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Experimental and numerical buckling analysis of a thin TRC dome
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a b s t r a c t

Shells in textile reinforced concrete (TRC) can be made very thin thanks to their non-corroding
reinforcement. Consequently, buckling becomes an important parameter. Because of the lack of data
in literature, this paper presents the experimental and numerical analysis on the buckling behaviour of a
TRC dome (2 m span, 0.2 m height, 3.7 mm thick), which is subjected to a uniform pressure load until it
buckles. This experiment is simulated using the Riks method in Abaqus and implementing geometrical
imperfections. The simulations correspond well to the experimental data and validate the model, which
enables the prediction of buckling, necessary when designing thin TRC shells.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The persistent investigation of cementitious composites in
recent years led to the development of strain hardening materials
with high compressive and tensile strength, ductility and energy
absorption. By combining continuous fabrics with a fined grain
matrix a material, known as textile reinforced concrete (TRC), is
obtained. Because the textile is flexible enough to copy the shape
of any mould, strongly curved and complex shell shapes can be
obtained, as demonstrated in [1,2]. Because of the relatively good
mechanical properties of TRC and the non-corroding reinforce-
ment, TRC shells can be executed (very) thin. This was recently
proven at RWTH Aachen University, where a pavilion composed of
four hypar TRC shells [3,4] was successfully constructed. Each
shell, produced as a precast part, is supported at its centre by a
steel reinforced concrete column. The 6 cm thick shells, reinforced
with 12 layers of a non-corroding textile reinforcement of carbon
fibres, have a base area of 7�7 m and are arranged in a 2 by 2 grid,
resulting in a pavilion of 14�14 m and showing the potential of
TRC structures.

The higher the slenderness of TRC shell structures, the more
they are prone to buckling. While buckling of steel reinforced
concrete shells is relatively well examined and general design
rules were developed throughout the years [5–7] this is not the
case for textile reinforced concrete shells. The slenderness TRC
shells can achieve is far superior than that of steel reinforced
concrete shells. It should therefore be studied whether the same
methodology may be used for those very thin shells. In the
literature no experimental data exist on buckling of TRC shells.
For this reason, this paper presents the experimental and numer-
ical investigation of the buckling behaviour of a TRC dome. The
spherical dome (2 m span; 0.2 m high; 3.7 mm thick) is subjected
to a uniform pressure until it fails under buckling (Fig. 1).

The first part of the paper describes the experimental metho-
dology, i.e. the shell geometry tested, the used materials, the
manufacturing of the shell and the test setup. The experimental
results, containing not only the failure behaviour but also the
strain evolution at various locations as a function of the applied
pressure, are discussed in detail. The second part of the paper
compares this experiment to a numerical analysis using the
modified Riks method, performed in the finite element software
Abaqus. The influence of geometrical imperfections on the

buckling behaviour is studied and linked to the experimental
observations.

2. Experimental investigation

2.1. Textile reinforced concrete: material choices

In the study presented in this paper, the matrix Inorganic
Phosphate Cement (IPC) [8], developed at Vrije Universiteit Brus-
sel, is used in combination with E-glass fibre mats. Just like other
cements, unreinforced IPC is brittle; the compressive strength
equals approximately 80 MPa, while the tensile strength is at least
10 times smaller and lies between 6 and 8 MPa [9]. The stiffness of
IPC equals 18 GPa. IPC is chosen as matrix because it has very small
grain size – thus good impregnation of a dense textile is possible –

and because it becomes pH neutral after hardening – thus can be
used with glass fibres. The textile used in this study is a chopped
E-glass fibre mat with a density of 300 g/m2 (Fig. 2(a)). This
random oriented fibre mat is chosen over a bidirectional textile,
because it is the aim to build not only domes but also more
complex shell geometries, in which the forces work in all different
directions rather than in two principal directions. Although the
chosen materials are not those of traditional textile reinforced
concrete, the mechanical material behaviour of glass fibre textile
reinforced IPC (GFTR-IPC) on a macro-scale is analogue to that of
TRC. The used chopped fibre mats provide a continuous reinforce-
ment just like textiles, and as the used matrix allows us to
impregnate a high fibre volume fraction, the resulting composite
shows a significant strain hardening in tension. For this reason, we
choose to refer to GFTR-IPC as a kind of TRC.

