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a b s t r a c t

This paper proposes a disturbance-observer-based fuzzy model predictive control (DOBFMPC) scheme
for the nonlinear process subject to disturbances and input constraints. The proposed control scheme
is composed of the baseline fuzzy model predictive control (FMPC) law designed on the Takagi–Sugeno
fuzzy model and the disturbance compensation law. To build a fuzzy model of appropriate complexity
and accuracy for the nonlinear process model, a systematic approach is developed via the gap metric to
determine the linearization points. With FMPC, the asymptotic stability is theoretically proved, and the
input constraints are satisfied by both the free control variables and the future control inputs in the form
of the state feedback law. The disturbance compensation gain is designed such that the influence of the
disturbance is removed from the output channels by the composite DOBFMPC law at the steady state. The
application to a subcritical boiler–turbine system demonstrate the effectiveness of the proposed control
scheme.

© 2019 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, industrial processes are faced with more and more
stringent requirement on the safety and efficiency in operation. In
order to meet the requirement, plants are often regulated by the
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conventional proportional–integral–derivative (PID) controller [1–
3]. However, the PID controller becomes ineffective when the pro-
cess behaviours, such as the tight input constraint, the severe non-
linearity over thewide operation range, anddisturbances including
external disturbances and model uncertainties, are considered [2–
6]. Therefore, it is imperative to develop new control schemes to
improve the control performance of the nonlinear process.

Model predictive control (MPC) can deal with the input con-
straint at the synthesis stage and is therefore becoming a prevailing
process controlmethod [7–9]. In [7], the dynamicmatrix controller
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is developed based on the step response model of the nonlinear
process. In [8,9], the generalized predictive controller is proposed
for the nonlinear processes based on the controlled auto-regressive
integrated moving average model. The simulation results demon-
strate the linear MPCs can achieve better control performance
compared with the PID controller. However, the linear MPC may
nomore meet the design specification in the wide operation range
due to the nonlinearity of the process. In light of this, the nonlinear
MPC controller with the nonlinear numerical optimization at each
sampling instant is proposed [10,11]. In [12], the nonlinear MPC
algorithm is developedbased on the successive online linearization
of the original nonlinear model. Although the control performance
is improved, the nonlinear MPCs are quite time consuming due to
the nonlinear optimization and the online linearization.

To reduce the computational effort, the Takagi–Sugeno (T–S)
fuzzy model [13], which blends several local linear models with
the membership function to approximate the nonlinear behaviour
of the plant, has been widely used in the nonlinear controller
design [14,15]. As an universal approximator, the T–S fuzzy model
can approximate any smooth function to arbitrary accuracy with
enough rules [16,17]. However, with the rule number increasing,
the complexity of the fuzzy model and therefore the computa-
tional burden of the model-based controller will also increase.
Hence, it should be careful to determine the linearization points.
However, for the conventional fuzzy modelling, the linearization
points are determined either by experience [18], or by investigat-
ing the nonlinearity of the plant at only a few common operation
points [14,19]. Therefore, there is a lack of the systematic method
to determine the linearization points for the T–S fuzzy modelling.

Based on the fuzzy model, the fuzzy MPC scheme is proposed
for the nonlinear system [14,15,19]. In spite of the effectiveness
of the fuzzy MPC, they alone cannot deal with the disturbance.
To improve the robustness of the nonlinear control system to
the disturbance, the disturbance-observer-based control (DOBC)
is proposed [20–22]. In this scheme, a baseline controller is first
independently designed on the nominal plant, and a disturbance
compensation law is then added to counteract the adverse effect of
the disturbancewith the estimate by the disturbance observer. The
compensation law is a ‘patch’ for the baseline controller to achieve
the promising robustness, and disappears if there exists no dis-
turbance, thus recovering the nominal control performance [23].
With the idea of DOBC method, the disturbance-observer-based
MPC schemes are proposed to deal with the matched and the
mismatched disturbance by combining MPC with the disturbance
observer [24–27]. Although the schemes are effective, they are
designed on the nonlinearmodel or the online linearizationmodel,
which increases the computational complexity of the control al-
gorithms. This hence motives us to integrate the fuzzy MPC as
the baseline controller of the DOBC. However, besides the lack of
robustness as mentioned above, the existing fuzzy MPCs do not
completely consider the input constraint, either. In [14,19], the
control formulations only consider the inputmagnitude constraint,
and in [15], the input constraint is imposed on the free control
input only, ignoring the future control input in the form of state
feedback law.

Inspired by all the analysis above, this paper proposes a
disturbance-observer-based fuzzy model predictive control
(DOBFMPC) scheme for the nonlinear process subject to the distur-
bance and input constraint. The T–S fuzzy model is first obtained
with the nonlinear model by combining the local linear models
at the linearization points. To represent the actual process, a
disturbance model is then developed by integrating a disturbance
term into the fuzzy model to accommodate the disturbance [28].
The DOBFMPC scheme is composed of the baseline fuzzy model
predictive controller (FMPC) and the disturbance compensation

law. The effectiveness of the proposed control scheme is demon-
strated by the application to a 300 MW subcritical boiler–turbine
system (BTS). The main contributions of this work are as follows:

(1) A systematic gap-based method is proposed to determine
the linearization points by the nonlinearity analysis along a series
of equilibrium points, such that a T–S fuzzy model of appropriate
complexity and accuracy is built for the nonlinear process model.
These will be presented in Section 2.

