg County,
North Carolina

This section presents the result of implementing our

ADP framework using data from the EMS provider

in Mecklenburg County, which contains the city of

Charlotte and is the most populated and densely pop-

ulated county in the state of North Carolina, with

a population of over a million as of 2014 estimates

(U.S. Census Bureau 2016). The EMS system in the

county has, on average, 17 ambulances and three hos-

pitals, and we consider 40 potential ambulance loca-

tions. We divide the county into 168 regions, where

each region is a 2 × 2 mile square rectangle. As many

EMS providers distribute ambulances along the road

to meet the performance targets, we could consider all

regions as potential locations for ambulances. How-

ever, to keep computations tractable, we limit the num-

ber of possible ambulance locations to 40 bases (see

Figure 2 in the online companion). Section 5.1 pro-

vides further details on the choice of base locations,

which serve as the main contributing factor in design-

ing static benchmarks. We assume that all ambulances

are the same and that turnout time (the activation

delay needed for the ambulance crew to get ready and

depart the base) is 45 seconds. We also assume that

travel times are deterministic and estimate them based

on historical data from more than 40,000 incidents.

We divide a day into four time intervals (12:00 a.m.–

06:00 a.m., 06:00 a.m.–12:00 p.m., 12:00 p.m.–06:00 p.m.,

and 06:00 p.m.–12:00 a.m.) and estimate the rates λτl
using historical data. A few regions on the borders of

the county had too few data points to fit a distribution

and are excluded from the study. The amount of time

that an ambulance spends serving a call at a scene has

a normal distribution, with mean and standard devia-

tion of 54.18 and 15.18 minutes, respectively. Historical

data show that 77% of calls are transferred to a hospital.

The service times of calls that are transferred to a hos-

pital have a normal distribution, with a mean and stan-

dard deviation of 56.7 and 13.6 minutes, respectively.

Note that this time includes the amount of time that an

ambulance spends on the scene, travel time to hospital,

and the time that it takes to hand over the patient to

the hospital. A call not reached within eight minutes

is considered to be late. The simulation horizon is two

weeks, and we set γ� 0.99 per day. A sample of the 100

most visited states is used in formulation (3). Increas-

ing the sample size to 200 and 500 states had minor

effects on the results.We initialize the approximate pol-

icy iteration algorithm by setting α � (1, 1, 1, 1, 1, 1, 1)
and Rs �5 in each iteration of ADP. (Recall that Rs is the

total number of replications of the Monte Carlo simu-

lation for state s.) After a warm-up period under the

best static benchmark, we begin collecting the statis-

tics at the extant state when the warm-up period ends.

Priority adjustment weights (w
1
,w

2
) and (w

3
,w

4
) are

such that high-priority calls are 10 times more impor-

tant than low-priority calls. Each iteration of ADP takes

about two days of central processing unit time on an

Intel Core i7 3.4 GHz processor with 16 GB of random

access memory. However, this procedure is carried out

offline, and after estimating an appropriate α, solving
formulation (2) is instantaneous, which is what an EMS

system needs for real-time ambulance management.

5.1. Choice of Static Benchmark
This section investigates the performance of several

static benchmarks and considers the best in terms of

response time and the best in terms of fraction of late

calls, as benchmarks to dynamic policies. A static pol-

icy sends the closest available ambulance to a call and

returns an ambulance after finishing service to its pre-

determined base if no call is in the queue. If no ambu-

lances are available, the call will join a queue and will

be served according to a first-come, first-served rule in

a decreasing order of priority. In the absence of repo-

sitioning policies, identifying the base for each ambu-

lance is the key to design efficient static benchmarks

to ensure that a certain fraction of demand is reached

within a specified response time target. Some mod-

els seek to maximize the fraction of demand covered

by available ambulances, and others focus on mini-

mizing the response time. We consider six frequently

used models and refer the reader to van den Berg et al.

(2016) for a complete description and formulation of

each model. The MCLP maximizes the weighted num-

ber of demand locations covered by at least one ambu-

lance. The DSM focuses on covering a demand loca-

tion with two ambulances to prevent a coverage drop

if an ambulance becomes busy. The DSM guarantees

a certain level of coverage within the target response

time for at least a fraction of demand and defines a

second type of coverage with higher target response

time that must be maintained for all demand locations.

