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Chaos Synchronization of Uncertain Fractional-Order
Chaotic Systems With Time Delay Based on

Adaptive Fuzzy Sliding Mode Control
Tsung-Chih Lin, Senior Member, IEEE, and Tun-Yuan Lee

Abstract—This paper proposes an adaptive fuzzy sliding
mode control (AFSMC) to synchronize two different uncertain
fractional-order time-delay chaotic systems, which are infinite
dimensional in nature, and time delay is a source of instability.
Because modeling the behavior of dynamical systems by fractional-
order differential equations has more advantages than integer-
order modeling, the adaptive time-delay fuzzy-logic system is
constructed to approximate the unknown fractional-order time-
delay-system functions. By using Lyapunov stability criterion, the
free parameters of the adaptive fuzzy controller can be tuned
online by output-feedback-control law and adaptive law. The slid-
ing mode design procedure not only guarantees the stability and
robustness of the proposed AFSMC, but it also guarantees
that the external disturbance on the synchronization error can
be attenuated. The simulation example is included to confirm
validity and synchronization performance of the advocated design
methodology.

Index Terms—Adaptive fuzzy, chaos synchronization, fractional
order, Lyapunov criterion, sliding-mode control (SMC), time delay.

I. INTRODUCTION

T IME delays are often present in many control systems,
such as aircraft and chemical or process control systems

either in the state, the control input, or the measurements. The
existence of pure time delay, regardless of its presence in a
control and/or state, is often the cause of poor performance,
undesirable system transient response, and instability. The sta-
bilization problem of time-delay systems is a true challenge
and has received considerable attention [1]–[3]. Over the past
decade, various methods have been developed in the analysis
and synthesis of uncertain systems with time delay. Based on the
Lyapunov theory of stability, the sliding-mode control (SMC)
has been extensively used and various results have been ob-
tained, because it offers fast response, good transient response,
and it is also insensitive to uncertainty in the system [4]. Some
works deal with the control problem of time-delay systems via
a predictor-based sliding mode [1], [5]–[8].

In recent years, fractional calculus deals with derivatives and
integrations of arbitrary order [9]–[11] and has found many
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applications in the fields of physics, applied mathematics, and
engineering. It is observed that the description of some sys-
tems is more accurate when the fractional derivative is used.
For instance, electrochemical processes and flexible structures
are modeled by fractional-order models [12], the behavior of
some biological systems is explored using fractional calcu-
lus [13], and the dielectric polarization, electromagnetic waves,
and viscoelastic systems are described by fractional-order dif-
ferential equations [14], [15]. Nowadays, many fractional-order
differential systems behave chaotically, such as the fractional-
order Chua’s system [16], [17], the fractional-order Duffing
system [18], [19], the fractional-order Lu system [20], the
fractional-order Chen’s system [21], [22], the fractional-order
cellular neural network [23], [24], and the fractional-order neu-
ral network [25].

Recently, due to its potential applications in secure commu-
nication and control processing [26], study of chaos synchro-
nization in fractional-order dynamical systems and related phe-
nomena is receiving increasing attention [27], [28], [45]–[48].
The synchronization problem of fractional-order chaotic sys-
tems is first investigated by Deng and Li [20], who carried out
synchronization in case of the fractional Lü system. Afterward,
they studied chaos synchronization of the Chen system with a
fractional order in a different manner [29]–[31].

SMC is a well-known robust nonlinear control technique [4],
which guarantees the stability and robustness of the resulting
system. This control strategy makes use of the desired sliding
surface in the state space and produces the switched control set-
tings based on the observed plant input–output behavior and on
considerations concerning the boundary of modeling uncertain-
ties and unknown disturbances [4], [32]. However, there exists
chattering phenomena while implementing an SMC, which may
excite high-frequency dynamics. In order to eliminate chatter-
ing, Palm [33] noted the similarity between fuzzy controller and
sliding-mode controller with a boundary layer and provided a
fuzzy-sliding-mode-design approach. This design can lead to a
stable closed-loop system that avoids the chattering problem in
the SMC.

Unfortunately, not many contributions are available for the
problem of the SMC of fractional-order systems with time de-
lays. In [49], some results are obtained without using a fractional
sliding manifold. In this paper, we develop new results on SMC
of fractional-order systems with time delays. In this paper, the
core of innovation is based on the fact that fractional-order ex-
pression of chaotic systems is very compact in comparison with
conventional mathematics. This makes the fractional calculus
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easier to find an appropriate function for stability analysis. We
incorporate adaptive fuzzy-control scheme with SMC approach
to synchronize two nonlinear fractional-order Duffing–Holmes
chaotic systems with time delay. In our design procedure, both
the drive- and response-system dynamics are represented by
the Takagi–Sugeno (T–S) fuzzy-neural-network (FNN) model,
which expresses the local dynamics of each fuzzy rule by linear
combination of all system states.

