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Abstract. Recently, by defining suitable fuzzy temporal logics, temporal properties of dynamic systems are speci-
fied during model checking process, yet a few numbers of fuzzy temporal logics along with capable corresponding
models are developed and used in system design phase, moreover in case of having a suitable model, it suffers from
the lack of a capable model checking approach. Having to deal with uncertainty in model checking paradigm, this
paper introduces a fuzzy Kripke model (FzKripke) and then provides a verification approach using a novel logic
called Fuzzy Computation Tree Logic∗ (FzCTL∗). Not only state space explosion is handled using well-known
concepts like abstraction and bisimulation, but an approximation method is also devised as a novel technique to
deal with this problem. Fuzzy program graph, a generalization of program graph and FzKripke, is also intro-
duced in this paper in consideration of higher level abstraction in model construction. Eventually modeling, and
verification of a multi-valued flip-flop is studied in order to demonstrate capabilities of the proposed models.
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1. Introduction

Model checking is an automatic formal technique for investigating correctness properties of systems, more specifi-
cally model checking also known as property checking refers to the following problem: “Given a finite-state model
and a formal property, model checking automatically checks whether this property holds for that model” [BK].
Temporal properties of reactive systems can only be checked by temporal model checking. In these models, time
is considered as either concrete (real-time) or discrete. In order to check the majority of real-time models such
as timed automata (TA) [AD94], it is necessary to convert these models into discrete time models and then
perform model checking process employing simpler logics such as computation tree logic (CTL). It is because
logics defined alongside concrete time models such as timed computation tree logic (TCTL) are incapable of
participating in model checking process.
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Models that are meant to deal with different types of uncertainty can be verified through multi-valued tem-
poral logics previously introduced in [FSGC05, CGD+06]. Fuzzy temporal logic is a variant of multi-valued
temporal logic which is applicable in verifying some aspects of fuzzy systems. Expressions of different fuzzy
temporal logics can be formed as formal, linguistic or even combinatorial expressions. Recent studies of using
fuzzy logic in temporal model checking resulted in various trace checking approaches which are not suit-
able for system design phase. Moon et al. [MLL04] introduced a fuzzy temporal logic called fuzzy branch-
ing temporal logic (FBTL) with its corresponding model, which is highly applicable in model construction
for fuzzy reactive systems, but they did not devise an automatic model checking approach. It seems such
verification approach can only be achieved by converting FBTL’s model into an intermediate discrete time
model.

Considering the nature of fuzzy logic, it is necessary to quantize interval [0, 1] to a set of discrete values (each
by a distance of� from another one) in favor of using model checking algorithms (and tools such as χChek). This
requires the numbers participating in the model and propositions to be approximated using an approximation
function such as rounding. In one hand, state space explosion occurs if� is small; on the other hand, the values
of the propositions (that are belonging to [0, 1]) may change considerably if � is a large number. Therefore, it
is necessary to prevent high deviation of proposition values by selecting � properly. So far, model/proposition
approximation has not been studied while checking multi-valued models. The process of model/proposition
approximation is one of the most important issues discussed in this paper. This process is similar to the concept
of Fully Polynomial Approximation Scheme (FPTAS) [Vaz01] in designing approximate algorithms. For this
reason, it is regarded as one of the initiatives in this paper.

In our series of research, using the concept of fuzzy logic, we propose to include different levels of
uncertainty and inconsistency in model checking process of real-time systems. Finally we intend to intro-
duce a model called fuzzy timed automata (FzTA) and its corresponding logic called fuzzy TCTL (FzTCTL)
which is similar to the FBTL. The FzTCTL is not only intended to specify real-time fuzzy systems but
also to perform model checking process on those systems. For this purpose, it is necessary to introduce dis-
crete time models (and corresponding logics) along with an automatic verification approach (discrete mod-
els may be defined hierarchically). Final concrete model (i.e., FzTA) will be defined as a generalization
of the proposed discrete models. Regarding the previous statement, it is possible for the resulted concrete
model to be abstracted to the proposed discrete models.

In Sect. 3, an extended Kripke model, called fuzzy Kripke (FzKripke) is defined. The Kripke model is
like the nondeterministic finite automata (NFA) in terms of expressing uncertainty, whereas the proposed
FzKripke model is most similar to the fuzzy transition-nondeterministic finite automata (FT-NFA) [MSSY95].
In consideration of temporal properties verification, we defined the FzKripke’s corresponding fuzzy tempo-
ral logic called Fuzzy Computation Tree Logic∗ (FzCTL∗) in Sect. 4. In a nutshell, FzKripke and FzCTL∗
were formally defined by substituting the interval [0, 1] for the lattice of χKripke and χCTL while adding
a series of accessory operators to χCTL. The concept of logic approximation on the proposed logic and
its models is studied as a novel technique to encounter the state space explosion in Sect. 5. Model abstrac-
tion and abstracted model approximation is also studied in Sect. 6. A high-level abstraction (more flexible
generalization) of the proposed FzKripke called fuzzy program graph (FzPG) is also introduced in Sect. 7.
Model checking algorithms for discrete time models is already used as a verification tool for fuzzy sys-
tems (e.g. fuzzy controllers [IMMT05]); therefore, it is possible for the FzKripke and FzPG to be used
in verification of fuzzy systems.

2. Background

2.1. Model checking

A powerful technique called model-checking had been proposed by Clarke in order to perform formal verification
of temporal properties for reactive systems [CGP99]. In this technique, a mathematical and formal model (e.g.
in the form of a graph) will be extracted from a system profile. A set of verification related propositions of the
system called “properties” are also conformed to a formal language (denoted as temporal logic). Finally, in a
mechanized approach, an algorithm is defined and implemented in order to exhaustively and automatically check
properties of the model.
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Table 1. Comparison of well-known temporal logics according to [BK, CGP99, HR04]

Language Description

LTL In LTL, “time” is found as a specific path (of states and events) and it is assumed that only one
particular event occurs in each state of the path

CTL Unlike the LTL, in CTL “time” has a branching behaviour, thus some events may occur after each
state. For this reason, CTL paths are found as an infinite tree

CTL∗ Like the CTL, this is a branching temporal logic, more specifically CTL∗ is a superset of CTL and
LTL which freely combines path quantifiers and temporal operators

State space explosion This is one of the most challenging issues in model checking process. The problem is how
to perform model checking process in proper time by handling a large number of states defined in a system
model. For example, considering a graphical representation of a system model, the number of nodes in a model
grows even to 10120 nodes in some cases. In order to encounter this problem, different techniques are used, one of
which is symbolic checking of the model where compact data structure such as ordered binary decision diagram
(OBDD) is applied to store the model. Another technique is abstracting larger models to the equivalent but more
compact ones [BK, KP03, KNSW07, Wan06].

2.2. Modal logic

A type of formal logic that concentrates on the concept of modality in classical propositional and predicate logic
is called modal logic. In this logic a statement may qualify regarding some conditions demonstrated by some
modal (i.e., phrases that express modalities). Traditional modalities in classical logic are possibility, necessity
and impossibility while modal logic is formalizing temporal modalities, modalities of knowledge, deontic and
doxastic modalities.

Modal temporal logic Semantic of expressions with the qualification of “when” is called temporal logic. Some
expressions are true all the times (i.e., tautologies) while others are sometimes true. In order to describe these
temporal properties, formal languages (i.e., logics) such as CTL, linear-time temporal logic (LTL) and CTL∗
are innovated. These languages not only consist logical operators, but they also consist temporal adverbs such
as “Next”, “Finally”, “Generally” and “Until”. For this reason, these languages are called “Modal Temporal
Languages”.

Kripke model In the late 1950s and early 1960s Saul Kripke devised a novel model theory for non-classical logic
systems; which is named Kripke semantics. In this model, there is a set of system states, each consists a set of
atomic propositions. A transition edge (i.e., discrete event) exits from a particular state and enters to another
state.

2.3. Temporal logic generalizations

Prior to this, various generalizations of temporal models and logics was presented such as, (1) generalizing discrete
time to real time by defining a model named TA and its corresponding logic named TCTL, (2) considering
probability to deal with uncertainty and random processes of systems, and (3) considering cost rather than time;
there are many more combinations of these generalizations that are shown in [Gur03, RA11].

Multi-valued temporal logic These logics and their corresponding models are defined by substituting boolean
algebra with quasi-boolean algebras. Generally in multi-valued temporal logics, a lattice is used instead of set
{ f alse, true}. These logics are applicable whenever different levels of uncertainty and inconsistency are required
to be considered during the model checking process.

χKripke For each quasi-boolean algebra with a finite lattice such as L, there is a model called χKripke such
that values of atomic propositions and values of transition edges is a member of L. χCTL is a multi-valued
temporal logic corresponding to the χKripke model for discrete time, and χTCTL is its generalization over dense
(concrete) time. There is also a tool named χChek to check χKripke models [ECD+03].
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2.4. Fuzzy logic

Fuzzy logic is an infinite and continuous multi-valued logic that is used in various areas [Sla05, Wie10]. For
instance, this logic is broadly used for designing intelligent and dynamic systems (e.g. controllers). These systems
automatically respond to the produced events by gathering information. Since information gathering faces uncer-
tainty and vagueness due to inaccuracy of monitoring infrastructure and uncertainty with information sources
(e.g. network), response to events can no longer be done as crisp.

Temporal fuzzy logic Several studies were concentrated on temporal logics, related formal models, and related
verification algorithms. Recently, few studies were made in relation to fuzzy logic and its applications in this
community. Although fuzzy logic is a powerful mathematical tool for stating vagueness, it requires expansions to
express temporal properties of uncertain dynamic systems [FPS12]. Such more perfect logics is called temporal
fuzzy logic. These variety of logics can be used not only to check systems in early design phase, but also to monitor
the behavior of systems during their execution.