(2) The baseline FMPC law is designed such that the closed-
loop system is asymptotically stable, while the input constraint is
satisfied by both the free control variable and the future control
input in the form of the state feedback law. Thesewill be presented
in Section 3.1 and Theorem 1.

(3) The other main theoretical contribution of this work is that
the design method of the disturbance compensation gain is devel-
oped, so that the influence of the disturbance can be removed from
the output channels by the composite DOBFMPC law at the steady
state. The content will be shown in Section 3.2 and Theorem 2.

The rest of this paper is organized as follows. The Gap-based
T–S fuzzy modelling technique for the nonlinear system is shown
in Section 2. The DOBMPC scheme is developed in Section 3 and
applied to the subcritical BTS in Section 4. Main conclusions are
drawn in Section 5.

Notation: For any symmetricmatrixA,A> 0meansA is positive
definite. For any two symmetric matrices A and B, A > B means
that A–B is positive definite. I is the identity matrix of appropriate
dimensions. A star (*) in amatrix indicates the transposed elements
in the symmetric position. The symbol⊗ represents the Kronecker
product. The mapping σ transforms a matrix into a column vector
by transposing each row of the matrix from the first to the last,
and σ−1 is the inverse mapping of σ.xk+i|k is the predicted states
at time instant k + i based on the current state xk. For normalized
membership functions wi, the antecedent variable z, and matrices
Xi

wi := wi (zk) , Xz :=

∑
i

wiXi, X−1
z :=

(∑
i

wiXi

)−1

;

wi+ := wi (zk+1) , Xz+ :=

∑
i

wi+Xi, X−1
z+ :=

(∑
i

wi+Xi

)−1

.

2. Gap-based T–S fuzzy modelling

Consider the nonlinear plant described by{
ẋ = f (x, u)
y = Cx (1)

where x ∈ ℜ
n, u ∈ ℜ

m and y ∈ ℜ
p denotes the state, control

input and output vectors, f (·) is a nonlinear vector function, and
C ∈ ℜ

p×n is a constant matrix.
The T–S fuzzy model for (1) is usually described as a collection

of IF-Then rules of the following form
ri: if zk is Γ i, then{

xk+1 = Aixk + Biuk + R i
yk = Cxk

, i = 1, 2, . . . .,N (2)

where ri denotes the ith rule, N the rule number, z the antecedent
variable, Γ i the ith fuzzy set, Ai and Bi the system matrices, Ri a
constant vector and k the kth sampling instant.

In order to develop a satisfactory fuzzy model for the nonlinear
system, a systematic gap-based approach is proposed in this paper
to determine the linearization points in which the gap metric is
applied to investigate the systemnonlinearity [29]. Specifically, the
proposed approach is as follows.
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Step1:Determine the equilibriumpoints of the nonlinearmodel
(1) in an interval δ over the operation range [zmin, zmax] and set the
gap threshold ε [30].

Step 2: Select the first linearization point z1 from the equilib-
rium points such that the maximum gap value in [zmin, z1] equals
to that in [z1, zmax]. If the maximum gap value is less than the gap
threshold ε, the procedure ends. Otherwise, choose a point from
[zmin, z1] as z1,LMP between which and z1 the gap value is ε, and
meanwhile choose a point from [z1, zmax] as z1,RMP between which
and z1 the gap value is also ε. Then, set z1,LRP = z1, z1,LMP = z1,
z1,RLP = z1 and z1,RMP = z1 and go to step 3.

Step 3: Determine the ith left linearization point zi,L from[
zmin, zi,LMP

]
(i ≥ 1) such that the gap value between it and zi,LMP

is ε. If there exists no such point, go to Step 4; otherwise, choose a
point from

[
zmin, zi,L

]
as zi+1,LMP between which and zi,L the gap is

ε, then set i = i+1, and repeat Step 3. If zi+1,LMP does not exist, go
to Step 4.

Step 4: Determine the jth right linearization point zj,R from[
zj,RMP, zmax

]
(j ≥ 1) such that the gap value between it and zj,RMP

is ε. If there exists no such point, the procedure ends; otherwise,
choose a point from

[
zj,R, zmax

]
as zj+1,RMP between which and zj,R

the gap is ε, then set j = j+1, and repeat Step 4. If zj+1,RMP does not
exist, the procedure ends.

Remark 1. Compared with [18,19], the gap-based approach is
systematic, since it calculates all the gap values between any two
linearized models at a series of equilibrium points other than only
a few common operation points, and determines the linearization
points with the gap threshold other than designates them by the
experience. The basic idea behind this approach is to ensure that
each local model (2) obtained by the linearization of the nonlinear
model at the linearization points canwell describe the dynamics of
the nonlinear model over the corresponding local operation range.

With the Taylor series of the nonlinearmodel around the deter-
mined linearization points and the discretization technique [31],
the local models (2) are obtained. Then the T–S fuzzy model is
developed{
xk+1 = Azxk + Bzuk + Rz
yk = Cxk

(3)

where Az =
∑N

i=1 wiAi with the membership functions wi, wi ≥ 0,∑N
i=1 wi= 1, and Bz and Rz are defined similarly.
Since the fuzzymodel is impossible to be identicalwith the non-

linear model, and external disturbances, unmodelled dynamics,
and parameter variations inevitably exist in practice, a disturbance
model is developed as follows by integrating an extra disturbance
term d ∈ ℜ

s into the fuzzy model to lump the effect and thus
represents the actual nonlinear process{
xk+1 = Azxk + Bzuk + Rz + Gdzdk
yk = Cxk

(4)

where Gdz =
∑N

i=1 wi ∗Gd,i with the disturbance gainmatrix of the
ith local model Gd,i.