This paper is organized as follows. In Section II, an introduc-
tion to fractional derivative and its relation to the approximation
solution are addressed. A brief description of the T–S FNN is
presented in Section III. Section IV proposes in a general way
the employment of the adaptive fuzzy SMC to synchronize the
fractional-order chaotic system with time delay in the presence
of uncertainty and its stability analysis. In Section V, applica-
tion of the proposed method to fractional-order expression of
Duffing–Holmes chaotic system with time delay is investigated.
Finally, the simulation results and conclusion are presented in
Section VI.

II. BASIC DEFINITION AND PRELIMINARIES FOR

FRACTIONAL-ORDER SYSTEMS

Fractional calculus is a mathematical topic for more than 300
years. It is a generalization of integration and differentiation
to noninteger-order fundamental operator, which is denoted by
aDq

t , where a and t are the limits of the operator. This operator is
a notation for taking both the fractional integral and functional
derivative in a single expression, which is defined as

aDq
t =

⎧
⎪⎪⎨

⎪⎪⎩

dq

dtq
, q > 0

1, q = 0
∫ t

a (dτ)−q , q < 0.

(1)

There are some basic definitions of the general fractional inte-
gration and differentiation. The commonly used definitions are
Grunwald–Letnikov and Riemann–Liouville. The Grunwald–
Letnikov definition is expressed as

aDq
t f(t) = lim

h→0

[t−a/h ]∑

j=0

(−1)j

(
q
j

)

f(t − jh) (2)

where [·] is the integer part. The simplest and easiest definition
is Riemann–Liouville definition, which is given as

aDq
t f(t) =

1
Γ(n − q)

dn

dtn

∫ t

0

f(τ)
(t − τ)q−n+1 dτ (3)

where n is the first integer, which is not less q, i.e., n − 1 < q <
n, and Γ is the Gamma function.

The numerical simulation of a fractional differential equa-
tion is not simple like an ordinary differential equation. In
this paper, the algorithm, which is an improved version of
Adams–Bashforth–Moulton algorithm [34]–[36] to find an ap-
proximation for fractional-order systems based on predictor–
corrector [36], [37], is given. Let us consider the following
differential equation:

0D
q
t y(t) = r(y(t), t), 0 ≤ t ≤ T

and

y(k)(0) = y
(k)
0 , k = 0, 1, 2, . . . ,m − 1 (4)

where

0D
q
t y(t)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
Γ(m − q)

∫ t

0

f (m )(τ)
(t − τ)q−m+1 dτ, m − 1 < q < m

dm

dtm
y(t), q = m

(5)

and is the first integer larger than q. The solution of (4) is
equivalent to Volterra integral equation [38], which is described
as

y(t) =
[q ]−1∑

k=0

y
(k)
0

tk

k!
+

1
Γ(q)

∫ t

0
(t − λ)q−1r(y(λ), λ)dλ. (6)

Letting h = T/N , tn = nh, n = 0, 1, 2, . . . , N , (6) can then be
discretized as follows:

yh(tn+1) =
[q ]−1∑

k=0

y
(k)
0

tkn+1

k!
+

hq

Γ(q + 2)
r(yp

h(tn+1), tn+1)

+
hq

Γ(q + 2)

n∑

j=0

aj,n+1r(yh(tj ), tj ) (7)

where predict value yp
h(tn+1) is determined by

yp
h(tn+1) =

[q ]−1∑

k=0

y
(k)
0

tkn+1

k!
+

hq

Γ(q)

n∑

j=0

bj,n+1r(yh(tj ), tj )

(8)
and

aj,n+1 =
⎧
⎨

⎩

nq+1 − (n − q)(n + 1)q , j = 0
(n−j + 2)q+1 + (n − j)q+1 − 2(n − j + 1)q+1 , 1≤ j ≤n
1, j = n+1

(9)

bj,n+1 =
hq

q
((n + 1 − j)q − (n − j)q ). (10)

The approximation error is given as

max
j=0,1,2,...,N

|y(tj ) − yh(tj )| = O(hp) (11)

where p = min(2, 1 + q). Therefore, the numerical solution of
a fractional-order system can be obtained by applying the afore-
mentioned algorithm.

III. BRIEF DESCRIPTION OF THE TAKAGI–SUGENO

FUZZY-NEURAL-NETWORK SYSTEMS

Fuzzy-logic systems address the imprecision of the input and
output variables directly by defining them with fuzzy numbers
(and fuzzy sets) that can be expressed in linguistic terms (e.g.,
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small, medium, and large) [39]–[43], [50]. The basic configura-
tion of the T–S FNN system includes a fuzzy rule base, which
consists of a collection of fuzzy IF–THEN rules in the following
form:

