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Abstract: Signature verification (SV) is one of the common methods for identity verification in banking, where for security
reasons, it is very important to have an accurate method for automatic SV (ASV). ASV is usually addressed by comparing the
test signature with the enrolment signature(s) signed by the individual whose identity is claimed in two manners: online and
offline. In this study, a new method based on the i-vector is proposed for online SV. In the proposed method, a fixed-length
vector, called i-vector, is extracted from each signature and then this vector is used for template making. Several techniques
such as nuisance attribute projection (NAP) and within-class covariance normalisation (WCCN) are also investigated in order to
reduce the intra-class variation in the i-vector space. In the scoring and decision making stage, they also propose to apply a 2-
class support vector machine method. Experimental results show the proposed method could achieve 8.75% equal error rate
(EER) on SigWiComp2013 database in the best case. On SVC2004 database, it also achieved 5% EER that means 11%
relative improvement compared with the best reported result. In addition to its considerable accuracy gain, it has shown
significant improvement in the computational cost over conventional dynamic time warping method.

1 Introduction
Identity verification is defined as determining a person's identity
based on their physical or behavioural characteristics. There are
different such characteristics in each category (i.e. physical/
behavioural). The first category is, in fact, the set of biometric
characteristics such as fingerprint, eye — especially the iris and
cornea — and speech [1]. In the second category, which is based
on behavioural characteristics, features such as handwriting and
signature are used to identify a person [1]. From the perspective of
how a person utters words and his habitual phrases, speech can be
placed in the second category too. The methods in the first
category are superior in terms of accuracy, and among them
fingerprints are more widespread and are very commonly
employed in time and attendance systems. However, since it is
much more convenient to use signatures, methods based on such
characteristics are more widespread in banking, even though they
are less accurate than the methods in the first category. As a
behavioural biometric, handwritten signature can be influenced by
a person's mental and physical conditions, hence it exhibits
inconstancy due to stress, emotions, sleepiness, fatigue etc.

The use of handwritten signature as an authentication modality
has a long history. In the conventional method of signature
verification (SV) — which is common in banks — an operator
performs the task of verifying or rejecting a signature. Since the
1970s, due to the increasing concerns of access control, automatic
SV (ASV) has been receiving growing research interest to perform
this task automatically using computers [2, 3]. By leveraging
advances in signal processing and machine learning, ASV is done
in two manners: online and offline. In the offline verification, also
called static verification, we only have access to the image of the
signature [4–6]. In these kinds of methods, we usually normalise
the size of the image after some preprocessing and then extract
features from the image using a sliding window. The features are
then used to compare two signatures. On the other side are the
online methods, also called dynamic methods, where informations
related to dynamics of the signature are provided as well as the
image of the signature [7–9]. Dynamic information includes
pressure, velocity, azimuth etc. In these methods, the changes in
the vertical and horizontal directions are usually used as shape-

related features. These methods have a better performance
compared with the offline methods and are more reliable since they
use more information extracted from the signature. Apart from
these advantages, signature forgery is more difficult in these
methods because they use dynamic features such as velocity and
azimuth that are very difficult to simulate. Our focus in this
research is on the online methods.

There have been many studies on the online SV, which can be
grouped into two main categories:

• Methods based on global features of signature: These methods
try to extract a fixed-length vector from the whole signature, so
that signatures can be easily comparable in the vector form.
These methods can be further categorised into two
subcategories: in the first one, we try to extract the global
features from the entirety of signatures. For example, in [10]
Jain et al. use the number of strokes as a global feature. Authors
use other features such as average velocity, average pressure,
and the number of times the pen is lifted during the signature in
[11]. As a good example, Fierrez-Aguilar et al. in [7] introduce
100 global features sorted by their individual discriminative
power. A subset of these features is employed in other studies
too [8, 12–15]. In the second subcategory, a transformation is
applied to the signature to give a fixed-length vector. For
instance, a wavelet transform is used in [16] to extract a feature
vector from the whole signature. In another study, discrete
cosine transform (DCT) is used to obtain the fixed-length
feature vector [9]. The proposed method in this paper is
categorised in this group.

• Functional methods: The methods in this category focus more
on comparing signatures and calculate the distance between two
signatures. In these methods, each signature is represented using
a sequence of local features extracted from it. This category can
be further divided into two subcategories as well: the methods in
the first one do not perform any kind of modelling. In fact, in
these methods, a reference set is kept for each individual, and in
the test time the input signature is compared with the reference
set in order for decision making. The most common method in
this subcategory is the dynamic time warping (DTW) method,
which is used in many studies [17–20]. The second category
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includes methods which train a probabilistic model for each
individual using the signatures in her/his reference set. These
methods usually use likelihoods for scoring and decision
making. The most common methods in this subcategory are
hidden Markov model (HMM) [21–25] and Gaussian mixture
model (GMM) [26–28].

The aim of this paper is to propose a method for the online SV
based on i-vector. i-Vector was first proposed for speaker
recognition application [29] and later was adopted in other
applications such as language identification [30, 31], accent
identification [32], gender recognition, age estimation, emotion
recognition [33, 34], audio scene classification [35] etc. In the main
application of this method (i.e. speaker recognition), a fixed-length
vector called i-vector is extracted from a speech signal of arbitrary
duration. In next steps, this vector is used for computing scores and
recognition. While i-vector is used mostly in many speech-related
applications, it is less known to other fields. In this paper, we adopt
the i-vector that is commonly used for speaker recognition to SV.
Despite their different domains, voice biometrics and signature
biometrics are similar in nature as both need to extract subject
specific patterns from captured signal contaminated with variations
from various irrelevant sources. As total variability factor analysis
is a built-in step of i-vector training, which helps to remove the
distracting factors in biometric analysis and extracts a unique
identity representation vector, we expect that i-vector should be
able to provide a promising solution to the signature identity
extraction problem.

We have two motivations for using this method for SV. First,
online signatures have variable lengths similar to the speech
signals. By using this method, we can have a fixed-length vector
which facilitates the next steps in the decision making. Therefore,
after extracting temporal features from each signature, we extract
an i-vector. Since we acquire a fixed-length vector for each
signature, we can place this method in the first category above. The
second motivation is that usually signatures of a person are slightly
different each time. These differences lead to intra-class variations
which in turn increase the false rejection rate (FRR). In different
applications of i-vector in speech processing, various methods for
reducing intra-class variations have been proposed which can be
adopted in this application as well. Similar to the speaker
verification case, we also propose to use two different techniques
to reduce the intra-class undesirable variations effects. Since for
each individual there are several signature samples as the reference
set in enrolment phase, we proposed to add them up to the data that
is used to train the within-class variation compensation methods. In
addition, we proposed to apply a 2-class support vector machine
(SVM) to discriminate between i-vectors extracted from genuine
and forged signatures. Experimental results revealed the
effectiveness of the mentioned ideas on two different databases.
Fig. 1 depicts the block diagram of the proposed i-vector-based
online SV system. 