Some variety temporal fuzzy logics used formal statements (i.e., fuzzy-time temporal logic [FPS12], FBTL
[MLL04]) while the others used linguistic statements to declare their propositions (i.e., RELAX [WSB+09], fuzzy
live adaptive goals for self-adaptive systems [BPS10]). Some other temporal fuzzy logics considered events to
be discrete (i.e., fuzzy temporal formula [BG04], fuzzy propositional linear temporal logic [Pal00]) while others
present events by a time interval in form of a fuzzy number, (i.e., FBTL [MLL04], RELAX [WSB+09], fuzzy
live adaptive goals for self-adaptive systems [BPS10]). Assuming an execution trace of a particular system (a
sequence of the performed events) in most of fuzzy temporal logics, it is only possible to test temporal properties of
model by trace checking methods instead of using a formal model verification approach (i.e., fuzzy propositional
linear temporal logic [Pal00], fuzzy temporal formula [BG04], fuzzy-time temporal logic [FPS12], fuzzy live
adaptive goals for self-adaptive systems [BPS10]). However, trace checking methods facilitate the investigation of
correctness check for some aspects of system execution, they are unable to perform integrated system checking.
Therefore not all generalization of modal temporal logics can be used in the phase of system design phase. In
the other words, only those logics whose models are derived from the whole system can be used in design phases
(i.e., FBTL).

Fuzzy Branching Temporal Logic Moon et al. [MLL04] introduced one of the strongest fuzzy temporal logics
called FBTL by generalizing CTL. Although this model is similar to the Kripke model; (1) its edges are defined
as fuzzy values, and (2) time is considered to be concrete. In addition to adverbs of CTL, FBTL consists a set of
comparison operations defined on time intervals. Among fuzzy temporal logics, FBTL is highly empowered in
terms of expression and its model is very powerful, yet no model checking algorithm is developed for FBTL. This
may be due to the computational complexity of the model and its inherent complexity. Given that verification
of real time models (e.g. TA), first requires continuous to discrete time model conversion (e.g. Kripke) and then
verification by simpler logics (e.g. CTL), the conjecture is defining simpler fuzzy logics and related models for
model verification in FBTL is inevitable.

2.5. Fuzzy transition-nondeterministic finite automata

Mateescu et al. [MSSY95] introduced this finite fuzzy automaton for lexical analysis. Formally, a fuzzy automaton
is a 5-tuple (Q, q0, �,F, δ), where Q is a finite set of machine states, q0 is an initial state and a member of Q , �
is the set of input symbols, δ is the transition function governing whether there is an existing transition between
q1 and q2 as the elements of Q , and so is a mapping δ : Q × I × Q → [0, 1], and finally F is the final state
determination function defined as F : Q → [0, 1]. Unlike the Markov process [1], total value for outgoing edges
of each node is not necessarily equal to 1. Actually each edge label in FT-NFA represents a value of possibility
whereas in Markov process it represents a value of probability.

Example 1 An automaton is defined in the following example. In this automaton for each string belonging
to the language, possibility of being a member in the string set is the highest obtained possibility for each
accepting path. For instance, according to the automaton depicted in Fig. 1 occurrence possibility of “aba”
through the “q1q1q1” path is 0 but through “q1q2q3” is equal to 0.6; thus the total possibility of occurring
this string is 0.6.
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q1 q2 q3

a 1

b 1

a 0.8

b 0.6

a 1

Fig. 1. An example of FT-NFA, as depicted above unlike the Markov process, total value for outgoing edges of each node is not necessarily
equal to 1

3. Fuzzy Kripke model

This model is similar to χKripke model, except for its lattice; which is the continuous interval [0, 1]. This model
is quite similar to the fuzzy graph defined in [Wie10], but in the terms of uncertainty it is most similar to the
FT-NFA demonstrated in [RA11].

Model definition This model is defined as an ordered tuple, in the form of M � (S ,X ,R,L, I) where X �
〈x1, . . . , xm 〉 is a set of attributes and S � {s1, . . . , sn} is a set of states. Every attribute has a possibility value;
meanwhile different possible values for all attributes as a whole can be expressed by Val(X ) as shown in (1).

Val(X ) � {〈v1, . . . , vm 〉|vi ∈ [0, 1]} (1)

For attribute evaluation, access to the value of an attribute is defined by a dot operator as shown in (2).

μ ∈ Val(X ), μ � 〈v1, . . . , vm 〉 ⇒ vi � μ · xi (2)

A function called L, assigns a label to each state as the state’s specific valuation, see (3). Relation (4) defines R
as a function that specifies the possibility of transition from one state to another. Entrance possibility for each
state at start time can be represented by I a function that is defined in (5).

L : S → Val(X ) (3)
R : S × S → [0, 1] (4)
I : S → [0, 1] (5)

Following notation represents the transition between two states with a specific possibility.

si
r→ sj ⇔ ((si , sj ), r ) ∈ R

A finite execution path π starting from s ′
0 can be defined as follows:

π ∈ Pathfin (s ′
0) ⇔ π � s ′

0
r0→ s ′

1
r1→ s ′

2
r2→ · · · ru−1−→ s ′

u

∀i ∈ 0 . . . ui−1 · ri ∈ [0, 1]

The infinite execution path can be defined similarly:

π ∈ Pathinf (s ′
0) ⇔ π � s ′

0
r0→ s ′

1
r1→ s ′

2
r2→ · · ·

∀i ∈ N · ri ∈ [0, 1]

A certain state on a path and a sub-path can be defined by the following notation:

∀i ∈ N · π [i ] � s ′
0 ∧ π [i ..] � s ′

i

ri→ s ′
i+1

ri+1−→ · · ·
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4. Fuzzy CTL∗

In order to define Fuzzy CTL∗ (FzCTL∗) introducing some fuzzy operators is necessary. Fuzzy operators have a
high variety of implementations, see [Sla05, Wie10], in this paper we use their simplest implementations whose
properties are similar to the properties of quasi-boolean algebra related to χCTL∗. The fuzzy operations are
defined as follows:

1. true � 1 4. a  b � min(a, b)
2. false � 0 5. a � b � max(a, b)
3. ¬a � 1 − a 6. a → b � b � ¬a � max(b, 1 − a)

State propositions (as ϕ) and path propositions (as �) are expressible by the following grammar:

ϕ ::� r | x | ¬ϕ | ϕ  ϕ | ϕ ≥ ϕ | �ϕ + ϕ� | A ϕ | E ϕ
� ::� ϕ | ¬� | � � | � ≥ � | �� +�� | X� | �U�
R ∈ Q ∩ [0,1],
x ∈ X

Using the saturation operator [WwWG07], shown in (6), we have defined bounded-add �φ + φ� operator.
Although this operator is not seen in χCTL, it is defined in this logic.

�a� � max(0,min(1, a)) (6)

Modal adverbs are also needed; the adverb “Finally” is defined as shown in (7), meanwhile “Generally” is defined
in (8).

F� def�� true U� (7)

G� def�� ¬ F ¬� (8)

A set of auxiliary operations may be defined in this grammar. The operators can be implemented using previously
defined simple operators, each of which can be used for defining state propositions as well as path propositions.

• �a − b� � ¬�¬a + b�

• if (a, b, c) � a  b � ¬a  c

• a � b � �a + ¬b�

• a � b � b � a

• a ≈ b � (a � b  a � b)

• a �≈ b � ¬(a ≈ b)

• a � b � ¬(b � a)

• a ≺ b � b � a

Operators like {�≺��≈�≈} are called quasi-comparison and �a − b� is called bounded-subtract. Definitions
for other comparison operators are possible through the definition for operator ≥ in conjunction with logical
operators.

Truth possibility of a proposition, when being in a state or on a path, can be presented by P and �. In the
following notations, the FzKripke model is represented by M while s represents a certain state in M , and π is an
infinite path defined on M .

P(M , s � ϕ) def�� P(ϕ|M , s) (9)

P(M , π � �) def�� P(�|M , π ) (10)
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Semantic of state propositions can be defined as follows, where “op” may be a binary logical operator, a
comparison operator, a quasi-comparison operator, or the bounded-add/subtract:

P(M , s � r ) � r (11)
P(M , s � x ) � L(s) · x (12)
P(M , s � ¬ϕ) � ¬ P(M , s � ϕ) (13)
P(M , s � ϕ op ψ) � P(M , s � ϕ) op P(M , s � ψ) (14)

Konikowka and Penczek [KP03] articulated the inefficiency and ambiguity of � in expressing semantic of χCTL∗
formulas, therefore instead of using � we use �A and �E in following expressions.

P(M , s � A�) �
�

π∈Pathinf (s)

P(M , π �A �) (15)

P(M , s � E�) �
⊔

π∈Pathinf (s)

P(M , π �E �) (16)

Semantic of path propositions can also be defined follows, where “op” may be a binary logical operator, a
comparison operator, a quasi-comparison operator, or the bounded-add/subtract:

P(M , π �A ϕ) � P(M , π �E ϕ) � P(M , π [0] � ϕ) (17)
P(M , π �σ � op �) � P(M , π �σ �) op P(M , π �σ �), σ ∈ {A,E} (18)
P(M , π �A ¬�) � ¬ P(M , π �E �) (19)
P(M , π �E X�) � R(π [0], π [1])  P(M , π [1 · · · ] �E �) (20)
P(M , π �A X�) � R(π [0], π [1]) → P(M , π [1 · · · ] �A �) (21)
P(M , π �σ �U�) � P(M , π �σ �) � (P(M ,�σ �)  P(M , π �σ X(�U�))), σ ∈ {A,E} (22)
P(M , π �σ F�) � P(M , π �σ �) � P(M , π �σ X(F�)), σ ∈ {A,E} (23)
P(M , π �σ G�) � P(M , π �σ �)  P(M , π �σ X(G�)), σ ∈ {A,E} (24)

Consequently the truth possibility of a proposition on the whole model should be defined as follows:

P(M � ϕ) def��
�

s∈S

(I(s) → P(M , s � ϕ))

Similar to χCTL which can be defined by restricting χCTL∗, it is also possible to extract FzCTL from
FzCTL∗. Using the above-defined propositions along with the semantic of FzCTL correctness of the following
equations can be investigated, whereμ and ν stands for the greatest and smallest fixed-points, respectively [Tar55].