R(l) : IF x1 is F l
1 , and . . . , and xn is F l

n ,

THEN yl = ql
0 + ql

1x1 + · · · + ql
nxn = θT

l [1xT ]T (12)

where F l
i are input fuzzy sets, i = 1 − n, l = 1 − M , n and

M are the number of the input variables and fuzzy IF–THEN
rules, respectively, θT

l = [ql
0 , q

l
1 , . . . , q

l
n ] is a vector of the ad-

justable factors of the consequence part of the fuzzy rule, and
yl is a crisp value. Moreover, a fuzzy-inference engine com-
bines the fuzzy IF–THEN rules in the fuzzy rule base to gen-
erate an output variable y ∈ R from an input linguistic vec-
tor xT = [x1 , x2 , . . . , xn ] ∈ Rn. The output of the fuzzy-logic
systems with central-average defuzzifier, product inference, and
singleton fuzzifier can be expressed as

y(x) =
∑M

l=1 υl · yl
∑M

l=1 υl
=

∑M
l=1 υl · θT

l [1 xT ]
∑M

l=1 υl
(13)

where μF l
i

(xi) is the membership function value of the fuzzy

variable xi , and υl =
∏n

i=1 μF l
i
(xi ) is the truth value of the lth

implication. Equation (13) can be rewritten as

y(x) = θT ψ(x) (14)

where θT =
[
θT

1 θT
2 · · · θT

M

]
is an adjustable parameter

vector, and ψT (x) = [ψ1(x), ψ2(x), . . . , ψM (x)] is a fuzzy-
basis function vector defined as

ψl(x) =
υl [1 xT ]
∑M

l=1 υl
. (15)

When the inputs are fed into the T–S FNN, the truth value
vl of the lth implication is computed. Applying the common
defuzzification strategy, the output of the neural networks, which
is expressed as (13), is pumped out. The overall configuration
of the T–S FNN is shown in Fig. 1 [50].

Based on the universal approximation theorem [44], the above
fuzzy-logic system is capable of uniformly approximating any
well-defined nonlinear function over a compact set Uc to any
degree of accuracy. In addition, it is straightforward to show that
a multioutput system can always be approximated by a group of
single-output approximation systems.

IV. ADAPTIVE FUZZY-SLIDING-MODE SYNCHRONIZATION OF

FRACTIONAL-ORDER CHAOTIC SYSTEMS WITH TIME DELAY

Let us consider drive and response with fractional-order-
derivative time-delay chaotic systems as follows.

Fig. 1. Configuration of the T–S fuzzy-neural network.

1) Drive system: This is given by

Dqx1 = x2

Dqx2 = f(x, x(t − τ1), . . . , x(t − τr )). (16)

2) Response system: This is given by

Dqy1 = y2

Dqy2 = g(y, y(t − τ1), . . . , y(t − τr )) + u(t) + d(t)

(17)

where 0 < q < 1 is fractional derivative order, x1 , x2 , y1 ,
and y2 are the state variables, τi, i = 1, 2, . . . , r, are time
delays, f(x, x(t − τ1), . . . , x(t − τr )) and g(y, y(t −
τ1), . . . , y(t − τr )) are unknown, but bounded nonlinear
functions, which express system dynamics, d(t) is the ex-
ternal bounded disturbance, and u(t) is the control input
of the response system. The control objective is to syn-
chronize both drive and response systems by designing a
nonlinear controller that obtains signals from drive system
to tune behavior of the response system.

Let the synchronization error vector be

e = [e1 , e2 ] (18)

where ei = yi − xi, i = 1and 2. Then, sliding surface in the
space of the synchronization error can be defined as

S(t) = k1e1 + k2e2 (19)

where k1 and k2 are arbitrary constants, which are chosen such
that dynamics of the sliding surface vanished quickly. The pro-
cess can be classified into two phases: approaching phase with
S(t) �= 0 and sliding phase with S(t) = 0. A sufficient condi-
tion to guarantee that the trajectory of the synchronization-error
vector e will move from approaching phase to sliding phase is
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to design the control effort such that sliding condition

S(t)Ṡ(t) ≤ −η |S(t)| , η > 0 (20)

is satisfied. During the sliding phase, we have S(t) = 0,
and Ṡ(t) = 0. If f(x, x(t − τ1), . . . , x(t − τr )) and g(y, y(t −
τ1), . . . , y(t − τr )) are known and free of external disturbance,
i.e., d(t) = 0, the corresponding equivalent control effort ueq to
force the system dynamics to stay on the sliding surface can be
obtained from Ṡ(t) = 0

Ṡ(t) = D1−q (Dq (S(t))) = 0 → Dq (S(t)) = 0. (21)

Substituting (19) into (21), we have

Dq (S(t)) = Dq (k1e1 + k2e2) = k1D
qe1 + k2D

qe2

= k1D
q (y1 − x1) + k2D

q (y2 − x2)

= k1(y2 − x2) + k2 [g(y, y(t − τ1), . . . , y(t − τr ))

− f(x, x(t − τ1), . . . , x(t − τr )) + ueq(t)]

= k1e2 + k2 [g(y, y(t − τ1), . . . , y(t − τr ))

− f(x, x(t − τ1), . . . , x(t − τr )) + ueq(t)] = 0.