The rest of this paper is organised as follows: in Section 2,
theories related to i-vector and methods of reducing intra-class
variations are described. The proposed method is then explained in
Section 3. In Section 4, we explain the procedures for extracting
features and afterwards in Section 5: first, the experimental setup is

described and then in Section 6 the experimental results are
presented. Finally, the conclusions of this paper are derived in
Section 7.

2 i-Vector-based systems
As explained earlier, currently i-vector in total variability space has
become the state-of-the-art approach for speaker recognition [29].
This method that was introduced after its predecessor method, joint
factor analysis [36, 37], can be considered as a technique to extract
a compact fixed-length representation given a signal with arbitrary
length. Then, the extracted compact feature vector can be either
used for vector distance-based similarity measuring or as input to
any further feature transform or modelling. There are certain steps
to extract i-vector from a signal. First, features should be extracted
from the input signal and then the Baum–Welch statistics should be
extracted from the features [38], and finally i-vector is computed
using these statistics. In the following, we explain these steps in
details.

2.1 Universal background model (UBM) training

The first step in i-vector extraction pipeline is to create a global
model which is called an UBM [39]. For UBM, various models are
used based on the application. Usually, GMM is used for this
purpose in text-independent speaker verification [29, 40] and
HMM is used in text-dependent applications [41–43]. In SV tasks,
since the signatures are different for each individual, it is not
possible to train a universal HMM. Therefore, we train a GMM
from all the extracted features of all individuals in the development
set. There should be sufficient training data in the development set
for this model to properly cover the feature space.

A GMM is a weighted set of C multivariate Gaussian
distributions and formulated as

Pr(x |λ) = ∑
c = 1

C
wcN x | mc, Σc , (1)

where x is a D-dimensional vector with continuous values, w
shows the weight for each component of the mixture, and
N x | mc, Σc  shows the Gaussian distribution with mean mc and
covariance matrix Σc. The sum of all weights should be equal to
one. Usually, GMM is used with a diagonal covariance matrix in
practise and we use a diagonal matrix in this study too [39].

2.2 Extraction of Baum–Welch statistics

In this step, for each feature sequence, the zero and first-order
Baum–Welch statistics are computed using the UBM [37, 38].
Given Xi as the entire collection of feature vectors for training
signature ith, the zero, and first-order statistics (i.e. Nc and Fc) for
the cth component of the UBM are computed as follows:

Nc(Xi) = ∑
t

γi, t
c

(2)

Fig. 1  Block diagram of the proposed i-vector-based online SV system
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Fc(Xi) = ∑
t

γi, t
c (Xi, t − mc), (3)

where Xi, t shows the tth vector of entire features for signature ith,
mc is the mean of cth component, and γi, t

c  is the posterior
probability of generating Xi, t by the cth component as follows:

γi, t
c = Pr(c | Xi, t) = wcN Xi, t | mc, Σc

∑ j = 1
C wjN Xi, t | mj, Σ j

. (4)

2.3 i-Vector

Let M show the individual dependent mean-supervector that
represents the feature vectors of a signature. The term supervector
is referred to the DC-dimensional vector obtained by concatenating
the D-dimensional mean vectors of the GMM corresponding to a
given signature (it can be obtained by classical maximum a
posteriori (MAP) adaptation [39]). In the i-vector method [29], this
supervector is modelled as follows:

M = m + Tw, (5)

where m is an individual independent mean-supervector derived
from the UBM, T is a low rank matrix, and w is a random latent
variable having a standard normal distribution. The i-vector ϕ is
the MAP point estimate of the variable w which is equal to the
mean of the posterior probability of w given the input signature. In
this setting, it is assumed that supervector M has a Gaussian
distribution with mean m and covariance matrix TTt.

2.4 Training the parameters of the model

In (5), m and T are the parameters of the model. Usually, the mean-
supervector of the UBM is used as m. This supervector is formed
by concatenating the means of the UBM components [44]. To train
T, the expectation maximisation (EM) algorithm is used [38]. Let
the UBM have C components and the dimensions of feature
vectors be D. First, the matrix Σ is formed as follows:

Σ =

Σ1 0 … 0
0 Σ2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … ΣC

(6)

where Σc is the covariance matrix of the cth component of the
UBM. Assuming Xi shows the entire collection of feature vectors
for signature ith and P(Xi | Mi, Σ) denotes the likelihood of Xi
calculated with the GMM specified by the supervector Mi and the
super-covariance matrix Σ, then the EM optimisation is done by
repeating the following two steps:

1. For each training signature, we use the current value of T and
compute the vector that maximises the likelihood in the
following way:

wi = arg max
w

P Xi | m + Tw, Σ (7)

2. Then we update T by maximising the following equation:

∏
i

P Xi | m + Twi, Σ , (8)

By taking the logarithm of (8), the product is replaced with
summation and also the likelihood is replaced with log-likelihood
which can be calculated for each signature using the following
equation: (see (9)) ,where c iterates over all components of the
model and t iterates over all feature vectors. Tc is a submatrix of T
related to the cth component.

Assuming we have computed the zero and first-order statistics
using (2) and (3), we can compute the posterior covariance matrix
[i.e. Cov(wi, wi)], mean (i.e. E[wi]) and the second moment (i.e.
E[wiwi

t]) for wi using the following relations:

Cov(wi, wi) = I + ∑
c

Nc(Xi)Tc
tΣc

−1Tc

−1

(10)

E[wi] = Cov(wi, wi)∑
c

Tc
tΣc

−1Fc(Xi) (11)

E[wiwi
t] = Cov(wi, wi) + E[wi]E[wi]t (12)

Finally, if we maximise (8), the following relation is obtained for
updating matrix T:

Tc = ∑
i

Fc(Xi)E[wi]t ∑
i

Nc(Xi)E[wiwi
t]

−1

(13)

2.5 Computing the i-vector

As explained in the previous section, w is a random hidden variable
with standard normal distribution, where i-vector is the mean of the
posterior probability of w given the input signature. To find i-
vector, the MAP point estimation of w is used and the formula is
the same as (11).

2.6 Methods for reducing the effects of intra-class variations

Several methods have been proposed for reducing the effects of
intra-class (within class) variations. For i-vector-based method, the
widely used such methods are NAP [29, 44–46], WCCN [29, 47,
48], and linear discriminant analysis (LDA) [29]. Here, we used
WCCN and NAP which will be explained in the following section.

