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commonly used technique, multiple microarrays that 
contain probes for coding- and non-coding transcripts have 
been produced. The use of arrays has an advantage of 
providing rapid and efficient analysis; however, RNA-seq 
is superior for detecting low-abundance transcripts.

Validation of the transcripts is the next step for functional 
investigations. Quantitative PCR is utilized for validation 
of the expression levels of candidate ncRNAs. Conse-
quently, the rapid amplification of cDNA ends (RACE) 
technique is commonly used to identify the full sequences 
of lncRNAs. In addition, determination of the localization 
of lncRNAs of interest is important to estimate their 
potential biological actions. RNA fluorescent in situ hybrid-
ization (RNA FISH) may provide precise information on 
the subcellular localization of lncRNAs.

It is also important to test the coding potential of 
lncRNAs, because some transcripts currently annotated as 
lncRNAs may encode small proteins despite the annotation 
efforts. For example, the Dworf RNA transcript was 
annotated as lncRNA; however, it was later proven to 
encode a peptide of 34 amino acids.6 The use of bioinfor-
matics tools or in vitro transcription and translation assays 
enables the identification of possible peptide production 
from lncRNAs.7–9

The functions of lncRNAs range broadly from guiding 
chromatin-modifying factors to genomic targets to providing 
ribonuclear protein complexes with a scaffold for support. 
Therefore, several techniques have been developed to 
identify lncRNA interactions with the genome, proteins, 
and RNAs.

To determine the lncRNA binding sites in the genome, 
chromatin isolation by RNA purification (ChIRP) was 
first developed by Chu et al.10 This method uses antisense 

R ecent developments in RNA-seq methods in con-
junction with bioinformatics have enabled charac-
terization of all RNA transcripts.1 The discovery of 

various types of non-protein-coding RNAs (ncRNAs) has 
expanded our knowledge of molecular biology. Thousands 
of ncRNAs have been classified into 2 groups depending 
on their length: small ncRNAs up to 200 nucleotides long, 
and long non-coding RNAs (lncRNAs) longer than 200 
nucleotides. The functions of microRNAs (miRNAs), which 
are the most numerous class of small ncRNAs, are well 
documented.2–4 However, establishing the biological actions 
of each lncRNA is still challenging because of their low 
conservation among vertebrates, variety of structures, and 
multiple modalities of action. Therefore, there still remain 
a large number of lncRNAs with unknown functions.

Recently, the FANTOM5 project identified 27,919 
human lncRNA genes and their expression profiles across 
1,829 samples from major human primary cells and tissues.5 
Moreover, they suggested that almost 70% of these 
lncRNAs are potentially functional. A selected subset of 
lncRNAs will be functionally characterized in more detail 
using other complementary technologies in the FANTOM6 
project (http://fantom.gsc.riken.jp/6/). A list of ncRNA 
databases currently available is shown in Table 1.

Strategies for the Identification of  
Functional lncRNAs

Genome-wide transcriptomic approaches are commonly 
used for screening for lncRNAs. Recently, computational 
approaches have also been utilized for the identification of 
lncRNAs from RNA-seq data because of improvements in 
lncRNA annotations. Although RNA-seq is the most 
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to Cas9.19 A summary of lncRNA analysis methods is 
shown in Table 2.

Functional lncRNAs in Cardiac Development
Loss-of-function studies have been applied to progenitors 
and embryonic stem (ES) cells to reveal the functions of 
lncRNAs in cardiac development and differentiation. It 
has been proven that knockdown of lncRNAs has major 
effects on gene expression patterns, and causes either exit 
from the pluripotent state or upregulation of lineage 
commitment programs.20

Through the use of multiple ES cell differentiation 
techniques, an lncRNA named Braveheart (Bvht) was 
found to be necessary for the activation of a core gene-
regulatory system that included key cardiac transcription 
factors (e.g., MesP1, Gata4, Hand1, Hand2, Nkx2.5, and 
Tbx5) and epithelial-to-mesenchymal transition genes (e.g., 
Snai and Twist).21 There was a significant overlap of the 
genes regulated by MESP1 and Bvht. It was also revealed 
that Bvht interacts with SUZ12, a core component of the 
polycomb-repressive complex 2 (PRC2), suggesting that 
this interaction may be critical for the epigenetic regulation 
of the cardiac gene-regulatory network. Of note, Bvht-
deficient cells showed similar morphology on neuronal 
differentiation by treatment with retinoic acid. Further 
experiments determined the secondary structure of Bvht 
using chemical probing methods and showed that the 

DNA oligonucleotides to capture and purify the lncRNA-
chromatin complexes. Two other similar approaches have 
also been reported: capture hybridization analysis of RNA 
target (Chart)11 and RNA antisense purification (RAP).12