The input constraints are denoted as{
umin < uk < umax
∆umin < ∆uk < ∆umax

(5)

Remark 2. In (4), if Gd,i = γ Bi, γ ∈ ℜ, i = 1, 2,. . . , N, i.e., the
disturbance d enters the system through the same channels as the
control input, d is the matched disturbance; otherwise, d is the
mismatched disturbance [32].

To establish the proposed the control scheme, some assump-
tions are made as follows.

Assumption 1. The disturbance d is slowly time-varying and
reaches an constant value at the steady state, i.e., limk→∞

(dk+1 − dk) = limk→∞∆dk = 0.

Assumption 2. The desired output trajectory reference is piece-
wise constant.

3. Disturbance-observer-based fuzzy model predictive control
of nonlinear processes

The proposed DOBFMPC scheme for the nonlinear process sub-
ject to disturbances and input constraints is shown in Fig. 1. The
baseline FMPC law un is designed based on the fuzzy model (3).
The compensation law ud is determined by combining the com-
pensation gain K c with the disturbance estimate d̂. By adding
the compensation law to the baseline control law, the composite
DOBFMPC law u is obtained, namely

u = un + ud = un + Kc d̂. (6)

3.1. Baseline fuzzy model predictive control law

With the fuzzy model (3), we get[
I − Az −Bz

C 0

][
xe,k
ue,k

]
=

[
Rz
yr

]
(7)

where xe,k and ue,k are the equilibrium values of the state and
input vectors to be determined; yr is the desired output trajectory
reference.

Then by subtracting (7) from (3), the following result is obtained

{
⌢xk+1 = Az

⌢xk + Bz
⌢uk

⌢yk = C⌢xk
(8)

where ⌢xk = xk − xe,k, ⌢uk = uk − ue,k and ⌢yk = yk − yr are the
shifted state, input and output vectors, respectively.

As in [33], the following infinite-horizon objective function is
applied

J∞0,k =

∞∑
i=0

[
⌢xT
k+i|kQ

⌢xk+i|k +
⌢uT
k+i|kR

⌢uk+i|k
]

(9)

where Q and R are positive define symmetric weighting matrices
for the shifted states and inputs, respectively. Then the baseline
FMPC law is determined by the following proposed theorem and
the detailed proof is given in Appendix A.

Theorem1. Consider the fuzzy system (3) under the input constraints
(5) in which ∆umin < 0 and ∆umax > 0. If there exist a control
move ⌢uk|k, matrices Yi, Gi, slack matrices Q l

ij =
(
Q l
ji

)T , symmetric
matrices S̃i > 0, Q l

ii and an upper bound of the infinite-horizon object
function γ , i, j, l = 1, 2, . . . ,N, such that the following semidefinite
programming problem is feasible:

min
⌢u k|k,Yi,Gi,Q l

ij,S̃i,γ
γ (10)

s.t (11)–(18)

then a free control input un,k =
⌢uk|k + ue,k and a nonparallel

distributed compensation (non-PDC) law un,k+i|k = −YzG−1
z

⌢xk+i|k +

ue,k, i = 1 can be determined such that both of them satisfy the input
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Fig. 1. The DOBFMPC scheme for the nonlinear process.

constraints and the resulting closed-loop system is asymptotically
stable.

nl =

⎡⎢⎢⎢⎣
1 (∗) (∗) (∗)

Al,k
⌢xk|k + Bl,k

⌢uk|k S̃l/2 0 0
Q 1/2⌢xk|k 0 γ I 0
R1/2⌢uk|k 0 0 γ I

⎤⎥⎥⎥⎦ > 0, l = 1, 2, . . . ,N

(11)

r lii ≥ Q l
ii, i, l = 1, 2, . . . ,N (12)

r lij + r lji ≥ Q l
ij + Q l

ji, j > i, i, j, l = 1, 2, . . . ,N (13)

Ψl =

⎡⎢⎢⎢⎢⎣
Q l
11 Q l

12 · · · Q l
1N

Q l
21 Q l

22 · · · Q l
2N

...
...

. . .
...

Q l
N1 · · · Q l

N(N−1) Q l
NN

⎤⎥⎥⎥⎥⎦ > 0, l = 1, 2, . . . ,N (14)

umin − ue,k ≤
⌢uk|k ≤ umax − ue,k (15)

∆umin + un,k−1 − ue,k ≤
⌢uk|k ≤ ∆umax + un,k−1 − ue,k (16)

q1,i > 0, i = 1, 2, . . . ,N (17)

q2,i > 0, i = 1, 2, . . . ,N (18)

where

r lij =

⎡⎢⎢⎢⎣
Gi + GT

i − S̃i (∗) (∗) (∗)

AiGj − BiYj S̃l 0 0
Q 1/2Gi 0 γ I 0
R1/2Yi 0 0 γ I

⎤⎥⎥⎥⎦, i, j, l = 1, 2, . . . ,N (19)

q1,i =

[
Gi + GT

i − S̃i (∗)
Yi W1

]
, i = 1, 2, . . . ,N

q2,i =

[
Gi + GT

i − S̃i (∗)
Yi W2

]
, i = 1, 2, . . . ,N

and S̃i = Si/γ , W1, and W2 are diagonal matrices with the compo-
nentsW1,jj = ū2

j , andW2,jj =
(
ūd,j/2

)2, and ū = min
{⏐⏐umax−ue,k

⏐⏐ ,⏐⏐umin − ue,k
⏐⏐}, ūd = min {|∆umax| , |∆umin|}, i = 1, 2, . . . , p, j =

1, 2, . . . ,m.

