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In this paper, a hidden Markov model with auto-correlated observations (HMM-AO) is developed to handle the

degradation modeling of manufacturing systems. Unlike the standard hidden Markov models (HMMs), the cur- 

rent observation in the HMM-AO model not only depends on the corresponding hidden system state, but also

on the previous observations. A novel algorithm using the expectation maximum is presented to estimate the

unknown parameters. Furthermore, missing data and noise that accumulate over time are also considered by

modifying the proposed model. Then two remaining useful life prediction methods based on the HMM-AO model

are developed. Predictive values of more accuracy can be obtained, since the autocorrelation of observations has

been considered and the temporal evolution of degradation processes has been described properly. A case study

is illustrated to highlight the advantages of HMM-AO and demonstrate the accuracy and efficiency of the pre- 

diction methods. Furthermore, an improved maintenance policy is developed based on the results of remaining

useful life prediction. Finally, a comparison with a conventional condition-based maintenance policy is provided

to prove the performance of this proposed policy.

© 2017 Elsevier Ltd. All rights reserved.
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. Introduction

Maintenance policies play important roles in improving the effec-

iveness of production systems ’ operation. In recent years, maintenance

trategies combining data-driven reliability models with observed data

f condition monitoring has gained more and more attention [1–3] . Di-

gnosis and prognosis are two important aspects in the framework of

aintenance and have been largely researched [4] . The former focuses

n the fault detection [5] , while the latter devotes to evaluate the cur-

ent health state of the system as well as to predict its remaining useful

ife (RUL). An accurate prediction of the RUL could help develop a more

conomical and effective maintenance policy. 

The performance of a manufacturing system is typically affected by

ts degradation process. There are always some quality characteristics

f systems (voltage, crack length, wear, etc.). Their values degrade over

ime and failures occur when their degradation paths exceed a prede-

ermined critical threshold [6,7] . Monitoring system and collecting and

nalyzing the observations of one or more quality characteristics can in-

orm the users about the state of the system and set the ground for RUL

rediction and preventive maintenance policy planning. Beganovic and

öffker [8] developed modeling strategies capable to describe complex

elations between measurable system variables, related system degrada-
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f aircraft engine in the same gradual degradation mode. Therefore, to

btain a precise RUL prediction, a system’s degradation process should

e thoroughly studied and properly modeled. If the degradation states

an be directly identified and estimated by using discrete or continuous

ondition monitoring, we can make maintenance decisions based on the

urrent and the predicted degradation state of the system. Consequently,

he key part in RUL prediction and maintenance decision-making for a

egrading system is degradation modeling. 

The degradation phenomenon is commonly modeled by a kind of

tochastic process [10] , due to the variety and number of influencing

actors (such as age, usage or environment). In previous studies, sev-

ral probabilistic approaches have been adapted to capture the stochas-

ic properties of degradation processes. Le et al. [11] used a non-

omogeneous gamma process to model the system’s degradation and

stimate the remaining useful life distribution. Chen et al. [6] proposed

 nonlinear generalized wiener process model and developed a joint

ulti-level classification and preventive maintenance model. However,

hese degradation models cannot precisely describe the temporal evo-

ution of sequential data and give the real-time prediction combined

ith the latest collected data directly. Artificial neural network (ANN)

12] and Hidden Markov model (HMM) are two alternative approaches

o make up these shortcomings. In contrast with HMMs, it is difficult to
 Safety (2017), https://doi.org/10.1016/j.ress.2017.09.002 
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of RUL prediction. 
nd the degradation law and observe the health state transition when

e employ ANN-based methods. Actually, we need this information to

uild a connection between mathematical models and the underlying

hysical degradation processes. Therefore, HMMs are utilized in this re-

earch. 

HMM is a general statistical modeling technique for sequences or

ime series and has been successfully applied in temporal pattern recog-

ition, such as speech and handwriting recognition [13,14] . A HMM

ormally consists of two stochastic processes: A Markov chain where

he hidden states representing stochastic sequences cannot be observed

irectly, and an observation process which relates to the states by some

robability distributions. Generally speaking, HMMs have finite num-

ers of hidden states with discrete or continuous observations [15] . Two

ssumptions are made by the model. The first, called the Markov as-

umption, states that the current state is dependent only on the pre-

ious state, this represents the memory of the model. The indepen-

ence assumption states that the output observation at the current mo-

ent is dependent only on the current state, it is independent of pre-

ious observations and states. In recent years, HMMs in diagnosis and

rognosis has gained increasing attention. HMMs can depict the sys-

em’s health condition with several meaningful states, such as “healthy ”,

good ”, “normal ”, “unhealthy ” and “failure ”. Thereby, it can give con-

ise and straightforward explanations for maintenance [16,17] . Many

tudies have used HMMs as an efficient tool for degradation modeling,

s well as the RUL prediction [18–20] . Wang and Wang [21] presented a

ontinuous HMM method to solve the problems of tool condition mon-

toring and remaining useful life prediction. Le et al. [22] proposed a

ulti-branch HMM framework for remaining useful life estimation of

ystems under multiple deterioration modes. Ghasemi et al. [23] de-

eloped a method based on HMMs to calculate the reliability function

nd the mean residual life of a piece of equipment. Yu [24] proposed an

daptive-learning-based method for machine faulty detection and health

egradation monitoring with an adaptive HMM. Cholette and Djurd-

anovic [25] described a novel data-driven approach based on charac-

erizing the degradation process via a set of operation-specific HMMs to

onitoring of systems operating under variable operating conditions.

eramifard et al. [26] used multiple physically segmented HMM with

ontinuous output for tool wear monitoring. Moreover, HMMs have also

een used to degradation modeling and then for condition-based main-

enance. Zhang et al. [27] demonstrated a Bayesian estimation scheme

or the HMM parameters, as well as a method for condition-based mon-

toring and maintenance. 

As for degradation modeling and prognosis, most existing applica-

ions of HMMs in the previous papers assume an independent scalar

bservation distribution associated with each state, namely conditional

ndependence. That is, there are no correlations among the observa-

ions. However, this assumption is frequently invalid in many degra-

ation processes. With the growth of automation in manufacturing, the

uality characteristics of systems are being measured at higher rates and

he degradation data is more likely to be auto-correlated [28] . For ex-

mple, the crack propagation rate will be higher and the crack length

ill grow rapidly when the current crack length is larger. Due to this

utocorrelation, traditional HMM-based methods cannot describe the

egradation processes exactly and make an accurate real-time predic-

ion. Therefore, it is realistic to take the autocorrelation of degradation

ata into account. Few papers have addressed this type of degradation

rocess. Tang et al. [29] used an autoregressive model with time ef-

ect to describe the system degradation. This study combined both the

ystem current age and the previous state observations. Adjengue et al.

30] dealt with independent as well as correlated maintenance obser-

ations by HMM. Though the autocorrelation has been investigated in

hose literatures, the studies about HMMs with auto-correlated observa-

ions for degradation modeling and the RUL prediction have not been

eeply explored. Actually, they are urgently required for their poten-

ial importance. Moreover, missing data and noise occur frequently in

arious signal processing and statistical applications. Yu and Kobayashi
2 
31] proposed a hidden semi-Markov model with missing observations

nd multiple observation sequences for mobility tracking. Palomäki

t al. [32] described a binaural auditory model for recognition of speech

n the presence of spatially separated noise intrusions, under small-room

everberation conditions. However, there is not much work considering

his problem in HMM-based degradation models. 

In this paper, we proposed an approach based on HMM with auto-

orrelated observations (HMM-AO) to model the degradation processes.

nlike standard HMMs, the HMM-AO model considers the probability

f emitting an observation in real time. The observation not only de-

ends on the corresponding hidden system state, but also on the pre-

ious observations. The autocorrelation property of the observations is

haracterized by coefficient matrices. Then these auto-correlated obser-

ations are used to feed our approach based on the HMM-AO model,

nd to produce the RUL predictions. A novel algorithm based on the

xpectation maximum method is developed to estimate the unknown

arameters. Furthermore, missing data and noise that accumulate over

ime are also considered by modifying the proposed model. The pur-

ose of this paper is to present two RUL prediction methods based on

he HMM-AO model. One is State-based RUL prediction method, which

alculates the remaining number of time steps to reach the final state.

he other is Observation-based prediction method, which estimates the

esidual time of the observation of degradation path first crossing the

ritical threshold. Thereby, we can obtain accurate predicted values for

ubsequent maintenance planning. The effectiveness of these proposed

ethods will be demonstrated by a real case study of a LED degrada-

ion dataset from Hamada et al. [33] . Furthermore, these data are used

o illustrate the advantages and of the HMM-AO approach by compar-

ng with the standard HMM. We note that HMMs with auto-correlated

bservations have not been utilized to model the system degradation

nd predict the remaining useful life. Besides, we propose a parameter

stimation algorithm and two RUL prediction methods with this novel

MM-AO method. 

In addition, in the framework of preventive maintenance, a RUL-

ased maintenance policy is developed with observations at equidistant

ime epochs to illustrate the application of the RUL prediction. If the

redicted RUL of the system reaches a prefixed preventive maintenance

hreshold, the system would be preventively replaced. If its predicted

UL is higher than the threshold, the decision is postponed until next

nspection [34] . Moreover, a corrective replacement is carried out, if the

ystem’s degradation value exceeds its failure threshold. The objective is

o find the optimal preventive threshold to initiate a preventive replace-

ent with the minimum expected maintenance cost per unit time [35] .

inally, using the fatigue-crack-growth data from Lu and Meeker [36] ,

he proposed policy is compared with a conventional condition-based

olicy where only the current state of the system [37] is considered. 