To identify the lncRNA-bound proteome, ChIRP-like 
methods such as ChIRP-mass spectrometry (MS) and 
Chart-MS are being utilized.13,14 RNA-RNA interactions 
can also be assessed by ChIRP; however, it does not differ-
entiate direct RNA-RNA hybridization from interactions 
with intermediate proteins. In contrast, cross-linking, 
ligation, and sequencing of hybrids (CLASH) is used to 
detect only direct base-pairing between RNA molecules.15

The unique secondary and tertiary structures of each 
lncRNA contributes to its biological function. Thus, several 
techniques have been developed to elucidate RNA struc-
tures. RNA-selective 2’-hydroxyl acylation and primer 
extension (SHAPE) can identify bases that are in a flexible 
and probably single-stranded conformation.16

Finally, gene knockout or modification strategies are 
required to determine the physiological functions and the 
contribution to diseases of lncRNAs in vivo. The recent 
development of clustered regularly interspaced short 
palindromic repeat (CRISPR) technology has created a 
versatile platform for the generation of loss-of-function 
models.17 A modified catalytically inactive Cas9 can inhibit 
gene transcription without modifying genome elements.18 
A similar approach can be used to activate transcription by 
fusing multiple copies of a transcriptional activator domain 

Table 1.  List of Available Databases of lncRNAs

Database Description No. of lncRNAs 
in humans

No. of lncRNAs 
in mice Last update

LNCipedia Integrated database of human lncRNAs Secondary structure  
information, protein-coding potential and microRNA binding sites 
are also available

120,353 0 2017

LncRNAdb Database providing annotations of eukaryotic lncRNAs 65 184 2015

GENCODE High-quality reference gene annotations and experimental  
validation for human and mouse genomes

15,778 12,374 2017

NONCODE Integrated knowledge database dedicated to ncRNAs in 17 
species

172,216 131,697 2017

FANTOM CAT Comprehensive atlas of 27,919 human lncRNA genes with high-
confidence 5’-ends

27,919 0 2017

lncRNAs, long non-coding RNAs.

Table 2.  Summary of lncRNA Analysis

Stage Technique Reference

Identification of existence RNA-seq, microarray, Cap-assisted gene expression sequencing, and 
nuclear run-on assay

5

Validation Quantitative PCR, RACE, RNA FISH, and databases 21, 23

Assessment of the coding potential Bioinformatic tool, in vitro transcription assays and mass spectrometry 6–9

Mapping of binding sites ChIRP, Chart, and RAP 10–12

Identification of lncRNA-bound proteome ChIRP-MS and Chart-MS 13, 14

RNA-RNA interaction CLASH 15

Analysis of RNA structure SHAPE 16

Functional assay in vivo Genetic knockout, promoter insertion, PolyA insertion, RNAi, CRISPR 
repressor, promoter knockin, and transgenic

17–19

Chart-MS, capture hybridization analysis of RNA target-mass spectrometry; ChIRP, chromatin isolation by RNA purification; CLASH, 
cross-linking, ligation, and sequencing of hybrids; CRISPR, clustered regularly interspaced short palindromic repeat; FISH, fluorescent in situ 
hybridization; lncRNAs, long non-coding RNAs; PCR, polymerase chain reaction; RAP, RNA antisense purification; RNA, ribonucleic acid; 
SHAPE, 2’-hydroxyl acylation and primer extension.
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and reduces the increased wall tension and helps to maintain 
cardiac output. Thus, the adaptive process is beneficial and 
can initially improve cardiac function; however, persistent 
exposure of the heart to increased work load can lead to 
the impaired blood flow, resulting in relative hypoxia 
and a subsequent loss of cardiomyocytes, ultimately 
resulting in heart failure (HF). With the utilization of 
high-throughput RNA sequencing, many studies have 
already been carried out to investigate the role of lncRNAs 
in cardiac hypertrophy.

Actually, transcriptomic analysis of pressure-overload-
induced failing hearts in mice revealed almost 150 lncRNAs 
that are significantly dysregulated.30 One of them was a 
heart-enriched lncRNA, named cardiac-hypertrophy-
associated epigenetic regulator (Chaer), which was necessary 
for the development of cardiac hypertrophy. Mechanisti-
cally, Chaer directly binds with the catalytic subunit of 
PRC2. Thus, Chaer interferes with PRC2 targeting of 
genomic loci, which results in the inhibition of histone H3 
lysine 27 methylation in the promoter regions of cardiac 
hypertrophy-related genes.31

Myosin heavy-chain-associated RNA transcripts (Myheart 
or Mhrt), are cardiac-specific, abundant ncRNAs in adult 
hearts that consist of a cluster of RNAs of 709–1,147 
nucleotides in length (Mhrt RNAs).32 Mhrt antagonizes the 
function of Brg1, which is a chromatin-remodeling factor 
activated by various stress to trigger abnormal gene 
expression and cardiomyopathies.33 Mhrt prevents Brg1 
from recognizing its genomic DNA targets by binding to 
the helicase domain of Brg1, a domain that is crucial for 
tethering Brg1 to chromatinized DNA targets. Thus, a 
Mhrt-Brg1 feedback circuit is crucial for cardiac function, 
and Mhrt is a cardioprotective lncRNA.

