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Based on hyper-chaotic system and discrete fractional random transform, an image compression-
encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete
cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting.
The random matrix of the discrete fractional random transform is controlled by a chaotic sequence orig-
inated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by
the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic
system are the main keys of this image compression and encryption algorithm. The proposed algorithm
can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the com-
pression of multiple images, the images are transformed into spectra by the discrete cosine transform,
and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation
results demonstrate that the proposed image compression and encryption algorithm is of high security
and good compression performance.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

More and more image information is conveying over network.
The security of important images attracts a number of researchers
to investigate image encryption algorithms [1–10]. Chen et al. pre-
sented a new iterative phase retrieval algorithm for optical image
encryption in three-dimensional space by considering the two-
dimensional plaintext as a series of particles distribution in 3D
space [1]. Later, they proposed a new optical image encryption
method based on multiple-region plaintext and phase retrieval
algorithm in 3D space [2], where the plaintext was divided into
multiple regions and each region was encrypted into one phase-
only mask. An optical image encryption scheme based on coherent
diffractive imaging with multiple wavelengths was proposed [3].
He et al. analyzed the collision property of the optical image
encryption technique based on interference and found that various
distinct pairs of phase-only masks could yield almost the same
outputs by a modified phase retrieval algorithm [4]. Sui et al. pro-
posed a multiple-image encryption scheme based on the phase
retrieval process and phase mask multiplexing in the fractional
Fourier transform domain, where each original image was encoded
into a phase-only function and then all the obtained phase func-
tions were modulated into an interim [5]. Lu et al. presented a
novel optical image encryption method based on a modified radial
shearing interferometer, in which the plaintext image was first
encoded into a phase-only mask and then was modulated by a ran-
dom phase mask [6]. Yuan et al. devised an optical multi-user
authentication way based on interference image hiding system
and phase-only correlation, where some predefined complex
images with different amplitudes and the same phase were respec-
tively encoded into two phase-only masks according to the inter-
ference principle [7]. A flexible multiple-image encryption
algorithm based on log-polar transform and double random phase
encoding technique was proposed [8]. A color image encryption
algorithm was designed with the affine transform in the Gyrator
transform domain, where the RGB components of the color image
were converted into real part and imaginary one of a complex
function [9]. Liu et al. proposed a double image encryption scheme
by combining random phase encoding with pixel exchanging in the
Gyrator transform domain [10]. Rachlin and Baron demonstrated
that the linear encryption scheme based on compressive sensing
cannot achieve perfect security [11]. To solve these problems,
Zhou et al. presented a novel image compression-encryption
hybrid algorithm based on compressive sensing, in which the
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measurement matrix is controlled by keys easy to distribute, store
or memorize [12].

The well-known double random phase encoding (DRPE) scheme
was proposed to encrypt an image into stationary white noise data
by multiplying a random phase in mask (RPM) in the spatial plane
while another in the frequency plane [13]. The optical encryption
schemes based on Fresnel transform (FrT) [14–16], fractional Four-
ier transform (FrFT) [17–21], Gyrator transform (GT) [22,23] have
been investigated. Li cryptanalyzed a class of image encryption
schemes based on Chinese Remainder Theorem [24]. To make the
image encryption scheme more practical, fractional angular trans-
form with minimum kernel matrix was proposed by Liu et al. [25].
Subsequently, double image encryption schemes based on frac-
tional angular transform was designed with high encryption effi-
ciency [26,27]. An efficient image compression-encryption
scheme based on hyper-chaotic system and 2D compressive sens-
ing was designed [28].

DRPE-based image encryption schemes are vulnerable to the
chosen-plaintext attack and the known-plaintext attack. He et al.
proposed a hybrid two-step attack scheme combining the
chosen-plaintext attack and the known-plaintext attack algorithm
to acquire the secret keys of the optical cryptosystem based on
double random phase-amplitude encoding technique [29]. Subse-
quently, an asymmetric double-image encryption algorithm was
devised by Wang et al., where the encryption keys are different
from the decryption ones [30]. A novel technique for multiple-
image optical encryption is presented by Zhou et al., where the
plaintexts extracted mode is extended from peer-to-peer to peer-
to-multipeer [31]. To overcome the security risk of image encryp-
tion systems based on linear transforms, the nonlinear fractional
Mellin transform was introduced into the field of image encryption
[32]. To overcome the shortcomings of low-dimensional chaotic
system, an image compression-encryption algorithm based on
hyper-chaotic system and discrete fractional random transform is
designed.