¬ AG ϕ � EF ¬ϕ (25)
¬ AFϕ � EG ¬ϕ (26)
¬ A(ϕUψ) � EG(¬ψ)  E(¬ψ U ¬ϕ  ¬ψ) (27)
E(ϕUψ) � μZ · (ψ � (ϕ  E X Z )) (28)
¬ A(ϕUψ) � νZ · (¬ψ � (¬ϕ  E X Z )) (29)

Single-source FzKripke A fuzzy Kripke where I returns “1” for state s0 and returns “0” for other states, is
called single-source FzKripke. Every FzKripke M � (S ,X ,R,L, I) can be converted to a single-source FzKripke
M ′ � (S ′,X ,R′,L′, I′). For this purpose, a new state (such as ı) must be added as the source to S . For each state
s ∈ S , equation R′(ı, s) � I(s) holds in the transition function of the new model and for the transition between
each pair of states in S , functionality of R and R′ are identical. Function L′ will be considered such that:

1. For the source state, it returns “0” as the possibility of all attributes.

2. For other states it has the same functionality as L.
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Fig. 2. FzKripke K1 in which X � x and function I returns 1 for s0 and 0 for other states. Edges of K1 are demonstrating the relation R
while relation L is represented by decimals depicted in each state

Example 2 The following propositions hold for K1 as shown in Fig. 2:

P(K1 � EF(x )) � 0.5
P(K1 � EF(¬x )) � 0.9
P(K1 � EG(x < 0.5)) � 0.7

The functionality of I is defined according to the definition of single-source FzKripke model. In order to
verify a property like ϕ on M , it is enough to check the proposition AX(ϕ) on a model like M ′. M ′ with ı as its
only source can also be represented as M ′ � (S ′,X ,R′,L′, ı).

So far symbolic model checking methods are proposed for multi-valued Kripke models with a finite domain
of values [CGD+06, Fai05, Gur03]. Having an infinite domain of values is the major obstacle to check fuzzy
temporal logic on a fuzzy Kripke model. Even by having the ability of expressing fractional binary or decimal
numbers using “T” digits in a computing system (e.g. a hardware system), we will face models with exponential
state-space size depending on the factor “T”. An important question is whether model checking with desired
precision (with fewer significant digits) is possible in less amount of time and space or not. This problem will be
discussed in the upcoming sections.

5. Approximability of FzCTL temporal properties on FzKripke

Participant numbers in fuzzy Kripke models and specification propositions are usually expressed in high precisions
(i.e., several binary or decimal digits). Symbolic model checking of these models involves high costs in terms of
time and memory, yet the results will be accurate. The cost can severely be degraded if the accuracy of the result
decreases. In this section we demonstrate how to approximate the temporal properties of FzCTL on FzKripke.
First we define a factor called approximation error denoted as ε such that 1 is divisible by ε, then by applying
approximation function τε(x ) on model M � (S ,X ,R,L, I), a new model like M � (S ,X ,R′,L′, I′) is obtained
in which, the following relations holds for each attribute x ∈ X and each pair of s, s ′ in S :

R′(s, s ′) � τε(R(s, s ′))
L′(s) · x � τε(L(s) · x )
I′(s) � τε(I(s))

If proposition ϕ is approximable then by approximating all of its constant numbers using function τε we
will obtain proposition ϕε. Proposition ϕ is called Simple ε-precision Approximable, if it satisfies the following
conditions:

1. It includes no comparison operator.
2. Right-hand side of any quasi-comparison operator, or bounded-add/subtract operator in ϕ, is a constant

number that is dividable by ε.
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Prior to investigate the approximability theorem, it is necessary to define some approximation functions. A
“Discrete-Saturation” function is used to quantize real values with ε-precision and it is defined as shown in (30).
A “Normal-Saturation” function for real values is defined as shown in (31). For a list of real values the function
can be defined as shown in (32).

�x�ε � �ε
⌊x
ε

⌋
� � max

(
0,min

(
1, ε

⌊x
ε

⌋))
(30)

�x�ε � �x�ε + if (�x� � x , 0, 0.5ε) (31)
μ � 〈ν1, . . . , νm 〉 ⇒ �μ�ε � 〈�ν1�ε, . . . , �νm�ε〉 (32)

Theorem 1 If ϕ is a simple ε-precision approximable proposition, obtained by approximating the model and propo-
sitions of FzCTL* logic, the following statements are in place.

A. Using τε(x ) � �x + 0.5ε�ε, then we will have |P(M , ϕ) − P(Mε � ϕε)| < ε.
B. Using τε(x ) � �x�ε, then we will have |P(M , ϕ) − P(Mε � ϕε)| < ε.
C. Using τε(x ) � �x�ε, then we will have |P(M , ϕ) − P(Mε � ϕε)| < ε

2 .

Proof. First we prove the theorem for FzCTL propositions. For further readability, we use ϕ[s ] instead of
P(M , s � ϕ) and ϕ′[s ] instead of P(Mε, s � ϕε) in this proof. Inductively we start from short propositions and
extend it to long ones.

• For numbers we have:

1.
∣∣∣r − �r + 0.5ε�ε

∣∣∣ < ε 2.
∣∣∣r − �r�ε

∣∣∣ < ε 3.
∣∣∣r − �r�ε

∣∣∣ < ε
2

• For ¬ we have:

1. For cases A and B we have:
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ < ε ⇒
∣∣∣(1 − ϕ[s ]) − (1 − ϕ′[s ])

∣∣∣ < ε ⇒
∣∣∣(¬ϕ[s ]) − (¬ϕ′[s ])

∣∣∣ < ε

2. For case C we have:
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ <
ε

2
⇒

∣∣∣(1 − ϕ[s ]) − (1 − ϕ′[s ])
∣∣∣ <

ε

2
⇒

∣∣∣(¬ϕ[s ]) − (¬ϕ′[s ])
∣∣∣ <

ε

2

• For  we have:

1. For cases A and B we have:
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ < ε,

∣∣∣(ψ [s ]) − (ψ ′[s ])
∣∣∣ < ε ⇒

∣∣∣(ϕ[s ]  ψ [s ]) − (ϕ′[s ]  ψ ′[s ])
∣∣∣ < ε

Now if ϕ′[s ] < (ψ ′[s ] − ε) we have:

ϕ[s ] < ψ [s ] ⇒
∣∣∣(ϕ  ψ)[s ] − (ϕ′  ψ ′)[s ]

∣∣∣ �
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ < ε

If ϕ′[s ] � ψ ′[s ], the value of (ϕ  ψ)[s ] will be equal to ϕ[s ] or ψ [s ] and correctness of the theorem can
be investigated. If ϕ′[s ] � (ψ ′[s ] − ε), when ϕ[s ] ≤ ψ [s ] holds the proof is straight forward, but whenever
ϕ[s ] > ψ [s ], then ψ ′[s ] > ϕ[s ] > ψ [s ] > ϕ′[s ] and again the distance is less than ε.

2. For case C we have:
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ <
ε

2
,

∣∣∣(ψ [s ]) − (ψ ′[s ])
∣∣∣ <

ε

2
⇒

∣∣∣(ϕ[s ]  ψ [s ]) − (ϕ′[s ]  ψ ′[s ])
∣∣∣ <

ε

2

Now if ϕ′[s ] < (ψ ′[s ] − ε
2 ) we have:

ϕ[s ] < ψ [s ] ⇒
∣∣∣(ϕ  ψ)[s ] − (ϕ′  ψ ′)[s ]

∣∣∣ �
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ <
ε

2
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If ϕ′[s ] � ψ ′[s ], the value of (ϕ ψ)[s ] will be equal to ϕ[s ] or ψ [s ] and correctness of the theorem can be
investigated. If ϕ′[s ] � (ψ ′[s ] − ε

2 ), the proof is straightforward.

• For �, the proof is similar to .
• Operator → is obtained by the combination of ¬ and �.
• For bounded-add in form of �ϕ + r�, we have:

1. For cases A and B we have:
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ < ε ⇒
∣∣∣�ϕ + r�[s ] − �ϕ′ + r�[s ]

∣∣∣ < ε

Notice r and 1 are divisible by ε and indeed ¬r is divisible by that too. Here, we consider three cases:

(a) If ϕ′[s ] < ¬r then ϕ′[s ] ≤ (¬r − ε) and since ϕ[s ] < ϕ′[s ] − ε, we have ϕ[s ] < ¬r and thus:
∣∣∣�ϕ + r�[s ] − �ϕ′ + r�[s ]

∣∣∣ �
∣∣∣(ϕ[s ] + r ) − (ϕ′[s ] + r )

∣∣∣ < ε

(b) If ϕ′[s ] > ¬r then ϕ′[s ] ≥ (¬r + ε) and since ϕ[s ] > ϕ′[s ] + ε, we have ϕ[s ] < ¬r and thus:
∣∣∣�ϕ + r�[s ] − �ϕ′ + r�[s ]

∣∣∣ �
∣∣∣1 − 1

∣∣∣ < ε

(c) If ϕ′[s ] � ¬r then 1 + ε > (ϕ[s ] + r ) > 1 − ε) and thus 1 ≥ �ϕ + r�[s ] > 1 − ε, since �ϕ′ + r�[s ] equates
to 1, the proof is complete for this case.