Cardiac hypertrophy-associated transcript (Chast) was 
identified by global lncRNA expression profiling during 
pressure overload-induced cardiac hypertrophy in mice.34 
Mechanistically, Chast negatively regulated Pleckstrin 
homology domain-containing protein family M member 1 
(opposite strand to Chast), preventing autophagy of cardiac 
cells and enhancing cardiac hypertrophy. In addition, 
transcription of a CHAST homolog in humans was 
significantly enhanced in samples of hypertrophic hearts of 
patients with aortic stenosis.

In contrast to the chromatin- or gene-regulatory effect 

~590-nucleotide transcript of Bvht has the potential to 
interact with cellular nucleic acid binding protein (CNBP/
ZNF9), a zinc-finger protein known to bind single-stranded 
G-rich sequences. This work first determined the role of 
RNA structure in regulating cardiovascular lineage 
commitment.22

In a similar way, the lateral mesoderm-specific lncRNA 
Fendrr was found to be essential for proper heart and body 
wall development in mice. Embryos without Fendrr 
displayed upregulation of several transcription factors 
controlling lateral plate or cardiac mesoderm differentia-
tion. This was accompanied by a drastic reduction in 
PRC2 occupancy at their promoters. Fendrr binds to both 
the PRC2 and Trithorax group/MLL protein complexes 
(TrxG/MLL), suggesting that it acts as a chromatin signa-
tures modulator that defines cardiac gene activity.23

Enhancers are a specific class of regulatory modules, 
which are located far from the transcriptional start sites of 
their target genes. Their function involves both direct and 
indirect promotion of transcription at target gene promoters. 
Enhancers strengthen transcriptional initiation and elon-
gation by direct interaction with the basal transcriptional 
machinery and indirect interaction with the local chromatin 
environment at target gene promoters.24 Recent studies 
have indicated that most of the active enhancers consistently 
generate ncRNAs and that they are functionally required 
for enhancer activity.25–27 Thus, enhancer RNAs (eRNAs) 
are known to be implicated in specific gene expression. The 
features of and differences between eRNAs, lncRNAs, and 
mRNAs are summarized in Table 3. Through a systematic 
bioinformatic analysis, a catalog of eRNAs with active 
cardiac enhancer sequences that are expressed during ES 
cell differentiation into cardiomyocytes has been gener-
ated.28 In this experiment, knockdown of 2 eRNAs resulted 
in the specific downregulation of their predicted target 
genes. Another lncRNA associated with active cardiac 
enhancers and super-enhancers, cardiac mesoderm 
enhancer-associated non-coding RNA (CARMEN), is also 
responsible for cardiac development and differentiation.29

Functional lncRNAs in Cardiac Hypertrophy
Cardiac hypertrophy is an initially adaptive response to 
various stresses, including pressure or volume overload, 

Table 3.  Features of eRNA, lncRNA, and mRNA

Feature eRNA lncRNA mRNA

Number ~40,000–65,000 Several to tens of thousands ~23,000

RNA polymerase II Yes Yes Yes

Splicing Rare Common Yes

Polyadenylation Some Mostly Mostly

Stability Low Low to medium High

Conservation Low Medium to high High

Tissue specificity Extremely high High Low

Subcellular enrichment Nuclear and chromatin bound Nuclear and chromatin bound  
and cytoplasmic

Mostly cytoplasmic

H3K4 me1 High Medium Low

H3K4 me3 Low Medium High

H3K36 me3 No Yes Yes/high

H3K27ac High High High

eRNA, enhancer RNA; lncRNA, long non-coding RNA.
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fibroblasts revealed the defective morphogenesis of cristae 
in the absence of prohibitins,41 and that study revealed a 
model of mitochondrial fission regulation that is composed 
of CARL, miR-539, and PHB2.