The rest of this paper is arranged as follows. In Section 2, the
DFrRT is reviewed. The detailed description of the proposed image
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Fig. 2. Image compression-encryption algor
compression-encryption algorithm is provided in Section 3. In Sec-
tion 4, simulations and discussions are performed. Finally, a brief
conclusion is drawn in Section 5.
2. Discrete fractional random transform

The discrete fractional random transform of a two dimensional
signal I is

ER ¼ HaIðHaÞT ð1Þ

where ER is the kernel transform of the DFrRT, ðHPÞT is the transpose
of Hp, a is the fractional order. The kernel transform Hp is defined
as:

Ha ¼ CDaCt ð2Þ

where C is the eigenvector basis, CT is the transpose of C and
CCT ¼ I. Dp is an N � N diagonal matrix.

Da¼diag 1;exp �i2pa
T

� �
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ð3Þ
where positive number T is the period of DFrRT.

E ¼ Pþ Pt

2
ð4Þ

The transform kernel of DFrRT is randomwhich results from the
randomness of matrix I.
3. Image compression-encryption algorithm based on hyper-
chaotic system and DFrRT

Fig. 1 shows the order of Zigzag operation. The proposed image
compression and encryption algorithm is illustrated in Fig. 2 and
the compression and encryption process is as follows.
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Fig. 3. Encryption and decryption results: (a) Original ‘‘Lena”, (b) Encrypted image of (a), (c) Decrypted image of (b); (d) Original ‘‘Man”, (e) Encrypted image of (d), (f)
Decrypted image of (e); (g) Original ‘‘Lake”, (h) Encrypted image of (g), (i) Decrypted image of (h).
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Step 1 To compress image, the original image I is transformed
into spectrum by the fractional cosine transform.
Step 2 Scanning the matrix by Zigzag operation respectively to
form the one-dimensional matrix I1.
Step 3 Intercepting the M �M previous sections of the
one-dimensional matrix as I2. The front part of the ele-
ments implies the main information to be encrypted is
contained in the DC component, i.e., the low frequency
part of the image.
Step 4 By confirming the value of the initial conditions x0, y0, z0,
h0, and iterating the Chen’s chaos system by the Runge–Kutta
method to avoid the harmful effect of transient procedure, the
four hyper-chaotic sequences fxig, fyig, fzig and fhig
ð1 6 i 6 n0Þ can be generated with the following Chen’s
hyper-chaotic system.
_x ¼ aðy� xÞ
_y ¼ dx� xzþ cy� h
_z ¼ xy� bz
_h ¼ xþ k

8>>><
>>>:

ð5Þ

where a, b, c, d and k are the parameters of the hyper-chaotic
system.

Step 5 The four hyper-chaotic sequences fxig, fyig, fzig and fhig
are transformed into integer sequences ft�i g, where t can be
considered as any one of x, y, z and h.
t�i ¼ jbðti � bticÞ � 1014cjmod224 ð6Þ

where bxc rounds x to the nearest integer towards zero.

Step 6 A hyper-chaotic sequence K ¼ fk1; k2; . . . ; k22ng is con-
structed. If h�

imod3 ¼ 0, then ki will take x�i as the random
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Fig. 4. Histograms: (a) ‘‘Lena”, (b) encrypted ‘‘Lena” (c) ‘‘Man”, (d) encrypted ‘‘Man”, (e) ‘‘Lake”, (f) encrypted ‘‘Lake”.
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matrix of DFrRT. If h�
imod 3 ¼ 1, then ki will take y�i as the ran-

dom matrix of DFrRT. Otherwise, ki will take z�i as the random
matrix of DFrRT. The integer ki can be represented as a binary

number ki ¼ h7
i h

6
i . . .h

0
i , hj

i 2 f0;1g, i ¼ 1;2; . . . ;22n,
j ¼ 0;1; . . . ;7.
Step 7 The final encryption image I2 can be obtained by per-
forming discrete fractional random transform on RaðI2Þ, where
the fractional order a is the only key of DFrRT.
4. Simulation experiment and analysis

Simulations and analysis on various grayscale images have been
performed on a Matlab 7.11.0 (R2010b) platform. For conciseness
and simplicity, the calculation formulae of the image correlation
coefficient, peak-to-peak signal-to-noise ratio (PSNR) and mean
squared error (MSE) [43] are not repeated here. Three plain-
images ‘‘Lena”, ‘‘Man” and ‘‘Lake” of size 256 � 256 are designated



Table 1
Correlation coefficients of adjacent pixels.

