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Background: With cancer cells encompassing consistently higher production of reactive oxygen species (ROS)
and with an induced antioxidant defense to counteract the increased basal ROS production, tumors have a lim-
ited reserve capacity resulting in an increased vulnerability of some cancer cells to ROS. Based on this, oxidative
stress has been recognized as a tumor-specific target for the rational design of new anticancer agents. Among
redox modulating compounds, selenium compounds have gained substantial attention due to their promising
chemotherapeutic potential.
Scope of review: This reviewaims in summarizing andproviding the recent developments of our understanding of
the molecular mechanisms that underlie the potential anticancer effects of selenium compounds.
Major conclusions: It is well established that selenium at higher doses readily can turn into a prooxidant and
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thereby exert its potential anticancer properties. However, the biological activity of selenium compounds and
the mechanism behind these effects are highly dependent on its speciation and the specific metabolic pathways
of cells and tissues. Conversely, the chemical properties and themainmolecularmechanismsof themost relevant
inorganic and organic selenium compounds as well as selenium-based nanoparticles must be taken into account
and are discussed herein.
General significance: Elucidating and deepening our mechanistic knowledge of selenium compounds will help in
designing and optimizing compounds with more specific antitumor properties for possible future application of
selenium compounds in the treatment of cancer. This article is part of a Special Issue entitled Redox regulation of
differentiation and de-differentiation.
© 2014 Elsevier B.V. All rights reserved.
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ntroduction

Selenium (Se) is an essential and unique trace element that plays a
crucial role in health and disease. Se exerts many cellular physiological
functions mediated by its incorporation into selenoproteins, mainly in
the form of selenocysteine (Sec), the 21st amino acid. The human ge-
nomeharbors 25 selenoprotein genes (formore comprehensive reading
on selenoproteins please see ref [1] and references therein). Some of
these proteins are essential enzymes that do not only integrate Se in
the form of Sec, but also requires Sec in their active site for an intact en-
zymatic activity (functions of Sec in selenoproteins are discussed in de-
tail in the review by Arnér E.S. [2]). The antioxidant function of Se is
conferred by some of these selenoproteins that directly protects against
oxidative stress. Additionally, the regeneration and activation of low
molecular weight antioxidants (Q10, Vitamins C and E etc.) mediated
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andin, Selenium compounds
by selenoproteins, also make Se an indirect antioxidant, when provided
at low nutritional levels [3]. However, at elevated doses, Se typically
turns into a pro-oxidant with well-established growth inhibiting prop-
erties andwith high cytotoxic activities (Fig. 1). Both efficacy and toxic-
ity of Se compounds are thus strictly dependent on the concentration
and chemical species aswell as the redox potential [4]. Inorganic and or-
ganic selenium compounds metabolize differently in vivo, activating
distinct molecular mechanisms responsible for the toxicity/activity
profile, where the redox active forms have been shown to be far more
effective [7]. However, the literature on the properties of Se and seleni-
um compounds in cancer is confusing, to say the least, since it does not
properly take into consideration that the distinct effects of Se strictly
depend on compound, concentration and model used [5]. The main
research on Se and cancer has been focused on the chemopreventive
effects of selenium. This primary theory was grounded on the direct
and indirect antioxidant functions of Se in non-transformed cells,
which lead to a greater cellular defense against oxidative damages.
At the same time, this hypothesis lays its basis on the ability of Se to
“target” preneoplastic cells early in the carcinogenic process, as a cohort
of evidence indicates that Sewill turn into a pro-oxidant in these cells at
lower concentrations than benign cells, making the preneoplastic cells
more sensitive to Se supplementation. On the contrary, when exploring
as therapeutic agents in cancer, Biochim. Biophys. Acta (2014), http://
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Fig. 1. A general biological response curve, illustrating the dose dependent effects of sele-
nium compounds.
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the chemotherapeutic effects of Se, the rational differs and is based on
the assumption that progressed malignant cells have been found to be
more sensitive to Se cytotoxicity than normal cells. Despite the fact
that higher doses are required to encounter the pro-oxidative effects
of Se, with the generation of oxidative stress being a requirement for a
favorable outcome, the cytotoxic effects seem to appear at lower doses
in malignant cells compared to benign cells. Consequently, selenium
compounds have been highlighted in recent studies to have great po-
tential as anticancer agents, particularly for the treatment of aggressive
late stage neoplasias [6,7]. As tumor cells generally aremore susceptible
to the cytotoxic effects exhibited by selenium compounds, [7–9] at
pharmacologically achievable doses, there seems to be a narrow thera-
peutic window for the use of selenium compounds as anticancer agents.
This review aims at describing the proposedmechanisms and targets of
selenium compounds and their effect in the treatment of established tu-
mors. It will not, however, cover the largely debated chemopreventive
properties of Se. This overview hopes to be a useful tool for the research
community actively involved in the field of Se-based drug development
and intends to shed light into their activity as chemotherapeutic agents.
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2. The rational behind the use of selenium in cancer therapeutics