2. For case C we have:
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ <
ε

2
⇒

∣∣∣�ϕ + r�[s ] − �ϕ′ + r�[s ]
∣∣∣ <

ε

2

because:

(a) If ϕ′[s ] < ¬r then ϕ[s ] < ¬r and thus:
∣∣∣�ϕ + r�[s ] − �ϕ′ + r�[s ]

∣∣∣ �
∣∣∣(ϕ[s ] + r ) − (ϕ′[s ] + r )

∣∣∣ <
ε

2

(b) If ϕ′[s ] > ¬r then ϕ[s ] > ¬r and thus:
∣∣∣�ϕ + r�[s ] − �ϕ′ + r�[s ]

∣∣∣ �
∣∣∣1 − 1

∣∣∣ <
ε

2

• For EX ϕ we have:

1. For cases A and B we have:

∀s ·
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ < ε ⇒ ∀ s ·
∣∣∣(EX ϕ)[s ] − (EX ϕ′)[s ]

∣∣∣ < ε

2. For case C we have:

∀s ·
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ <
ε

2
⇒ ∀s ·

∣∣∣(EX ϕ)[s ] − (EX ϕ′)[s ]
∣∣∣ <

ε

2

because:

(EX ϕ)[s ] �
⊔

t∈S

(
R(s, t)  ϕ[t ]

)

(EX ϕ′)[s ] �
⊔

t∈S

(
R(s, t)  ϕ′[t ]

)

For each node t , the distance of ϕ[t ] to ϕ′[t ] is less than ε for both cases A and B of theorem, and in
case C it is less than ε

2 . According to the definition of model Mε, distance of R(s, t) to R′(s, t) is also less
than ε for cases A and B, while in case C it is less than ε

2 . According to properties of operators  and �
discussed in early parts of the proof, correctness of this part can be investigated. Similarly the proof can
be repeated for AX ϕ.
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• For E(ϕUψ) we have:

1. For cases A and B we have:

∀s ·
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ < ε, ∀s ·
∣∣∣ψ [s ] − ψ ′[s ]

∣∣∣ < ε ⇒ ∀s ·
∣∣∣ E(ϕUψ)[s ] − E(ϕ′ Uψ ′)[s ]

∣∣∣ < ε

2. For case C we have:

∀s ·
∣∣∣ϕ[s ] − ϕ′[s ]

∣∣∣ <
ε

2
, ∀s ·

∣∣∣ψ [s ] − ψ ′[s ]
∣∣∣ <

ε

2
⇒ ∀s ·

∣∣∣ E(ϕUψ)[s ] − E(ϕ′ Uψ ′)[s ]
∣∣∣ <

ε

2

For the proof, we use the fixed-points concept from [Tar55]. There is at least a positive number t where
E(ϕUψ)[s ] � Zt and Zi is obtained from the following recursive relation:

Zi �
{

0 i � 0
ψ [s ] � (ϕ[s ]  Zi−1) i �� 0

There is also at least a positive number t ′ where E(ϕUψ)[s ] � Z ′
t and Z ′

i is obtained from the following
recursive relation:

Z ′
i �

{
0 i � 0
ψ ′[s ] � (ϕ′[s ]  Z ′

i−1) i �� 0

Assuming T � max(t, t ′), we will have: Zt � ZT and Z ′
t ′ � Z ′

T . If the distance between Zi−1 and Z ′
i−1 is less

than ε for cases A and B, while in case C it is less than ε
2 , since in cases A and B the distance ϕ[s ] (and ψ [s ]) to

ϕ′[s ] (and ψ ′[s ]) is less than ε and since it is less than ε
2 for case C, Zi and Z ′

i preserve the distance less than ε
for cases A and B and ε

2 for case C. Z0 and Z ′
0 are equal, thus ZT and Z ′

T have a distance less than ε for cases
A and B and ε

2 for case C. Similarly, this discussion can be repeated for A(ϕUψ). With this introduction, we
now explain the proof for the main title of theorem. According to the definition:

P(M � ϕ) def��
�

s∈S

(
I(s) → P(M , s � ϕ)

)

P(Mε � ϕε) def��
�

s∈S

(
I′(s) → P(Mε, s � ϕε)

)

Since for each state such as s we have the following inequality in place for cases A and B and the distance
between I(s) and I′(s) is less than ε.

∣∣∣ P(M , s � ϕ) − P(Mε, s � ϕε)
∣∣∣ < ε

In case C of the theorem the following inequality is in place for each state such as s ; meanwhile the distance
between I(s) and I′(s) is less than ε

2 .
∣∣∣ P(M , s � ϕ) − P(Mε, s � ϕε)

∣∣∣ <
ε

2

Considering the properties of  and → introduced in early parts of this proof, the proof is complete. �

Example 3 For K2 model as shown Fig. 3, the following equations hold. It is shown that the error of obtained
results is less than 0.25 according to K1 model depicted in Fig. 2.

P(K2 � EF(x )) � 0.5
P(K2 � EF(¬x )) � 0.75
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Fig. 3. Using normal approximation function with precision 0.5, K2 is generated by approximating K1 depicted in Fig. 2

6. Fuzzy Kripke abstraction and abstracted model approximation

Among the applications of model abstraction, the most important one is to deal with the state-space explosion
by reducing the number of states (i.e., nodes), hence to convert infinite models to equivalent finite models. It is
possible to deliver an abstraction for Fuzzy Kripke as it was also possible for other types of Kripke model (e.g.
conventional and multi-valued Kripke models). In this section, initially bisimulation equivalence will be discussed
and then related theorems will be presented and proved; finally, some related topics will be studied through the
combination of bisimulation and approximation.

6.1. Bisimulation equivalence

Two single-source models M � (S ,X ,R,L, s0) and M ′ � (S ′,X ′,R′,L′, s ′
0) are bisimilar and relation σ ∈ S ↔

S ′ is called bisimulation iff:

1. (s0, s ′
0) ∈ σ

2. (s, s ′) ∈ σ ⇒ L(s) � L′(s ′)
∧ ∀r ∈ [0, 1],∀ t ∈ S · R(s, t) � r · ∃(t ′) ∈ S ′ · R(s ′, t ′) � r ∧ (t, t ′) ∈ σ
∧ ∀r ∈ [0, 1],∀ t ′ ∈ S ′ · R(s ′, t ′) � r · ∃(t) ∈ S · R(s, t) � r ∧ (t, t ′) ∈ σ

If such a relation exists for the pair of models, the models will be called bisimilar and this similarity will be denoted
as M ∼ M ′. It is easy to prove this is an equivalence relation. According to the above-mentioned definitions the
following lemma and theorem can be proved.

Lemma 1 If M ∼ M ′ for each proposition ϕ we have:

P(M � ϕ) � P(M ′ � ϕ)

Proof. Baier and Keaton [BK] proved two similar conventional Kripke models accept any CTL∗ proposition
with the same value; here we will use a similar framework for this proof.

• First, it is evident there must be an equivalent path π ′ on M ′ for each finite (or infinite) path π on M , such
that:

1. Each state in π has an equivalent state in π ′.
2. Transition possibility between any two consecutive states in π is equal to the transition possibility between

their corresponding states in π ′.

• Next, by using induction on sub-formulas we must show that:

1. Each state proposition ϕ has the same value in a pair of corresponding states.
2. Each path proposition � has the same value in a pair of corresponding paths.
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Fig. 4. Fuzzy Kripke K 3 is obtained by abstracting K 2 as shown in Fig. 3

Consequently, if both bisimilar models are single-source models, their initial states are equivalent and the
equality in lemmas title holds, otherwise it is enough to modify both models into single-source models and
change the verified proposition accordingly. �
Theorem 2 If M ∼ M ′ then Mε ∼ M ′

ε as long as both approximated models are generated by applying the same
approximation function τε(x ).

Proof. If σ is a bisimulation relation between M � (S ,X ,R,L, s0) and M ′ � (S ′,X ,R′,L′, s ′
0), it is enough to

show that σ also exists for Mε and M ′
ε . It is obvious that (s0, s ′

0) ∈ σ ; then if (s, s ′) ∈ σ we have:

1. L(s) � L′(s) ⇒ Lε(s) � L′
ε(s)

2. ∀a ∈ [0, 1],∀ t ∈ S ,Rε(s, t) � a · ∃(r ) ∈ [0, 1], τε(r ) � a ∧ R(s, t) � r
∧ ∀r ∈ [0, 1],∀t ∈ S ,R(s, t) � r · ∃(t ′) ∈ S ′ · R′(s ′, t ′) � r ∧ (t, t ′) ∈ σ
⇒ ∀ a ∈ [0, 1],∀ t ∈ S ,Rε(s, t) � a · ∃(t ′) ∈ S ′ · R′

ε(s
′, t ′) � a ∧ (t, t ′) ∈ σ

3. ∀ a ∈ [0, 1],∀ t ′ ∈ S ′,R′
ε(s

′, t ′) � a · ∃(r ) ∈ [0, 1], τε(r ) � a ∧ R(s ′, t ′) � r
∧ ∀ r ∈ [0, 1],∀ t ′ ∈ S ′,R(s ′, t ′) � r · ∃(t) ∈ S · R(s, t) � r ∧ (t, t ′) ∈ σ
⇒ ∀ a ∈ [0, 1],∀ t ′ ∈ S ′,Rε(s ′, t ′) � a · ∃(t) ∈ S · Rε(s, t) � a ∧ (t, t ′) ∈ σ

�
An important result of this theorem is while abstracting and approximating an infinite model to an approx-

imated finite one, in order to avoid state-space explosion, it is possible to apply the approximation function on
the infinite model then abstract resulted model to a finite one.