Then, the equivalent control effort can be obtained as

ueq(t) = −k1

k2
e2 + f(x, x(t − τ1), . . . , x(t − τr ))

− g(y, y(t − τ1), . . . , y(t − τr )). (22)

In the approaching phase, in order to satisfy the sliding con-
dition (20) and improve the robustness against system uncer-
tainties and external disturbances such that all system states
stay on the sliding surface, a switching control action usw =
ηswDq−1(sgn(S(t)) must be added. The complete sliding con-
trol can be expressed as

u(t) = ueq(t) − ηswDq−1(sgn(S(t))

= −k1

k2
e2 + f(x, x(t − τ1), . . . , x(t − τr ))

− g(y, y(t − τ1), . . . , y(t − τr )) − ηswDq−1(sgn(S(t))

(23)

where ηsw is a positive constant such that the approaching con-
dition can be guaranteed for

ηsw >
∣
∣D1−q d(t)

∣
∣ +

∣
∣D1−qωtotal

∣
∣ (24)

where ωtotal is the total minimum approximation error, and∣
∣D1−q d(t)

∣
∣ and

∣
∣D1−qωtotal

∣
∣ are assumed to be bounded.

However, as f(x, x(t − τ1), . . . , x(t − τr )) and g(y, y(t −
τ1), . . . , y(t − τr )) are unknown and external disturbance
d(t) �= 0, the ideal control effort (23) cannot be implemented.
We replace f(x, x(t − τ1), . . . , x(t − τr )) and g(y, y(t −
τ1), . . . , y(t − τr )) by the fuzzy-logic system f(x, τ | θf ,m, σ)
and g(y, τ | θg ,m, σ) in specified form as (14), i.e.,

f(x, τ | θf ,m, σ) = θT
f ξ(x, τ,m, σ)

g(y, τ | θg ,m, σ) = θT
g ξ(y, τ,m, σ) (25)

Here, the fuzzy basis functions ξ(x, τ,m, σ) =
ξ(x, x(t − τ1), . . . , x(t − τr ),m, σ) and ξ(y, τ,m, σ) =
ξ(y, y(t − τ1), . . . , y(t − τr ),m, σ) depend on the fuzzy-
membership functions and are supposed to be fixed, while
θT

f and θT
g are adjusted by adaptive laws based on Lyapunov

stability criterion. Especially, mean (m) and deviation (σ) are
updated simultaneously. Therefore, the resulting control effort
can be obtained as

u(t) = −k1

k2
e2 + f(x, τ | θf ,m, σ) − g(y, τ | θg ,m, σ)

− ηswDq−1(sgn(S(t)). (26)

Following the preceding consideration, the following theorem
can be obtained.

Theorem 1: Let us consider the two fractional-order chaotic
time-delay systems, i.e., drive system (16) and response system
(17); the control effort of the response system is given in (26),
and the fuzzy-based adaptive laws are chosen as

(D−q θf ) = r1(ξ(x, τ,m, σ) − mξm (x, τ,m, σ)

− σξσ (x, τ,m, σ))S(t) (27)

(D−q θg ) = −r2(ξ(y, τ,m, σ) − mξm (y, τ,m, σ)

− σξσ (y, τ,m, σ))S(t) (28)

ṁ = −r3 [−(D1−q θg )ξT
m (y, τ,m, σ)

+ (D1−q θf )ξT
m (x, τ,m, σ))]S(t) (29)

σ̇ = −r4 [−(D1−q θg )ξT
σ (y, τ,m, σ)

+ (D1−q θf )ξT
σ (x, τ,m, σ))]S(t). (30)

Then, the overall adaptive scheme guarantees the global stability
of the resulting closed-loop system in the sense that all signals
involved are uniformly bounded and the synchronization error
will converge to zero asymptotically. The proof of Theorem 1
is given in Appendix A.

To summarize the above analysis, the design algorithm for
the proposed adaptive fuzzy-sliding-model control (AFSMC) is
given as follows.
Step 1) Specify the desired coefficients k1 and k2 such that

dynamic of the sliding surface vanished quickly.
Step 2) Define the membership function μF l

i
(x) and μF l

i
(y)

for i = 1, 2,· · ·, M, and compute the fuzzy basis
functions ξ(x, τ,m, σ) and ξ(y, τ,m, σ), respectively.
Then, fuzzy-logic control systems are constructed as

f(x, τ | θf ,m, σ) = θT
f ξ(x, τ,m, σ)

g(y, τ | θg ,m, σ) = θT
g ξ(y, τ,m, σ).

Step 3) Specify all appropriate adaptation parameters to obtain
the adaptive laws in (27)–(30) and to adjust the param-
eter vectors θf , θg , m, and σ.

Step 4) Select suitable switching parameter ηsw . Obtain the
control in (26) and apply to the plant.
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Fig. 2. Membership function for xi and yi .i = 1 and 2.