The major contributions and innovations of this study include: 

1) A hidden Markov model with auto-correlated observations (HMM-

AO) is developed to handle the degradation modeling of manufactur-

ing systems. In comparison with the standard HMMs, the HMM-AO

is capable of higher fitting degree for degradation processes. 

2) A novel algorithm based on the expectation maximum is presented

to estimate the unknown parameters of the proposed model. The

rationality of this algorithm is proved. 

3) To illustrate the adaptability of HMM-AO, we discuss how to account

for missing data and noise that accumulate over time in the proposed

model. 

4) Two remaining useful life prediction methods based on the HMM-AO

model are developed. The reliability function is derived. Predictive

values of more accuracy can be obtained, since the autocorrelation

of observations has been considered and the temporal evolution of

degradation processes has been described well. 

5) An improved maintenance policy is developed based on the results
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Fig. 1. Construction of a special case of the HMM-AO model. 
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The remainder of this paper is organized as follows: Section 2 de-

cribes the degradation process by the HMM-AO model. Section 3 de-

elops two RUL prediction methods. In Section 4 , a real case study

s provided to illustrate the effectiveness of the prediction methods.

ection 5 develops a RUL-based maintenance policy and gives an ex-

mple for comparison. Finally, Section 6 concludes the paper. 

. Degradation modeling 

.1. Hidden Markov models 

An HMM is a probabilistic model which has a finite number of

idden states and a set of discrete or continuous observations. Each

tate is characterized by a transition probability set based on the first

rder Markov chain and by an emission probability distribution of

bservations. Formally, a standard HMM is defined by the following

lements: 

• A finite set of hidden states 𝑺 = { 𝑆 1 , 𝑆 2 , ..., 𝑆 𝑁 

} . N is the number of

the hidden states. It can be determined by a model selection tech-

nique such as cross validation. Note that q t represents the hidden

state at time t, where q t ∈S . 
• A state transition probability distribution, 𝑨 = { 𝑎 𝑖𝑗 } , where 

𝑎 𝑖𝑗 = 𝑃 
(
𝑞 𝑡 +1 = 𝑆 𝑗 

||𝑞 𝑡 = 𝑆 𝑖 

)
, 1 ≤ 𝑖, j ≤ N , 

∑
𝑗 
𝑎 𝑖𝑗 = 1 , (1)

• An initial state probability distribution 𝝅 = { 𝜋𝑖 } , where 

𝜋𝑖 = 𝑃 
{
𝑞 1 = 𝑆 𝑖 

}
, 1 ≤ 𝑖 ≤ N , 

∑
𝑖 
𝜋𝑖 = 1 . (2)

• An observation sequence measured at regular time intervals, 

𝑂 = 

(
𝑜 1 , ..., 𝑜 𝑇 

)
, (3)

where T is the length of the observation sequence. It should be infi-

nite if the observation space is continuous. 
• An observation probability distribution related to the hidden states,

𝑩 = { 𝑏 𝑗 (·) } . 

Obviously, a standard HMM requires the specifications of A, B and

𝝅. For convenience, the whole elements can be abbreviated as a

triplet 

𝜆 = ( 𝑨 , 𝑩 , 𝝅) . (4)

In practice, the degradation processes are usual irreversible. That is,

 system cannot recover from its current state to a past state. Hence,

he left–right HMM is a proper option for modeling degradation pro-

esses, whose failure rate increase as time passes. The state transition

robability matrix of the model takes the following form: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑎 11 𝑎 12 0 0 ... 0 
0 𝑎 22 𝑎 23 0 ... 0 
... ... ... ... ... 

0 0 0 ... 𝑎 ( 𝑁−1 ) ( 𝑁−1 ) 𝑎 ( 𝑁−1 ) 𝑁 

0 0 0 ... 0 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (5)

.2. Auto-correlated observations of degradation 

The observations of an HMM might be discrete or continuous. The re-

ation between the hidden states and observations is often built by some

robabilistic links. When the HMMs are applied in degradation model-

ng, the observations are defined as the measured values of the degrada-

ion paths in this research. Since the degradation paths are usual contin-

ous, the distribution of observations in the degradation processes can

e specified using a parametric model family. Different from previous

tudies that generally assume independence among the observations, we

onsider auto-correlated Gaussian observations here. The probability of

mitting an observation at the current time not only depends on the

orresponding hide state, but also on the previous observations. 
3 
Given the historical degradation of such a system and the state 𝑞 𝑡 =
 𝑖 , the mean of the conditional distribution for o t ( m -dimension) is a

inear function of the d previous observations 𝑜 𝑡 − 𝑑 , ..., 𝑜 𝑡 −1 added to a

xed offset. If m equals 1, the degradation process is associated with

nly one quality characteristic. If m is greater than or equal to two,

here are two or more quality characteristics related to the degradation

rocess which can jointly define the failure of the system [38,39] . The

alue of d can be determined by correlation analysis of the observation

equences. Therefore, the conditional distributions for observations are

 -dimensional Gaussian as follows: 

Mean : Let 𝜇i ( t ) denote the mean of the observation o t in state S i , then

he l th component of 𝜇i ( t ) can be expressed as follows 

𝑖,𝑙 ( 𝑡 ) = 𝜍 𝑖,𝑙 + 

𝑑 ∑
𝜏=1 

𝑐 𝑖,𝜏,𝑙 𝑜 𝑡 − 𝜏 ( 𝑙 ) , 1 ≤ 𝑙 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑁, (6)

here 𝑜 𝑡 − 𝜏 ( 𝑙) is the l th component of 𝑜 𝑡 − 𝜏 , c i, 𝜏, l and 𝜍 i, l are the constant

oefficients. 

Covariance : The covariance is a state dependent symmetric positive

efinite m ×m matrix Σi . 

Construct a vector 𝑥 ( 𝑡 ) = ( 𝑜 𝑡 −1 , ..., o 𝑡 − 𝑑 , 1 ) ′ consisting of d previous ob-

ervations and a constant one. Eq. (6) can be rewritten as 

𝑖 ( 𝑡 ) = 𝐶 𝑖 𝑥 ( 𝑡 ) , (7)

here C i is an 𝑚 × ( 𝑚𝑑 + 1 ) matrix consisting of { c i, 𝜏, k } and { 𝜍 i, k }. At

he conclusion of the above descriptions, the HMM-AO model has two

ey characteristics: the states follow a Markov process and the condi-

ional observation distribution given the state S i is multivariate Gaussian

ith mean C i x ( t ) and covariance Σi , i.e., 

 

(
𝑞 𝑡 +1 |𝑞 1 , ... , q 𝑡 , o 1 , ... , o 𝑡 ) = 𝑃 

(
𝑞 𝑡 +1 ||q 𝑡 ), (8)

 𝑖 

(
𝑜 𝑡 
|||𝑜 ( 𝑡 − 𝑑 ) ∶ ( 𝑡 −1 ) ) = 𝑃 

(
𝑜 𝑡 
||o 𝑡 − 𝑑 , ... , o 𝑡 −1 , 𝑞 𝑡 = 𝑆 𝑖 

)
= 

1 √
( 2 𝜋) 𝑚 |Σ𝑖 | exp 

(
− 

1 
2 

(
𝑜 𝑡 − 𝐶 𝑖 𝑥 ( 𝑡 ) 

)′Σ𝑖 
−1 (𝑜 𝑡 − 𝐶 𝑖 𝑥 ( 𝑡 ) 

)). (9) 

The model demonstrates the correlation between an observation and

ts predecessors in two ways. The observation o t is not only related to

he d previous observations through the coefficient matrix C i , but also

elated to all previous observations through the current state S i . Fig. 1

hows a special case of the construction of HMM-AO when the obser-

ation o t is only related to the previous observation 𝑜 𝑡 −1 . Furthermore,

f d is equal to zero, that is, the current observation has no relation to

he previous observations, the HMM-AO model would degenerate into a

tandard HMM model. This is as expected since any properly developed

odel should cover the basic model as its special case. 

Although Eq. (6) is a linear expression, the proposed auto-correlated

aussian distribution can be extended to describe more complicated

rocesses. In fact, many real degradation processes are nonlinear and

on-monotonic. Usually the Gaussian mixture model (GMM) which can

pproximate, arbitrarily closely, any finite, continuous density function,

re used to fit the observations [40] . Under the assumption of autocor-

elation, the additional unknown parameters of GMM to be estimated

ould increase the computational complexity. The cost of the increased

omputation tends to make the techniques not worth using. Thus, an

ppropriate and cost-effective model for the fitting of these processes

s preferred. To address this problem and improve the applicability of

he proposed model, the following alternative manner is presented. The

egradation processes are discretized into several segments within a
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short time ” observation interval, and are viewed as a direct concate-

ation of these smaller short time segments [ 41 42 ]. Each such segment

f observation is approximated as a linear path and can be individu-

lly modeled by Eq. (9) . In other word, when the observation interval is

hort enough relative to the useful lifetime of the system, the sequential

inear paths can be used to approximate the overall degradation process

recisely. Besides, the stochastic properties of Gaussian can capture the

ncertainty of the observations. The duration of a short-time interval

s determined empirically in most physical systems. Since the systems ’

eliability and lifetime become more and more higher nowadays, a suit-

ble observation interval can be fixed simply. The temporal variations

etween two sequential segments can be characterized by HMM. Un-

ike the autoregressive model, Eq. (6) in Gaussian distribution can also

ake random effects into account. Therefore, the HMM-AO models can

escribe more complex and diverse degradation processes and have a

ider range of applicability. 