Remark 3. In Theorem 1, the infinite-horizon control inputs are
divided into the free control variables and the feedback control law

to improve the system performance [14,33–35]. Since the compu-
tational effort increaseswith the number of the free control inputs,
only the first control input is set as the free control variable [15].
In addition, to relax the conservatism of the stability condition,
the feedback law adopts the non-PDC law and the nonquadratic
Lyapunov function is applied [36].

Remark 4. The roles of the linear matrix inequalities (LMIs) (11)–
(18) are as follows: (11) ensures γ is the upper bound of the
infinite-horizon objective function (9); (12)–(13) together with
(14) guarantee the asymptotic stability of the closed-loop system;
(15) and (17) ensure the satisfaction of the magnitude constraint
for the free control variables and the future control inputs in non-
PDC law, respectively; (16) and (18) deal with the incremental
constraint of the free control variables and the future control
inputs, respectively.

3.2. Disturbance-observer-based fuzzy model predictive control law

Since the disturbance dk is unknown, a disturbance observer is
designed [37]{
d̂k = τk + Lxk
τk+1 = τk − L

[
(Az − I) xk + Bzuk + Rz + Gdz d̂k

] (20)

where the symbol ‘‘∧’’ represents the estimation, τ ∈ ℜ
s is

the internal state vector and L is the observer gain matrix to be
determined. Then thedynamics of the disturbance estimation error
is

d̃k+1 = (I − LGdz) d̃k + ∆dk (21)

where the symbol ‘‘∼’’ denotes the estimation error.
Suppose Assumption 1 is satisfied, and L is designed to be

L = (I − Λ)G+

dz

where G+

dz =
(
GT
dzGdz

)−1 GT
dz is the left pseudo-inverse of Gdz and

Λ = diag{λ1,. . . ,λs} with | Λj | < 1, j = 1,. . . ,s, the error system
(21) is then asymptotically stable, which indicates the disturbance
estimate d̂ tracks the disturbance d asymptotically [32].

Next, we develop the design method for the disturbance com-
pensation gain in the following Theorem 2, and thus the DOBFMPC
law (6) can be determined. The detailed proof of Theorem2 is given
in Appendix B.

Theorem 2. Suppose the asymptotic tracking of the disturbance es-
timate is guaranteed, and Assumption 2 is satisfied. If there exists a
vector α ∈ ℜ

m∗s satisfying the following linear equations

(Bi ⊗ I) α = σ
(
−Gd,i

)
, i = 1, 2, . . . ,N. (22)

Then considering the fuzzy system (4) with the composite DOBFMPC
law (6), if the disturbance compensation gain

Kc = σ−1 (α) , (23)

the effect of the disturbance can be removed from the output channels
at the steady state.
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Remark 5. The design method of the disturbance observer gain
in Theorem 2 is applicable to both the matched and mismatched
disturbance cases [23]. In particular, in the matched disturbance
case, it can be directly obtained that K c = −γ I.

4. Simulation example

In this section, the proposed DOBFMPC scheme is applied to a
300 MW subcritical BTS. The dynamics of the BTS is described as a
fourth-order nonlinear model [38]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −0.01x1 + 2.623x2u1

ẋ2 = 0.0428(0.0138x32 + 0.15x3 + 4.17)
√
x3 − x2

− 0.0451x2u1

ẋ3 =
20237.25x4 − 1669.8x1 − 318.28

175.39(1.06x3 − 5.16)(−1.434x32 + 13.578x3 + 1547)

−
73.8(0.0138x32 + 0.15x3 + 4.17)

√
x3 − x2

175.39(1.06x3 − 5.16)
ẋ4 = −0.005x4 + 0.005u2

y1 = x1
y2 = x2

(24)

where, the state variables x1, x2, x3 and x4 denote the electric power
P (MW), throttle steam pressure PT (MPa), drum steam pressure
PD (MPa) and the flow rate of pulverized coal entering the furnace
Dcf (kg/s), respectively; the control inputs u1 and u2 are the turbine
throttle valve opening uT and the flow rate of the feed coal uB (kg/s),
respectively; the outputs y1 and y2 are the electric power P (MW)
and throttle pressure PT (MPa), respectively.

Because of the physical limits of the actuator, there exist con-
straints on both the magnitude and change rate of the control
inputs. According to the actuator specification and the operation
demand, the input constraints are as follows:⎧⎪⎪⎨⎪⎪⎩

0 ≤ u1 ≤ 1
0 ≤ u2 ≤ 45
−0.015 ≤ u̇1 ≤ 0.015
−2 ≤ u̇2 ≤ 2

(25)

4.1. T–S fuzzy model of the subcritical BTS

In order to develop the T–S fuzzymodel of the BTS, the proposed
gap-based approach is applied to determine the linearizationpoint,
in which P is chosen to be the premise variable and meanwhile
represent the equilibrium point, since all the other state variables
depend on it. The operation range under consideration is confined
to [150 MW, 300 MW], and the interval δ is set as 5 MW to fully
investigate the nonlinearity of the BTS dynamics. The gap threshold
ε is chosen to be 0.06, and three linearization points are deter-
mined, namely [170 MW, 225 MW, 280 MW], as shown in Fig. 2.
The distance between adjacent linearization points are equal, since
the gap values increase nearly linearly with the distance between
equilibrium points. With the sampling time 1 s, the local discrete
models (2) at the linearization points are obtained, and then the
T–S fuzzymodel (3) is built with themembership functions shown
in Fig. 3.