The mechanical behaviour of GFTR-IPC differs significantly in
tension and compression due to the brittle matrix. In compression
GFTR-IPC is assumed to be linear until failure [9], but in tension it
shows already a non-linear behaviour at low tensile stresses due to
the low tensile failure strain of the matrix relative to that of the
fibres (Fig. 3(a)). However, by adding high fibre volume fractions
the composite can obtain a significant post-cracking stiffness and
tensile strength (Fig. 3(b), [10]). The properties of the glass fibre
textile reinforced IPC can be found in Table 1.

2.2. Geometry and production of a TRC shell

To perform the experimental investigation a simple and well
known shell geometry is chosen, namely a spherical dome.
Because of restrictions in our lab, a dome of 2 m span, 0.2 m
height and with a radius of curvature of 2.6 m is studied. The
thickness of the dome must be well chosen to ensure that the
dome will fail due to buckling instability during testing rather than

Fig. 1. The spherical dome (2 m span; 0.2 m high; 3.7 mm thick) is subjected to a
uniform pressure by means of a vacuum pump.

Fig. 2. By impregnating the chopped E-glass fibre mat (a) with Inorganic Phosphate Cement, a flexible composite is obtained (b) as long as the cement is wet.

E. Verwimp et al. / Thin-Walled Structures 94 (2015) 89–9790



failure by excessive stresses. In other words, the main goal of the
experiment is to emphasize on the failure of the structure by the
instability phenomenon. Based on the experimental set-up of [12],
which focusses on the buckling behaviour of plain concrete domes
with a radius of curvature to thickness ratio λsl¼385, it is decided
to manufacture a dome which is even more slender. Therefore a
3.5 mm thick shell is targeted, resulting in a λsl¼722. Moreover,
Young's modulus of the GFTR-IPC material is lower (18 GPa) than
the one of (normal) concrete (30 GPa), i.e. the GFTR-IPC dome
would be even more prone to buckling than the concrete shell in
[12], even when taking the same slenderness ratio. Taken into
account these two factors, the dome is designed to fail in buckling.

To make sure the wanted geometry is precisely fabricated, a
polystyrene foam mould is milled according to the dimensions of
the spherical dome (accuracy of around 1 mm on the radius of
curvature and 5 mm on the span). In this foam mould the TRC
dome is built up. The fibre textiles, composed of randomly
oriented chopped E-glass fibre mats, are cut in half circles to fit
perfectly one-half of the polystyrene mould. After the mats are
placed into the mould (Fig. 4(a)), they are impregnated with the
IPC matrix by hand lay up (Fig. 4(b)). Seven layers of mats are put
on top of each other and impregnated, targeting a thickness of
3.5 mm. Because one layer of the shell contains two identical mats
next to each other around a symmetry line, a small overlap
(approximately 1 mm) will be present between the two mats. To
limit the influence of this overlap to the buckling behaviour, the
two mats of the next layer are positioned in such a way that the
overlap between these two mats makes an angle of 451 with
the overlap of the previous two mats. When all the layers are set,
the shell is covered with a thin plastic veil and hardens at ambient
temperatures for 24 h. After 24 h, the shell is cured with heating
carpets (60 1C) to make sure that the GFTR-IPC is totally hardened.
Finally, after hardening, the GFTR-IPC shell is removed from the
mould and inverted (Fig. 4(c)). The maximum measured section
thickness – 4.7 mm – is located at the three overlaps, where locally
9 layers of fibre mats are placed instead of 7. However, this local
thickening of the section does not increase the buckling load of the

TRC dome. The determining thickness is the minimal measured
thickness of the section, namely 3.7 mm.