In general, healthy cells are characterized by a low steady-state level
of ROS and in some way constant levels of reducing equivalents, while
cancer cells are endowed with increased levels of ROS and reducing
equivalents (e.g., NADPH, NADH) due to accelerated glycolysis (the
Warburg effect) and pentose phosphate cycle. In addition, cancer cells
develop an increased and maximized antioxidant capacity, as a com-
pensatory mechanism to evade ROS-induced cell death that makes
them extra vulnerable to an additional ROS induction. It is widely recog-
nized that the balance between ROS and reducing equivalents in cells
and tissues determines their redox state, and that it is detrimental to up-
hold the redox balance within the cell. The overall cellular redox state is
tightly regulated by systems that modulate the cellular redox status by
counteracting ROS, and/or by reversing the formation of disulfides.
These systems are either dependent on the glutathione systems or on
the thioredoxin (Trx) system [10]. Due to increasing evidence suggest-
ing the vulnerability of cancer cells to oxidative stress, the idea of
targeting the antioxidant capacity of tumor cells has risen as promising
therapeutic strategy and has evolved as the rational design of new anti-
cancer agents [11]. Among cancer cell redoxmodulators, selenium com-
pounds gained substantial attention. Selenium compounds with
antiproliferative properties, their tumor selectivity and mechanism of
action are discussed below.
Please cite this article as: A.P. Fernandes, V. Gandin, Selenium compounds
dx.doi.org/10.1016/j.bbagen.2014.10.008
3. Selenium compounds (The structures of the selenium compounds
discussed in this review are presented in Table 1.)

3.1. Inorganic

The most pertinent example of an inorganic selenium compounds
evaluated as a therapeutic agent for the treatment of cancer can be
found in the Se(IV) species selenite (SeO3

2−). In several studies, it exhib-
ited a significant cytotoxicity, in the low-micromolar range, against
malignant cells, such as lung [12,13], prostate [14], cervical [15], ovarian
[16] and colon [17,18] cancer cells, in primary human acutemyeloid [19]
and lymphoblastic [20] leukemia cells, as well as in hepatoma [21], mel-
anoma [22] and mesothelioma cells [7]. Interestingly, different studies
reported that drug-resistant cells are significantly more sensitive to sele-
nite compared to their drug-sensitive counterparts [16,23]. In combina-
tion therapy, selenite potentiates the effects of camptothecin against
cervical cancer cells [24], of 5-FU, oxaliplatin, and irinotecan in colon can-
cer cell lines [25], and of docetaxel towards prostate cancer cells [26]. In
addition, this compound significantly enhances the effect of radiation on
well-establishedhormone-independent prostate tumors [27]. Inmany of
these studies selenite has been found selective towards drug resistant
cells [12] and neoplastic cells rather than benign cells [7,8]. The mecha-
nism accounting for this will be comprehensively discussed below.

In vivo experiments have confirmed the therapeutic potency of sele-
nite on both solid [28] and lymphoproliferativemodels [29,30]. However,
the efficacy of selenite is seriously hampered by its systemic and organ
toxicities as well as by its genotoxic potential. Among other inorganic se-
lenium forms, Se(IV) dioxide (SeO2) has been found to exert a discrete
in vitro cancer cell killing activitywhereas compoundswith higher Se ox-
idation state, such as Se(VI) selenate (SeO4

2−), are hardly effective against
mammalian cancer cells. Takahashi et al. showed that both selenite and
selenium dioxide induced cell death in human oral squamous carcinoma
cells, whereas selenate had no effect on cell survival [31].

3.2. Organic

3.2.1. Selenodiglutathione
The primary cellular metabolite of selenite, the thioselenide

selenodiglutathione (SDG), was first tested in the 90s for its potential
as an anticancer agent. Notably, many different studies carried out in a
wide range of cancer cells concluded that it is a more powerful inhibitor
of in vitro cancer cell growth than selenite [32–35]. Interestingly, cancer
cells were found to be significantly more sensitive than normal cells to
the antiproliferative activity of SDG, thus confirming the preferential ac-
tivity of SDG against neoplastic cells. In spite of these very encouraging
results, SDGwas unexpectedly not further explored for its potential ap-
plication as an anticancer agent, putatively due to the assumption that
selenite and SDG exert their antiproliferative activity through similar
molecular mechanisms, thus retaining similar adverse side effects,
even though this has recently been shown not to be the case [36].

3.2.2. Selenoaminoacid derivatives
Despite the fact that the cancer preventive mechanisms of action of

the aminoacidic derivative selenomethionine (SeMet) have been fairly
studied, little has been done to evaluate its effect as antiproliferative
agent. In recent studies, SeMet was shown to inhibit tumor growth of
colorectal [37,38], lung [39,40], breast and prostate cancer cells as well
as melanoma cells [41,42]. However, the Se-containing amino acid
exerted its antitumor activity at much higher concentration (medium
to high micromolar range) compared to Se redox active forms. Recent
papers report on the potential of using SeMet in combination with ion-
izing radiation opening new promising prospective for its employment
for the treatment of lung cancer [43].