2.6.1 Within-CCN: In the WCCN method, we try to find a linear
transformation by which we can reduce intra-class variations. To
achieve this, we first compute the intra-class covariance matrix
using the following relation:

Sw = 1
S ∑

s = 1

S 1
Ns

∑
n = 1

Ns

ws
n − w̄s ws

n − w̄s
t, (14)

where S is the total number of classes, Ns is the number of training
samples in class s, ws

n is the nth sample in class s, and

w̄s = 1
Ns

∑n = 1

Ns ws
n is the mean of class s. Then, the transform

matrix B ∈ RN × K can be calculated using the Cholesky
decomposition of intra-class covariance matrix:

Sw
−1 = BBt . (15)

Finally, the samples in the new space are calculated using y = Btw.

log P Xi | m + Twi, Σ = ∑
c

Nc log 1
(2π)D/2 Σc

1/2

− 1
2 ∑

t
Xi, t − Tcwi − mc

tΣc
−1 Xi, t − Tcwi − mc ,

(9)
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2.6.2 Nuisance AP: The aim of this method is to find a
transformation by which we can omit the subspaces that cause
noisy variations. The transform matrix is calculated using the
following relation:

P = I − RRt, (16)

where R ∈ ℝN × K is a low rank rectangular matrix, where its
columns are the K eigenvectors of Sw with maximum
corresponding eigenvalues. After finding transform matrix
P ∈ ℝN × N, we use it to project all samples to the new space.

3 Proposed method
The proposed method aims at using the i-vector for online SV. In
this method, we first train a GMM using all signatures (i.e. both
genuine and forged signatures) in the training set. The forged
signatures are used to achieve better modelling of the forged
signatures space. After training this UBM, we use it to extract zero
and first-order statistics of the training features. Then, using these
statistics we train an i-vector extractor using several iterations of
the EM algorithm explained in Section 2.4.

After training the i-vector extractor, we extract i-vectors from
all signatures in the training set. In this stage, we have extracted
several i-vectors for each individual in the training set and we use
them to train the intra-class variation reduction methods.
Specifically, we train NAP and WCCN transforms from the
original signatures in the training set and use them to transform the
i-vectors to the new space.

3.1 Creating a template for each individual

After training the required transforms, a template is created for
each individual based on her/his reference signatures. To achieve
this, first, we extract i-vectors from the signatures and transform
them using the trained models (i.e. WCCN and NAP). Then, the
average of the reference i-vectors is used as the template for each
individual (or representative vector). This is a conventional method
in the speaker and language recognition fields based on i-vector
[29, 31]. Therefore, we have a representative i-vector for each
individual, which we will use for scoring.

3.2 Scoring (similarity measure)

To calculate the similarity between the representative i-vector and
the test signature we proceed as follows. First, we extract an i-
vector from the test signature and project it to the new space using
the trained transforms. Then, we use the cosine similarity to
compute the score between this i-vector and each individual's
representative i-vector

Cos Sim(wtemplate, wtest) = ⟨wtemplate, wtest⟩
∥ wtemplate ∥∥ wtest ∥, (17)

where the numerator and denominator show the inner product and
the product of the i-vectors’ norm-2, respectively.

3.3 Decision making

After finding the cosine distance score, a simple threshold is
applied to it to make the final decision of accepting/rejecting a
verification attempt. If the score was higher than the threshold, the
test signature is verified and otherwise it is rejected. We can use
different thresholds for each individual or we can assume a global
threshold for everyone. In this paper, we used a global threshold to
be able to plot the detection error tradeoff (DET) curves. In
addition to this simple approach, more advanced learning
algorithms such as SVM modelling or LDA can be applied to the i-
vectors.

3.4 Decision making based on a binary SVM classifier

The combination of WCCN/NAP and cosine similarity scoring is a
common approach to the i-vector preconditioning and decision
making in the speaker recognition area. As our experimental results
show this approach also works for the SV relatively well. In ASV
task, the decision-making step can also be considered as a
supervised binary classification process that categorises the input
feature vectors as either forged or genuine. Therefore, in SV, we
propose to train a binary SVM classifier for each individual to
differentiate between her/his forged and genuine signatures. To
train an SVM for each individual, we will be in need of her/his
forged data samples which are non-trivial in practical applications.
Even though in speaker verification, other speakers’ data can serve
as forged data to train the binary classifier for each speaker
properly; in SV, this is not the case.

To overrule this issue, we propose to train an individual
independent binary SVM. In this case, there will be one binary
SVM that works for all individuals in the evaluation database.
Before going through details of the proposed individual
independent binary SVM, results of an intuitively related
experiment are discussed. Fig. 2 demonstrates the individuals’
signatures for 11 signature types of SigWiComp2013 training set in
the i-vectors space without applying any transformation using t-
distributed stochastic neighbor embedding (t-SNE) [49] method. 

As you can see from Fig. 2, genuine signatures have mostly
concentrated around some distinctive clusters, but forged
signatures have scattered in the space. Hence, it is not possible to
train a binary classifier to categorise these two classes in this space
properly. Fig. 3 shows the same plot after removing the bias of
each signature type (i.e. for each individual, subtracting the mean
of only her/his genuine signatures from all her/his signatures). It
seems that after this kind of bias subtraction, the genuine and
forgery signature samples are perfectly separable. Motivated by
this observation, we propose to perform the same procedure for
each individual of the training set, and then an individual
independent binary SVM is trained using all these bias-removed
genuine and forgery data to classify the genuine signatures from
forged signatures in the evaluation time. Specifically, in the
evaluation time, first the mean of each individual's reference
signatures is subtracted from all her/his test signatures, and finally
the individual independent SVM classifier categorises these bias-
removed signatures.

Fig. 2  t-SNE plot of individuals’ signatures for 11 signature types of
SigWiComp2013 training set using raw i-vectors (i.e. without applying any
transformation)
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4 Feature extraction
4.1 Preprocessing

As proposed in [21] the centres of masses of all signatures are
normalised. This is done by setting the mean across x and y axes to
zero. The means are calculated using the following equation:

[x̄, ȳ]t = 1
N ∑

n = 1

N
xn, yn

t (18)

4.2 Features

There are many features that are used for online SV. We use several
of them which are listed below:

• Vertical and horizontal positions.
• Path-tangent angle.
• Path velocity magnitude.
• Log curvature radius.
• Total acceleration magnitude.

Aside from the features listed above, the first-order derivative
of them is used too. This derivative is calculated according to the
second-order regression formula in [50].

4.3 Post-processing

To normalise the features, we used two types of post-processing
techniques separately.

4.3.1 Mean and variance normalisation: In this technique, the
features are normalised, so that the mean and variance across each
feature dimension is zero and one, respectively. The mean and
variance are calculated for each signature separately. This is a very
common method in speaker verification [29, 51].

4.3.2 Feature warping: This technique is more commonly used in
speech processing applications, but has been recently employed in
online SV as well [52]. The purpose of this technique is to
normalise the features, so that they have a standard normal
Gaussian distribution. This is done using a moving window where
we used a window of size 31.