2.3. Experimental instrumentation and test set-up

The next paragraphs describe the test set-up of the GFTR-IPC
dome (Fig. 5). Firstly, the loading application is explained and
secondly, the measurement equipment is presented.

The GFTR-IPC dome is subjected to a uniform distributed load
by creating an underpressure between the shell and the concrete
floor in the lab. In order to be able to remove the air between the
dome and the concrete floor, a hole is drilled in the dome and a
connection is designed to attach the hose of the vacuum pump to
the shell in such a way that no air can leak. The hole is drilled
20 cm from the edge of the dome, in order to avoid local failure of
the structure around the fixation of the pump hose. To measure
the radial pressure applied on the shell, a pressure meter is placed
diametrically to the vacuum pump. Between the concrete floor and
the GFTR-IPC dome a rubber is placed to prevent leakage of air
through these zones.

The base of the GFTR-IPC dome is free to move in all directions
at the edge except along the vertical axis, thus the structure is not
maintained laterally. Since tension will occur in the edge under
this loading pattern, the edge is reinforced with carbon fibre strips
which are glued onto the shell border with an epoxy resin, to avoid
premature failure of the edge instead of the buckling instability.
The carbon strips do not form one continuous tension ring around
the shell and do not restrict the horizontal directions.

In order to follow the evolution of the strains in specific
locations on the shell, two sets of five strain gauges (locations 1–
5 in Fig. 5) are placed on the central line at the top and bottom
surfaces of the structure. Bidirectional strain gauges are used,
where the index ‘M’ stands for the strains in the meridian
direction and ‘H’ in the hoop direction.

In combination with the strain gauges, a digital image correla-
tion (DIC) system is used in order to obtain the displacement fields
and strains in the experimental shell. For this experiment two sets
of two cameras are used to register the displacement and strains in
the dome on two locations of 400�500 mm, i.e. one zone
monitoring the centre of the structure and another near the edge
(dotted rectangles in Fig. 5).

3. Experimental results

The next paragraphs describe the results which were moni-
tored with the strain gauges and the digital image correlation.

Fig. 3. GFTR-IPC is linear in compression and non-linear in tension (a) [11], increasing the fibre volume fraction of the glass fibre mats increases its post-cracking stiffness
and tensile strength (b) [10].

Table 1
Properties of glass fibre reinforced Inorganic Phosphate Cement.

Quantity

Density ρ ¼1750 kg/m3

Compressive characteristic strength σck¼80 MPa
Tensile characteristic strength σtk¼40 MPa
Initial E-modulus Ec1¼18 GPa
Fibre volume fraction Vf¼18%
Poisson ratio υ ¼0.3
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3.1. Deflection–pressure behaviour

First of all, the pressure evolution as a function of time (Fig. 6
(a)) is studied in order to highlight some important events which
occurred during testing; this evolution is put next to the graph
which displays the deflection of the centre as a function of the
pressure (Fig. 6(b)). Five markers are chosen in the graph at
different time steps, which will come back in the next graphs. As
seen in Fig. 6(a), the pressure increases monotonically until it
reaches approximately 6.2 kPa (point 1), where a small pressure
decrease occurs (Δp¼0.6 kPa, from point 1 to 3), presumably the
result of cracking and air leakage at the edge. The pressure–

deflection relation increases monotonically until this point of
cracking and air leakage (point 1 in Fig. 6(b)). From here on, the
shell deflects further without pressure increase. From point 3 on,
the pressure increases again until the critical load of 6.9 kPa is
reached and the structure buckles near the edge (Fig. 7).

3.2. Strain–pressure behaviour

In the next paragraphs the strain behaviour is discussed as a
function of the pressure increase.