Correlation coefficient Horizontal direction Vertical direction Diagonal direction

‘‘Lena” 0.9569 0.9236 0.9019
Encrypted ‘‘Lena” with proposed algorithm 0.4968 0.4938 0.0480
Encrypted ‘‘Lena” with algorithm in [25] 0.6661 0.6407 0.3452
‘‘Man” 0.9544 0.9471 0.9200
Encrypted ‘‘Man” with proposed algorithm 0.5017 0.5220 0.0454
Encrypted ‘‘Man” with algorithm in [25] 0.6920 0.6850 0.4361
‘‘Lake” 0.9377 0.9403 0.9100
Encrypted ‘‘Lake” with proposed algorithm 0.4996 0.5029 0.0647
Encrypted ‘‘Lake” with algorithm in [25] 0.6887 0.6435 0.4873
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Fig. 5. Correlation distribution: (a) original ‘‘Lena”, (b) encrypted ‘‘Lena”, (c) original ‘‘Man”, (d) encrypted ‘‘Man”, (e) original ‘‘Lake”; and (f) encrypted ‘‘Lake”.
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Table 2
PSNR values for different compression ratios.

Original image Compression ration (%) Compressed-encrypted image Recovered image

76.5625

56.25

25

76.5625

56.25

25
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as the test images. The four initial parameters x0, y0, z0, h0 of hyper-
chaotic system and the fractional order a of the discrete fractional
random transform are taken as 0.3, 0.4, 0.5, 0.6 and 0.2, respec-
tively. The step length of the Runge-Kutta method is set as 0.001.
The encrypted images ‘‘Lena”, ‘‘Man” and ‘‘Lake” are shown in
Fig. 3(b), (e), (h). The corresponding ideal decrypted images with
correct keys are shown in Fig. 3(c), (f), (i).
4.1. Histogram and correlation of adjacent pixels

Histogram is an important statistical feature of an image, which
is often used to analyze the performance of image encryption algo-
rithms. Fig. 4(a), (c) and (e) are the corresponding histograms of
the original images, while Fig. 4(b), (d) and (f) are the correspond-
ing histograms of the encrypted images, respectively. Obviously,
the histograms of different encryption images show a similar
Gaussian-like distribution, though the histograms of different orig-
inal images are apparently different. So as for resisting the statisti-
cal analysis attacks by histogram, the proposed image
compression-encryption algorithm is secure.

In order to verify the security of the proposed algorithm, we test
the correlation of adjacent pixels and joint distribution analysis. (1)
10,000 pairs of adjacent pixels in horizontal, vertical, and diagonal
directions are randomly selected from the original images and cor-
responding encrypted images as samples; (2) the correlations
between two adjacent pixels are calculated for each direction.
Table 1 shows the correlation of adjacent pixels of original images
and encrypted images with different methods. The values of the
correlation coefficients between two adjacent pixels in the
encrypted images are much weaker than those in their correspond-
ing original images. The correlation coefficients between two adja-
cent pixels in the encrypted images with the proposed algorithm
are also smaller than those with the algorithm in [25]. It indicates
that the proposed algorithm has a certain ability to resist correla-
tion attack (see Fig. 5.).

4.2. Compression performance

The proposed algorithm can compress and encrypt the images
simultaneously. To evaluate the quality of the decrypted digital
images versus different compression ratios, peak-to-peak signal-
to-noise ratio is employed.

Table 2 lists the PSNR values for different compression ratios.
While the size of the compressed image is 25% as large as the orig-
inal image, the quality of the decrypted image is acceptable in
some degree, which means the compression ability of the proposed
method is great and helpful for transmission.
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Fig. 6. MSE curves: (a) a, (c) x0, (d) y0, (e) z0, and (f) h0.
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4.3. Key sensitivity and key space

MSE is an important factor to evaluate key sensitivity in image
encryption algorithm, and PSNR is widely used to evaluate the
quality of the decrypted image. Fig. 6 shows the MSE curves of
‘‘Lena” for x0, y0, z0, h0 and a, respectively. From Fig. 6, the MSE val-
ues change apparently when a little deviation from the correct
keys exists. Therefore the encrypted image can be decrypted when
all the secret keys are exactly correct. Fig. 7 exhibits the decrypted
image ‘‘Lena” with only one incorrect secret key while other secret
keys are correct.