.3. Parameter estimation 

The Baum–Welch formula is the common method for the parame-

er estimation of HMMs. However, since auto-correlated observations

re cooperated into HMMs, the conventional algorithm needs to be

mproved. Here, a novel algorithm based on the Expectation maxi-

um method (NEM) is proposed to estimate the unknown parameters

= ( 𝑨 , 𝐶, Σ, 𝝅) . 
Before the implementation of the NEM algorithm, two probabilities

alled the forward variable 𝛼t ( i ) and the backward variable 𝛽t ( i ) need

o be calculated. The definitions and computation of the two variables

re similar to those of standard HMMs in Le et al. [22] . Their initial

alues are 𝛼𝑑+1 ( 𝑖 ) = 𝜋𝑖 𝑏 𝑖 ( 𝑜 𝑑+1 |𝑜 1∶ 𝑑 ) and 𝛽𝑇 ( 𝑖 ) = 1 , respectively. Conse-

uently, given the observation sequence O and the model parameter

, two additional variables can be derived based on the forward and

ackward variables. One is the probability of being in state S i at time t ,

enoted by 𝛾 t ( i ). The other is the probability of being in state S i at time t

nd state 𝑆 𝑖 +1 at time 𝑡 + 1 , denoted by 𝜉t ( i, j ). Their explicit expressions

n terms of the forward-backward variables are also similar to those of

tandard HMMs. 

Consider a set of K observation sequences obtained from the histor-

cal degradation of K identical and available systems, where an obser-

ation sequence 𝑂 

𝑘 = ( 𝑜 𝑘 1 , ..., 𝑜 
𝑘 
𝑇 𝑘 
) is measured at regular time intervals.

ence, the training dataset can be denoted by 𝑶 = { 𝑂 

𝑘 } 𝑘 , where the

lements are independent and identically distributed. Using the defini-

ions and dataset above, the NEM algorithm is presented to execute the

ollowing E-step and M-step iteratively. 

E-step: Given the observed data O and the current estimates of the

nknown parameters 𝜆 = ( 𝑨 , C , Σ, 𝝅) , the values of 𝛾 t ( i ) and 𝜉t ( i, j ) can

e obtained. For the re-estimation of C and Σ, the auxiliary function Q

s given by taking the conditional expectation of the log-likelihood of

ll observation sequences 

 

(
�̂�, 𝜆
)
= 

1 
2 

𝐾 ∑
𝑘 =1 

𝑁 ∑
𝑖 =1 

𝑇 𝑘 ∑
𝑡 =1 

𝛾𝑘 
𝑡 
( 𝑖 ) 
[
ln 
(|||Σ𝑖 

−1 |||) − 𝑚 ln ( 2 𝜋) 

− 

(
𝑜 𝑘 
𝑡 
− 𝐶 𝑖 𝑥 

𝑘 ( 𝑡 ) 
)′Σ𝑖 

−1 (𝑜 𝑘 
𝑡 
− 𝐶 𝑖 𝑥 

𝑘 ( 𝑡 ) 
)]

. (10)

M-step: 

Like the Baum–Welch algorithm, the state transition matrix and the

nitial state probabilities can be re-estimated by 

̂ 𝑖𝑗 = 

∑𝐾 

𝑘 =1 
∑𝑇 𝑘 −1 

𝑡 =1 𝜉𝑘 
𝑡 
( 𝑖, 𝑗 ) ∑𝐾 

𝑘 =1 
∑𝑇 𝑘 −1 

𝑡 =1 𝛾𝑘 
𝑡 
( 𝑖 ) 

, (11)

̂𝑖 = 

∑𝐾 

𝑘 =1 𝛾
𝑘 
1 ( 𝑖 ) 

𝐾 

. (12)

Since the auxiliary function Q in Eq. (10) is complex, it is difficult to

mplement the maximization of Q with the common search algorithms.
4 
s for the re-estimation of the remaining unknown parameters, we can

aximize Eq. (10) alternatively by using operations on vectors and ma-

rices as the following steps: 

1) Create matrices 𝑋 

𝑘 
𝑖 

with columns 𝑥 𝑘 ( 𝑡 ) 
√ 

𝛾𝑘 
𝑡 
( 𝑖 ) , where x k ( t ) is defined

in Eq. (7) . 

2) Create matrices 𝑂 

𝑘 
𝑖 

with columns 𝑜 𝑘 
𝑡 

√ 

𝛾𝑘 
𝑡 
( 𝑖 ) . 

3) Solve 

�̂� 

𝑘 
𝑖 
= arg min 

𝑊 

|||𝑂 

𝑘 
𝑡 
− 𝑊 𝑋 

𝑘 
𝑖 

|||2 . (13)

The singular value decomposition (SVD) methods are applied here

due to its stability and ability in diagnosis. Suppose that 𝑋 

𝑘 
𝑖 

has an

SVD, i.e., 𝑋 

𝑘 
𝑖 
= 𝑈Λ𝑉 ′, where U is an ( 𝑚𝑑 + 1 ) × ( 𝑚𝑑 + 1 ) real or com-

plex unitary matrix, Λ is an ( 𝑚𝑑 + 1 ) × 𝑇 𝑘 rectangular diagonal ma-

trix with non-negative real numbers on the diagonal, and V is an

T k ×T k real or complex unitary matrix. The diagonal entries of Λ are

the singular values of 𝑋 

𝑘 
𝑖 
. Then, 

�̂� 

𝑘 
𝑖 
= arg min 

𝑊 

|||(𝑂 

𝑘 
𝑡 
𝑉 − 𝑊 𝑈Λ

)
𝑉 ′
|||2 

= arg min 
𝑊 

|||𝑂 

𝑘 
𝑡 
𝑉 − 𝑊 𝑈Λ|||2 . (14)

Obviously, the value of �̂� 

𝑘 
𝑖 

is the least square solution of Eq. (18) ,

i.e., 

�̂� 

𝑘 
𝑖 
= 𝑂 

𝑘 
𝑡 
𝑉 Λ+ 𝑈 

′, (15)

where Λ+ is the generalized inverse matrix of Λ+ . Hence, the esti-

mate of C i can be expressed as follows 

�̂� 𝑖 = 

∑𝐾 

𝑘 =1 �̂� 

𝑘 
𝑖 

𝐾 

. (16)

4) Calculate a new covariance matrix 

Σ̂𝑖 = 

∑𝐾 

𝑘 =1 
∑𝑇 𝑘 

𝑡 =1 𝛾
𝑘 
𝑡 
( 𝑖 ) 
(
𝑂 

𝑘 
𝑡 
− �̂� 

𝑘 
𝑖 
𝑋 

𝑘 
𝑖 

)(
𝑂 

𝑘 
𝑡 
− �̂� 

𝑘 
𝑖 
𝑋 

𝑘 
𝑖 

)′∑𝐾 

𝑘 =1 
∑𝑇 𝑘 

𝑡 =1 𝛾
𝑘 
𝑡 
( 𝑖 ) 

. (17)

Then, return the estimates into the E-step and run the NEM algorithm

teratively until the solutions converge. The corresponding flowchart for

he NEM algorithm is shown in Fig. 2 . 

To clarify the rationality and applicability of the re-estimation oper-

tions Eqs. (13)–(17) in the M-step, the following proposition is given. 

roposition 1. Given the current model parameters 𝜆 = ( 𝑨 , C , Σ, 𝝅) , the

e-estimated parameters �̂� = ( ̂𝑨 , Ĉ , ̂Σ, ̂𝝅) is computed by the right-hand

ides of Eqs. (11) –(17) . Then the model �̂� is more likely than model 𝜆 in

he sense that 𝑃 ( 𝑶 |�̂�) > 𝑃 ( 𝑶 |𝜆) , i.e., we have found a new model �̂� from

hich the observation sequences are more likely to have been produced.

roof. With the definitions �̂� 

𝑘 
𝑖 
= arg min 

𝑊 

|𝑂 

𝑘 
𝑡 
− 𝑊 𝑋 

𝑘 
𝑖 
|2 as shown in

q. (13) , we can know that |𝑂 

𝑘 
𝑡 
− �̂� 

𝑘 
𝑖 
𝑋 

𝑘 
𝑖 
| ≤ |𝑂 

𝑘 
𝑡 
− 𝐶 

𝑘 
𝑖 
𝑋 

𝑘 
𝑖 
|. The following

nequality is thereby obtained: 

𝛾𝑘 
𝑡 
( 𝑖 ) 
(
𝑂 

𝑘 
𝑡 
− �̂� 

𝑘 
𝑖 
𝑋 

𝑘 
𝑖 

)(
𝑂 

𝑘 
𝑡 
− �̂� 

𝑘 
𝑖 
𝑋 

𝑘 
𝑖 

)′||| ≤ 

|||𝛾𝑘 
𝑡 
( 𝑖 ) 
(
𝑂 

𝑘 
𝑡 
− 𝐶 

𝑘 
𝑖 
𝑋 

𝑘 
𝑖 

)(
𝑂 

𝑘 
𝑡 
− 𝐶 

𝑘 
𝑖 
𝑋 

𝑘 
𝑖 

)′|||. 
(18) 

Then, we have |Σ̂𝑖 | ≤ |Σ𝑖 | and 

𝑜 𝑘 
𝑡 
− �̂� 𝑖 𝑥 

𝑘 ( 𝑡 ) 
)′Σ̂−1 

𝑖 

(
𝑜 𝑘 
𝑡 
− �̂� 𝑖 𝑥 

𝑘 ( 𝑡 ) 
) ≤ 

(
𝑜 𝑘 
𝑡 
− 𝐶 𝑖 𝑥 

𝑘 ( 𝑡 ) 
)′Σ𝑖 

−1 (𝑜 𝑘 
𝑡 
− 𝐶 𝑖 𝑥 

𝑘 ( 𝑡 ) 
)
. 