Fig. 8(a) shows the strains at the shell edges – at locations 1 and
5. As shown in Fig. 8(a), the top surface near the edge shows

Fig. 5. The GFTR-IPC dome is subjected to a pressure and reinforced at the edge with carbon fibre strips. The experiment is monitored by strain gauges and digital image
correlation.

Fig. 6. The pressure–deflection (at the centre) increases monotonically until the pressure load decreases because of cracking and air leakage. Finally, the load increases again
until the shell buckles at the critical load of 6.9 kPa.

Fig. 4. The GFTR-IPC dome is produced in layers. (a) First, the fibre mats are placed in the foam mould. (b) Second, the mats are impregnated with the matrix IPC. (c) After
hardening, the dome is inverted and a thin GFTR-IPC shell is obtained.
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compressive strains in the meridian direction (M1top and M5top)
up to 4250 μm/m. The bottom surface (M5bottom) has tensile
strains which reach up to 3850 μm/m. This indicates the bending
behaviour near the edge of the shell. The general trend of the
strains on both the top and bottom surface is similar but opposite.
The strains on both locations 1 and 5 have only a small discre-
pancy and follow the same trend, proving the axisymmetry of the
shell. The strains in the hoop direction on the top surface (H1top
and H5top) are in compression and show similar behaviour at both

monitored edges with strains up to 350 μm/m. The strain on the
bottom surface (H5bottom) also indicates a bending trend near the
edge as this strain differs from the strain on the top surface.
Furthermore, the strains in the hoop direction evolve linearly until
shortly before failing (350 μm/m). Towards the end of the test, at a
pressure of 6.2 kPa on location 1 (H1top), the hoop strain
decreases about 80 μm/m (from point 1 to 3), which means the
shell is progressively converting compressive stresses into tensile
stresses. This phenomenon announces the buckling of the GFTR-
IPC dome near the edge.

Fig. 9 focuses on the strains at about quarter span of the shell.
These strains at locations 2 and 4 both in meridian and hoop
direction are much smaller (maximum 100 μm/m) than the strains
near the edge. Averagely, the meridian strains (Fig. 9(a); M2top
and M4top) evolve linearly with increasing pressure before crack-
ing and air leakage occurs (before point 1). The hoop strains (Fig. 9
(b)) are both in compression and also show a linear development.
Here, the strains show to be the same over the thickness (H4top
and H4bottom) before cracking and air leakage, demonstrating
that the entire section is in compression. Afterwards, the strain
falls back during the pressure drop (points 1–3) and then increases
with the same slope as the initial one, until buckling. The strains
on the same axisymmetric position (H2top and H4top) are slightly

Fig. 8. Strains at the shell edges – location 1 and 5. Both the strains in the meridian direction (a) and hoop direction (b) indicate the bending behaviour in the Section. The
strains on positions 1 and 5 correspond very well, showing the axisymmetric behaviour of the dome.

Fig. 9. Strains at about quarter span of the shell – locations 2 and 4. The strains demonstrate that the entire section is in compression, however they also show the non-
perfect axisymmetry of the shell.

Fig. 7. The shell buckles locally near the edge.

E. Verwimp et al. / Thin-Walled Structures 94 (2015) 89–97 93



shifted, however they show the same trend and have the same
order of magnitude.

As Fig. 10 shows, the strains on the top surface at the centre of
the dome are similar in the meridian and hoop direction since the
shell is axisymmetric. In fact, the hoop direction at the centre
corresponds in this case to a meridian line which is perpendicular
to the initial meridian. The top surface of the shell centre shows
compressive strains which increase linearly up to 80–100 μm/m.
However, the strains at the bottom surface are still in compression
but significantly lower, showing a combination of compression
and bending at the shell's centre. The structure, which is laterally
not supported, behaves in the meridian direction like an arch
where the thrust forces are barely taken up, inducing bending at
the edges and at the top of the shell.