RNA deep-sequencing of cardiac samples from patients 
with ischemic cardiomyopathy and from controls identified 
145 differentially expressed lncRNAs in hearts with ischemic 
cardiomyopathy.42 Expression correlation coefficient 
analyses of differentially expressed lncRNAs revealed a 
strong association between lncRNAs and extracellular 
matrix protein-coding genes. Overexpression or knockdown 
experiments in cardiac fibroblasts suggested that selected 
lncRNAs such as n379599, n379519, n384640, n380433, 
and n410105 are important regulators of fibrosis and the 
expression of extracellular matrix synthesis genes.

By using an integrated genome screen, Wisp2 super-
enhancer-associated RNA (Wisper) was identified as a 
cardiac fibroblast-enriched lncRNA that regulates cardiac 
fibrosis after injury.43 Wisper expression correlated with 
fibrosis levels in a mouse model of myocardial infarction 
and in samples from humans with aortic stenosis. Mechanis-
tically, Wisper regulates cardiac fibroblast gene expression 
partly through its association with TIA1-related protein to 
control the expression of lysyl hydrosylase 2.

Functional lncRNAs in Atherosclerosis
Atherosclerosis is accompanied by a cascade of inflam-
matory responses, fatty plaque formation, migration of 
monocytes, and proliferation of smooth muscle cells in 
conjunction with abnormal lipid metabolism. All of these 
physiological and pathological and steps may be affected 
by lncRNAs (Figure 2).

Oxidized low-density lipoprotein (oxLDL) is known to 
be associated with the onset of atherogenesis involving 
macrophages and endothelial cells. It was shown that 
expression of lncRNA-growth arrest-specific 5 (lncRNA 
GAS5) was significantly increased in atherosclerotic 
plaque.44 Knockdown of lncRNA GAS5 reduced apoptosis 
of THP-1 cells induced by oxLDL. In contrast, overexpres-
sion of lncRNA GAS5 enhanced the apoptosis of THP-1 
cells treated with oxLDL.45 Of note, exosomes derived 
from lncRNA GAS5-overexpressing THP-1 cells enhanced 
the apoptosis of vascular endothelial cells. Thus, lncRNA 

of other lncRNAs, there are several lncRNAs that inhibit 
the functions of the miRNAs that affect cardiac hypertrophy. 
Cardiac hypertrophy-related factor (CHRF) was found to 
serve as a sponge for miRNA-489.35 CHRF was found to 
be upregulated in hypertrophic hearts in both mice and 
human HF samples. CHRF downregulates miR-489 expres-
sion levels, which in turn upregulates Myd88 expression 
and induces cardiac hypertrophy.

LncRNA regulator of reprogramming (ROR) was first 
found as an lncRNA that regulates the pluripotency and 
differentiation of ES cells.36 LncRNA-ROR promotes 
cardiac hypertrophy by acting as a sponge for miR-133, 
which is known as an antihypertrophic miRNA.37 Because 
the expression level of miR-133 is high in cardiac myocytes, 
it is also possible that miR-133 serves as an lncRNA-ROR 
sponge and attenuates the prohypertrophic effect of 
lncRNA-ROR.

It is notable that the lncRNA H19, a highly abundant 
and conserved imprinted gene, encodes miR-675, which 
was shown to mediate the inhibitory effect of H19 on 
cardiomyocyte hypertrophy by targeting CaMKIIδ.38

Functional lncRNAs in HF
HF is a complex condition involving declining cardiac 
function in response to various pathophysiological insults, 
which result in maladaptive cardiac hypertrophy and cell 
death. Therefore, dysregulation of all of the aforementioned 
Chaer, Mhrt, Chast, CHRF, and lincRNA ROR is associ-
ated with HF development (Figure 1).

There are several cell-death-related lncRNAs. An 
lncRNA named autophagy-promoting factor (APF) was 
found to regulate autophagy in the heart.39 It regulates 
miR-188-3p, and thus affects ATG7 expression and 
autophagic cell death. APF knockdown by siRNA resulted 
in a significant reduction in infarct size and the amelioration 
of cardiac function in an ischemia-reperfusion model in 
mice.

Abnormal mitochondrial fission participates in the 
promotion of cell death. The lncRNA cardiac apoptosis-
related lncRNA (CARL) was reported to suppress 
mitochondrial fission and apoptosis by impairing miR-
539-dependent downregulation of prohibitin 2 (PHB2).40 
A detailed ultrastructural analysis in mouse embryonic 

Figure 1.    Long non-coding RNAs in the heart. Figure 2.    Long non-coding RNAs in atherosclerosis.
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Conclusions
There are many functional lncRNAs in cardiovascular 
diseases, including cardiac hypertrophy, HF, and athero-
sclerosis. The therapeutic potential of synthetic RNAs to 
modulate these lncRNAs is being tested and may be utilized 
in the future.
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