Fig. 4 shows the simulation results of the T–S fuzzy model
and the nonlinear model, the plant data and the plant set points
for two consecutive days. It is noted that the simulation result
of the nonlinear model agrees well with the plant data, and the
behaviours of the fuzzy model and the nonlinear model are nearly
identical over the wide operation range. Therefore, the nonlinear
model well describes the dynamics of the BTS, and the fuzzymodel
has high approximation accuracy for the nonlinearmodel. It is then

concluded that the fuzzy model can capture the dynamics of the
BTS in a wide operation range, which is verified by subgraphs (a.3)
and (b.3). Besides, it is obvious that the PID controller adopted in
the subcritical power plant has a very poor performance, since the
overshoot for the throttle pressure reaches up to 1.8MPa as shown
in the subgraph (b.4). Therefore, it is necessary to propose a new
control scheme to improve the control performance of the BTS.

4.2. Dobfmpc of the subcritical bts

In this subsection, the DOBFMPC scheme is applied to the sub-
critical BTS. The sampling time is 1 s, and in the input constraints
(5), the bounds umin = [0;0], umax = [1;45], umin = [−0.015; −2],
and umax = [0.015;2] according to (25). The weighting matrices Q
= diag (1, 50, 50, 1) and R = diag (1, 1). Besides, the disturbance
gain matrices Gd,i = Bi, i = 1, . . . ,N, i.e., the matched disturbance
case is considered, and Λ = diag{0.5,0.5}, z0 = [0;0].

In order to test the control performance of the DOBFMPC over
a wide operation range, the first case is designed in which the BTS
is under a ramp-type load change. The case assumes from t = 200
s to t = 750 s, the set points of the electric power and the throttle
pressure change linearly from (225 MW, 14.95 MPa) to (280 MW,
17.47 MPa) and then from t = 1500 s to t = 2600 s, change
linearly to (170 MW, 11.99 MPa). The load change rate is set to 0.1
MW/s, namely 2% of the nominal load perminute, according to [39]
and the practice. The proposed control strategy is compared with
another two controllers:

(1) the regular PID controller adopted in the power plant. The
controller parameters are tuned at the (225MW, 14.95MPa) point,
i.e., the middle point of the variation range, to expect a good
tracking performance.

(2) the nonlinear MPC (NMPC) based on the same fuzzy model
as the DOBFMPC scheme [40]. The prediction and control horizon
lengths are set as 14 and 3 respectively by trial and error.

The simulation results are depicted in Fig. 5. The figure shows
that the DOBFMPC scheme tracks the set points of the power
and the throttle pressure near perfectly over the wide operation
range. Based on the same fuzzy model, the NMPC scheme also
has a good performance, which is just a little worse than that
of DOBFMPC scheme due to the small overshoot of the throttle
pressure. However, the stability of the closed-loop system with
NMPC is easily affected by the lengths of the prediction and control
horizons; if they were not well tuned, the response would oscillate
or even diverge. On the other hand, the performance of the PID con-
troller over the wide operation range is the worst among the three
schemes, because the PID controller tuned at a fixed operation
point does not work effectively any more when the load changes,
and unlike the MPC algorithm, the input constraints cannot be
handled at the control calculation stage, either. Figs. 6 and 7 display
the control inputs and their increments, respectively. It is evident
that the input constraints are respected for all controllers. This
holds for all the following cases in which the incremental inputs
are no more displayed for simplicity.

Fig. 8 demonstrates the tracking performance of the DOBFMPC
for the set points in Fig. 4. The output trajectories are almost
identical with the set values, indicating that the DOBFMPC much
outperforms the PID controller.

On the other hand, in order to further illustrate the effect
of the proposed systematic fuzzy modelling method, two other
disturbance-observer-based MPC schemes are proposed to com-
pare with the DOBFMPC. One (DOBLMPC) is built on the second
local linear model only instead of the fuzzy model, and the other
(DOBCFMPC) applies the conventional fuzzy modelling technique
by designating the equilibrium points [160MW210MW260MW]
as the linearization points. It is supposed that at t = 50 s the
set points change instantly from (240 MW, 15.68 MPa) to (200
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Fig. 2. The gap values between linearized models at equilibrium points.

Fig. 3. Membership functions of the fuzzy sets.

MW, 13.67 MPa) intimating the load rejection of the BTS. The
simulation results of the three schemes are represented in Fig. 9. It
can be seen that the DOBFMPC scheme has the best performance,
which can quickly track the set points of the power output and
the throttle pressure. The DOBCFMPC has a better performance
than the DOBLMPC, since both the overshoot and the settling time
of the power output of the DOBCFMPC are smaller than those
of the DOBLMPC, and the performances of the throttle pressure
are almost identical. Therefore, it is concluded that the proposed
control scheme can achieve an improved performance with the
systematic gap-based fuzzy modelling method.