V. SIMULATION EXAMPLE

In this section, we will apply our AFSMC to synchro-
nize two different uncertain fractional-order Duffing–Holmes
chaotic time-delay systems.

Let us consider two different uncertain fractional-order
Duffing–Holmes chaotic time-delay systems as follows.

1) Drive system: This is given by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dqx1 = 2.5x2

Dqx2 = −
(

1
2.5

x1

)3

− 1
2.5

x1 − 0.1x2 + 0.01x1(t − 0.001)

+0.01x2
1(t − 0.001) + 0.01x2(t − 0.001) + 25 cos(1.29t).

2) Response system: This is given by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dqy1 = 2.2y2

Dqy2 = −
(

1
2.0

y1

)3

− 1
1.8

y1 − 0.1y2 + 0.01y1(t − 0.001)

+0.01y2
1 (t − 0.001) + 0.01y2(t − 0.001)

+25 cos(1.29t) + d(t) + u(t)

where d(t) = 0.7sint is external bounded disturbance, and u(t)
is control input of the response system. The main objective
of synchronization is to force the trajectory of the response
system to become identical to that of the drive system. The
initial conditions of drive and response systems are chosen as[

x1(0)
x2(0)

]

=
[

0
0

]

and

[
y1(0)
y2(0)

]

=
[

1
−1

]

, respectively. Two dif-

ferent values of q = 0.98 and q = 0.94 are considered. All de-
sign constants are specified as k1 = k2 = 1, r1 = 50, r2 = 5, r3
= 1.5, r4 = 1.5, ηsw = 1, and step size h = 0.001.

The initial membership functions for xi and yi , i = 1 and 2
are shown in Fig. 2 and are selected as follows:

μF i
1
(xi) = exp

[

−1
2

(
xi + 9

3

)2
]

μF i
2
(xi) = exp

[

−1
2

(
xi + 6

3

)2
]

Fig. 3. Three-dimensional phase portrait of chaotic drive and response
systems.

μF i
3
(xi) = exp

[

−1
2

(
xi + 3

3

)2
]

μF i
4
(xi) = exp

[

−1
2

(xi

5

)2
]

μF i
5
(xi) = exp

[

−1
2

(
xi − 3

3

)2
]

μF i
6
(xi) = exp

[

−1
2

(
xi − 6

3

)2
]

μF i
7
(xi) = exp

[

−1
2

(
xi − 9

3

)2
]

,

A. q = 0.98

For q = 0.98 and free of control input, the 3-D phase portrait
of the drive and response systems is shown in Fig. 3.

Computing the adaptive laws (27)–(30), the control effort of
the response can be obtained as

u(t) = −k1

k2
e2 + f(x, τ | θf ,m, σ) − g(y, τ | θg ,m, σ)

− ηswDq−1(sgn(S(t)).

Figs. 4 and 5 show the trajectories of the states x1 , y1 and x2 ,
y2 , respectively. Control-effort trajectory is shown in Fig. 6 and
trajectory of the sliding surface S(t) is shown in Fig. 7, which
shows that the chattering can be eliminated. The 3-D phase
portrait, i.e., synchronization performance, of the drive and re-
sponse systems is shown in Fig. 8. As one can see, the designed
controller is effectively able to synchronize two fractional-order
chaotic systems with time delay, i.e., a fast synchronization can
be achieved. Fig. 9 shows the graph of V̇ , (t), which is always
negatively defined and consequently, is stable.
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Fig. 4. Trajectories of the states x1 and y1 .

Fig. 5. Trajectories of the states x2 and y2 .

In order to show the robustness of the proposed AFSMC, the
control effort is activated at t = 5 s. The 3-D phase portrait, i.e.,
synchronization performance, of the drive and response systems
is shown in Fig. 10. Figs. 11 and 12 show the trajectories of the
states x1 , y1 and x2 , y2 , respectively. We can see that a fast
synchronization of drive and response is achieved as the control
effort is activated. Control-effort trajectory is shown in Fig. 13,
and trajectory of the sliding surface S(t) is shown as in Fig. 14.

B. q = 0.94

For q = 0.94 and free of control input, the 3-D phase portrait
of the drive and response systems is shown in Fig. 15.

Figs. 16 and 17 show the trajectories of the states x1 , y1
and x2 , y2 , respectively. Control-effort trajectory is shown in
Fig. 18 and trajectory of the sliding surface S(t) is shown in
Fig. 19, which shows that the chattering can be eliminated. The
3-D phase portrait, i.e., synchronization performance, of the
drive and response systems is shown in Fig. 20. As one can
see, the designed controller is effectively able to synchronize
two fractional-order chaotic systems with time delay, i.e., a fast

Fig. 6. Trajectory of the control effort.

Fig. 7. Trajectory of the sliding surface S(t).

Fig. 8. Three-dimensional phase portrait, i.e., synchronization performance,
of the drive and response systems.
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Fig. 9. Graph of V̇ (t).

Fig. 10. Three-dimensional phase portrait, i.e., synchronization performance,
of the drive and response systems.