The MEXCLP maximizes the expected coverage of all

demand locations by calculating the marginal contri-

bution of each ambulance to coverage while consider-

ing that the ambulance might not be available with a

certain probability, called the “busy fraction,” which

is calculated by dividing the priority-adjusted total

workload of the system in minutes by total ambulance

capacity in minutes. The maximum availability loca-

tion problem (MALP) calculates the minimum number

of available ambulances to guarantee a specific cover-

age level prior to formulating an instance of the model
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and uses it to maximize the covered demand. The aver-

age response time model (ARTM) is equivalent to the

p-median model applied to ambulance location prob-

lem and minimizes the average response time from

the closest base. The expected response time model

(ERTM) is similar to MEXCLP in that it minimizes the

expected response time by incorporating the proba-

bility of a demand location being served by the pth
nearest ambulance.

The initial bases of ambulances in the static bench-

marks are determined by solving each model to opti-

mality. The static benchmarks are simulated for two

weeks, and their performance ismeasuredwith respect

to fraction of late calls and average response time.

Table 1 shows that theMEXCLP andMCLP outperform

other models in the fraction of late calls and expected

response time, respectively. Therefore, the performance

of static benchmarks based on theMEXCLP andMCLP

is used to compare with that of dynamic benchmarks

and the ADP policy in terms of fraction of late calls and

average response time, respectively.

5.2. Dynamic Benchmark Policies
We design three dynamic benchmarks to assess the

contribution of each strategy: dispatching, redeploy-

ment, and reallocation. The fourth dynamic bench-

mark is used to test the quality of our solutions, and the

fifth is a relocation heuristic designed by Jagtenberg

et al. (2015). Benchmark 1 (dispatching only) allows the

dispatcher to assign any available ambulance when a

call is received. However, redeployment and realloca-

tion decisions are not considered; that is, every ambu-

lance in the EMS system is preassigned to a base and

returns to that base after serving a call, and the reposi-

tioning of idle ambulances to the base of an ambulance

that was just dispatched to a call is not considered.

Note that if the dispatcher does not immediately send

an available ambulance to a received call in this bench-

mark, the call will join a queue. After an ambulance

finishes serving a call, the dispatcher decides whether

the ambulance serves a call in the queue or returns

to its preassigned base. Calls in the queue are served

based on a first-come, first-served rule in a decreas-

ing order of priority. Benchmark 2 (redeployment only)

sends immediately the closest available ambulance to a

call and does not consider the possibility of ambulance

reallocation after dispatching an ambulance. However,

Benchmark 2 determines the redeployment policy; i.e.,

Table 1. Performance of Static Benchmarks

Ambulance location models

MCLP DSM MEXCLP MALP ARTM ERTM

Fraction of late calls (%) 25.3 25.6 24.4 27.1 48.3 24.7

Average response time (min.) 7.3 7.9 7.5 7.4 9.7 7.8

after an ambulance has finished serving a call, the dis-

patcher decides whether the ambulance serves a call

in the queue or is redeployed to a base. Benchmark 2

is similar to the settings studied by Maxwell et al.

(2010). Benchmark 3 (reallocation only) sends the clos-

est available ambulance to serve a call, and after an

ambulance has finished serving a call, decides whether

the ambulance serves a call in the queue or returns

to its preassigned base. However, upon dispatching an

ambulance to a call, Benchmark 3 considers the pos-

sibility of reallocating an available ambulance to the

base of the ambulance that was just dispatched. The

performance of Benchmark 4, which considers both

redeployment and reallocation, is used to test the qual-

ity of the solutions by calculating the optimality gap

with respect to the lower bounding system. The ADP

approach, presented in Section 3, considers all of the

dispatching, redeployment, and reallocation strategies

simultaneously.

5.2.1. Relocation Heuristic. Jagtenberg et al. (2015)

developed a simple relocation heuristic, which is easy

to implement and showed strong performance in some

data sets. We use this heuristic as another benchmark.

The dispatching policy in this benchmark is to send the

closest ambulance to a received call; however, the relo-

cation policy can reallocate an available ambulance to

a base, or redeploy an ambulance that just finished its

service to a base that results in the largestmarginal con-

tribution to coverage according to the MEXCLP model.

The marginal contribution of adding a kth ambulance

to cover demand in region l is given by Ek − Ek−1
�

λτl (1− α)αk
, where α denotes a “busy fraction” similar

to the MEXCLP, and λτl is the demand (call arrival) rate

in region l at time τ. The base that gives the largest

marginal contribution over all demand is chosen as the

destination for relocation.