Next, the third case is constructed to demonstrate the atten-
uation ability of the DOBFMPC scheme for external disturbances
by comparing with the FMPC. In this case, it is supposed that the
plant is working at (200 MW, 13.67 MPa) point, and at t = 50 s,
two unknown constant disturbances, 0.1 and−5 kg/s, are imposed
on uT and uB, respectively. The performances of the two controllers
are shown in Fig. 10. It is evident that the DOBFMPC can effectively
deal with the disturbance and recover the prescribed operation
point without offset, while with the FMPC, the system settles at a

new operation point. The difference of the control performances
between the DOBFMPC and the FMPC is in that the DOBFMPC
counteracts the effect of the disturbance on the outputs with the
disturbance compensation law. Fig. 11 displays the estimates of the
disturbance term on the left. The estimates are not exactly equal to
the disturbance at the steady state, since there exists the approx-
imation error between the fuzzy model and the nonlinear model,
which is also included into the disturbance term. The estimates of
the error are shown on the right of Fig. 11. It can be seen the errors
are nearly zero, which again demonstrates the high approximation
accuracy of the fuzzy model.

The fourth case is to investigate the robustness of the DOBFMPC
against the model mismatch caused by the system parameter
perturbation. This case assumes the plant is working at (200 MW,
13.67 MPa) point, and a −5% variation of the coal calorific value
(about a decrease of 1 MJ/kg), which leads to the change of the dy-
namics of the nonlinearmodel since someof its parameters depend
on the coal calorific value [38]. Like the third case, the DOBFMPC is
comparedwith the FMPC. The result shown in Fig. 12 demonstrates
that the DOBFMPC is robust to the variation of the coal calorific
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Fig. 4. The simulation results of the fuzzy model, the nonlinear model, plant data and the set points.
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Fig. 5. Outputs of the BTS for a ramp-type load change: 225–280–170 MW.

Fig. 6. Inputs of the BTS for a ramp-type load change: 225–280–170 MW.

value, while with the FMPC, both the output power and throttle
pressure deviate from the previous operation point. Hence, the
critical role of the compensation law on the system robustness is
well demonstrated by the comparison of the simulation results of
the DOBFMPC and the FMPC in this case.

It should be noted that all the cases above are carried out with
the matched disturbance. In order to validate that the proposed
control scheme is also applicable to the case of the mismatched
disturbance, this final case is designed in which the disturbance
gainmatrices displayed in Appendix C are adopted. In this case s =

4 andm = 2, hence d is themismatched disturbance. Besides, with

the systemmatrices of the local models in Appendix C, it is verified
that Gd,i satisfies the condition (22), which ensures the existence
of the disturbance compensation gain matrix. In this case, it is also
supposed the plant is working at (200 MW, 13.67 MPa) point, and
at t = 50 s, two unknown constant disturbances, 0.1 and −5 kg/s,
are imposed on uT and uB, respectively. The performances of the
BTS with the DOBFMPC and the FMPC are shown in Fig. 13. It is
evident the plant is still well controlled by the DOBFMPC scheme
under the mismatched disturbance, and the importance of the
compensation law for the disturbance rejection is demonstrated
as well.
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Fig. 7. Incremental inputs of the BTS for a ramp-type load change: 225–280–170 MW.

Fig. 8. Tracking performance of DOBFMPC for the plant set points of the BTS.

5. Conclusions

This paper presents a disturbance-observer-based fuzzy model
predictive control (DOBFMPC) scheme for nonlinear processes
with disturbances and input constraints. The T–S fuzzy model of
appropriate approximation accuracy and complexity is developed
with the proposed systematic gap-based method. The disturbance
model then represents the nonlinear process by integrating a dis-
turbance term into the fuzzymodel to lump the disturbance effect.
The baseline FMPC is synthesized on the fuzzy model such that the
asymptotic stability is guaranteed, and the input constraints are
satisfied by both the free control variables and the future control
inputs in the form of non-PDC law. With the disturbance estimate
by the disturbance observer, the disturbance compensation law
ensures that the effect of the disturbance on the outputs of the
closed-loop system is removed by the composite DOBFMPC law at

the steady state. Besides, the proposed control scheme is a general
case and suitable to deal with both the matched and mismatched
disturbance. Case studies carried out on a 300 MW subcritical BTS
fully evaluate the proposed control scheme.
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Fig. 9. Performances of the BTS for a step load change: 240–200 MW: (left) outputs; (right) inputs.

Fig. 10. Performance of the BTS with external disturbances: (left) outputs; (right) inputs.
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Fig. 11. Estimates of the disturbance term: (left) with external disturbances; (right) without external disturbances.

Fig. 12. Performance of the BTS with the model mismatch: (left) outputs; (right) inputs.
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Fig. 13. Performance of the BTS with external disturbances in the mismatched case: (left) outputs; (right) inputs.

Appendix A

The proof of Theorem 1 consists of three parts. The first part
proves the condition (11) ensures γ is an upper bound of the
infinite-horizon objective function, thus minimizing J∞0,k is equiv-
alent to the minimization of γ subject to (11). The second part
proves conditions (12)–(14) guarantee the asymptotic stability of
the closed-loop system. The third part proves both the free control
variables and the future control inputs in non-PDC law satisfy the
input constraints with conditions (15)–(18).

Part I: The upper bound of the infinite-horizon objective func-
tion

With the division of infinite-horizon control inputs, the objec-
tive function (9)

J∞0,k = J10,k + J∞1,k =
(

⌢xT
k|kQ

⌢xk|k +
⌢uT
k|kR

⌢uk|k
)

+

∞∑
i=1

(
⌢xT
k+i|kQ

⌢xk+i|k +
⌢uT
k+i|kR

⌢uk+i|k
)

(A.1)

Suppose a nonquadratic Lyapunov function [41]

Vk =
⌢xT
k S

−1
z

⌢xk (A.2)

satisfies

Vk+i+1|k − Vk+i|k < −
[

⌢xT
k+i|kQ

⌢xk+i|k +
⌢uT
k+i|kR

⌢uk+i|k
]
, (A.3)

then the closed-loop system is guaranteed to be asymptotically
stable [33,35].