Fig. 11. Trajectories of the states x1 and y1 .

Fig. 12. Trajectories of the states x2 and y2 .

Fig. 13. Trajectory of the control effort.

Fig. 14. Trajectory of the sliding surface S(t).
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Fig. 15. Three-dimensional phase portrait of chaotic drive and response
systems.

Fig. 16. Trajectories of the states x1 and y1 .

synchronization can be achieved. Fig. 21 shows the graph of
V̇ (t), which is always negatively defined and, consequently, is
stable.

In order to show the robustness of the proposed AFSMC, the
control effort is activated at t = 5 s. The 3-D phase portrait, i.e.,
synchronization performance, of the drive and response systems
is shown in Fig. 22. Figs. 23 and 24 show the trajectories of
the states x1 , y1 and x2 , y2 , respectively. We can see that a
fast synchronization of drive and response is achieved as the
control effort is activated. Control-effort trajectory is shown in
Fig. 25, and trajectory of the sliding surface S(t) is shown in
Fig. 26.

For different q, i.e., q = 0.98 and q = 0.94, control efforts are
activated at t = 0 and t = 5 s, after 10-s simulation time, and the
final mean (m) and deviation (σ) of the Gaussian membership
functions are given in Table I.

As regards the synchronization performance, mean square
errors (MSEs) of MSE1 = y1 − x1 and MSE2 = y2 − x2 , for

Fig. 17. Trajectories of the states x2 and y2 .

Fig. 18. Trajectory of the control effort.

Fig. 19. Trajectory of the sliding surface S(t).
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Fig. 20. Three-dimensional phase portrait, i.e., synchronization performance,
of the drive and response systems.

Fig. 21. Graph of V̇ (t).

Fig. 22. Three-dimensional phase portrait, i.e., synchronization performance,
of the drive and response systems.

Fig. 23. Trajectories of the states x1 and y1 .

Fig. 24. Trajectories of the states x2 and y2 .

Fig. 25. Trajectory of the control effort.
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Fig. 26. Trajectory of the sliding surface S(t).

TABLE I
FINAL MEAN (m) AND DERIVATION (σ) OF THE MEMBERSHIP FUNCTIONS

Fig. 27. MSEs of MSE1 = y1 − x1 .

different values of q are shown in Figs. 27 and 28, respec-
tively. Moreover, when control is activated at t = 5 s, the syn-
chronization performance, i.e., MSEs of MSE3 = y1 − x1 and
MSE4 = y2 − x2 , for different values of q are shown in Figs. 29
and 30, respectively.

It is obvious that if q is reduced, the chaos appears
to be reduced, i.e., the synchronization error is reduced,
accordingly.

Fig. 28 MSEs of MSE2 = y2 − x2 .

Fig. 29. MSEs of MSE3 = y1 − x1 when control effort is activated at
t = 5 s.

Fig. 30. MSEs of MSE4 = y2 − x2 when control effort is activated at
t = 5 s.

1) Remark:
1) From Figs. 3 and 15, we can see that for free of control in-

put, output of the response system cannot track the output
of the drive system well. After control effort is added into
response system, a fast synchronization of the drive and
response systems can be achieved, as shown in Figs 8, 10,
20, and 22.
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2) For different q, i.e., 0.98 and 0.94, the initial membership
functions are shown in Fig. 3. In order to handle linguistic
uncertainties, the adaptive laws for centers and widths of
the membership functions are given in (35)–(36), and after
10-s simulation time, the final membership functions are
shown in Table I.

VI. CONCLUSION

In this paper, a novel AFSMC is proposed to deal with chaos
synchronization between two different uncertain fractional-
order time-delay chaotic systems. Based on the Lyapunov syn-
thesis approach, free parameters of the adaptive fuzzy controller
can be tuned online by output feedback-control law and adaptive
law, and the chattering phenomena in the control efforts can be
reduced. The simulation example, i.e., chaos synchronization
of two different fractional-order time-delay Duffing–Holmes
chaotic systems, is given to demonstrate the effectiveness of the
proposed methodology. The significance of the AFSMC in the
simulations for different values of q is demonstrated. Simulation
results show that a fast synchronization of drive and response
can be achieved, and as q is reduced, the chaos appears to be
reduced, i.e., the synchronization error is reduced, accordingly.