5 Experiment setup
5.1 Database

Several databases are available for online SV [53–56] that reduce
the barrier in this research field. In these databases, the most
common signature dynamics features are the position information
of the pen, though some of them have pressure information as well.
One of the most authentic databases is the online Japanese
signature data set which was used in SigWiComp2013 [54]. These
signatures have been collected using the HP EliteBook 2730p
tablet. Each signature in this database is represented by a sequence
of triples. The first two elements in each triple show the position of
the pen and the third element shows the state of the pen (whether it
is lifted or not). The sampling rate for these signatures is 200 Hz
and the resolution is 50 px per centimetre. There are 31 individuals
(i.e. signature types) in this database where for each individual
there are 42 genuine signature examples and 36 forged signature
examples. This database is divided into training and evaluation sets
as follows:

Training set: There are 11 signature types (i.e. one signature for
each individual) in this set that for each of which there are 42
genuine and 36 forged signature examples. This set is used to train
the UBM and i-vector extractor and also for computing the NAP
and WCCN transforms as well as for training the applied SVM
model which is used in the decision-making stage.
Evaluation set: This set includes 20 signature types for each of
which there are 12 reference signatures. These 12 signatures are
used to create the reference template for each individual. Apart
from these reference signatures, there are 66 test signatures for
each signature type which consists of 30 genuine signatures and 36
forged signatures.

Almost all evaluations are carried out on the SigWiComp2013
database. To verify the performance of the proposed method, the
final results have been reported in the SVC2004 database as well
[55]. The SVC2004 database contains 80 signature types which
have been captured by a graphic tablet (WACOM Intuos). It has
been divided into two tasks, each of which has 40 signature types.
There are 20 genuine and 20 skillfully forged signatures for each
signature type, where the first ten genuine signatures are
considered as the reference set. We employ task one for models
training and task two for evaluation.

5.2 Evaluation criteria

There are two types of mistakes in a typical SV system: a false
rejection which happens when a genuine signature is incorrectly
classified as forged by someone and a false acceptance is when a
forgery signature is considered as signed by the corresponding
individual. Several evaluation metrics are available to report the
test results. In this paper, we report the equal error rate (EER), i.e.
the FRR and false acceptance rate (FAR) when they are equal. In
addition, in some cases, the DET curves are plotted to allow for
more detailed comparison.

5.3 t-SNE visualisation in the i-vector space

In the SV task, the best representation is the one that perfectly
discriminates between genuine and skillfully forged signatures for
each individual. In addition, in order to prevent random forgery
attacks, the representation also must discriminate between
individual signatures. Fig. 4 shows t-SNE plots for genuine and
forged signatures for ten individuals in the test set of
SigWiComp2013 using raw i-vectors (i.e. without any transforms). 

It is clear from Fig. 4 that for almost all individuals, the i-vector
representation discriminates between genuine and forged signatures
properly; therefore, it is predictable that using a good classifier
(e.g. non-linear or even linear) an acceptable performance is
achievable. Fig. 5 shows the t-SNE plot for the genuine signatures
of the first ten individuals from SigWiComp2013. It is obvious that
in this case, the individual signatures are more separated than in the

Fig. 3  t-SNE plot of individuals’ signatures for 11 signature types of
SigWiComp2013 training set when the bias of each signature type is
removed

 

IET Biom., 2018, Vol. 7 Iss. 5, pp. 405-414
© The Institution of Engineering and Technology 2017

409



previous case; therefore, random forgeries rejection would not be a
serious concern. 

6 Experiments results
6.1 Effects of UBM components count, i-vectors
dimensionality, and features post-processing

The first series of experiments were performed to investigate the
effects of the number of UBM components, the dimension of i-
vectors, and also post-processing techniques. These experiments
were carried out for two techniques of feature normalisation
separately. Table 1 represents the obtained EERs. In each element
of this table, there are two EER values (separated by a slash) that
represent the effect of using the feature warping and mean and
variance normalisation (MVN) techniques. 

First of all, EER values in this table indicate that in most cases
the feature warping technique leads to smaller errors than MVN
(i.e. the numbers on the right-hand side of slash). Consequently, it
is considered as the default post-processing technique from now
on. Furthermore, UBM with 64 components is found to have the
best EER values mainly for both post-processing techniques.
Finally, it is evident that applying i-vectors with size 100–120

resulted in better EER values. One of the factors that affect i-vector
dimensionality is the length of the input signal. In the text-
independent speaker verification task, the dimensions of i-vectors
are considered in the range of 400–600. However, in text-prompted
speaker verification task where input signals are significantly
shorter, a size around 200 is applied [41]. Regarding signatures,
since the signal length is usually short; therefore, an appropriate i-
vector size should be <200 which our results confirm it.

To compare feature warping and MVN techniques more
intuitively, DET curves were plotted for the best cases [UBM with
64 components and 110-dimensional (110D) i-vectors] of these two
techniques in Fig. 6. According to this figure, it should be noted
that when the cost of false acceptance is more than false rejection,
the MVN technique performs better than feature warping
predominantly. 

6.2 NAP and WCCN transforms comparison

This series of experiments are going to evaluate the effect of
applying WCCN or NAP transforms for intra-class variations
reduction and using no-transform at all. In each cell of Table 2,
EER value of not using a transform (on the left-hand side) has been
separated from the value of applying the NAP transform on the
right-hand side. The results of applying the WCCN transform
appear on the left-hand side of each cell of Table 1. 

By comparing the results of these two transforms (i.e. WCCN
and NAP) from Tables 1 and 2, respectively, we conclude that
employing each of these two variation reduction techniques can
significantly increase the performance of our proposed method for
SV. Furthermore, in most cases, the WCCN transform results in

Fig. 4  t-SNE plots of genuine and forged signatures for the ten first individuals of SigWiComp2013 test set using raw i-vectors. The red circles show the
genuine signatures and the blue stars show the forged signatures

 

Fig. 5  t-SNE plot of genuine signatures of the first ten individuals of
SigWiComp2013 test set using raw i-vectors

 

Table 1 EER comparison of two post-processing
techniques using various UBM component counts and i-
vector dimensions
Dimension Mixture count

64 128 256
60 12.71/14.69 13.37/14.52 14.17/16.50
70 11.94/14.19 12.08/14.03 14.69/15.97
80 12.64/13.61 12.87/14.36 13.70/16.25
90 12.87/13.19 13.04/14.03 14.36/15.56
100 12.54/12.87 12.92/13.19 14.36/16.39
110 11.25/12.87 12.64/14.03 13.53/16.25
120 11.53/13.04 12.38/13.70 13.86/14.72
130 11.39/13.20 12.54/13.06 13.53/15.28
140 12.05/14.03 12.38/13.53 14.03/13.86
150 11.72/14.03 11.94/12.87 13.61/13.06
160 12.50/13.33 12.87/13.53 13.06/14.52
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lower EER values than the NAP. This observation is consistent
with the reported results in speaker verification domain [29].
Finally, the results indicate that these two transformation
techniques perform better for the middle range i-vector dimension
(i.e. 100–120). According to our experiments, the larger i-vectors
can improve the discrimination ability between the different
individuals’ signatures, while they are likely to lead to a reduction
in the effectiveness of the WCCN/NAP transforms, because
already the classes have been well separated in the original space
(i.e. before applying any transformation).