Example 4 For K3 model depicted in Fig. 4, the following equation holds. These results equal the amounts
calculated for Model K2 and according to those of K1, with errors lower than 0.25.

P(K2 � EF(x )) � 0.5
P(K2 � EF(¬x )) � 0.75

7. Fuzzy Program Graph

By generalizing Program Graph model proposed in [BK] we create model G � (S , s0,X , Init,Act). In this model,
s0 ∈ S is the initial state, and Init is a function that defines entrance possibility to initial state. Act is a relation
defining state transitions each of which has two parts; (1) a function that defines transition possibility, and (2)
a function that maps possibility values from each and every attribute of the source state to those of destination
state.

• Init ∈ FX

• Act ∈ S × S � FX × GX
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where FX ∈ P(Val(X) → [0, 1]) and GX � F |X |
X and all functions belonging to FX have this constraint that they

must be compatible with the following grammar’s syntax.

ϕ ::� x | κ | ¬ϕ | ϕ  ϕ | ϕ � ϕ | ϕ → ϕ | ϕ � κ | ϕ ≺ κ | ϕ � κ | ϕ � κ | ϕ ≈ κ | ϕ �≈ κ | �ϕ ± κ�
κ ::� r | ϕ >κ | ϕ <κ | ϕ ≥ κ | ϕ ≤ κ | ϕ � κ | ϕ �� κ | �aϕ ± κ�ε | �θ (κ, . . . ,κ)�ε
θ ∈ ⋃

k∈N+ ([0,1]k → R),
ε ∈ Q ∩ [0,1] ∧ 1

ε
∈ N,

r ∈ Q ∩ [0,1],
a ∈ Q,
x ∈ X

where κ is a discrete valued expression and θ stands for an arbitrary analytical function with one or more
arguments. Meanwhile each logical operator as well as comparison, or bounded-add/subtract, can be a specific
case of θ .

7.1. Simple Fuzzy Program Graph

A special case of the FzPG in which the concrete formulas have the following syntax is called simple FzPG
(SFzPG).

κ ::� r | ϕ >κ | ϕ <κ | ϕ ≥ κ | ϕ ≤ κ | ϕ � κ | ϕ �� κ | �aϕ ± κ�ε | �θ (κ, . . . ,κ)�ε

Although Act is a partial function, it can be converted to a total function with a little change. It is enough to
add missing state transitions for all of nodes which are not directly connected, such that:

1. The transition possibility of the new edge is zero.
2. This edge assigns the possibility of the destination attributes by a list of zero values.

We can also make a new source by adding a dummy node ı such that Init continuously returns “1” for ı , meanwhile
the previous Init function must be merged with Act.

Example 5 If X � (x , y), then (f , g) can be an edge of FzPG where:

f (x , y) � (x > y)  (0.4 � (y < 1))

g(x , y) �
〈

(�0.3 − �x� + 2�x − y�0.2�)  0.9, (x > y) � �
�x�

�x� + �y� + 0.1
�0.1

〉

7.2. Equivalency between Fuzzy Program Graph and Fuzzy Kripke

In order to express the meaning of a FzPG, an equivalent Fuzzy Kripke can be defined. There is an equivalent
FzKripke KG � (S ′,X ,R,L, I) to an arbitrary FzPG like G � (S , s0,X , Init,Act), such that:

1. S ′ � S × Val(X )
2. ∀η ∈ Val(X )

(a) if s �� s0, then ∀ s ∈ S · I(s, η) � 0
(b) if s � s0, then ∀ s ∈ S · I(s, η) � Init(η)

3. ∀ η ∈ Val(X ),∀ s ∈ S · L(s, η) � η

4. ∀ η, η′ ∈ Val(X )

(a) if Act(s, s ′) is not defined, then ∀ s, s ′ ∈ S · R((s, η), (s ′, η′)) � 0
(b) if (A,B) � Act(s, s ′), η′ � B(η) then ∀ s, s ′ ∈ S · R((s, η), (s ′, η′)) � A(η)

If a finite number of members in Val(X ) are setting the result of Init function to positive values then there are a
finite number of states for the resulted FzKripke; otherwise the number of states may be infinite for the resulted
FzKripke.
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(a)

(b)

Fig. 5. An example of FzPG alongside its equivalent FzKripke model

When the equivalent FzKripke model accepts a proposition with a certain possibility, we say that the FzPG
also accepts the proposition with the same possibility. Equivalent to each FzKripke, an FzPG with the same
number of states can be defined; however, this conversion is not valuable. The main goal of defining FzPG is to
express FzKripke in a highly compressed format.

8. From FzPG to corresponding abstracted and approximated FzKripke

In order to check and verify the temporal properties of a particular FzPG, an equivalent finite abstract model is
required. It is also possible to convert a particular FzPG to an infinite FzKripke. Whenever error rate is tolerable
during evaluation of logical propositions, a finite approximated model corresponding to the infinite Kripke model
is obtainable. Further theorems present a framework for constructing such finite models from an FzPG. Relevant
algorithms are easy to design regarding the results of these theorems.

Theorem 3 For each FzPG like G , a number like δ � 1
N

exists such that, for each formula f ∈ FX used in the edges
of the graph, we have:

�f (η)�δ � f (�η�δ)

Proof. For each discrete sub-formula κ, we consider a resolution degree such as ρ(κ) and define it recursively.
We consider the number δ the greatest possible value that satisfies the following constraints. In these relations,
κ is a discrete sub-formula, ϕ is an arbitrary formula, �� represents comparison operators, and ⊗ represents
quasi-comparison operators.
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κ � r ⇒ ρ(κ) � r (33)

κ � �θ (κ1, . . . , κt )�ε ⇒ ρ(κ1)
δ

∈ Z, . . . ,
ρ(κt )
δ

∈ Z, ρ(κ) � ε (34)

κ � �aϕ′ ± κ ′�ε � ε

aδ
∈ Z,

ρ(κ ′)
aδ

∈ Z, ρ(κ) � ε (35)

κ � ϕ′ �� κ ′ ⇒ ρ(κ ′)
δ

∈ Z, ρ(κ) � 1 (36)

(�� ∈ {≥,≤,>,<,�, ��})
ϕ � �ϕ′ ± κ�ε or ϕ � ϕ′ ⊗ κ or ϕ � κ ⇒ ρ(κ)

δ
∈ Z (37)

(⊗ ∈ {���≺≈�≈})

There is surely a number like δ that satisfies these constraints. Also, any number δ′ by which δ is divisible, satisfies the
above constraints and can be considered as another answer of the theorem. For discrete sub-formulas, proposition
κ
ρ(κ) ∈ Z can be investigated.

Now we must show for each sub-formula ϕ included in the Formula f , the property �ϕ(η)�δ � ϕ(�η�δ) holds,
because:

ϕ � x ⇒ �x (η)�δ � x (�η�δ) (38)
ϕ � ¬ϕ′ ⇒ �ϕ(η)�δ � 1 − �ϕ(η)�δ � 1 − ϕ(�η�δ) � ϕ′(�η�δ) (39)
ϕ � ϕ1  ϕ2 ⇒ �ϕ(η)�δ � �ϕ1(η)�δ  �ϕ2(η)�δ � ϕ1(�η�δ)  ϕ2(�η�δ) � ϕ(�η�δ) (40)

Proposition �ϕ  ψ�δ � �ϕ�δ  �ψ�δ also holds. In order to prove this proposition, when �ϕ�δ < �ψ�δ then
ϕ < ψ and the equality is easily verifiable. Therefore the theorem is also established for the > operator. When
�ϕ�δ < �ψ�δ, both ϕ and ψ are divisible by δ or neither of them are divisible by it; in the latter case the following
proof is established and can be repeated for logical operators like → and �.

ϕ � (p + α)δ, ψ � (p + β)δ
⇒ ϕ  ψ � (

p + min(α, β)
)
δ, �ϕ  ψ�δ � �ϕ�δ  �ψ�δ � �ϕ�δ � �ψ�δ

p ∈ Z, α, β ∈ (0, 1)

In case ϕ � κ, If κ is a constant number such as r , and r is divisible by δ, the following relation holds because it
is independent on η.

ϕ � κ ⇒ �ϕ(η)�δ � ϕ(η) � ϕ(�η�δ) (41)

On the other hand when ϕ(η) � �θ
(
κ1(η), . . . , κt (η)

)
�ε, since ��α�ε�δ � �α�ε and above property holds for each

value of κi , property also holds for the entire formula ϕ.
Regarding the equation ϕ(η) � �aϕ′(η) ± κ ′(η)�ε we have:

�ϕ(η)�δ � ϕ(η) � �aϕ′(η) ± κ ′(η)�ε � �a�ϕ′(η)�δ ± κ ′(η)�ε � �aϕ′(�η�δ) ± κ ′(�η�δ)�ε � ϕ(�η�δ) (42)

Some parts of above equations must be proved.

�aϕ′(η) ± κ ′(η)�ε � �a�ϕ′(η)�δ ± κ ′(η)�ε (43)
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If ϕ′(η) is dividable by δ, it is straight forward to evaluate this relation, otherwise since ρ(κ ′)
aδ

∈ Z and κ ′
ρ(κ ′) ∈ Z we

conclude that: κ ′(η) is divisible by aδ, and ε
aδ

∈ Z.