(19) 

Expanding Eq. (19) yields 

 

(
�̂�, 𝜆
)

> 𝑄 ( 𝜆, 𝜆) . (20)

Now denote the log likelihood of the observed data given the model

arameter 𝜆 as 

 ( 𝜆) = ln ( 𝑃 ( 𝑶 |𝜆 ) ) , (21)



Z. Chen et al. Reliability Engineering and System Safety 000 (2017) 1–14 

ARTICLE IN PRESS 

JID: RESS [m5GeSdc; September 28, 2017;19:40 ] 

Fig. 2. Flowchart of the NEM algorithm. 
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o  
nd the cross entropy of the unobserved hidden states with respect to a

odel �̂� as 

 

(
�̂�‖𝜆 ) = − 𝐸 𝑃 ( 𝑺 |𝑶 ,𝜆 ) 

(
ln 𝑃 
(
𝑺 

|||𝑶 , �̂�

))
. (22)

The auxiliary function Q can be rewritten as: 

 

(
�̂�, 𝜆
)
= 𝐸 𝑃 ( 𝑺 |𝑶 ,𝜆 ) 

(
ln 𝑃 
(
𝑺 , 𝑶 

|||�̂�))
= 𝐸 𝑃 ( 𝑺 |𝑶 ,𝜆 ) 

(
ln 𝑃 
(
𝑺 

|||𝑶 , �̂�

)
+ ln 𝑃 

(
𝑶 

|||�̂�))
= 𝐿 

(
�̂�
)
− 𝐻 

(
�̂�‖𝜆 ) , (23) 

.e., 𝐿 ( ̂𝜆) = 𝑄 ( ̂𝜆, 𝜆) + 𝐻( ̂𝜆‖𝜆) . The fact that 

 

(
�̂�‖𝜆 ) ≥ 𝐻 ( 𝜆‖𝜆 ) ∀�̂�, (24)

ith equality if 𝑃 ( 𝑺 |𝑶 , �̂�) = 𝑃 ( 𝑺 |𝑶 , 𝜆)∀𝑺 is called the Gibbs inequality

43] . 

According to Eqs. (21)–(24) , it is concluded that 

 

(
�̂�
)
− 𝐿 ( 𝜆) = 

(
𝑄 

(
�̂�, 𝜆
)
+ 𝐻 

(
�̂�‖𝜆 )) − ( 𝑄 ( 𝜆, 𝜆) + 𝐻 ( 𝜆‖𝜆 ) ) 

= 

(
𝑄 

(
�̂�, 𝜆
)
− 𝑄 ( 𝜆, 𝜆) 

)
− 

(
𝐻 

(
�̂�‖𝜆 ) − 𝐻 ( 𝜆‖𝜆 ) ) > 0 . (25) 

Thus, we have 𝑃 ( 𝑶 |�̂�) > 𝑃 ( 𝑶 |𝜆) and the proposition follows. This

mplies that the NEM algorithm monotonically increases the likelihood.

.4. Effects of missing data and noise 

In practical engineering of degradation phenomenon, missing data

nd noise occur frequently. Due to their interference, the real degrada-
5 
ion cannot be observed precisely and comprehensively. Accurate mod-

ling of the observation process is therefore of great importance. To

llustrate the adaptability of HMM-AO, we discuss how to account for

issing data and noise that accumulate over time in this subsection. 

Let us first introduce the modifications of the proposed model with

he presence of missing data. If the observation o t is missed, referring to

u and Kobayashi [31] we can re-define the forward variable 𝛼t ( j ) as 

𝑡 ( 𝑗 ) = 

∑
𝑧 

𝑃 
(
𝑜 1 , ..., 𝑜 𝑡 −1 , 𝑜 𝑡 = 𝑧, 𝑞 𝑡 = 𝑆 𝑖 |𝜆)

= 

[∑𝑁 

𝑖 =1 𝛼𝑡 −1 ( 𝑖 ) 𝑎 𝑖𝑗 
]
𝑏 𝑖 

(
𝑜 𝑡 −1 
|||𝑜 ( 𝑡 − 𝑑−1 ) ∶ ( 𝑡 −2 ) ) (26) 

Similarly, we redefine the backward variable 𝛽t ( i ) as 

𝑡 ( 𝑖 ) = 𝑃 
(
𝑜 𝑡 +1 , ..., 𝑜 𝑇 ||𝑞 𝑡 = 𝑆 𝑖 , 𝜆

)
= 

∑𝑁 

𝑗=1 𝑎 𝑖𝑗 𝑏 𝑗 

(
𝑜 𝑡 +1 
|||𝑜 ( 𝑡 − 𝑑 ) ∶ ( 𝑡 −1 ) )𝛽𝑡 +1 ( 𝑗 ) 

. (27) 

Next considering the noise effect on the observation process, the ob-

ervation probability distribution in Section 2.2 should be modified. De-

ote y t ( m -dimension), o t and e as the noisy observation at time t , the

lean observation and noise, respectively. Then the noisy observation is

iven by 

 𝑡 = 𝑜 𝑡 + 𝑒, (28)

here 𝑒 = ( 𝑒 1 , ..., 𝑒 𝑚 ) . As in Section 2.2 , the conditional distributions for

bservation o given the state S is multivariate Gaussian distribution
t i 
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relative tolerance, a precise prediction result can be obtained. 
ith mean 𝜇i ( t ) and covariance Σi . The components of noise e are re-

arded as white noise, i.e., e l , 1 ≤ l ≤ m , are Gaussian, independent, iden-

ically distributed random variables with zero mean and variance 𝜎2 .

bviously, y t is the sum of two multivariate Gaussian. For describing

he distribution of y t , we need to state the following proposition. 

roposition 2. If (1) o t given the state S i is multivariate Gaussian distri-

ution with mean 𝜇i ( t ) and covariance Σi , (2) and the elements of e are

aussian, independent, identically distributed random variables with

ero mean and variance 𝜎2 , then the conditional distribution of observa-

ion 𝑦 𝑡 = 𝑜 𝑡 + 𝑒 given the state S i also follows multivariate Gaussian dis-

ribution with mean 𝜇i ( t ) and covariance Σ𝑦𝑖 = Σ𝑖 + diag ( 𝜎2 , ..., 𝜎2 ) 𝑚 ×𝑚 . 

roof. The mean of y t given the state S i can be computed as 

 

(
𝑦 𝑡 
||𝑆 𝑖 

)
= 𝐸 

(
𝑜 𝑡 
||𝑆 𝑖 

)
+ 𝐸 ( 𝑒 ) = 𝜇𝑖 ( 𝑡 ) . (29)

The covariance is calculated as follows: 

yi = 𝐸 

(
𝑦 𝑡 − 𝜇𝑖 ( 𝑡 ) 

)′(
𝑦 𝑡 − 𝜇𝑖 ( 𝑡 ) 

)

 𝐸 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑜 𝑡 ( 1 ) + 𝑒 1 − 𝜇𝑖, 1 ( 𝑡 ) 

𝑜 𝑡 ( 2 ) + 𝑒 2 − 𝜇𝑖, 2 ( 𝑡 ) 

... 

𝑜 𝑡 ( 𝑚 ) + 𝑒 𝑚 − 𝜇𝑖, m ( 𝑡 ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
[
𝑜 𝑡 ( 1 ) + 𝑒 1 − 𝜇𝑖, 1 ( 𝑡 ) , ..., 𝑜 𝑡 ( 𝑚 ) + 𝑒 𝑚 − 𝜇𝑖, m ( 𝑡 ) 

]⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
. 

(30)

Since the elements of e are Gaussian, independent, identically dis-

ributed random variables with zero mean and variance 𝜎2 , we have 

 

(
𝑒 𝑙 𝑒 𝑗 
)
= 

{ 

0 , 1 ≤ l ≠ 𝑗 ≤ 𝑚 

𝜎2 , 1 ≤ l = 𝑗 ≤ 𝑚 

. (31)

The element of Σyi at l th row and j th column, 1 ≤ l, j ≤ m , can be

implified as 

𝑦𝑖 ( 𝑙, j ) = 𝐸 

[(
𝑜 𝑡 ( 𝑙 ) + 𝑒 𝑙 − 𝜇𝑖, l ( 𝑡 ) 

)(
𝑜 𝑡 ( 𝑗 ) + 𝑒 𝑗 − 𝜇𝑖, j ( 𝑡 ) 

)]
= 𝐸 

[(
𝑜 𝑡 ( 𝑙 ) − 𝜇𝑖,𝑙 ( 𝑡 ) 

)(
𝑜 𝑡 ( 𝑙 ) − 𝜇𝑖, l ( 𝑡 ) 

)]
+ 𝐸 

(
𝑒 𝑙 𝑒 𝑗 
)

= Σ𝑖 ( 𝑙, 𝑗 ) + 𝐸 

(
𝑒 𝑙 𝑒 𝑗 
) . (32)

Then the covariance of y t is ultimately expressed as follows 

𝑦𝑖 = Σ𝑖 + diag 
(
𝜎2 , ..., 𝜎2 )

𝑚 ×𝑚 
. (33)

Therefore, the result follows immediately. That is, the conditional

bservation distribution given the state S i can be rewritten as follows 

 𝑖 

(
𝑦 𝑡 
|||𝑦 ( 𝑡 − 𝑑 ) ∶ ( 𝑡 −1 ) )= 

1 √ 

( 2 𝜋) 𝑚 |||Σ𝑦𝑖 
||| exp 

(
− 

1 
2 
(
𝑦 𝑡 − 𝐶 𝑖 𝑥 ( 𝑡 ) 

)′Σ𝑦𝑖 
−1 (𝑦 𝑡 − 𝐶 𝑖 𝑥 ( 𝑡 ) 

))
. 