6.3 Using reference signatures in WCCN and NAP
transforms

In all experiments so far performed, only 11 signature types of the
training set had a contribution in the WCCN and NAP transforms
calculation. This means we applied the same transforms for all
individuals. In this experiment, for each individual in the
evaluation set, distinct WCCN and NAP transforms are computed

using her/his reference signatures and the 11 signature types of the
training set altogether. Therefore, each distinct WCCN and NAP
transforms for each individual uses 12 signature types. The results
of these experiments are shown in Table 3. We named these new
transforms WCCN-2 and NAP-2. 

From Table 3, we conclude that the individual dependent
WCCN transforms (i.e. one WCCN transform for each individual)
result in some gain. However, the amount of gain is different for
different cases. Similar to conventional WCCN results in Table 1,
the best EER value was achieved by using a 64-component UBM
and 110D i-vectors.

On the other hand, gains for the NAP-2 transform were not
consistent in all cases. In some cases, one transform for all
individuals leads to improvement in the EER, while in most cases
individual dependent transform scheme obtains some gain (i.e.
NAP-2). Overall, applying distinct transforms leads to
improvement in EER in NAP transform case as well.

Fig. 7 demonstrates the best DET curve of the different
transform techniques. 

6.4 Effects of sampling rate reduction

As explained in Section 5.1, the SigWiComp database has a
sampling rate of 200 Hz. However, there are many other databases
with a sampling rate of 100 Hz. The purpose of the experiments in
this section is to investigate the effects of sampling rate reduction
on the performance of the proposed method. Therefore, before
extracting features from the signatures, they were downsampled to
100 Hz and then all the previous experiments were performed on
them. Table 4 shows the comparative results for different cases. To
make this table smaller and clearer, only the results related to UBM
with 64 components and 110D i-vectors are shown. 

The results in Table 4 show that in most cases, on the contrary,
the downsampling improves the performance. The poorest results

Fig. 6  DET curve comparison for the feature warping and MVN
techniques (UBM with 64 components and 110D i-vectors)

 

Table 2 EER comparison based on UBM components
count and i-vector dimension in no-transform/NAP format
Dimension Mixture count

64 128 256
60 16.25/13.37 17.66/12.54 15.42/14.85
70 16.81/12.78 17.08/12.50 16.01/14.69
80 16.53/13.47 16.50/13.37 15.56/14.36
90 15.51/13.86 15.14/13.86 15.51/13.53
100 15.28/13.06 15.84/13.37 15.28/14.52
110 14.52/11.81 15.28/12.54 14.86/14.17
120 15.18/12.36 15.18/14.36 15.35/13.53
130 15.00/11.72 15.00/13.86 14.86/13.37
140 14.72/12.22 14.86/13.33 14.31/13.70
150 14.58/11.88 15.00/13.19 13.70/13.04
160 14.31/12.36 14.85/12.87 13.70/12.71
All systems used feature warping.
 

Table 3 EER comparison based on UBM components
count and i-vector dimension in WCCN-2/NAP-2 format
Dimension Mixture count

64 128 256
60 12.05/14.03 13.37/14.86 13.20/14.52
70 11.72/14.17 11.67/11.22 12.71/12.36
80 12.22/12.71 11.81/12.21 12.50/11.94
90 11.81/13.70 11.72/11.72 12.64/13.04
100 12.08/13.53 11.53/12.21 13.47/13.06
110 10.56/13.06 11.94/12.05 12.38/12.38
120 11.53/11.88 12.05/11.81 12.71/12.78
130 10.97/12.71 12.05/12.05 12.21/11.88
140 10.97/12.50 12.05/12.71 11.81/10.97
150 10.89/11.06 10.73/12.21 10.73/11.39
160 11.39/11.55 11.22/11.72 11.22/10.89
 

Fig. 7  DET curve comparison for WCCN, WCCN-2, NAP, NAP-2, and no-
transform. In each case, results are reported using the best parameters
configuration
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are for the cases where no-transform was used and the best
improvements are obtained in cases where distinct transforms were
used. Similar to the previous experiments, the best result was
achieved for the WCCN case with distinct transforms (WCCN-2).

6.5 Effects of reference set size on the performance

This experiment aims to investigate the effect of the number of
signatures in an individual's reference set on the performance. In
the SigWiComp database, there are 12 reference signatures for
each individual. Here, we randomly selected an n-element subset of
that set and used it for computing the template for each individual.
We repeated this experiment for 50 times and computed the mean
and standard deviation of EER. Figs. 8 and 9 show the plots for

mean and standard deviation obtained from this experiment. These
results were obtained using an UBM with 64 components, 110D i-
vectors, and the sampling rate of 100 Hz. As it can be seen from
these figures, in almost all cases, the increase in the size of the
reference set decreases both the mean and standard deviation of the
EERs. 

6.6 Results of the proposed SVM-based techniques

In this section, we report the results of the proposed SVM-based
decision-making approach. Here, similar to the WCCN-2/NAP-2
techniques, each individuals’ reference set is added to the SVM
training data to train an individual dependent SVM model, named
SVM-2. Table 5 represents the results of applying conventional
SVM and SVM-2-based techniques. By comparing these EER
values with corresponding values in Table 1, we realised that both
SVM-based techniques outperform the baseline approach. SVM-2
performed about 0.2% absolutely better than the conventional
SVM, though this improvement is not as much as the improvement
made by WCCN-2/NAP-2 versus WCCN/NAP. Overall, the
absolute EER improvements made by SVM and SVM-2 are about
2 and 2.2%, respectively; therefore, we conclude that the proposed
SVM-based techniques are better than the WCCN/NAP techniques
in the SV domain. 

6.7 Comparison with other methods

In this section, we compare the results of our i-vector-based
method with results of several other methods. Generally, there are
two approaches for comparing results of different studies. The first
is to implement all methods and report the results. The other
approach is to compare only the results that are obtained by
evaluating a standard database with a fixed testing scenario. In
cases where the testing conditions are the same for all studies, the
second approach is better and fairer. That is because often there are
subtleties in many studies which are not clearly explained in the
papers and this makes it difficult to obtain the same results reported
in this paper. Therefore, we used the second approach and
compared our results with the results reported in the 2013 contest
[54]. To make the comparison fairer, for each method we selected
the worst case, the average case, and the best case from the
achieved results. Table 6 shows these comparative results. In this
table, results are reported based on accuracy, FAR, and FRR unlike
the previous results. 

The results in Table 6 clearly show that the proposed method is
significantly better than other methods in practise. As a summary,
SVM has reduced the error 56% in the worst case and 68% in the
best case relatively.