ϕ′(η) � (p + α)δ, κ ′(η) � qaδ, ε � eaδ

�aϕ′(η) ± κ ′(η)�ε � ε

⌊
a
ε
ϕ′(η) ± κ ′(η)

ε

⌋
� ε

⌊
p ± q + α

e

⌋
� ε

⌊
p ± q

e

⌋

�ϕ′(η)�δ � (p + 0.5)δ

�a�ϕ′(η)�δ ± κ ′(η)�ε � ε

⌊
p ± q + 0.5

e

⌋
� ε

⌊
p ± q

e

⌋

p, q, e ∈ Z, α ∈ (0, 1)

If ϕ � ϕ′ �� κ ′, where �� is a comparison operator, then we must prove the following condition:

�κ ′(η)�δ � κ ′(η) � κ ′(�η�δ), �ϕ′(η)�δ � ϕ′(�η�δ) ⇒ �ϕ(η)�δ � ϕ(η) � ϕ(�η�δ) (44)

Proof is as follows:

ϕ(η) � ϕ′(η) �� κ ′(η) � �ϕ′(η)�δ �� κ ′(η) � ϕ′(�η�δ) �� κ ′(�η�δ) � ϕ(�η�δ)

Relation ϕ′(η) �� κ ′(η) � �ϕ′(η)�δ �� κ ′(η) is correct because κ ′(η) is divisible by δ. If ϕ′(η) is also divisible by
δ, checking of the equation is simple, otherwise we have:

ϕ′(η) � (p + α)δ, κ ′(η) � qδ
ϕ′(η) �� κ ′(η) � (p + α �� q) � (p + 0.5 �� q) � �ϕ′(η)�δ �� κ ′(η)

p, q ∈ Z, α ∈ (0, 1)

It is easy to check the property whenever �� equates to � or ��. If �� equates to ≥ then p is greater than or equal
to q , by adding 0.5 to p comparison will be converted to >. Other cases can be checked, similarly.

ϕ � �ϕ′ ± κ� ⇒ �ϕ(η)�δ � ��ϕ′(η)�δ ± κ(η)� � �ϕ′(�η�δ) ± κ(�η�δ)� � ϕ(�η�δ)

Above proposition is correct, because κ(η) is divisible by δ and κ(η) � κ(�η�δ). Similar to bounded-
add/subtract in the form �ϕ′ ± κ�, for quasi-comparison operators the theorem is established and can be verified.

Hereafter in this paper, δG represents the largest δ for graph G . �

Theorem 4 Model K is equivalent infinite FzKripke to a particular FzPG such as G . KG can be approximated to
Kδ using normal-saturation function (with precision δ which is a divisor of δG ). This new model can be abstracted
to a finite model such as K ′

G with |S |( 2
δ

+ 1)|X | states, and for each formula ϕ (that can be approximated to ϕδ) we
have:

∣∣ P(KG � ϕ) − P(K ′
G � ϕδ)

∣∣ <
δ

2

Proof. Assume that G � (S , s0,X , Init,Act) is a particular FzPG and KG � (S1,X ,R1,L1, ı) as its equivalent
single-source FzKripke; thus Kδ � (S2,X ,R2,L2, ı) is also a single-source FzKripke. Also assume Act(s, t) �
(Ast ,Bst ). We build K ′

G � (S3,X ,R3,L3, ı) as follows:

S3 � S ×
{

q
δ

2

∣∣∣∣q ∈
{

0, . . . ,
δ

2

} }|X |
∪ {ı}

L2(〈s, μ〉) � μ

R3(ı, 〈s0, μ〉) � Init(μ)
if s �� s0 then R3(ı, 〈si , μ〉) � 0
R3(〈s, μ〉, 〈t,Bst 〉) � Ast

if μ′ �� Bst then R3(〈s, μ〉, 〈t, μ′〉) � 0
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We show Kδ and K ′
G are bisimilar according to the following relation:

σ �
{(〈s, η〉, 〈s, �η�δ〉|〈s, η〉 ∈ S2 − {ı})

}
∪ {

(ı, ı)
}

If R1
(〈s, η〉, 〈t,Bst (η)〉) � Ast (η) then we have:

R2(〈s, η〉, 〈t,Bst (η)〉) � �Ast (η)�δ � Ast (�η�δ),L2(〈s, η〉) � �η�δ,L2(〈t,Bst (η)〉) � �Bst (η)�δ � Bst (�η�δ)
R3(〈s, �η�δ〉, 〈t,Bst (�η�δ)〉) � Ast (�η�δ),L3(〈s, �η�δ〉) � �η�δ,L3(〈t,Bst (�η�δ)〉) � Bst (�η�δ)

And if R1(ı, 〈s0, η〉) � Init(η) we have:

R2(ı, 〈s0, η〉) � �Init(η)�δ � Init(�η�δ)
R3(ı, 〈s0, �η�δ〉) � Init(�η�δ)

We now show that σ has bisimulation properties.

L2(〈s, η〉) � L3(〈s, �η�δ〉),∀ r ∈ [0, 1] · R2(〈s, η〉, 〈t, η′〉) � r ⇒ R3(〈s, �η�δ〉, 〈t, �η′�δ〉) � r

Whenever η′ � Bst (η) then r � Ast (�η�δ) and obviously �η′�δ � Bst (�η�δ), otherwise r � 0; also we have:

∀r ∈ [0, 1] · R2(ı, 〈s, η〉) � r ⇒ R3(ı, 〈s, �η�δ〉) � r

Whenever s � s0 then r � Init(�η�δ) otherwise r equals zero.

∀r ∈ [0, 1] · R3(〈s, μ〉, 〈t, μ′〉) � r ⇒ R2(〈s, μ〉, 〈t, μ′〉) � r

According to definition of normal-saturation function, μ � �μ�δ and μ′ � �μ′�δ. Now if μ′ � Bst (μ) then
r � Ast (μ) otherwise r equals zero. Similarly we have:

∀r ∈ [0, 1] · R3(ı, 〈s, μ〉) � r ⇒ R2(ı, 〈s, μ〉) � r

�

However, K ′
G is a finite model and the error rate of propositions’ values is less than δ

2 , since δ is small, the
number of states is still large. Albeit the proposition values will have higher error rates, but the new model can
be re-approximated with precision � (which is less precise in comparison with δ). The question is whether we
can approximate FzPG and simultaneously create an approximated FzKripke model with minimal states before
forming the approximated K ′

G . If it is possible, regarding the compactness of FzPG, the approximation cost in
terms of space and time will be reduced; meanwhile the final approximated FzKripke will be generated directly.
To answer this question the following definitions and theorems, are presented.

8.1. Normal �-approximable formula

Formula ϕ from FX is called normal �-approximable, if by applying the approximation τ� (which will be
defined later) on it, the new formula and its sub-formulas satisfy the constraints mentioned in the proof of
Theorem 3 [relations (33)–(38) for δ � �]. Approximation τ� for each formula ϕ according to definition
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of FX is as follows:

ϕ � x ⇒ τ�(ϕ) � x
ϕ � ¬ϕ′ ⇒ τ�(ϕ) � ¬τ�(ϕ′)
ϕ � ϕ′ � ϕ′′ ⇒ τ�(ϕ) � τ�(ϕ′) � τ�(ϕ′′)

(� ∈ {,�,→})
ϕ � �ϕ′ ± κ� ⇒ τ�(ϕ) � �τ�(ϕ′) ± κ�

ϕ � ϕ′ ⊗ κ ⇒ τ (ϕ) � τ�(ϕ′) ⊗ κ

(⊗ ∈ {���≺≈�≈})
ϕ � r ⇒ τ�(ϕ) � �r��

(r is const.)
ϕ � ϕ′ �� κ ′ ⇒ τ�(ϕ) � τ�(ϕ′) �� κ ′

(��∈ {≥,≤,>,<,�, ��})
ϕ � �aϕ′ ± κ ′�ε ⇒ τ�(ϕ) � �aτ�(ϕ′) ± κ ′�ε
ϕ � �θ (κ1, . . . , κt )�ε ⇒ τ�(ϕ) � ϕ

Notice, in this section we use ϕ� as the abbreviation of τ�(ϕ).

Example 6

ϕ � (
(x  0.24  �y + 0.7�) � 0.815

)
> 0.4 ⇒ ϕ0.1 � (

(x  0.25  �y + 0.7�) � 0.85
)
> 0.4

Definition 1 The FzPG G is called normal �-precision approximable if all formulas involved in transition edges
or its initial function are �-precision approximable. The approximated FzPG is called G�.

Lemma 2 For each formula ϕ, involved in the FzPG G , which is normal �-precision approximable we have:

�ϕ(η)�� � �ϕ�(η)�� � ϕ�(�η��)

Proof. Using induction on sub-formulas of formula ϕ , we can prove the correctness of proposition �ϕ(η)�� �
�ϕ�(η)��.