Summing (A.3) from i = 1 to i = 8, and with V∞|k = 0, we have

J∞0,k < ⌢xT
k|kQ

⌢xk|k +
⌢uT
k|kR

⌢uk|k +
(
Az

⌢xk|k + Bz
⌢uk|k

)T
× S−1

z

(
Az

⌢xk|k + Bz
⌢uk|k

)
(A.4)

Next we define a scalar variable γ and suppose that

⌢xT
k|kQ

⌢xk|k+
⌢uT
k|kR

⌢uk|k+
(
Az

⌢xk|k + Bz
⌢uk|k

)T S−1
z

(
Az

⌢xk|k + Bz
⌢uk|k

)
< γ ,

(A.5)

such that γ is an upper bound of the infinite-horizon objective
function J∞0,k. Then minimizing J∞0,k is turned into the minimization
of γ subject to (A.5).

With the definition S̃−1
z = γ −1S−1

z and Schur complement [40],
(A.5) can be further expressed as follows⎡⎢⎢⎢⎣
1 (∗) (∗) (∗)

Az
⌢xk|k + Bz

⌢uk|k S̃z 0 0
Q 1/2⌢xk|k 0 γ I 0
R1/⌢uk|k 0 0 γ I

⎤⎥⎥⎥⎦ > 0 (A.6)

which is equivalent to
∑N

l=1 wlnl > 0.
Therefore, the condition (11) guarantees γ is the upper bound

of the infinite-horizon objective function

Part II: Stability condition
With the non-PDC feedback control law

un,k+i|k = −YzG−1
z

⌢xk+i|k + ue,k, i ≥ 1, (A.7)

the closed-loop system is
⌢xk+i+1|k = Az

⌢xk+i|k − BzYzG−1
z

⌢xk+i|k =
(
Az − BzYzG−1

z

)
⌢xk+i|k. (A.8)

Substituting (A.7) and (A.8) into the stability condition (A.3)

(AzGz − BzYz)
T S̃−1

z+ (AzGz − BzYz) − GT
z S̃

−1
z Gz + GT

zQGz/γ

+ Y T
z RYz/γ < 0. (A.9)
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With the fact that

GT
z S̃

−1
z Gz ≥ GT

z + Gz − S̃z, (A.10)

thus (A.9) is satisfied if

(AzGz − BzYz)
T S̃−1

z+ (AzGz − BzYz) + GT
zQGz/γ

+ Y T
z RYz/γ < GT

z + Gz − S̃z (A.11)

which can be expressed as follows⎡⎢⎢⎢⎣
GT
z + Gz − S̃z (∗) (∗) (∗)

AzGz − BzYz S̃z+ 0 0
Q 1/2Gz 0 γ I 0
R1/2Yz 0 0 γ I

⎤⎥⎥⎥⎦ > 0. (A.12)

According to the definition of r lij in (19), (A.12) is equivalent to

N∑
l=1

wl+

N∑
i=1

N∑
j=1

wiwjr lij > 0. (A.13)

With conditions (12)–(14), the left side of (A.13)

≥

N∑
l=1

wl+

⎛⎝ N∑
i=1

w2
i Q

l
ii +

N∑
i=1

N∑
j>i

wiwj
(
Q l
ij + Q l

ji

)⎞⎠

≥

N∑
l=1

wl+ [w1Iw2I · · · wN I]Ψl [w1Iw2I · · · wN I]T > 0.

Therefore, the closed-loop fuzzy control system is asymptotically
stable.

Part III: Input constraints
With (A.3) and (A.5), we get

⌢xT
k+i|kS̃

−1
z

⌢xk+i|k ≤ 1, i ≥ 1. (A.14)

On the other hand, with (17)[
Gz + GT

z − S̃z (∗)
Yz W1

]
> 0,

fromwhich, the following result is obtained with (A.10) and (A.14)

(
YzG−1

z
⌢xk+i|k

)T
(W1)

−1 (YzG−1
z

⌢xk+i|k
)

≤ 1, i ≥ 1.

SinceW 1 is diagonal and the componentW1,jj = ū2
j ,(

YzG−1
z

⌢xk+i|k
)2
j < ū2

j .

With the non-PDC law

un,k+i|k = −YzG−1
z

⌢xk+i|k + ue,k, i ≥ 1,

we have⏐⏐⏐(un,k+i|k − ue,k
)
j

⏐⏐⏐ <
⏐⏐ūj
⏐⏐ , i ≥ 1.

With the definition

ū = min
{⏐⏐umax − ue,k

⏐⏐ , ⏐⏐umin − ue,k
⏐⏐} ,

the following inequality holds

umin ≤ un,k+i|k ≤ umax, i ≥ 1. (A.15)

In addition, from (15)

umin ≤ un,k|k ≤ umax. (A.16)

Thus, the inputmagnitude constraints are satisfied by both the free
control input and the future control inputs in the non-PDC law.

Next, we deal with the incremental input constraints.
With (18),

(
YzG−1

z
⌢xk+i|k

)T
(W2)

−1 (YzG−1
z

⌢xk+i|k
)

≤ 1, i ≥ 1.