The size of key space reflects the difficulty and the complexity
in attacking a cryptosystem successfully, thus a large enough key
space is necessary to resist the brute-force attack. In the proposed
algorithm, a, x0, y0, z0, and h0 are main keys. The key space S can be
determined by the key subspace Si of the ith key, i ¼ 1;2; . . . ;5.



Fig. 7. Decrypted ‘‘Lena” with incorrect keys: (a) a ¼ 0:195, (c) x0 ¼ 0:3þ 10�15, (d) y0 ¼ 0:4� 10�15, (e) z0 ¼ 0:5þ 10�15 and (f) h0 ¼ 0:6� 10�15.

Table 3
Key space of different algorithms.

Algorithm Proposed algorithm Algorithm in [33] Algorithm in [34] Algorithm in [35]

Key space 2187 216 2128 2186

Fig. 8. The results of attacks with different noise intensities of which (a)–(f) are added Gaussian noise k ¼ 1, (b) k ¼ 5, (c) k ¼ 10, (d) k ¼ 15, (e) k ¼ 20, (f) k ¼ 25.
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Fig. 9. Results of attacks with different occlusion sizes.

Fig. 10. Results of the test images. (a)–(c) original images, (d) encrypted image, (e)–(g) decrypted images.
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Simulation results show that the space of a is about 200. Similarly,
each key space of x0, y0, z0, and h0 is up to 1015 as shown in Fig. 7,
respectively. The total key space S is greater than 2187, which is
large enough to resist the brute-force attack and better than those
in [33–35] (see Table 3.).
4.4. Robustness analysis

When the encrypted images are affected inevitably by noise and
occlusion in the transform process, they are expected to be recov-
ered correctly though the robustness against noise and occlusion is
contradicted with security. In this simulation, the Gaussian noises
are added into the ideal encrypted image, respectively. Suppose the
Gaussian noise is expressed as:

E0 ¼ Eþ kW ð7Þ

where E0 and E are the noisy encrypted images and the pure
encrypted images, respectively, k is the coefficient related to noise
intensities, and W is the white Gaussian random data with zero-
mean and unit standard deviation. Fig. 8 shows the decrypted
images of ‘‘Lena”, which are added Gaussian noise with different
intensities. From Fig. 8, the decrypted images are recognized in gen-
eral almost within a certain range of noise, and the major informa-
tion of the decrypted images is still obtained. The results show that
the proposed scheme can resist noise attacks to some extent.
Another important robustness analysis is the occlusion, and the
results of ‘‘Lena” are exhibited in Fig. 9. Although the decrypted
images become fuzzier with the increase of occlusion size, the
major content of the image can be recognized. Therefore, it can be
considered that the proposed scheme has a high robustness against
noise and occlusion attacks.
4.5. Three images encryption

Beside compressing and encrypting single image, the proposed
algorithm can also compress and encrypt multiple images simulta-
neously. To achieve the compression of multiple images, the orig-
inal images are transformed into spectra by the discrete cosine
transform, and then the spectra are incised and spliced by Zigzag
scanning into a composite spectrum. Three images are chosen to
test the effectiveness and the encryption capacity. The original test
images are shown in Fig. 10(a)–(c), the ideal decrypted images
with correct keys are shown in Fig. 10(e)–(g). The simulation
results show that the presented algorithm can compress and
encrypt multi-image flexibly.
5. Conclusion

An image compression-encryption algorithm based on hyper-
chaotic system, discrete cosine transform and discrete fractional
random transform is designed. The chaotic sequence originated
from the high dimensional hyper-chaotic system is used to control
the random matrix of the discrete fractional random transform,
and then the compressed spectrum is encrypted by the discrete
fractional random transform. The main keys of this image encryp-
tion scheme include the order of DFRT and the parameters of the
hyper-chaotic system. The algorithm not only could compress
and encrypt single image, but also could compress and encrypt
multiple images simultaneously. Simulation results indicate that
the proposed scheme is effective, secure and robust to compress-
encrypt and decompress-decrypt images, which could resist statis-
tical analysis attack, brute-force attack and noise attack.
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