ϕ(η) � r ⇒ ϕ�(η) � �r��, �r�� � ��r����

ϕ(η) � x (η) or ϕ(η) � �θ (κ1(η), . . . , κt (η))�ε ⇒ ϕ�(η) � ϕ(η) ⇒ �ϕ(η)�� � �ϕ�(η)��
ϕ(η) � ¬ϕ′(η) ⇒ �ϕ(η)�� � ¬�ϕ′(η)�� � ¬�ϕ′

�(η)�� � �¬ϕ′
�(η)�� � �ϕ�(η)��

ϕ(η) � ϕ′(η) � ϕ′′(η) ⇒ �ϕ(η)�� � �ϕ′(η)�� � �ϕ′′(η)�� � �ϕ′
�(η)�� � �ϕ′′

�(η)��
� �ϕ′

�(η) � ϕ′′
�(η)�� � �ϕ�(η)��

ϕ(η) � �ϕ′(η) ± κ(η)� ⇒ ρ(κ)
�

∈ Z, �ϕ(η)�� � ��ϕ′(η) ± κ(η)��� � ��ϕ′(η)�� ± κ(η)�

� ��ϕ′
�(η)�� ± κ(η)� � ��ϕ′

�(η) ± κ(η)��� � �ϕ�(η)��

In case of comparison and quasi-comparison operators, proof is same as the bounded-add/subtract. If ϕ(η) �
�aϕ′(η) ± κ(η)�ε the proof is different:

�ϕ�(η)�� � ��aϕ′
�(η) ± κ(η)�ε�� � �aϕ′

�(η) ± κ(η)�ε

According to constraint (38) we have ε
�

∈ Z, hence above equation holds. Also we have:

�ϕ(η)�� � ��aϕ′(η) ± κ(η)�ε�� � �aϕ′(η) ± κ(η)�ε
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On the other hand, according to (39) we have:

�aϕ′
�(η) ± κ(η)�ε � �a�ϕ′

�(η)�� ± κ(η)�ε
�aϕ′(η) ± κ(η)�ε � �a�ϕ′(η)�� ± κ(η)�ε

Because of equation �ϕ′
�(η)�� � �ϕ′(η)��, and considering above equations, �ϕ�(η)�� � �ϕ(η)�� holds. Since

these sub-formals satisfy constraints (33)–(38), the proof of �ϕ�(η)�� � ϕ�(�η��) is similar to the above proof of
the Theorem 3. �

Theorem 5 While G is a�-precision approximable FzPG, its equivalent infinite FzKripke KG can be approximated
to K� using normal-saturation function (with precision�which is a divisible by δG ). This new model can be abstracted
to a finite model such as K ′

G with |S |( 2
�

+ 1)|X | states, and for each formula ϕ (that can be approximated to ϕ�) we
have:

∣∣ P(KG � ϕ) − P(K ′
G � ϕ�)

∣∣ <
�

2

Proof. The result of Approximation on KG� (using normal-saturation function with precision �) is denoted
as KG�

′. According to the previous theorem, the recent model can be abstracted to a finite model D� with
|S |( 2

�
+ 1)|X | nodes. For each approximable FzCTL* proposition such as ϕ, according to the results of the

previous theorems, we have:
∣∣ P(KG � ϕ) − P(K� � ϕ�)

∣∣ <
�

2
If it can be proved that K� ∼ K ′

G , it is easy to show that:
∣∣ P(KG � ϕ) − P(K ′

G � ϕ�)
∣∣ <

�

2
Assume KG � (S1,X ,R1,L1, ı), K� � (S2,X ,R2,L2, ı) and K ′

G � (S3,X ,R3,L3, ı) are single-source models.
Also assume that Act(s, t) � (Ast ,Bst ). We call normal approximation of Ast ,Bst and Init (with precision �)
A′

st , B ′
st and Init′, respectively. We show that K� and K ′

G are bisimilar and bisimulation relation is as follows:

σ � (〈s, η〉, 〈s, �η��〉 : 〈s, η〉 ∈ S2 − ı ∪ (ı, ı)

If R1(〈s, η〉, 〈t,Bst (η)〉) � Ast (η) we have:

R2(〈s, η〉, 〈t,Bst (η)〉) � �Ast (η)�� � A′
st (�η��),L2(〈s, η〉) � �η��,L2(〈t,Bst (η)〉) � �Bst (η)�� � B ′

st (�η��)
R3(〈s, �η��〉, 〈t,B ′

st (�η��)〉) � A′
st (�η��),L3(〈s, �η��〉) � �η��,L3(〈t,B ′

st (�η��)〉) � B ′
st (�η��)

And if R1(ı, 〈s0, η〉) � Init(η) we have:

R2(ı, 〈s0, η〉) � �Init(η)�� � Init′(�η��)
R3(ı, 〈s0, �η��〉) � Init′(�η��)

Now we check whether σ has the properties of bisimulation relation or not:

L2(〈s, η〉) � L3(〈s, �η��〉),∀ r ∈ [0, 1] · R2(〈s, η〉, 〈t, η′〉) � r ⇒ R3(〈s, �η��〉, 〈t, �η′��〉) � r

Because if η′ � Bst (η) then r � A′
st (�η��) and surely �η′�� � B ′

st (�η��), otherwise r � 0; also we have:

∀r ∈ [0, 1] · R2(ı, 〈s, η〉) � r ⇒ R3(ı, 〈s, �η��〉) � r

Because if s � s0 then r � Init′(�η��) otherwise r is zero.

∀r ∈ [0, 1] · R3(〈s, μ〉, 〈t, μ′〉) � r ⇒ R2(〈s, μ〉, 〈t, μ′〉) � r

According to the definition of normal-saturation function, μ � �μ�� and μ′ � �μ′��. Now if μ′ � B ′
st (μ)

then r � A′
st (μ), otherwise r is zero. Similarly:

∀r ∈ [0, 1] · R3(ı, 〈s, μ〉) � r ⇒ R2(ı, 〈s, μ〉) � r

�
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(a) (b)

Fig. 6. Quaternary D-flip flop

9. Case study

Most of recent studies in digital circuit design showed a vast amount of interest in model checking and generally
formal verification techniques to verify synchronous and asynchronous sequential logics. In particular, model
checking is used to find bugs such as lack of stability, and hazard occurrence early in the design phase of a digital
circuit. Burch et al. [BCL+94] introduced a symbolic model checking approach to verify sequential circuits by
modeling sequential behavior of a circuit using Binary Decision Diagrams (BDD’s) and then using CTL for model
verification.

Synchronous sequential circuits are typically easy to check, asynchronous sequential circuits are also straight-
forward to verify whenever all logic gates used in an asynchronous circuit have equal propagation delays. However
circuits with special design models such as fundamental-mode, speed-independent, and delay-intensive are also
easy to verify, asynchronous circuits whose components have different or even non-deterministic propagation
delays are difficult to verify [Cun04], yet Maler and Pnueli [MP95] used timed automata to verify this class of
asynchronous circuits.

Most recently in addition to the binary logic circuits researchers are also focused on fuzzy logic, and even
multi-valued logic circuits along with their applications [EFR74, Smi81, Hur84]. Much of the work in this area
includes designing fuzzy logic gates, fuzzy flip-flops, and their combination in larger circuits (such as memory
units) [KHH87, Smi88].

Hirota et al. proposed the concept of fuzzy flip-flops while they presented the idea for designing fuzzy hardware
systems using these flip-flops [HO89, OHK+95, OHK96, HP95, HP95]. Fuzzy flip-flops are made of fuzzy logic
gates through having some extensions to binary logic flip-flops. So far, no specific study has been made to verify
multi-valued logic circuits. In this section we used FzPG to model the multi-valued D flip-flop presented in
[Gur10] (depicted in Fig. 6), afterward we used FzCTL to verify the model and discover design errors. The
provided technique in this section can be generalized for other asynchronous multi-valued logic circuits. For
further readability of the paper we use the following abbreviations while examining this circuit:

•C : clock •R : clear •Q : q
•P : preset •D : din •Q̄ : q̄

The domain of ϑ in Table 2 is
{

0, 1
3 ,

2
3 , 1

}
for quaternary logic; similarly, the domain of a (k+1)-valued logic is{

0, 1
k
, 2

k
, . . . , 1

}
. For simplicity, we assume propagation delays for all logic gates are equal to� � 2−h time units

where h is a positive integer. We also assume that P , R, Q values are stable, but C is a periodic pulse as depicted
in Fig. 7
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Table 2. Quaternary D-flip flop truth table

Inputs Outputs
P R D C Q Q̄

0 1 X X 1 0
1 0 X X 0 1
1 1 ϑ ↑ ϑ ¬ϑ
0 0 X X ? ?

B

Fig. 7. The periodic clock pulse where A, and B are positive integers

Considering the periodic clock pulse shown in Fig. 7, larger values of A and B does not affect circuit’s behavior
but slowing it down. On the other hand, it is evident if values of A and B are smaller than a certain threshold there
is no time for stabilizing the output of the circuit; thus its operation will be inaccurate. In a multi-valued logic
flip-flop the minimum value for both A and B is equal to 3 (inaccurate circuit operation while using values less
than 3 can be investigated by model checking methods) while we consider N � 1

�
to be the maximum value for

A and B (the maximum value may exceed the provided N without affecting the circuit except slowing it down).
We labeled outputs of all gates in Fig. 6; (i.e., we labeled four most left placed gates in the diagram from top

to bottom as x , y , z , and w respectively). We also used the prime notation to label the outputs after� time units.
The output for each gate can be calculated easily as follows:

x ′ � Nand(P ,w , y)
y ′ � Nand(x ,C ,R)
z ′ � Nand(y,C ,w )
w ′ � Nand(z ,R,D)

Q ′ � Nand(P , y, Q̄)

Q̄ ′ � Nand(Q, z ,R)

The Nand gate is simply defined as follows:

Nand(a, b, c) � ¬(a  b  c)

In this stage we define a FzPG called G with two states s1, s2, please see Fig. 8. In s1, C equates to “0” while in
s2 it equates to “1”. The set of attributes is as follows:

X � 〈T , u,P ,R,D,C , x , y, z ,w ,Q, Q̄〉

Fig. 8. The corresponding FzPG to the multi-valued flip-flop shown in Fig. 6
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Details of participant functions in the FzPG are shown below:

I � (T � 0)  (C � 0)  (u � 0)
F11 � F22 � (T < 1)
F12 � F21 � (T ≥ 3�)

G12 � 〈0, 1,P ,R,D, 1, x , y, z ,w ,Q, Q̄〉
G21 � 〈0, u,P ,R,D, 0, x , y, z ,w ,Q, Q̄〉
G11 � G22 � 〈�T +��, u,P ,R,D,C , Nand(P ,w , y),Nand(x ,C ,R),

Nand(y,C ,w ),Nand(z ,R,D),Nand(P , y, Q̄),Nand(Q, z ,R)〉
It is obvious that G is a normal �-approximable model. In order to verify each and every rows of the truth

table (as shown in Table 2) it is necessary to define some FzCTL propositions, and then verify them using model
checking techniques. According to the first row in the truth table we will investigate validity of following properties.