SinceW 2 is diagonal and the componentW2,jj =
(
ūd,j/2

)2,⏐⏐⏐(YzG−1
z

⌢xk+i+1|k − YzG−1
z

⌢xk+i|k
)
j

⏐⏐⏐ < ūd,j, i ≥ 1.

With the non-PDC law, we get⏐⏐⏐(∆un,k+i|k
)
j

⏐⏐⏐ < ūd,j , i ≥ 1.

On the other hand, with the definition

ūd = min {|∆umax| , |∆umin|} ,

the following holds

∆umin < ∆un,k+i|k < ∆umax, i ≥ 1. (A.17)

In addition, from (16)

∆umin < ∆un,k|k < ∆umax. (A.18)

Thus, the incremental input constraints are satisfied by both the
free control input and the future control inputs in the non-PDC law.

Appendix B

Proof. By substituting (6) into (4), one yields the closed-loop
system{
xk+1 = Azxk + Bz

(
un,k + Kcd̂k

)
+ Rz + Gdzdk

yk = Cxk
(B.1)

and hence

xk+1 = Azxk + Bzun,k + Rz + (BzKc + Gdz) dk − BzKcd̃k (B.2)

On the other hand, with (22)

(Bz ⊗ In) α = σ (−Gdz) ,

and then

Bzσ
−1 (α) + Gdz = 0.

Therefore, (B.2) becomes with (23)

xk+1 = Azxk + Bzun,k + Rz − BzKcd̃k. (B.3)

Denote d̃∞ as the disturbance estimation error at the steady
state. Since the disturbance estimate d̂ tracks the disturbance d
asymptotically, i.e., d̃∞ = 0, the steady-state closed-loop dynam-
ics is{
x

∞
= Azx∞ + Bzun,∞ + Rz

y∞ = Cx∞

. (B.4)

Subtracting the steady-state (7) from (B.4) results in{
x∞ − xe,∞ = Az

(
x∞ − xe,∞

)
+ Bz

(
un,∞ − ue,∞

)
y∞ − yr = C

(
x∞ − xe,∞

) . (B.5)

in which the existence of
(
xe,∞, ue,∞

)
is guaranteed with Assump-

tion 2. On the other hand, since the nominal system is proved
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to be asymptotically stable in Appendix A, there exists a stabi-
lizing linear feedback control law at steady state ⌢u∞ = −K⌢x∞,
i.e., un,∞ − ue,∞ = −K

(
x∞ − xe,∞

)
[42–44]. Substituting the

feedback law into (B.5) yields(
Az,∞ − Bz,∞K − I

) (
x∞ − xe,∞

)
= 0 (B.6)

For (B.6), the eigenvalues of
(
Az,∞ − Bz,∞K

)
are within the unit

circle, thus the only solution is x∞ = xe,∞ [42–44]. Therefore,
y∞ = yr with (B.5), that is, the influence of the disturbance can
be removed from the output channels at steady state.

Appendix C

The system matrices of the local linear models of T–S fuzzy
model are:

A1 =

⎡⎢⎣ 0.9047 1.2073 0.1361 0.0021
−0.0003 0.8108 0.1802 0.0043
−0.0024 0.2579 0.7247 0.0366

0 0 0 0.9835

⎤⎥⎦ ,

B1 =

⎡⎢⎣29.4094 8E − 06
−0.4645 3E−05
−0.1133 0.0003

0 0.0165

⎤⎥⎦ , R1 =

⎡⎢⎣−16.033
0.2041
0.0477

0

⎤⎥⎦ ;

A2 =

⎡⎢⎣ 0.9047 1.2689 0.1590 0.0018
−0.0002 0.79360 0.2007 0.0036
−0.0019 0.2017 0.7849 0.0288

0 0 0 0.9835

⎤⎥⎦ ,

B2 =

⎡⎢⎣36.6575 8E−06
−0.5732 2E−05
−0.1095 0.0003

0 0.0165

⎤⎥⎦ , R2 =

⎡⎢⎣−21.2495
0.2152
0.04289

0

⎤⎥⎦ ;

A3 =

⎡⎢⎣ 0.9047 1.3396 0.1838 0.0018
−0.0002 0.7784 0.2185 0.0033
−0.0016 0.1747 0.8153 0.0253

0 0 0 0.9835

⎤⎥⎦ ,

B3 =

⎡⎢⎣42.7875 8E−06
−0.6634 2E−05
−0.1108 0.0002

0 0.0165

⎤⎥⎦ , R3 =

⎡⎢⎣−26.4724
0.21404
0.01403

0

⎤⎥⎦ .

The disturbance gain matrices for the mismatched disturbance
simulation case are as follows:

Gd,1 =

⎡⎢⎣−30.3081 −58.8188 −88.2282 −117.6376
2.0468 0.9288 1.3933 1.8578

−32.1687 0.2247 0.3377 0.4507
−1652.9 −0.0991 −0.1157 −0.1322

⎤⎥⎦ ,

Gd,2 =

⎡⎢⎣−37.4442 −73.3149 −109.9724 −146.6299
1.5051 1.1463 1.71959 2.29282

−24.9509 0.21744 0.3266 0.4358
−1652.9 −0.0991 −0.1156 −0.1322

⎤⎥⎦ ,

Gd,3 =

⎡⎢⎣−43.5685 −85.5750 −128.3625 −171.1500
−1.2753 1.3266 1.9899 2.6532
−21.7545 0.2202 0.3308 0.4413
−1625.9 −0.0991 −0.1156 −0.1322

⎤⎥⎦ .
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