6.8 Results on SVC2004 database

In this section, we are going to report the results of the proposed
method on the SVC2004 database to assess its generalisability on
other databases. For this database, we only report the results of the
best method which were obtained using SVM-based techniques.
Table 7 shows these results for both SVM and SVM-2. 

Results of Table 7 make it clear that the bigger models perform
better. This is slightly in contrast with our previous results on the
SigWiComp2013 database, where the middle range models
performed better. We believe the main reason for that is the number
of individuals in the training data. The bigger model needs more
training data to estimate its parameters properly. Here, there are 40
individuals in the training data, whereas there are 11 individuals in
the previous database. Therefore, the parameter estimation has
been performed better here, and consequently better performance
has been achieved using the biggest model.

Furthermore, less improvement has been obtained by adding
individual reference set to training data. This is due to the size of
training data as well. For the SigWiComp2013 database, adding
data would increase the size of training data about 5%, whereas for
SVC2004 the increase would be <1%. Consequently, the effect of
adding reference set is not so much.

Table 4 EER comparison for 100 and 200 Hz sampling
rates
Method Sampling rate

100 Hz 200 Hz
no-transform 14.58 14.52
NAP 11.72 11.81
WCCN 10.73 11.25
NAP-2 9.74 13.06
WCCN-2 9.31 10.56
These results come from UBM with 64 components and i-vectors with 110
dimensions.
 

Fig. 8  Mean of EERs of the proposed method for different sizes of the
reference set. In each case, the experiment was repeated 50 times with
random subset selection of the main reference set

 

Fig. 9  Standard deviation of EERs of the proposed method for different
sizes of the reference set. In each case, the experiment was repeated 50
times with random subset selection of the main reference set
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6.9 Comparison with others reported results on the SVC2004
database

Similar to the SigWiComp database, here we compare the proposed
method with several other methods on the SVC2004 database. The
comparison results are shown in Table 8. Note that some of the
methods only used five signatures as the reference set, so their
results are not fairly comparable with the other methods. 

Here also the proposed method outperforms all the others, but
its EER differences with them are not as much as in the
SigWiComp2013 database. The main reason for that is the average
length of signatures in these two databases. The average length of
signature for SVC2004 is about 230 sample points, whereas this
number for SigWiComp2013 is about 470 sample points (after
downsampling to 100 Hz). In text-independent speaker
verification, it has been proved that the i-vector method performs
better when signals are longer. It seems that it is also true for SV.
On the other hand, the DTW-based method cannot align the whole
two long signals perfectly because of error propagation. When an
error happens in the alignment, which is likely, it could be
propagated to next samples and affect the overall performance.
This is not probable to happen for the i-vector method because it
does not perform any hard alignment such as DTW.

7 Conclusion
In recent years, i-vectors have achieved the best results for speaker
verification. In this paper, we aimed at adopting this method for the
application of online SV. As a result, we proposed a method based
on i-vector which achieved better results compared with previous
methods on the SigWiComp2013 database. In this method, we used
the techniques of NAP and WCCN to reduce intra-class variations
which improved the results remarkably. In addition, we further

improved the results by using separately computed feature
transformations for each individual.

We also proposed a 2-class SVM-based technique to
discriminate genuine and forged signatures which improved the
performance of the i-vector method considerably. In this case also
applying individual dependent SVM models resulted in some gain
in the EER value. On SigWiComp2013 database, this method
achieved 8.75% EER that is the best reported result on this
database so far.

To verify the consistency of improvement of the proposed i-
vector-based method on other databases, the SVC2004 database
was also evaluated. On this database, we obtained some
improvement over other reported results, but not as much as the
SigWiComp2013 database. The individual dependent SVM-based
method reaches 5% EER in the best case. The reason for smaller
improvements on SVC2004 is the length of signatures. The
average length of signatures in SVC2004 is about half of the
SigWiComp2013 database. It has been proved that i-vector works
better for longer signals, and here we verified that is also correct
for SV. Finally, we concluded that the i-vector-based method is
able to achieve the best results for long signatures.

One of the main advantages of the proposed method is that it
represents each signature with a fixed-length vector. This enables
us to cope with this problem such as other classification problems
in machine learning which in turn will lead to newer methods being
proposed for this problem. Furthermore, possible future work
would be to investigate the use of a deep neural network classifier.

The final note about the proposed method is its speed. In the
proposed method, in the test time, after extracting some features
from the input signature, i-vector is computed using a few matrix
multiplications. Scoring and decision making are also fast, because
they are a simple cosine similarity measuring and a thresholding.
Thus, the proposed method is suitable for the practical applications,
where speed is critical. DTW-based methods usually compare the
input signature with all reference signatures which makes it much
slower than our proposed method. The i-vector-based method, in
the worst case (i.e. SVM-based method), needs about 30 ms on
average for one SV, whereas for the linear DTW method (i.e. fast
version) this number is about 3200 ms.

Table 5 EER comparison based on UBM components
count and i-vector dimension for the proposed SVM method
in SVM/SVM-2 format
Dimension Mixture count

64 128 256
60 12.2/12.1 10.7/10.4 11.1/10.9
70 12.4/12.1 10.1/10.0 10.4/10.4
80 11.6/11.4 10.6/10.1 10.4/10.3
90 10.9/10.6 9.57/9.24 9.44/9.41
100 10.4/10.3 9.24/9.17 9.24/9.24
110 9.90/9.57 9.41/9.03 10.3/10.1
120 9.90/9.57 9.03/8.75 9.41/9.41
130 9.90/9.44 9.57/9.08 9.24/9.17
140 9.74/9.58 8.89/8.75 9.08/8.89
150 10.4/10.2 9.03/8.91 8.89/8.75
160 9.90/9.90 9.31/8.91 9.17/9.17
All systems used feature warping.
 

Table 6 Comparison results of the proposed method with
three other methods on the same database [54]
Method Accuracy FAR FRR
Qatar University 70.55 30.22 29.56
Sabanci University-1 72.55 27.37 27.56
Sabanci University-2 72.47 27.50 27.56
NAP-2 worst case 84.92 15.14 15.02
NAP-2 average 87.62 12.41 12.35
NAP-2 best case 89.06 10.97 10.89
WCCN-2 worst case 86.58 13.47 13.37
WCCN-2 average 88.05 11.99 11.91
WCCN-2 best case 89.37 10.69 10.56
SVM-2 worst case 87.93 12.08 12.05
SVM-2 average 90.22 9.81 9.75
SVM-2 best case 91.25 8.75 8.75
 

Table 7 EER comparison based on UBM components
count and i-vector dimension for the proposed SVM-based
technique on SVC2004 database in SVM/SVM-2 format
Dimension Mixture count

64 128 256
50 7.75/7.38 8.25/7.78 7.38/7.13
100 7.78/7.50 7.75/7.38 6.63/6.38
150 6.94/6.94 6.63/6.61 5.56/5.25
200 7.22/7.22 6.50/6.39 5.38/5.38
250 7.22/7.22 6.25/6.13 5.28/5.28
300 7.09/6.15 6.25/6.11 5.00/5.00
 

Table 8 Comparison of the results of the proposed method
with several others reported results on the SVC2004
database
Method Number of samples EER
DTW [17] 5 6.96
HMM [21] 5 6.90
DTW + HMM [57] 5 10.9
wavelet packet [58] 5 6.65
wavelet transform + DCT [59] 10 6.37
length norm + fractional distance [18] 10 5.82
DCT + sparse representation [9] 10 5.61
proposed SVM-2 10 5.00
Second column shows the number of samples used as the individual's reference set.
 