3.3. Failure behaviour

In general the behaviour of the dome is as expected before cracks
initiate at the edges and air leakage occurs (point 1). When the cracks
appear the axisymmetry is lost and it is unpredictable what happens.
The maximum measured compressive strain reached at buckling is
approximately 3850 μm/m at location 1 in meridian direction (Fig. 8
(a)), this means a stress of 69.3 MPa, which is 86.6% of the compres-
sive failure strength (80 MPa).

Fig. 11 shows the vertical deformations of the shell over the
meridian perpendicular to the meridian line where the strain gauges
were placed (locations 1–5). The full line represents the area captured
by the DIC cameras, the dotted line was obtained by curve fitting. The
deformations are shown for different load steps. Up till the load of
5 kPa the dome deforms approximately symmetrically and almost
linearly with increasing load. At the failure load of 6.9 kPa the
deformation is strongly asymmetric and equals 25 mm near one edge
(¼L/80). This large deformation proves the dome failed indeed
because of buckling and not because of excessive stresses. The
maximal tensile strain reached is approximately 4250 μm/m (also at
location 1 in meridian direction), which equals a stress of 27.3 MPa
and is 68.3% of the tensile failure strength (40 MPa).

The compressive strains at all other locations are a lot smaller and
do not even exceed 150 μm/m, which means a stress of 3 MPa. The
tensile strains on the other locations are almost non-existing and are
far below the elastic limit of the GFTR-IPC material of 400 μm/m. After
the elastic limit in tension is reached, the cement matrix starts to
crack and the behaviour of the material is no longer linear. This
phenomenon is visible in the curve of Fig. 8(a) in meridian direction,
where around 400 μm/m the slope of the curve changes from the
linear curve, which corresponds to a pressure of 3.2 kPa.

4. Numerical model

The experiment is simulated using the finite element (FE)
software Abaqus and the experimental results are compared with
the numerical ones. The analysis is based on Riks' arc-length
technique with implementation of geometrical imperfections in
the dome.

4.1. Model build-up

The dome is modelled as a shell model with a continuous shell
section. Two types of linear elements are used, namely the triangular
S3 and the quadrangular S4R elements, standing for 3-node shell
elements and 4-node shell elements with reduced integration respec-
tively. They are both three-dimensional general-purpose elements
which can be used for both thin and thick shells in all kinds of
boundary conditions and loading conditions [13]. Mostly the S4R
elements are used, but if locally the geometry of the shell does not
allow them, S3 elements are used instead. Mesh convergence was
checked for this shell geometry; a sweep mesh with 7106 elements is
chosen, which seems most suitable in terms of accuracy and
calculation time.

The GFTR-IPC material behaviour is assumed linear elastic in this
simulation. Including the non-linearity of the material in tension
would decrease the stiffness of the shell model, as ongoing research
has shown. However, considering the high slenderness of the shell,
geometrical non-linearities will be predominant in a buckling simula-
tion. As the results in Section 5.1 will show, a linear elastic material
assumption allows for a fast yet adequately close prediction of the
buckling load, which justifies the linear material model assumed in
this paper.

The shell's edge is only restricted in the vertical direction and
the carbon reinforcement, which was glued on the edge during the
experiment, is not taken into account in the FE simulation. The
spherical dome is loaded with a uniform pressure and the shell's
self-weight is not taken into account, because the weight of the
very thin shell (3:7 mm ) 65 Pa) is negligible compared to the
pressure load which is applied (up to 9 kPa).

4.2. Introduction of geometrical imperfections

Real shells are built and executed with imperfections; the same
holds for the lab-manufactured shell. These imperfections can reduce
enormously the buckling resistance of shells [14] and therefore
geometrical imperfections are introduced in the FE model. Very often,
the shape of the first buckling mode of the eigenvalue buckling

Fig. 11. The deformation over a line in the DIC zone is asymmetrical and the large
deformations indicate buckling.