5.3. Results and Managerial Insights
We compare the performance of ADP and benchmark

policies with the static benchmarks with respect to

four major measures: (i) average response time, (ii)

fraction of late calls, (iii) average response time of

late calls, and (iv) fraction of late high-priority calls.

Table 2 reports the performance of each policy when

the ADP objective is to minimize the expected dis-

countedpriority-adjusted total response time. The aver-

age response time for the ADP policy is 6.5 ± 0.2 min-

utes (95% confidence interval), while the MCLP static
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Table 2. Performance of the ADP Policy and Benchmarks

Baseline performance (95% confidence interval)

Average response Fraction of Average response Fraction of late

time (min.) late calls (%) time of late calls (min.) high-priority calls (%)

MCLP 7.3± 0.2 25.3± 0.2 11.7± 0.1 4.9± 0.2
Benchmark 1: Dispatching only 7.1± 0.1 22.5± 0.1 10.5± 0.1 4.2± 0.1
Benchmark 2: Redeployment only 6.8± 0.1 20.2± 0.1 9.1± 0.1 3.8± 0.1
Benchmark 3: Reallocation only 7.2± 0.1 22.9± 0.1 10.4± 0.1 4.5± 0.1
Benchmark 4: Redeployment+ reallocation 6.7± 0.1 19.2± 0.2 9.0± 0.2 3.5± 0.2
Relocation heuristic 6.8± 0.1 19.7± 0.1 10.1± 0.1 3.7± 0.2
ADP 6.5± 0.2 18.3± 0.1 8.9± 0.2 3.4± 0.2

Note. The ADP objective function in this table is to minimize the expected total discounted priority-adjusted response time.

benchmark is estimated to have an average response

time of 7.3± 0.2 in 30 replications. Table 2 shows that

the fraction of late calls for the ADP policy is signif-

icantly less than that of the MCLP static and other

benchmarks. In particular, the fraction of late calls is

18.3± 0.1% for the ADP policy and 25.3± 0.2% for the

MCLP static benchmark. The performance of the ADP

policies for the average response time of late calls and

the fraction of high-priority late calls is also signifi-

cantly better than that of the benchmarks. Similarly,

Table 3 reports the performance of the ADP policy

and benchmarks when the ADP objective is to min-

imize the expected discounted priority-adjusted frac-

tion of late calls. Tables 2 and 3 show that the ADP

policy improves various performance measures com-

pared to other benchmarks. Our results indicate that

the contribution of the redeployment-only strategy

is significantly greater than that of the dispatching-

only and reallocation-only strategies in improving the

performance over static benchmarks in all measures.

Our analysis shows that one reason for this observa-

tion may be that the expected proportion of time that

the dispatching-only ADP strategy deviates from the

best static benchmark is much less than the propor-

tion of time that the redeployment-only ADP strat-

egy deviates from it. Specifically, the redeployment-

only ADP strategy sends the ambulance to its previous

base after finishing service only 19% of times, while

the dispatching-only ADP strategy immediately sends

Table 3. Performance of the ADP Policy and Benchmarks

Baseline performance (95% confidence interval)

Average response Fraction of Average response Fraction of late

time (min.) late calls (%) time of late calls (min.) high-priority calls (%)

MEXCLP 7.5± 0.2 24.4± 0.2 12.7± 0.2 4.6± 0.2
Benchmark 1: Dispatching only 7.1± 0.1 21.1± 0.1 11.2± 0.1 3.9± 0.1
Benchmark 2: Redeployment only 6.9± 0.1 19.2± 0.1 10.1± 0.1 3.5± 0.1
Benchmark 3: Reallocation only 7.3± 0.1 22.0± 0.1 10.7± 0.1 4.2± 0.1
Benchmark 4: Redeployment+ reallocation 6.8± 0.1 18.3± 0.2 9.9± 0.2 3.4± 0.2

Relocation heuristic 6.8± 0.1 19.7± 0.1 10.1± 0.1 3.7± 0.2
ADP 6.6± 0.2 16.4± 0.1 9.2± 0.1 3.1± 0.1

Note. The ADP objective function in this table is to minimize the expected total discounted priority-adjusted fraction of late calls.