Property 1 If P � 0 and R � 1 then after 2� time units, the output is in a constant state like Q � 1 and Q̄ � 0.

(P � 0  R � 1) → AX
(

AX
(

AG(Q � 1  Q̄ � 0)
))

This proposition (thus property) evaluates to “0” even when increasing time units, by adding more A X operator to
the proposition, its evaluation will not change.

Property 2 If P � 0 and R � 1, once the clock pulse rises, the output is in a constant state like Q � 1 and Q̄ � 0.

(P � 0  R � 1) → AG
(
u � 1 → (Q � 1  Q̄ � 0)

)

This proposition also evaluates to “0”.

Following trace nullifies Properties 1 and 2.

→ 〈0, 0, 0, 1, ϑ, 0, x , y, z ,w ,Q, Q̄〉 → 〈�, 0, 0, 1, ϑ, 0, 1, 1, 1,Nand(z , ϑ), 1,Nand(z ,Q)〉 →
〈2�, 0, 0, 1, ϑ, 0, 1, 1, 1,¬ϑ, 1, 0〉 → · · · → 〈A�, 0, 0, 1, ϑ, 0, 1, 1, 1,¬ϑ, 1, 0〉 →
〈0, 1, 0, 1, ϑ, 1, 1, 1, 1,¬ϑ, 1, 0〉 → 〈�, 1, 0, 1, ϑ, 1, 1, 0, ϑ,¬ϑ, 1, 0〉 →
〈2�, 1, 0, 1, ϑ, 1, 1, 0, 1,¬ϑ, 1,¬ϑ〉 → 〈3�, 1, 0, 1, ϑ, 1, 1, 0, 1, ïƒ˜ϑ, 1, 0〉 → · · ·

As can be observed upon raising the clock pulse the value of Q̄ resets to “0”, yet after 2� time units its value
changes to ¬ϑ then in the next step it turns to “0” and stays constant, therefore a hazard occurs on 2� time
units immediately by the following raising clock pulse when initial value for ϑ is less than “1”. Meanwhile by
ignoring Q̄ in the proposed multi-valued flip-flop the circuit functions correctly and the validity of the following
properties is preserved.

Property 3 If P � 0 and R � 1 then after 2� time units, the output is in a constant state like Q � 1.

(P � 0  R � 1) → AX
(

AX
(

AG(Q � 1)
))

Property 4 If P � 0 and R � 1, once the clock pulse rises, the output is in a constant state like Q � 1.

(P � 0  R � 1) → AG
(
u � 1 → (Q � 1)

)

Properties 5 and 6 are valid according to the second row in the truth table.

Property 5 If P � 1 and R � 0 then after 2� time units, the output is in a constant state like Q � 0 and Q̄ � 1.

(P � 1  R � 0) → AX
(

AX
(

AG(Q � 0  Q̄ � 1)
))

Property 6 If P � 1 and R � 0, once the clock pulse rises, the output is in a constant state like Q � 0 and Q̄ � 1.

(P � 1  R � 0) → A G
(
u � 1 → (Q � 0  Q̄ � 1)

)
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According to the third row in the truth table Property 7 is valid for 3� but not less than that.

Property 7 If P � 1 and R � 1 then on 3� time units immediately following raising the clock pulse, the output is
in a constant state like Q � ϑ and Q̄ � ¬ϑ .

(P � 1  R � 1) → AG(u − 1 → AX(AX(AX(A G(Q � ϑ  Q̄ � ¬ϑ)))))

Property 8

(P � 1  R � 1) → AG(u − 1 → AX(AX(A G(Q � ϑ  Q̄ � ¬ϑ))))

Property 9

(P � 1  R � 1) → AG(u − 1 → AX(AG(Q � ϑ  Q̄ � ¬ϑ)))

The following trace nullifies Properties 8 and 9:

→ 〈0, 0, 1, 1, ϑ, 0, x , y, z ,w ,Q, Q̄〉 → 〈�, 0, 1, 1, ϑ, 0,Nand(y,w ), 1, 1,Nand(z , ϑ),Nand(y, Q̄),

Nand(z ,Q)〉 → 〈2�, 0, 1, 1, ϑ, 0,¬w , 1, 1,¬ϑ,¬Q̄ ,¬Q〉 → 〈3�, 0, 1, 1, ϑ, 0, d , 1, 1,¬ϑ,Q, Q̄〉 → · · ·
→ 〈A�, 0, 1, 1, ϑ, 0, ϑ, 1, 1,¬ϑ,¬Q̄ ,¬Q〉 → 〈0, 1, 1, 1, ϑ, 1, ϑ, 1, 1,¬ϑ,¬Q̄ ,¬Q〉 →
〈�, 1, 1, 1, ϑ, 1, ϑ,¬ϑ, ϑ,¬ϑ,Q, Q̄〉 → 〈2�, 1, 1, 1, ϑ, 1, ϑ,¬ϑ, ϑ,¬ϑ,Nand(¬ϑ, Q̄),Nand(ϑ,Q)〉 →
〈3�, 1, 1, 1, ϑ, 1, ϑ,¬ϑ, ϑ,¬ϑ, ϑ,¬ϑ〉 → 〈4�, 1, 1, 1, ϑ, 1, ϑ,¬ϑ, ϑ,¬ϑ, ϑ,¬ϑ〉 → · · ·

Assume rather than the complementary initial values for Q and Q̄ they are initialized to values like “0” and “0.5”
and the initial value for ϑ equals to “0.25”, once the clock pulse rises, Q will gain the following values:

0.5 → 0 → 0.5 → 0.25 → 0.25 → · · ·
It can be seen the output become stable in the moment of 3� but before that the hazard happens. This problem
can be avoided if the initial values for Q and Q̄ are complementary values. For complementary values for both
Q and Q̄ it is necessary to initially preset or clear the circuit. The verification of following property is the proof
of not having a hazard.

Property 10

(P � 1  R � 1Q � e  Q̄ � ¬e) → A
(
(u � 0 � Q � e  B � ¬e) U(Q � ϑ  B � ¬ϑ)

)

The above proposition should be checked for each value of e. By adding an attribute called e to the fuzzy program
model G and having its value constant in all states it is not necessary to repeat the model checking process for
different values of e.

In model checking process while verifying all properties from Properties 1–10, we used a variety of different
values from 2−6 to 2−2 for�; modifying� did not affect the valuation of propositions. Meanwhile by minimizing
� both memory usage and turn-around time for model checking process increases. Using OBDD-Vectors (imple-
mented via BuDDy library [LN96]) the corresponding FzKripke for above FzPG is implemented. A verification
method for Properties 1–10 is also implemented but the implementation details require a lot of preparation that
do not fit in this case study. In this case study, we assumed propagation delays for all gates are equal but it is
possible for them to vary, in these situations the valuation for some of propositions such as Property 5 may not
equal to “1”; hence it is necessary to define a concrete time generalization for FzPG and FzCTL*.

10. Conclusion and future work

In this paper, not only we introduced Fuzzy Kripke as an extended multi-valued Kripke model but we also
defined a temporal fuzzy logic (called FzCTL∗) based on FzKripke in order to express temporal properties.
FzCTL* include some operators that are rarely seen in other logics. Some modifications are carried out in the
meaning of its formulas to avoid shortages in other logics like ambiguity.

The FzKripke complies with classic solutions for the problem of state space explosion. In order to reduce
state space, we present two methods; first one is abstraction using bisimulation without affecting the value of
logic propositions, and the second one is an approximation technique for both model and logic propositions.
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By applying the latter method, state space reduction comes with a controlled error rate for propositions values.
A combination of these two methods is also applicable. In another issue, a compact model called FzPG was
defined. FzPG is easily convertible to an infinite fuzzy Kripke model, and the infinite FzKripke is also convertible
to an approximated finite one using approximation and abstraction techniques together. The FzPG can also be
approximated under an especial circumstance.

Although we studied the SFzPG in this paper, it can be proved if the FzPG is not simple then a finite model can
be obtained using abstraction and approximation (with an acceptable precision such as �), the proof technique
is different from what we discussed in this paper. In order to check the temporal properties of a certain FzPG, an
approximated Kripke model can be obtained using presented methods; eventually this new model can be processed
using conventional symbolic methods. However, it is preferred to directly represent FzPG in a symbolic form
without making a Kripke model, and directly calculate its proposition values. For this purpose the same decision
diagrams can be used again.

In order to use these models and logics in real applications, some generalizations of them have to be carried
out (i.e., FzTA and FzTCTL). In these generalizations the real time must be added in form of fuzzy sets, and
the temporal logics must include linguistic expressions alongside formal expressions. Eventually it seems that
the fuzzy temporal logic and FzPG proposed in this paper are capable to perform the function checking of even
more complex fuzzy circuits. But the corresponding program graph will be more complex and enormous in size;
therefore efficient methods will be required to check the properties of these types of system.
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