(34)

From Eq. (34) , we can see that the observation distribution is still

ultivariate Gaussian despite considering noise. Then the unknown pa-

ameters of HMM-AO in presence of missing data and noise can be esti-

ated using the NEM algorithm with the above redefinitions. 

. Two methods for remaining useful life prediction 

Typically, a system is regarded as in a failure when its degradation

alue crosses the critical threshold. In details, the lifetime of the system

sually evolves through several distinct health states prior to reaching

ailure. We can identify N distinct sequential hidden states for a failure

echanism. That is, the research classifies its health states into ( N − 1)

evels: no-defect (state S 1 ), level-one defect (state S 2 ), …, level − ( N − 2)

efect (state 𝑆 𝑁−1 ). The final state S N means a failure. 

Based on the discussions above, we develop two methods of the RUL

rediction: (1) calculating the remaining number of time steps to reach

he final state S N and (2) estimating the residual time that the obser-

ation of degradation path first crosses the critical threshold 𝜔 . We

hall label the former as “State-based RUL prediction ” and the latter

s “Observation-based RUL prediction ”. Fig. 3 shows the flowchart of

he RUL prediction. 
6 
.1. State-based RUL prediction method 

Given a new observation sequence 𝑂 1∶ 𝑇 = ( 𝑜 1 , ..., 𝑜 𝑇 ) and a trained

MM-AO model 𝜆, we estimate the remaining number of time steps 𝜏 to

rst arrive the failure state S N from the current time T . The remaining

seful life can be considered as a random variable with a conditional

robability distribution. Accordingly, the RUL at time T can be defined

s follows 

𝑈𝐿 ( 𝑇 ) = inf 
{
𝜏 > 0 ∶ 𝑞 𝑇+ 𝜏 = 𝑆 𝑁 

||𝑂 1∶ 𝑇 , 𝜆
}
. (35)

The definition is reasonable under the assumption of “short time ”

bservation interval as in Section 2.2 . The time the failed system al-

eady spent in state S N can be neglected. Namely, every failure occurs

t the observation moment approximately. From Eq. (35) , the RUL is

egarded as a discrete random variable and its conditional probability

n the current state is 

 

𝜏
𝑖 
= 𝑃 
(
𝑅𝑈𝐿 ( 𝑇 ) = 𝜏||𝑞 𝑇 = 𝑆 𝑖 , 𝑖 < 𝑁 

)
= 𝑃 
(
𝑞 𝑇+ 𝜏 = 𝑆 𝑁 

, 𝑞 𝑇+ 𝜏−1 ≠ 𝑆 𝑁 

, ..., 𝑞 𝑇+1 ≠ 𝑆 𝑁 

||𝑞 𝑇 = 𝑆 𝑖 , 𝑖 < 𝑁 

). (36)

Under the assumption of Eq. (5) , the RUL can be recursively calcu-

ated as follows: 

• When 𝑞 𝑇 = 𝑆 𝑁−1 , 

𝑟 𝜏
𝑁−1 = 

{ 

a ( 𝑁−1 ) 𝑁 

, 𝜏 = 1 
a ( 𝑁−1 ) ( 𝑁−1 ) 𝑟 

𝜏−1 
𝑁−1 , 𝜏 ≥ 2 . (37)

• When 𝑞 𝑇 = 𝑆 𝑖 , i ≤ N − 2 , 

𝑟 𝜏
𝑖 
= 

{ 

0 , 𝜏 = 1 
𝑎 𝑖𝑖 𝑟 

𝜏−1 
𝑖 

+ 𝑎 𝑖 ( 𝑖 +1 ) 𝑟 
𝜏−1 
𝑖 +1 , 𝜏 ≥ 2 . (38)

Then, the predicted value of the RUL at time T is given by 

𝑈𝐿 ( 𝑇 ) = 

∞∑
𝜏=1 

𝑁−1 ∑
𝑖 =1 

𝑟 𝜏
𝑖 
⋅ 𝛾𝑇 ( 𝑖 ) ⋅ 𝜏. (39)

roposition 3. Given a new observation sequence 𝑂 1∶ 𝑇 = ( 𝑜 1 , ..., 𝑜 𝑇 )
nd a trained HMM-AO model 𝜆, the predicted value of the RUL at time

 can be can be demonstrated as shown in (39) . 

roof. According to the definition of system failure, the reliability func-

ion at time T is given by 

 ( 𝑇 ) = 𝑃 ( 𝑡 > 𝑇 ) = 𝑃 
(
𝑞 𝑇 = 𝑆 𝑖 , i < N |𝜆 ). (40)

For the system which has not failed by time T , if O 1: T is known, the

onditional reliability function of surviving beyond time 𝑇 + 𝜏 is given

y 

 

(
𝑇 + 𝜏||𝑂 1∶ 𝑇 , 𝜆

)
= 𝑃 
(
𝑡 > 𝑇 + 𝜏||𝑡 > 𝑇 , 𝑂 1∶ 𝑇 , 𝜆

)
= 

𝑁−1 ∑
𝑖 =1 

𝑃 
(
𝑡 > 𝑇 + 𝜏||𝑞 𝑇 = 𝑆 𝑖 , i < N 

)
⋅ 𝑃 
(
𝑞 𝑇 = 𝑆 𝑖 , i < N 

||𝑂 1∶ 𝑇 , 𝜆
)

= 

𝑁−1 ∑
𝑖 =1 

𝑟 𝜏
𝑖 
⋅ 𝛾𝑇 ( 𝑖 ) . (41) 

By deriving the expectation of the discrete random variable 𝜏, the

UL at time T can be calculated as follows: 

𝑈𝐿 ( 𝑇 ) = 𝐸 ( 𝜏) = 

∞∑
𝜏=1 

𝑁−1 ∑
𝑖 =1 

𝑅 

(
𝑇 + 𝜏||𝑂 1∶ 𝑇 , 𝜆

)
⋅ 𝜏

= 

∞∑
𝜏=1 

𝑁−1 ∑
𝑖 =1 

𝑟 𝜏
𝑖 
⋅ 𝛾𝑇 ( 𝑖 ) ⋅ 𝜏. (42) 

Based on Eq. (35) , 𝜏 should be a positive integer and its lower bound

s one-time step. Therefore, the result follows immediately. 

emark 1. In the calculation of Eq. (39) , the range of 𝜏 need to be

refixed. With the increase of 𝜏, the conditional probabilities 𝑟 𝜏
𝑖 

( 𝑖 =
 , 2 , ..., N ) decrease gradually until close to zero. If we determine a rea-

onable upper limit of 𝜏 which makes 𝑟 𝜏
𝑖 

equal to zero under a given
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Fig. 3. Flowchart of the prediction of the RUL. 
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.2. Observation-based RUL prediction method 

Similarly, given a new observation sequence 𝑂 1∶ 𝑇 = ( 𝑜 1 , ..., 𝑜 𝑇 ) and

 trained HMM-AO model 𝜆, the “Observation-based RUL prediction ”

ethod is to calculate the residual time 𝜏 that the degradation path first

asses the critical threshold 𝜔 . Therefore, the remaining useful life at

ime T can be expressed as follows 

𝑈𝐿 ( 𝑇 ) = inf 
{
𝜏 > 0 ∶ o 𝑇+ 𝜏 ≥ 𝜔 

||𝑂 1∶ 𝑇 , 𝜆
}
. (43)

To obtain the predicted value of RUL ( T ), the estimates of observa-

ions o 𝑇+ 𝜏 should be firstly calculated. A recursive method based on the

xpectations of the observations is developed here to derive the expres-

ions as follows: 

• Initialization: the conditional probability distribution of the obser-

vation o 𝑇+1 can be given by 

𝑃 
(
𝑜 𝑇+1 ||𝑜 1 , ..., o 𝑇 , 𝜆) = 

𝑁 ∑
𝑖 =1 

𝑃 
(
𝑜 𝑇+1 ||𝑞 𝑇 = 𝑆 𝑖 , 𝑜 1∶T , 𝜆

)
𝑃 
(
𝑞 𝑇 = 𝑆 𝑖 

||𝑜 1∶ 𝑇 , 𝜆 )
= 

𝑁 ∑
𝑖 =1 

𝑁 ∑
𝑗=1 

𝑃 

(
𝑜 𝑇+1 

|||𝑞 𝑇+1 = 𝑆 𝑗 , 𝑜 ( 𝑇+1− 𝑑 ) ∶ 𝑇 , 𝜆
)
𝑃 
(
𝑞 𝑇+1 = 𝑆 𝑗 

||𝑞 𝑇 = 𝑆 𝑖 

)
𝛾𝑖 ( 𝑇 ) 

= 

𝑁 ∑
𝑖 =1 

𝑁 ∑
𝑗=1 

𝛾𝑖 ( 𝑇 ) 𝑎 𝑖𝑗 𝑏 𝑗 
(
𝑜 𝑇+1 

|||𝑜 ( 𝑇+1− 𝑑 ) ∶ 𝑇 

) . 