the closest ambulance to a received call nearly 70% of

times. Further analysis of the dispatching-only ADP

strategy shows that, conditioned on not immediately

sending the closest ambulance, a nonclosest ambulance

is dispatched in nearly 87% of times, while calls are

delayed in 13% of times. Moreover, the performance

of the dispatching-only ADP strategy does not signifi-

cantly change if the dispatcher is not allowed to queue

a call when an ambulance is available. Although both

high- and low-priority calls can bequeued in our frame-

work, our numerical analysis shows that only 1% of

high-priority calls are delayed. Our results also show

that the reallocation-onlyADPstrategy relocates an idle

ambulance to the base that just emptied in nearly 10%

of times, and the reallocation flows are toward empty

bases in high demand zones. Comparing the results for

the relocationheuristic andBenchmark 4 shows that the

relocationheuristic is an efficient policywhenonly relo-

cation strategies are considered.

Figure 1 shows the empirical cumulative distribu-

tion function of the response times for the MCLP static

benchmark to (a) the dispatching-only strategy and

to (b) the ADP policy. One could think that mini-

mizing the expected discounted priority-adjusted total

response time might involve the risk of losing some of

the closer calls by trying to concentrate the optimiza-

tion on calls with larger response times. Figure 1 sug-

gests that the ADP policies do not abandon a few calls
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Figure 1. (Color online) Empirical Cumulative Distributions of the Response Time
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to wait for a long time; instead, they shift the entire

distribution of response times to the left.

To illustrate the quality of solutions produced by the

ADP framework, we compute a lower bound on the

expected response time and fraction of late calls. Recall

that we assumed a nonhomogeneous Poisson process

for call arrivals in Section 3. However, in reporting the

results for comparing our lower bounds with Bench-

mark 4, an assumption of a constant call arrival rate

for each location is forced in both the lower bounding

system and Benchmark 4. Our results show that in the

lower bounding system, the expected response time

and fraction of late calls are 5.1 minutes and 11.7%,

respectively. We use Benchmark 4 to assess the quality

of solutionswith respect to the lower bounding system,

because both Benchmark 4 and the lower bounding

system use a myopic dispatching rule, i.e., immedi-

ately sending the closest ambulance and relying only

on relocating available ambulances to improve perfor-

mance, which in the case of Benchmark 4 consists of

redeployment and reallocation strategies. Our results

show that the absolute difference between Bench-

mark 4 and the lower bound on average response time

(fraction of late calls) is 1.6 minutes (6.6%) when the

objective function is to minimize the response time

(fraction of late calls). The results of the sensitivity

analysis are reported in the online companion.

6. Conclusion
In this study we formulated a real-time ambulance

dispatching and relocation problem as a stochas-

tic dynamic program and solved it via approximate

dynamic programming. We extended the literature

on real-time ambulance management via ADP, which

considers only ambulance redeployment, in two

dimensions. First, we considered a general dispatch-

ing strategy in which the decision maker can send any

available ambulance to a received call in addition to

having the option of not dispatching an ambulance

immediately, but rather waiting for an ambulance that

may become available soon. Second, we introduced an

ambulance reallocation strategy in which the decision

maker may send an available ambulance to the loca-

tion of an ambulance just dispatched to a call. The

ambulance reallocation strategy can improve perfor-

mance by reducing the expected time that a region is

uncovered, which is caused by dispatching the only

ambulance that covers it. We tested the performance

of policies generated by our ADP framework on an

EMS system in Mecklenburg County, North Carolina,

and our results show that our policies significantly

improve static benchmarks. In particular, our near-

optimal policies reduce the response time and fraction

of high-priority late calls by 12% and 30.6%, respec-

tively, compared to the best static benchmarks.

We designed three benchmarks to analyze the con-

tribution of each strategy, general dispatching, rede-

ployment, and reallocation, by adding strategies to the

static policy one at a time. Our results show that each

strategy significantly improves the static benchmarks,

and considering all three strategies simultaneously is

significantly better than each strategy alone. We also

showed that the redeployment strategy is the best

when only one strategy could be added to the static

policy. This observation, our analysis shows, is due to

the fact that the expected frequency with which the

redeployment-onlyADPpolicy deviates from the static

benchmarks is significantly greater than the frequency

with which the dispatching-only ADP policy deviates

from the static benchmarks. Allowing the dispatcher to

queue a received call when an ambulance is available

did not significantly improve the performance. Con-

sidering a general dispatching rule, redeployment and
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reallocation can significantly improve the performance

of an EMS system.
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