IET Biom., 2018, Vol. 7 Iss. 5, pp. 405-414
© The Institution of Engineering and Technology 2017

413



8 Acknowledgment
The authors thank Muhammad Imran Malik for providing them
with the data set to do the experiments.

9 References
[1] Li, S.Z., Jain, A.: ‘Encyclopedia of biometrics’ (Springer Publishing

Company, Incorporated, New York, US, 2015, 2nd edn.)
[2] Plamondon, R., Lorette, G.: ‘Automatic signature verification and writer

identification: the state of the art’, Pattern Recognit., 1989, 22, (2), pp. 107–
131

[3] Impedovo, D., Pirlo, G.: ‘Automatic signature verification: the state of the
art’, IEEE Trans. Syst. Man Cybern. C, 2008, 38, (5), pp. 609–635

[4] Kalera, M.K., Srihari, S., Xu, A.: ‘Offline signature verification and
identification using distance statistics’, Int. J. Pattern Recognit. Artif. Intell.,
2004, 18, (07), pp. 1339–1360

[5] Singh, J., Sharma, M.: ‘Offline signature verification using neural networks’,
i-Manager's J. Inf. Technol., 2012, 1, (4), p. 35

[6] Daramola, S.A., Ibiyemi, T.S.: ‘Offline signature recognition using hidden
Markov model (HMM)’, Int. J. Comput. Appl., 2010, 10, (2), pp. 17–22

[7] Fierrez-Aguilar, J., Nanni, L., Lopez-Peñalba, J., et al.: ‘An on-line signature
verification system based on fusion of local and global information’. Audio
and Video-based Biometric Person Authentication, 2005, pp. 523–532

[8] Nanni, L.: ‘An advanced multi-matcher method for on-line signature
verification featuring global features and tokenised random numbers’,
Neurocomputing, 2006, 69, (16), pp. 2402–2406

[9] Liu, Y., Yang, Z., Yang, L.: ‘Online signature verification based on DCT and
sparse representation’, IEEE Trans. Cybern., 2015, 45, (11), pp. 2498–2511

[10] Jain, A.K., Griess, F.D., Connell, S.D.: ‘On-line signature verification’,
Pattern Recognit., 2002, 35, (12), pp. 2963–2972

[11] Lee, L.L., Berger, T., Aviczer, E.: ‘Reliable online human signature
verification systems’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, (6),
pp. 643–647

[12] Nanni, L., Lumini, A.: ‘Ensemble of Parzen window classifiers for on-line
signature verification’, Neurocomputing, 2005, 68, pp. 217–224

[13] Lei, H., Govindaraju, V.: ‘A comparative study on the consistency of features
in on-line signature verification’, Pattern Recognit. Lett., 2005, 26, (15), pp.
2483–2489

[14] Richiardi, J., Ketabdar, H., Drygajlo, A.: ‘Local and global feature selection
for on-line signature verification’. 2005 Proc. Eighth Int. Conf. Document
analysis and recognition, 2005, pp. 625–629

[15] Nanni, L.: ‘Experimental comparison of one-class classifiers for online
signature verification’, Neurocomputing, 2006, 69, (7), pp. 869–873

[16] Lejtman, D.Z., George, S.E.: ‘On-line handwritten signature verification using
wavelets and back-propagation neural networks’. 2001 Proc. Sixth Int. Conf.
Document Analysis and Recognition, 2001, pp. 992–996

[17] Kholmatov, A., Yanikoglu, B.: ‘Identity authentication using improved online
signature verification method’, Pattern Recognit. Lett., 2005, 26, (15), pp.
2400–2408

[18] Vivaracho-Pascual, C., Faundez-Zanuy, M., Pascual, J.M.: ‘An efficient low
cost approach for on-line signature recognition based on length normalization
and fractional distances’, Pattern Recognit., 2009, 42, (1), pp. 183–193

[19] Sato, Y., Kogure, K.: ‘Online signature verification based on shape, motion,
and writing pressure’. Proc. Sixth Int. Conf. Pattern Recognition, 1982, pp.
823–826

[20] Martens, R., Claesen, L.: ‘Dynamic programming optimisation for on-line
signature verification’. 1997 Proc. Fourth Int. Conf. Document Analysis and
Recognition, 1997, vol. 2, pp. 653–656

[21] Fierrez, J., Ortega-Garcia, J., Ramos, D., et al.: ‘HMM-based on-line
signature verification: feature extraction and signature modeling’, Pattern
Recognit. Lett., 2007, 28, (16), pp. 2325–2334

[22] Dolfing, J., Aarts, E., Van Oosterhout, J.: ‘On-line signature verification with
hidden Markov models’. 1998 Proc. Fourteenth Int. Conf. Pattern
Recognition, 1998, vol. 2, pp. 1309–1312

[23] Van, B.L., Garcia-Salicetti, S., Dorizzi, B.: ‘On using the Viterbi path along
with HMM likelihood information for online signature verification’, IEEE
Trans. Syst. Man Cybern. B, Cybern., 2007, 37, (5), pp. 1237–1247

[24] Rúa, E.A., Castro, J.L.A.: ‘Online signature verification based on generative
models’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2012, 42, (4), pp. 1231–
1242

[25] Yang, L., Widjaja, B., Prasad, R.: ‘Application of hidden Markov models for
signature verification’, Pattern Recognit., 1995, 28, (2), pp. 161–170

[26] Richiardi, J., Drygajlo, A.: ‘Gaussian mixture models for on-line signature
verification’. Proc. 2003 ACM SIGMM Workshop on Biometrics Methods
and Applications, 2003, pp. 115–122

[27] Miguel-Hurtado, O., Mengibar-Pozo, L., Lorenz, M.G., et al.: ‘Online
signature verification by dynamic time warping and Gaussian mixture
models’. 2007 41st Annual IEEE Int. Carnahan Conf. Security Technology,
2007, pp. 23–29

[28] Humm, A., Hennebert, J., Ingold, R.: ‘Gaussian mixture models for chasm
signature verification’. Machine Learning for Multimodal Interaction, 2006,
pp. 102–113