Fig. 10. The strains at the shell centre – location 3 – indicate a combination of
compression and bending.
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analysis is taken as the initial imperfection [6,14]. However, shells with
closely spaced buckling loads are highly sensitive to geometrical
imperfections, and there is no physical reason why another buckling
mode would not induce buckling faster than the first mode. For this
reason, other buckling modes than the first and combinations of
different buckling modes are also taken as the initial imperfection in
this study. Medwadowski [5] recommends to use the value of the
shell thickness as an order of magnitude for geometrical imperfections
for concrete structures as a rather conservative limit and thus an
imperfection size equal to 100% of the GFTR-IPC dome thickness
(3.7 mm) is considered.

4.3. Non-linear analysis

In case of buckling simulation of thin structures, it is important
to consider the non-linear behaviour coming from geometrical
non-linearities. Along this paper, a non-linear analysis is per-
formed using the modified Riks method – a load–deflection
method – in Abaqus [13]. The Riks method uses the load magni-
tude as an additional unknown, and solves the problem simulta-
neously for loads and displacements. The loading during a Riks
step is always proportional. The current load magnitude, Ptotal, is
defined by

Ptotal ¼ P0þλ Pref �P0
� � ð1Þ

where P0 is the dead load (in our case the neglected self-weight),
Pref is the reference load vector, and λ is the load proportionality
factor. The load proportionality factor is found as part of the
solution, and printed at each increment. The solution is a single
equilibrium path in a space defined by the nodal variables and the
loading parameter, and the actual load value may increase or
decrease as the solution progresses.

5. Comparison experimental results to finite element
simulation

5.1. Pressure–displacement behaviour

Firstly, the pressure–displacement of the centre curve of the
experiment is compared to the numerical results assuming a geome-
trical imperfection size of 3.7 mm (100% thickness) and with different
imperfection shapes (Fig. 12(a)). Extracted from a linear eigenvalue
buckling analysis, following geometrical imperfections and combina-
tions are considered: Mode 1, mode 2, a combination of modes 2 &
3 and a combination of modes 4 & 5. As seen in Fig. 12(a), the
numerical pressure–displacement of the centre curves depends sig-
nificantly on the considered imperfection shape, i.e. the buckling

mode which is assumed. The buckling pattern obtained in the
numerical analysis of the dome with the geometrical imperfection
based on mode 2 (Fig. 12(b)) corresponds best to the failure pattern
which was observed during the experiment (Fig. 7). The dome with
this geometrical imperfection based on buckling mode 2 also fits the
pressure–deflection graph the best and the value of the maximum
pressure load (numerically 7.5 kPa; experimentally 6.9 kPa) is well
predicted. Therefore, in the following paragraph the experimental
results are compared to the numerical results with mode 2 as
geometrical imperfection, in order to validate the model. When
designing such a shell however, the lower limit has to be considered
to ensure that the calculated load bearing capacity of the structure is
sufficient.

5.2. Strain evolution

The discrepancy between the numerically determined and
experimentally measured strain at location 1 (shell edge) at the
top surface in the meridian direction (Fig. 13 (a)) is relatively small,
i.e. a root-mean-square error (RMS) of 214 μm/m whereas the
maximum reached strain goes up to 4000 μm/m. The numerical
model thus predicts well the experimental behaviour at location
1 in the meridian direction. The strain evolution numerically
determined at location 1 in the hoop direction (Fig. 13(b))
shows a small increase of the compressive strain whereas the
experimental curve exhibits larger strain values for the same
pressure level. The RMS error equals 325 μm/m, which is a large
difference because the experimental strains reach up to only
350 μm/m. However, the general trend of both curves is relatively
similar.

The strain prediction at around a quarter span on the top
surface (Fig. 14(a) location 2) in the meridian direction is over-
estimating the experimental values with a RMS error of 28 μm/m,
however until a pressure of approximately 3 kPa the curves do
correspond. Starting from this value, cracks are initiated at the
edge which can explain this discrepancy. The strains have in both
cases the same order of magnitude and remain below 150 μm/m.
The strain evolution in the hoop direction on the other hand is
almost perfectly predicted by the numerical model with an RMS
error of 8 μm/m. The global behaviour is similar both in the strain
ascending part and the decreasing part for strains which remain
below 100 μm/m.