APPENDIX A

PROOF OF THEOREM 1

Proof: The optimal-parameter estimations, i.e., θ∗f , θ∗g m∗,
and σ∗, are defined as

θ∗f = arg min
θf ∈Ωf

[ sup
x∈Ωx

|f(x, τ | θf ,m, σ)

− f(x, x(t − τ1), . . . , x(t − τr ))|] (31)

θ∗g = arg min
θg ∈Ωg

[ sup
y∈Ωy

|g(y, τ | θg ,m, σ)

− g(y, y(t − τ1), . . . , y(t − τr ))|] (32)

m∗ = arg min
m∈Ωm

[ sup
x∈Ωx ∪y∈Ωy

|f(x, τ | θf ,m, σ)

− f(x, x(t − τ1), . . . , x(t − τr ))|
+ |g(y, τ | θg ,m, σ) − g(y, y(t − τ1), . . . , y(t − τr ))|]

(33)

σ∗ = arg min
m∈Ωm

[ sup
x∈Ωx ∪y∈Ωy

|f(x, τ | θf ,m, σ)

− f(x, x(t − τ1), . . . , x(t − τr ))|
+ |g(y, τ | θg ,m, σ) − g(y, y(t − τ1), . . . , y(t − τr ))|]

(34)

where Ωf , Ωg , Ωy , and Ωx are constraint sets of suit-
able bounds on θf , θg , y, and x, respectively, and they are
defined as Ωf =

{
θf |

∣
∣θf

∣
∣ ≤ Mf

}
, Ωg =

{
θg |

∣
∣θg

∣
∣ ≤ Mg

}
,

Ωy = {y| |y| ≤ My}, and Ωx = {x| |x| ≤ Mx}, where Mf , Mg ,
My , and Mx are positive constants.

Then, we have

Dq (S(t)) = Dq (k1e1 + k2e2) = k1D
qe1 + k2D

qe2

= k1e2 + k2 [g(y, y(t − τ1), . . . , y(t − τr ))

− f(x, x(t − τ1), . . . , x(t − τr ) + u(t) + d(t)]

= k1e2 + k2{[g(y, y(t − τ1), . . . , y(t − τr ))

− f(x, x(t − τ1), . . . , x(t − τr )]

+
[

−k1

k2
e2 + f(x, τ | θf ,m, σ) − g(y, τ | θg ,m, σ)

−ηswDq−1(sgn(S(t))
]
+ d(t)}

= k2{[g(y, y(t − τ1), . . . , y(t − τr ))

− g(y, τ |θg ,m, σ)]

+ [f(x, τ | θf ,m, σ)

− f(x, x(t − τ1), . . . , x(t − τr )]

+ d(t) − ηswDq−1(sgn(S(t))}
= k2{[g(y, τ | θ∗g ,m∗, σ∗) − g(y, τ | θg ,m, σ)]

+ [f(x, τ | θf ,m, σ) − f(x, τ | θ∗f ,m∗, σ∗)]

+ d(t) − ηswDq−1(sgn(S(t)) + ω1} (35)

where the minimum approximation errors is defined as

ω1 = g(y, y(t − τ1), . . . , y(t − τr )) − g(y, τ | θ∗g ,m∗, σ∗)

+ f(x, τ | θ∗f ,m∗, σ∗) − f(x, x(t − τ1), . . . , x(t − τr ).

(36)

Let

f(x, τ | θf ,m, σ) − f(x, τ | θ∗f ,m∗, σ∗) = θ̃T
f [ξ(x, τ,m, σ)

− mξm (x, τ,m, σ) − σξσ (x, τ,m, σ)]

+ θT
f [m̃ξm (x, τ,m, σ) + σ̃ξσ (x, τ,m, σ)]

+ θ̃T
f [m∗ξm (x, τ,m, σ) + σ∗ξσ (x, τ,m, σ)] (37)

g(y , τ | θg ,m, σ) − g(y, τ | θ∗g ,m∗, σ∗) = θ̃T
g [ξ(y, τ,m, σ)

− mξm (y, τ,m, σ) − σξσ (y, τ,m, σ)]

+ θT
g [m̃ξm (y, τ,m, σ)

+ σ̃ξσ (x, τ,m, σ)] + θ̃T
g [m∗ξm (y, τ,m, σ)

+ σ∗ξσ (y, τ,m, σ)] (38)

where θ̃f = θ∗f − θf , θ̃g = θ∗g − θg , m̃ = m − m∗, and σ̃ =
σ − σ∗. In addition, ξm (y, τ,m, σ) and ξσ (y, τ,m, σ) are partial
derivatives of ξ(y, τ,m, σ) with respect to m and σ, respectively,
and ξm (x, τ,m, σ) and ξσ (x, τ,m, σ) are partial derivatives of
ξ(x, τ,m, σ) with respect to m and σ, respectively.