[29] Dehak, N., Kenny, P., Dehak, R., et al.: ‘Front-end factor analysis for speaker
verification’, IEEE Trans. Audio Speech Lang. Process., 2011, 19, (4), pp.
788–798

[30] Dehak, N., Torres-Carrasquillo, P.A., Reynolds, D.A., et al.: ‘Language
recognition via i-vectors and dimensionality reduction’. InterSpeech, 2011,
pp. 857–860

[31] Martınez, D., Plchot, O., Burget, L., et al.: ‘Language recognition in i-vectors
space’. InterSpeech, 2011, pp. 861–864

[32] Bahari, M.H., Saeidi, R., Van Leeuwen, D., et al.: ‘Accent recognition using
i-vector, Gaussian mean supervector and Gaussian posterior probability
supervector for spontaneous telephone speech’. IEEE Int. Conf. Acoustics,
Speech and Signal Processing (ICASSP), 2013, pp. 7344–7348

[33] Xia, R., Liu, Y.: ‘Using i-vector space model for emotion recognition’.
InterSpeech, 2012

[34] Khaki, H., Erzin, E.: ‘Continuous emotion tracking using total variability
space’. InterSpeech, 2015

[35] Eghbal-zadeh, H., Lehner, B., Dorfer, M., et al.: ‘CP-JKU submissions for
DCASE-2016: a hybrid approach using binaural i-vectors and deep
convolutional neural networks’, 2016

[36] Kenny, P., Boulianne, G., Ouellet, P., et al.: ‘Joint factor analysis versus
eigenchannels in speaker recognition’, IEEE Trans. Audio Speech Lang.
Process., 2007, 15, (4), pp. 1435–1447

[37] Kenny, P., Ouellet, P., Dehak, N., et al.: ‘A study of interspeaker variability in
speaker verification’, IEEE Trans. Audio Speech Lang. Process., 2008, 16,
(5), pp. 980–988

[38] Kenny, P., Boulianne, G., Dumouchel, P.: ‘Eigenvoice modeling with sparse
training data’, IEEE Trans. Speech Audio Process., 2005, 13, (3), pp. 345–354

[39] Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: ‘Speaker verification using
adapted Gaussian mixture models’, Digit. Signal Process., 2000, 10, (1), pp.
19–41

[40] Zeinali, H., Mirian, A., Sameti, H., et al.: ‘Non-speaker information reduction
from cosine similarity scoring in i-vector based speaker verification’, Comput.
Electr. Eng., 2015, 48, pp. 226–238

[41] Zeinali, H., Kalantari, E., Sameti, H., et al.: ‘Telephony text-prompted
speaker verification using i-vector representation’. IEEE Int. Conf. Acoustics,
Speech and Signal Processing (ICASSP), 2015, pp. 4839–4843

[42] Zeinali, H., Sameti, H., Burget, L., et al.: ‘i-vector/HMM based text-
dependent speaker verification system for RedDots challenge’. InterSpeech,
2016, pp. 440–444

[43] Zeinali, H., Sameti, H., Burget, Č.J., et al. ‘Text-dependent speaker
verification based on i-vectors, deep neural networks and hidden Markov
models’, Comput. Speech Lang., 2017, 46, pp. 53–71

[44] Campbell, W.M., Sturim, D.E., Reynolds, D.A., et al.: ‘SVM based speaker
verification using a GMM supervector kernel and NAP variability
compensation’. IEEE Int. Conf. Acoustics, Speech and Signal Processing
(ICASSP), 2006, pp. 97–100

[45] Solomonoff, A., Quillen, C., Campbell, W.M.: ‘Channel compensation for
SVM speaker recognition’. Odyssey – The Speaker and Language
Recognition Workshop, 2004, vol. 4, pp. 219–226

[46] Solomonoff, A., Campbell, W.M., Boardman, I.: ‘Advances in channel
compensation for SVM speaker recognition’. IEEE Int. Conf. Acoustics,
Speech and Signal Processing (ICASSP), 2005, pp. 629–632

[47] Hatch, A.O., Kajarekar, S.S., Stolcke, A.: ‘Within-class covariance
normalization for SVM-based speaker recognition’, InterSpeech, 2006, p.
1874

[48] Dehak, N., Kenny, P., Dehak, R., et al.: ‘Support vector machines and joint
factor analysis for speaker verification’. IEEE Int. Conf. Acoustics, Speech
and Signal Processing (ICASSP), 2009, pp. 4237–4240

[49] Maaten, L.V.D., Hinton, G.: ‘Visualizing data using t-SNE’, J. Mach. Learn.
Res., 2008, 9, (Nov), pp. 2579–2605

[50] Young, S., Evermann, G., Gales, M., et al.: ‘The HTK book’, vol. 2
(Cambridge University Press, Cambridge University, London, UK, 1997)

[51] Zeinali, H., Sameti, H., Burget, L.: ‘HMM-based phrase-independent i-vector
extractor for text-dependent speaker verification’, IEEE/ACM Trans. Audio
Speech Lang. Process., 2017, 25, (7), pp. 1421–1435

[52] Nautsch, A., Rathgeb, C., Busch, C.: ‘Bridging gaps: an application of feature
warping to online signature verification’. 2014 Int. Carnahan Conf. Security
Technology (ICCST), 2014, pp. 1–6

[53] Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., et al.: ‘MCYT baseline
corpus: a bimodal biometric database’, IEE Proc., Vis. Image Signal Process.,
2003, 150, (6), pp. 395–401

[54] Malik, M.I., Liwicki, M., Alewijnse, L., et al.: ‘ICDAR 2013 competitions on
signature verification and writer identification for on-and offline skilled
forgeries (SigWiComp2013)’. 2013 12th Int. Conf. Document Analysis and
Recognition (ICDAR), 2013, pp. 1477–1483

[55] Yeung, D.-Y., Chang, H., Xiong, Y., et al.: ‘SVC2004: first international
signature verification competition’, Biometric Authentication, 2004, pp. 16–
22

[56] Kholmatov, A., Yanikoglu, B.: ‘SUSIG: an on-line signature database,
associated protocols and benchmark results’, Pattern Anal. Appl., 2009, 12,
(3), pp. 227–236

[57] Fierrez-Aguilar, J., Krawczyk, S., Ortega-Garcia, J., et al.: ‘Fusion of local
and regional approaches for on-line signature verification Advances in
Biometric Person Authentication, 2005, pp. 188–196

[58] Wang, K., Wang, Y., Zhang, Z.: ‘On-line signature verification using wavelet
packet’. 2011 Int. Joint Conf. Biometrics (IJCB), 2011, pp. 1–6

[59] Nanni, L., Lumini, A.: ‘A novel local on-line signature verification system’,
Pattern Recognit. Lett., 2008, 29, (5), pp. 559–568

414 IET Biom., 2018, Vol. 7 Iss. 5, pp. 405-414
© The Institution of Engineering and Technology 2017