(44) 

Thus, the estimate of o 𝑇+1 can be expressed by its expectation as

follows 

ô 𝑇+1 = ∫ 𝑜 𝑇+1 𝑃 
(
𝑜 𝑇+1 ||𝑜 1 , ..., o 𝑇 , 𝜆)𝑑 𝑜 𝑇+1 . (45)

• Induction: the conditional probability distribution of the observation

o 𝑇+ 𝜏 can be given by 

 

(
𝑜 𝑇+ 𝜏 ||𝑜 1 , ..., o 𝑇+ 𝜏−1 , 𝜆

)
= 

𝑁 ∑
𝑖 =1 

𝑁 ∑
𝑗=1 

𝛾𝑖 ( 𝑇 + 𝜏 − 1 ) 𝑎 𝑖𝑗 𝑏 𝑗 
(
𝑜 𝑇+ 𝜏

|||𝑜 ( 𝑇+ 𝜏− 𝑑 ) ∶ ( 𝑇+ 𝜏−1 ) 

(46) 

Based on the estimates of the 𝜏 previous observations, the estimate

f o 𝑇+ 𝜏 can be expressed by its expectation as follows 

̂
 𝑇+ 𝜏 = ∫ 𝑜 𝑇+ 𝜏𝑃 

(
𝑜 𝑇+ 𝜏 ||𝑜 1 , ..., 𝑜 𝑇 , ̂𝑜 𝑇+1 , ..., ̂o 𝑇+ 𝜏−1 , 𝜆

)
𝑑 𝑜 𝑇+ 𝜏 . (47)

Therefore, the predicted value of RUL ( T ) is estimated by 

𝑈𝐿 ( 𝑇 ) = inf 
{
𝜏 > 0 ∶ ô 𝑇+ 𝜏 ≥ 𝜔, ̂o 𝑇+ 𝜏−1 < 𝜔 

}
. (48)
7 
emark 2. The bounds of integration in Eq. (47) should be ascertained

ccording to the possible span of observations. The predicted value

f RUL ( T ) is the estimated number of time steps that the degradation

ath first passes the critical threshold. Furthermore, the time steps are

iscrete and the degradation paths and the residual life are continu-

us. Hence, the “short time ” observation interval can make the estima-

ion accuracy higher. Compared with the “State-based RUL prediction ”

ethod, the “Observation-based RUL prediction ” method is more accu-

ate. However, due to the calculation of the expectations of observations,

he computational complexity of the latter method is also higher. This

eans that we need to compromise between accuracy and complexity

n the choice of these two prediction methods. 

. Case study 

To evaluate the performance of the proposed approaches, a case

tudy is carried out to train the HMM-AO models and predict the RULs.

he case is based on real LED degradation data presented by Hamada

t al. [33] . A part of the data is used in this study. The advantages of

he “State-based RUL prediction method ” and “Observation-based RUL

rediction method ” are demonstrated in comparison with each other.

oreover, other comparisons between the HMM-AO models and stan-

ard HMM are also conducted. The point is that we can use these con-

rasts to illustrate the autocorrelation of the dataset and the fitting ac-

uracy of the HMM-AO models. 

.1. Validation of the RUL predication methods 

Generally, the whole dataset is divided into training and test dataset.

he unknown parameters of the HMM-AO models are estimated based

n the training dataset. The test dataset is used to predict the RUL of each

ample and then verify the predictive accuracy of the HMM-AO model.

or the training dataset, the measurements are complete from the start-

ng time until failure, and the trajectories are truncated once the failures

ccur. This is to ensure that the final state is the failure state. Moreover,

o evaluate the performance of the proposed prediction methods, the

eal failure times are given for the comparison with the predicted val-

es of RUL. The dataset used here consists of 19 degradation historical

rajectories of LEDs. The relative luminosity (proportion of initial lumi-

osity for LEDs) degrading over time was measured at every h = 336 h
p to 𝑇 = 9744 h. A failure is defined when the relative luminosity drops

o 0.55, that is, 55% of initial luminosity. Fig. 4 shows the degradation
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Fig. 4. Degradation paths in terms of the relative luminosity of LEDs. 

Fig. 5. The RMSE between the predicted and real observations versus number of states. 

p  

t

 

d  

r  

v  

t  

t  

t  

n  

e  

f  

w  

e  

r

𝑅  

 

t  

H  

b  

Table 1 

RMSE of the observation sequence prediction of HMM-AO considering the 

estimation bias. 

𝜌1 𝜌2 𝜌3 RMSE 𝜌1 𝜌2 𝜌3 RMSE 

5% 5% 5% 0.017 0 − 5% 5% 0.044 

5% 0 0 0.016 − 5% 5% − 5% 0.016 

5% − 5% − 5% 0.043 − 5% 0 5% 0.016 

0 5% 0 0.017 − 5% − 5% 0 0.044 

0 0 − 5% 0.016 0 0 0 0.016 
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aths of the LEDs. These trajectories need to be truncated for the model

raining. 

To illustrate the application of the proposed methods, the value of

 is assumed to be one for convenience throughout the section. This is

easonable because the observation o t is related to the previous obser-

ation 𝑜 𝑡 −1 and then 𝑜 𝑡 −1 is related to the observation 𝑜 𝑡 −2 . Therefore,

he current observation can relate to all previous observations through

he coefficient matrices even d is equal to one. What we need to do

hen is to find the most appropriate parameters. Before the training, the

umber of hidden states of the HMM-AO model, which affects the gen-

ralization of the models, should be fixed first. There is no appropriate

ormula to the determination of the number of states. In this research,

e select cross-validation method to optimize it. The root mean square

rror (RMSE) between the estimated observation of HMM-AO and the

eal observation is used as the criterion 

𝑀𝑆𝐸 = 

√ ∑𝑇 

𝑡 =1 
(
𝑜 𝑡 − �̂� 𝑡 

)2 
𝑇 

. (49)

Normally, the smaller RMSE, the better the corresponding estima-

ion. Fig. 5 shows a plot of prediction RMSE versus number of states.

ere, it can be seen that the RMSE is somewhat insensitive to the num-

er of states, achieving a local minimum at 𝑁 = 7 from this optimization.
8 
fter the number of states is determined, the HMM-AO model is trained

nd then used to predict the RULs of samples in the test dataset. 

Fig. 6 gives examples of the predicted RUL for two data histories by

sing the proposed prediction methods. The real RUL is also displayed

n Fig. 6 to show the efficiency of these two methods. From the results,

t is clear that the predictive accuracy of the State-based RUL predic-

ion method is lower than that of the Observation-based RUL prediction

ethod. This is because the autocorrelation is considered in the predic-

ions of observations and the uncertainty of the event that the degrada-

ion path first crosses the critical threshold is lower. The calculation of

he remaining number of time steps to reach the final state only take the

tate transition but without autocorrelation between observations into

ccount. Fig. 6 also suggests that with more degradation observations

vailable, the predicted values of RUL obtained by the State-based RUL

rediction method become more accurate. 

However, another phenomenon in Fig. 6 is equally worthy of atten-

ion: the predicted RULs from the Observation-based RUL prediction

ethod show jagged appearance and overestimate the real RULs some-

imes to some extent. Furthermore, the closer the failure, the higher

he volatility of the predicted RUL. Due to the jagged degradation paths

n Fig. 4 , the predictions of observations are not smooth and leading

o a jagged predicted RUL curve. Actually, if the degradation path was

trictly monotone, the predicted values of the RUL should be strictly

onotone decreasing and thereby the accuracy would be improved.

n this case, we can use an alternative method called ɛ - approxima-

ion to reduce volatility when using Eq. (26) to define a failure in the

bservation-based RUL prediction method. Given a relative tolerance ɛ ,

odified Eq. (26) can be rewritten as follows 

𝑈𝐿 ( 𝑇 ) = inf 
{
𝜏 > 0 ∶ ô 𝑇+ 𝜏 − 𝜀 ≥ 𝜔, ̂o 𝑇+ 𝜏−1 < 𝜔 + 𝜀 

}
. (50)

In addition, the predicted RULs from State-based RUL prediction

eem to smaller than the real RULs. This result highlights the efficiency

f this method and shows the interest of its use in preventive main-

enance where it is necessary to plan maintenance actions before the

ailure. 

.2. Sensitivity analysis in parameter estimation 

In practice, due to insufficient training data, the estimated pa-

ameters �̂� = ( ̂𝑨 , Ĉ , ̂Σ, ̂𝝅) would depart from the true parameters 𝜆 =
 𝑨 , C , Σ, 𝝅) . Without loss of generality, we assume that 𝜌1 , 𝜌2 , 𝜌3 denote

he estimation bias for a ii , C, 𝜋1 (as the values of Σ and other param-

ters are too small, we do not consider their estimation bias). Table 1

isplays the RMSE of the observation sequence prediction of HMM-AO

nder various combinations of ( 1 + 𝜌1 ) ̂𝑎 𝑖𝑖 , ( 1 + 𝜌2 ) ̂𝐶 , and ( 1 + 𝜌3 ) 𝜋1 . From

hese results, we can find that the prediction results tend to be robust to

stimation bias, given that the bias is not too large. 

.3. Comparison between HMM-AO and standard HMM 

In previous studies, the standard HMMs without considering the au-

ocorrelation of observations are usually adopted to model the degrada-

ion processes. However, the previous degradation degree could affect

he current degradation trend and thereby the correlation is produced

etween the observations. Hence, we use the HMM-AO model here to de-

cribe the auto-correlated degradation process. In order to demonstrate
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Fig. 6. The real remaining time to observe failure and the predicted values of the remaining useful life for two data histories by using two proposed prediction methods. 