The strain at the top surface of the shell's centre is very well
predicted as the RMS error equals only 9 μm/m. The slope is not exactly
the same, but the general behaviour is a lot alike (Fig. 15).

In general, the numerical model seems to be representative for
the experiment as all strains, except for the strain in hoop

Fig. 12. The pressure–deflection of the centre relation (a) and the buckling pattern (b) of the numerical model correspond best to the experiment when a geometrical
imperfection based on the linear buckling mode 2 is used.
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direction on location 1 (edge), have the same order of magnitude
and the global trend is similar for al curves. The buckling
behaviour is thus relatively well predicted, both for the value of
the maximum pressure load and for the load–displacement path
and the strains.

6. Conclusions

This paper studied the production and testing to failure of a
shallow thin-walled GFTR-IPC dome under uniform (internal)
pressure. The dome had a base diameter of 2 m, a thickness of
3.7 mm and a radius of curvature to thickness ratio of R=t ¼ 722. To
understand the structural behaviour of the GFTR-IPC dome, it was
monitored during testing with strain gauges and digital image
correlation. The experiment was successfully performed and
results indicated that the failure of the GFTR-IPC dome was the
result of asymmetrical buckling – which was the aim – at the edge
affected by the bending effect and imperfections.

The dome, subjected to uniform pressure, showed structural
behaviour as expected. The top surface was completely in compres-
sion both in the meridian and hoop direction, with the maximum
values near the edge (locations 1 and 5). On the bottom surface,
tensile strains were measured near the edge in both directions, but
predominantly in the meridian direction. Comparing the strains on
the top and bottom surface, bending was present at the centre

(location 3) and near the edge. The maximum observed tensile strain
in the shell is þ4250 μm/mwhich corresponds to a stress of 27.3 MPa
(68.3% of the tensile failure strength) and the maximum compressive
strain equals �3850 μm/m which correspond to a stress of 69.3 MPa
(86.6% of the compressive failure strength). Furthermore, the defor-
mation near the edge at the failure load (6.9 kPa) equals 25 mm (¼L/
80) and showed a strongly asymmetrical profile along the shell,
proving the shell failed because of buckling instability.

Fig. 13. Strains near the edge – location 1. The strain in the meridian direction (a) is relatively well predicted by the numerical model while the strain in the hoop direction
(b) differs a lot in value but follows the same trend.

Fig. 14. Strains at around quarter span – location 2. The strain in the meridian direction (a) is a little bit overestimated by the numerical model while the strain in the hoop
direction (b) is almost perfectly predicted.

Fig. 15. Strains at the centre – location 3 – are well predicted and show both a
similar trend and value.
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The experiment was simulated using the Modified Riks method
in Abaqus. The buckling behaviour highly depends on geometrical
imperfections, and more specifically on the imperfection shape (i.e
the assumed buckling modes), but it is not known in advance how
‘imperfect’ the shell will be and which imperfection mode is
determining. When designing thin TRC domes, the most critical
case must be considered. However, to model this experiment,
observation allows us to select the buckling mode which corre-
sponds to the actual geometrical imperfections in the manufac-
tured shell. As such, the experiment can be compared to the model
with the correct imperfection assumption. The maximum pressure
load, the pressure–deflection of the centre curve and all strains,
except those in the hoop direction near the edge (location1), are
very well estimated by the numerical model both in order of
magnitude and trend. For this reason, the model is validated for
this experiment and the buckling behaviour of thin TRC domes can
be predicted.

These interesting results encourage us to continue the research
on the buckling behaviour and design of GFTR-IPC shells. Based on
the used numerical model, other geometries than domes and
other load patterns should be examined, enabling the design of
complex GFTR-IPC shell geometries which will be realised in the
future.
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