Equation (35) can be rewritten as

Dq (S(t)) = k2{−[θ̃T
g (ξ(y, τ,m, σ) − mξm (y, τ,m, σ)

− σξσ (y, τ,m, σ)) + θT
g (m̃ξm (y, τ,m, σ)
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+ σ̃ξσ (x, τ,m, σ))

+ θ̃T
g (m∗ξm (y, τ,m, σ) + σ∗ξσ (y, τ,m, σ))]

+ [θ̃T
f (ξ(x, τ,m, σ) − mξm (x, τ,m, σ)

− σξσ (x, τ,m, σ))

+ θT
f (m̃ξm (x, τ,m, σ) + σ̃ξσ (x, τ,m, σ))

+ θ̃T
f (m∗ξm (y, τ,m, σ) + σ∗ξσ (y, τ,m, σ))]

+ d(t) − ηswDq−1(sgn(S(t)) + ω1}. (39)

Hence, the derivative of the sliding surface can be presented as

Ṡ(t) = D1−q (Dq (S(t)))

= k2{−[(D1−q θ̃T
g )(ξ(y, τ,m, σ) − mξm (y, τ,m, σ)

− σξσ (y, τ,m, σ))

+ (D1−q θT
g )(m̃ξm (y, τ,m, σ) + σ̃ξσ (x, τ,m, σ))]

+ [(D1−q θT
f )(m̃ξm (x, τ,m, σ) + σ̃ξσ (x, τ,m, σ))

+ (D1−q θ̃T
f )(ξ(x, τ,m, σ) − mξm (x, τ,m, σ)

− σξσ (x, τ,m, σ))]}
− k2ηsw (sgn(S(t)) + k2D

1−q d(t) + k2D
1−qωtotal

(40)

where the total minimum approximation errors ωtotal is given as

ωtotal = ω1 + θ̃T
g (m∗ξm (y, τ,m, σ) + σ∗ξσ (y, τ,m, σ))

+ θ̃T
f (m∗ξm (y, τ,m, σ) + σ∗ξσ (y, τ,m, σ)).

Now, consider the Lyapunov-function candidate

V =
1
2
S2(t) +

k2

2r1
(D−q θ̃

T

f )(D−q θ̃f ) +
k2

2r2
(D−q θ̃

T

g )(D−q θ̃g )

+
k2

2r3
tr(m̃T m̃) +

k2

2r4
tr(σ̃T σ̃) (41)

where r1 , r2 , r3 , and r4 are positive constants. Taking the deriva-
tive of (41) with respect to time, we get

V̇ =S(t)Ṡ(t) +
k2

r1
(D1−q θ̃

T

f )(D−q θ̃f )+
k2

r2
(D1−q θ̃

T

g )(D−q θ̃g )

+
k2

2r3
tr(m̃T ˙̃m) +

k2

2r4
tr(σ̃T ˙̃σ)

= k2S(t){−[(D1−q θ̃T
g )(ξ(y, τ,m, σ) − mξm (y, τ,m, σ)

− σξσ (y, τ,m, σ))

+ (D1−q θT
g )(m̃ξm (y, τ,m, σ) + σ̃ξσ (y, τ,m, σ))]

+ [(D1−q θT
f )(m̃ξm (x, τ,m, σ) + σ̃ξσ (x, τ,m, σ))

+ (D1−q θ̃
T

f )(ξ(x, τ,m, σ) − mξm (x, τ,m, σ)

− σξσ (x, τ,m, σ))]}
− k2ηsw |S(t)| + k2S(t)D1−q d(t) + k2S(t)D1−qωtotal

+
k2

r1
(D1−q θ̃

T

f )(D−q θ̃f )

+
k2

r2
(D1−q θ̃

T

g )(D−q θ̃g ) +
k2

r3
tr(m̃T ˙̃m) +

k2

r4
tr(σ̃T ˙̃σ)

(42)

= k2

{

(D1−q θ̃
T

g )
[

1
r2

(D−q θ̃g ) − (ξ(y, τ,m, σ)

− mξm (y, τ,m, σ)−σξσ (y, τ,m, σ))S(t)
]

+ (D1−q θ̃
T

f )
[

1
r1

(D−q θ̃f ) + (ξ(x, τ,m, σ)

− mξm (x, τ,m, σ)−σξσ (x, τ,m, σ))S(t)
]

+
[

1
r3

tr(m̃T ˙̃m) + (−(D1−q θT
g )m̃ξm (y, τ,m, σ)

+(D1−q θT
f )m̃ξm (x, τ,m, σ))S(t)

]

+
[

1
r4

tr(σ̃T ˙̃σ) + (−(D1−q θT
g )σ̃ξσ (y, τ,m, σ)

+(D1−q θT
f )σ̃ξσ (x, τ,m, σ))S(t)

]}

− k2ηsw |S(t)| + k2S(t)D1−q d(t) + k2S(t)D1−qωtotal.

(43)

Substituting adaptive laws (27)–(30) into (43), we have

V̇ (t) = k2ηsw |S(t)| + k2S(t)D1−q d(t) + k2S(t)D1−qωtotal

≤ −k2
{
ηsw |S(t)| − |S(t)|

∥
∥D1−q d(t)

∥
∥

− |S(t)|
∣
∣D1−qωtotal

∣
∣
}

= −k2 |S(t)|
{
ηsw −

∣
∣D1−q d(t)

∣
∣ −

∣
∣D1−qωtotal

∣
∣
}

≤ 0. (44)

Based on condition (24), the existence of adaptive fuzzy-sliding-
mode dynamics is confirmed by (44), and the closed-loop system
is globally asymptotically stable. Thus, the proof is completed.
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