Fig. 7. The real degradation paths and the predicted degradation paths calculated by HMM-AO and HMM for two data histories. 
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is described in the next section. 
he advantages and fitting accuracy of the proposed model, a series of

omparisons between HMM-AO and HMM are provided. 

The estimated parameters of both HMM-AO and HMM are reported

n the Appendix. Through the contrast of the estimates of transition ma-

rices, we can see that the transition probabilities from the current states

o the next states of HMM-AO are higher than that of HMM. The vari-

nces of HMM-AO for observations are much smaller than that of HMM.

n addition, the initial state probability of HMM-AO is more dispersed.

hese suggest that the HMM-AO model considering autocorrelation can

istinguish states and observations more precisely and thereby lead a

etter modeling effect. Fig. 7 presents two examples of the predicted

egradation paths obtained by HMM-AO and HMM which are compared

ith the real degradation paths. These examples show that the predicted

aths of the HMM-AO model coincide with the real path basically and

ven the trend is also captured precisely. In contrast, the accuracy of the

rediction of HMM is endless flexibly. 

Therefore, the HMM approach with auto-correlated observations is

easonable and appropriate in degradation modeling. Specifically, the

elative errors of the predicted observations corresponding to these two

ata histories above are plotted against time in Fig. 8 . It is can be

ound that the relative error of HMM-AO becomes smaller and smaller

ver time while the relative error of HMM oscillates substantially un-

il gets larger. With more observations available, the autocorrelation of

bservations becomes more significant and the prediction accuracy of

MM-AO becomes higher and higher. However, the relative error of

MM eventually becomes larger without considering autocorrelation.

his suggests that the prediction of HMM-AO corresponds better with

he behavior of the actual degradation process than that of HMM. 

Furthermore, by checking all the nineteen degradation trajectories

orresponding to 19 samples, it can be noticed in Fig. 9 that almost for all

amples the RMSE of the observation prediction of HMM-AO is smaller
9 
han that of HMM. Hence, the applicability of the HMM-AO model is

xtensive. To further illustrate the effect of autocorrelation on the pre-

iction accuracy, we only consider the prediction of the second half

bservation sequences of all samples. As the autocorrelation of observa-

ions becomes more and more significant over time, Fig. 10 reveals that

he gap between the RMSE of the second half observation sequence pre-

iction of HMM-AO and HMM becomes larger. This fully demonstrates

he excellent performance of HMM-AO when we model auto-correlated

egradation processes. 

Come back to the RUL prediction. Fig. 11 gives examples of the pre-

icted RUL for two data histories by using HMM-AO and HMM. The

esults show that the accuracy of the RUL prediction of HMM-AO is sig-

ificantly higher than that of HMM. In order to illustrate the efficiency of

he proposed HMM-AO approach, comparison is applied to the predicted

UL of each sample. The RMSE of each sample is presented in Fig. 12 .

or most of the samples the RMSE of the predicted RUL of HMM-AO is

maller than the RMSE of HMM. This result highlights the efficiency of

ur method again and shows the interest of its use in preventive main-

enance where it is necessary to make maintenance policies before the

ailure. 

In sum, the performance of the HMM-AO model is better than HMM.

he autocorrelation does exist in degradation data. When using HMM

or degradation processes, we cannot assume that the observations are

ndependent of each other and cannot ignore the autocorrelation. There-

ore, the HMM-AO model is well adapted for the degradation modeling

nd remaining life prediction. After having studied the impact of the

roposed approach on a real case, we try to explore the use and the

nterest of RUL prediction in engineering applications. The preventive

aintenance is an essential application area of the RUL. This problem
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Fig. 8. The relative error of the predicted observations corresponding to the two data histories used in Fig. 7 . 

Fig. 9. RMSE of the observation sequence prediction of HMM-AO and HMM for samples. 
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Fig. 10. RMSE of the second half observation sequence prediction of HMM-AO and HMM 

for samples. 
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. Optimal maintenance policy 

In this section, to illustrate the application of the RUL in mainte-

ance scheduling, a RUL-based maintenance policy is developed with

bservations at equidistant time epochs. The objective is to find the op-

imal preventive threshold to initiate a preventive replacement, by min-

mizing the expected maintenance cost per unit time. Once the optimal
Fig. 11. The real RUL and the predicted RULs calculate

10 
hreshold is obtained, the maintenance policy is determined. Then the

olicy is compared with a condition-based policy where only the current

tate of the system is considered. 

The RUL-based maintenance policy proposed here is based on the

redicted values of RUL. In contrast to previous policies, the policy

ased on expectation and probability not only can capture the random
d by HMM-AO and HMM for two data histories. 
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Fig. 12. RMSE of the RUL prediction of HMM-AO and HMM for samples. 
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roperties of degradation more accurately, but also can take the follow-

ng degradation trend into account. Thus, sound economical and oper-

tional decisions are made. Throughout this section, it is assumed that

he system is observed periodically at inspection time t 1 , t 2 , ..., where

 𝜐 = 𝜐ℎ with 𝜐 ∈ ℕ and ℎ ∈ ℝ is the inspection interval. That is, the fail-

re can only be observed at inspections. If the current degradation of

he system is below the preventive threshold, we are only allowed to

ake maintenance actions at next inspection. 

A preventive replacement with cost C p and a corrective replacement

ith cost C r are considered as two possible maintenance actions in this

esearch. The cost per inspection is C s and these costs satisfy C s < C p < C r .

oreover, we suppose that the model parameters are known and the sys-

em is as good as new after replacements. According to renewal theory,

he expected cycle cost per unit time used as the evaluation criterion of

he maintenance policies can be given by 

𝐶 = 

𝐶 𝐸 

𝑇 𝐸 
, (51)

here C E and T E denote the expected maintenance cost and the cycle

ime, respectively. To be specific, the expected maintenance costs consist

f the replacement cost and the inspection cost during the cycle time.

e also define an integer 𝛿 as the total number of inspections for the

ystem, and thereby the cycle time 𝑇 𝐸 = 𝛿ℎ . In the following subsections,

he maintenance policies are presented and evaluated. 

.1. RUL-based maintenance policy 

The observation and the RUL of the system at the inspection time

 𝜐 are denoted by o 𝜐 and 𝑅𝑈𝐿 ( t 𝜐) , respectively. In the predicted value-

ased maintenance policy, a fixed maintenance threshold 𝜂R is defined

nd at each inspection time t 𝜐 during the cycle: 

• If o 𝜐 ≥ 𝜔 , the system has failed, and a corrective replacement is per-

formed. 
• If o 𝜐 < 𝜔 and 𝑅𝑈𝐿 ( t 𝜐) ≤ 𝜂𝑅 , a preventive replacement is carried out

to renew the system. 
• If o 𝜐 < 𝜔 and 𝑅𝑈𝐿 ( t 𝜐) > 𝜂𝑅 , the system runs normally, and the main-

tenance decision should be made at the next inspection time t 𝜐+1 . 
• If the system does not reach the maintenance threshold and still op-

erates without failure when the last inspection is performed, a pre-

ventive replacement will be enforced. 

Note that the threshold 𝜂R is lower than the cycle time. The system

ill surely be replaced before the last inspection if 𝛿 is large enough.
11 
rom Eq. (26) , the probability distribution of 𝑅𝑈𝐿 ( t 𝜐) can be given by

 

(
𝑅𝑈𝐿 

(
𝑡 𝜐
)
=𝜏
)
= 

∑
𝑖 

𝑃 
(
𝑅𝑈𝐿 

(
𝑡 𝜐
)
= 𝜏||𝑞 𝑇 = 𝑆 𝑖 

)
× 𝑃 
(
𝑞 𝑇 = 𝑆 𝑖 

||𝑜 1 , ..., 𝑜 𝜐, 𝜆). 
(52) 

Since the RUL is regarded as a discrete random variable and

q. (34) is the probability mass function, we can use an approximate

ethod, such as the artificial neural network, to fit the probability den-

ity function of the RUL. Let 𝑓 𝜐( 𝑅𝑈𝐿 ) denotes the probability density

unction of the RUL at the inspection time t 𝜐. 
Given the policy above, the probability that the system is preven-

ively replaced at the inspection time t 𝜐 can be given by 

 𝑝𝑟 

(
𝑡 𝜐
)
= 𝑃 

(
𝑅𝑈𝐿 

(
𝑡 𝜐
) ≤ 𝜂𝑅 , o 𝜐 < 𝜔 

|||𝑅𝑈𝐿 

(
t 𝜐−1 
)

> 𝜂𝑅 , o 𝜐−1 < 𝜔 

)
= 𝑃 

(
𝑅𝑈𝐿 

(
𝑡 𝜐
) ≤ 𝜂𝑅 , o 𝜐 < 𝜔 

|||𝑅𝑈𝐿 

(
t 𝜐−1 
)
− ℎ > 𝜂𝑅 − ℎ, o 𝜐−1 < 𝜔 

)
= ∫ 𝜂𝑅 

𝜂𝑅 − ℎ 
𝑓 𝜐( 𝜏) 𝑑 𝜏 ∫ 𝜔 

0 𝑃 
(
𝑜 𝜐
||𝑜 1 , ..., o 𝜐−1 < 𝜔, 𝜆

)
𝑑 𝑜 𝜐

, (53) 

here an approximation formula 𝑅𝑈𝐿 ( t 𝜐) = 𝑅𝑈𝐿 ( t 𝜐−1 ) − ℎ is used for

he inference. 

The probability that the system is correctively replaced at the inspec-

ion t 𝜐 is given by 

 𝑐𝑟 

(
𝑡 𝜐
)
= 𝑃 
(
o 𝜐 ≥ 𝜔 

||o 𝜐−1 < 𝜔 

)
= ∫

+∞

𝜔 

𝑃 
(
𝑜 𝜐
||𝑜 1 , ..., o 𝜐−1 < 𝜔, 𝜆

)
𝑑 𝑜 𝜐+1 . 

(54) 

The usage time of a system between two sequential replacements is

enoted by L T . A cycle can contain several replacements. For simplicity,

 T is calculated as follows 

 𝑇 = 

∑
𝜐
𝑡 𝜐
(
𝑃 𝑝𝑟 

(
𝑡 𝜐
)
+ 𝑃 𝑐𝑟 

(
𝑡 𝜐
))

. (55) 

Hence, the cumulated maintenance cost C E during the cycle T E can

e calculated by 

 𝐸 = ⌊𝑇 𝐸 ∕ 𝐿 𝑇 ⌋∑⌊𝐿 𝑇 ∕ ℎ ⌋
𝜐=1 

[
𝐶 𝑝 𝑃 𝑝𝑟 

(
𝑡 𝜐
)
+ 𝐶 𝑟 𝑃 𝑐𝑟 

(
𝑡 𝜐
)]

+ 𝐶 𝑝 , (56)

here ⌊z ⌋ denotes the integer part of the real number. The preventive

hreshold is the only decision variable for the maintenance policy. The

ptimal solution 𝜂R 
∗ can be obtained as follows: 

𝑅 
∗ = arg min 

⎧ ⎪ ⎨ ⎪ ⎩ 𝐶𝐶 = 

⌊𝑇 𝐸 ∕ 𝐿 𝑇 ⌋∑⌊𝐿 𝑇 ∕ ℎ ⌋𝜐=1 
[
𝐶 𝑝 𝑃 𝑝𝑟 

(
𝑡 𝜐
)
+ 𝐶 𝑟 𝑃 𝑐𝑟 

(
𝑡 𝜐
)]

+ 𝐶 𝑝 

𝑇 𝐸 

⎫ ⎪ ⎬ ⎪ ⎭ . 
(57) 

emark 3. The decision variable 𝜂R in Eq. (58) is the maintenance

hreshold and should be smaller than the useful lifetime, i.e., RUL (t 0 ).

ince the RUL is regarded as a discrete random variable, the feasible so-

utions of 𝜂R consist of finite positive integers. Then, we can use traver-

al method to search the optimal solution of Eq. (58) . Moreover, for

he integral of Eqs. (54) and (55) , given the upper and lower limit val-

es numerical integration methods can be adopted. Hence, the useful

ifetime and the inspection interval determine the computational com-

lexity. Once an appropriate interval is fixed, Eq. (58) can be solved

uickly and directly. 

.2. State-based maintenance policy 

We compare the performance of our proposed maintenance policies

ith a conventional condition-based maintenance policy that was ob-

ained in Le et al. [11] . A fixed maintenance threshold 𝜂o < 𝜔 is de-

ned in the condition-based maintenance policy and at each inspection

ime t 𝜐: 

• If o 𝜐 ≥ 𝜔 , the system has failed, and a corrective replacement is per-

formed. 
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Fig. 13. The flowchart for the application of the proposed RUL-based maintenance policy.
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• If 𝜂𝑜 ≤ o 𝜐 < 𝜔 , a preventive replacement is carried out to renew the

system.
• If o 𝜐 < 𝜂𝑜 , the system runs normally, and the maintenance decision

should be made at the next inspection time t 𝜐+1 .

The preventive threshold 𝜂o which is the decision variable to be op-

imized can be obtained as follows 

𝑜 
∗ = arg min

{ 

𝐶𝐶 = 

𝐶 𝐸 

(
𝜂𝑜 

)
𝑇 𝐸 

} 

. (58)

.3. Comparison 

We use the fatigue-crack-growth data from Lu and Meeker [36] to

llustrate the efficiency of the proposed method and compare the per-

ormances of the maintenance policies. There are 21 sample paths of

egradation. Since “Time ” in the proposed model and method could be

eal time or some other measure like miles for automobile tires or cy-

les in fatigue tests, we take ten thousand cycles as a unit “time ” here.

he cracks of these samples are observed every ten thousand cycles. We

efine a critical crack length of 1.6 inches to be the failure threshold.

he corresponding flowchart for the application of the RUL-based main-

enance policy is given in Fig. 13 . Suppose that the cost parameters are

et as 𝐶 𝑠 = 2 , 𝐶 𝑝 = 50 and 𝐶 𝑟 = 500 . The total running time is set as one bil-

ion cycles and thereby the number of replacements must be greater or

qual to one. 

The settings of the optimal RUL-based and condition-based main-

enance policies with different inspection intervals are displayed in

able 2 . We obtained the minimum expected cycle cost rate 𝐶 𝐶 

∗ = 6 . 523
ith the optimal preventive maintenance threshold 𝜂𝑅 

∗ = 3 × 10 4 cycles

nder the RUL-based maintenance policy when the inspection interval is

0 4 cycles. This means that when the predicted RUL of the sample is less

han 3 ×10 4 cycles, a preventive replacement need to be performed. By

omparison of the optimal results of the two policies in Table 2 , it can
12
e found that the RUL-based maintenance policy is more cost-effective

han the conventional condition-based maintenance policy. This demon-

trates that when we consider not only the current degradation state but

lso the future degradation trend, more economical and effective deci-

ions can be made. In addition, when the inspection interval increases,

he maintenance thresholds of both policies become harsher and the ex-

ected cycle cost rates get higher. As a shorter interval in the same total

unning time means more inspections and thereby more data can be ob-

ained. It can be concluded that more information available can make it

ossible to develop a practical operational policy. 

Besides, sensitivity analysis is performed to show the effects of cost

arameters on optimal solutions. The key parameter considered here is

he ration between the cost of a preventive replacement and the cost of

 corrective replacement, i.e., C r / C p . The results are shown in Fig. 14 .

t can be observed that how the solutions change with the parame-

er changing. Both the maintenance threshold and expected cost per

nit time increase with the increasing of the ratio. The increasing of

he maintenance threshold means the replacement frequency becomes

arger and thereby leads to increased cost. Since the corrective cost keeps

etting higher, we need to carry out more preventive replacements to

void the occurrence of potential failure. 

. Conclusion

In this paper, we propose an approach based on the HMM-AO model

o reflect the degradation process. The autocorrelation property of the

bservations is characterized by coefficient matrices. A novel algorithm

ased on the Expectation maximum method is developed to estimate

he unknown parameters. Missing data and noise that accumulate over

ime are taken into account by modifying the proposed model. Then two

UL prediction methods based on the HMM-AO models are presented.

he effectiveness of the proposed methods is demonstrated by a real

ase study with a LED degradation dataset. Furthermore, these data are
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Table 2

Comparison of RUL-based maintenance and state-based maintenance policies.

Policy Inspection interval Maintenance threshold The expected cycle cost rate

RUL-based 10 4 cycles 3 ×10 4 cycles 6.523

2 ×10 5 cycles 4 ×10 4 cycles 10.277

State-based 10 4 cycles 1.52 inches 9.692

2 ×10 4 cycles 1.40 inches 16.285

Fig. 14. Sensitivity analysis of the maintenance threshold and expected cost per unit time on C r / C p .
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hen used to illustrate the advantages of the HMM-AO model by com-

aring with the standard HMM. To illustrate the application of the RUL

n the framework of the maintenance, a RUL-based maintenance policy

s developed with observations at equidistant time epochs. Using the

atigue-crack-growth data, the proposed policy is also compared with a

onventional condition-based policy. 

Further extension of the HMM-AO model to fault diagnosis of pro-

uction systems is a suitable topic for future research. Another interest-

ng topic could be the development of the degradation models and the

aintenance policies based on the proposed model. Moreover, HMMs

tate that the current state is dependent only on the previous state, this

epresents the distributions of the state durations are constant or geo-

etric. Modeling the time duration of the hidden states is necessary in

he furfure and therefore the corresponding model is more capable of

eal degradation processes. 
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ppendix 

The estimation of unknown parameters of HMM-AO in the case study

A = [0.571 0.429 0 0 0 0 0; 

0 0.419 0.581 0 0 0 0; 

0 0 0.637 0.363 0 0 0; 

0 0 0 0.685 0.315 0 0; 

0 0 0 0 0.713 0.287 0; 

0 0 0 0 0 0.712 0.288; 

0 0 0 0 0 0 1.0] 

C = [0.573 0.331; 

1.025 − 0.050; 

0.740 0.184; 

0.821 0.113; 

0.883 0.065; 

0.754 0.150; 
13
0.836 0.087] 

Σ= [2.970 0.424 6.436 5.527 2.741 6.107 3.322]/10ˆ4; 

𝜋 = [0.781, 0.052, 0.167, 0, 0, 0, 0]; 

The estimation of unknown parameters of HMM in the case study 

A = [0.544 0.456 0 0 0 0 0; 

0 0.599 0.401 0 0 0 0; 

0 0 0.641 0.359 0 0 0; 

0 0 0 0.713 0.287 0 0; 

0 0 0 0 0.680 0.32 0; 

0 0 0 0 0 0.804 0.196; 

0 0 0 0 0 0 1.0] 

B = [0.887 0.034; 

0.807 0.021; 

0.745 0.019; 

0.696 0.017; 

0.649 0.014; 

0.606 0.017; 

0.564 0.020]; 

𝜋 = [ 1 0 0 0 0 0 0];
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