Similar to SeMet, Se-methylselenocysteine (MSC) a monometh-
ylated seleno-aminoacid, was highlighted as effective, at medium
to high micromolar concentrations, in inhibiting cell proliferation of
as therapeutic agents in cancer, Biochim. Biophys. Acta (2014), http://
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Table 1
Structure of selenium compounds and studies of their cytotoxic effects.

Selenium compounds
[CAS number]

Structure Biological models Ref.

Selenite
[Sodium selenite 10102-18-8]

In vitro
Human lung cancer cells [12,13]
Human prostate cancer cells [14]
Human cervical cancer cells [15]
Human ovarian cancer cells [16]
Human colon cancer cells [17,18]
Human primary acute myeloid and lymphoblastic leukemia
cells

[19,20]

Hepatoma cells [21]
Melanoma cells [22]
Mesothelioma cells [7]
In vitro combination therapy
Human cervical cancer cells (camptothecin) [24]
Human colon cancer cell (5-FU), oxaliplatin, and irinotecan [25]
Human prostate cancer cells (docetaxel) [26]
Human hormone-independent prostate tumors (radiation) [27]
In vivo
Human colorectal carcinoma [28]
Human promyelocytic leukemia [29,30]

Selenate
[Sodium selenate 13410-01-0]

In vitro
Human oral squamous cancer cells [31]

Selenium dioxide
[7446-08-4]

In vitro
Human oral squamous carcinoma cells [31]

Selenodiglutathione (SDG)
[33944-90-0]

In vitro
Human promyelocytic leukemia cells [32]
Mouse erythroleukemia cells and human ovarian cancer
cells

[33]

Mouse mammary epithelial cells [34]
Human oral carcinoma cells [35]
Human cervical cancer cells [36]

Selenomethionine (SeMet)
[3211-76-5]

In vitro
Human colorectal cancer cells [37,39]
Human lung cancer cells [40]
Human prostate cancer cells [41,42]
Human breast cancer cells [42]
Human melanoma cells [42]
In vitro combination therapy
Lung cancer cells (ionizing radiations) [43]

Se-methylselenocysteine (MSC)
[26046-90-2]

In vitro
Human oral squamous cells [40]
Human colon cancer cells [44]
Human breast cancer cells [45]
In vivo combination therapy
Human colorectal carcinoma and head and neck squamous
cell carcinoma (cisplatin, oxaliplatin and irinotecan)

[48]

Human head and neck squamous cell carcinoma
(irinotecan)

[49]

Human breast carcinoma (tamoxifen) [50]

(continued on next page)
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Table 1 (continued)

Selenium compounds
[CAS number]

Structure Biological models Ref.

Methylseleninic acid (MSA)
[28274-57-9]

In vitro
Human lung cancer cells [52]
Human prostate cancer cells [53–56]
Human breast cancer cells [5]
Mouse mammary epithelial tumor cells [57]
In vivo
Human and mouse prostate carcinomas [53,58]
In vivo combination therapy
Triple-negative breast cancer (paclitaxel) [59]

Selenocystine
[29621-88-3]

In vitro
Human melanoma cells [61]
Human cervical cancer cells [36]
Human lung cancer cells [38]
Human breast cancer cells [62]
In vitro combination therapy
Human melanoma cells (5-FU) [63]
In vivo
Human melanoma [61]

Quinazoline and pyrido[2,3-d]
pyrimidine selenium
compounds

In vitro
Human leukemia cells [64]
Human colon, lung and breast cancer cells [64]

Diselenides In vitro
Human leukemia cells [65]
Human neuroblastoma cells [66]
Human colon carcinoma cells [67]
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Table 1 (continued)

Selenium compounds
[CAS number]

Structure Biological models Ref.

1,4-Phenylenebis(methylene)
selenocyanate, (p-XSC)

In vitro
Human prostate cancer cells [41]
Human oral cancer cells [35]

Phenylalkyl isoselenocyanates In vitro
Human prostate, breast, colon cancer cells and melanoma,
glioblastoma and sarcoma cells

[68]

In vivo
Human melanoma [68]

2-Phenyl-1,2-benzisoselenazol-
3(2H)-one (Ebselen)
[60940-34-3]

In vitro
Human breast cancer cells [70]
Human hepatoma cells [71]
Human colon cancer cells [72]
In vivo
Human breast carcinoma [70]

1,2-[Bis(1,2-
benzisoselenazolone-3(2H)-
ketone)]ethane (Ethaselen or
BBSKE)
[217798-39-5]

In vitro
Human lung cancer cells [73,78]
Human leukemia cells [74]
Human prostate cancer cells [75,76]
Human tongue cancer cells [77]
Human cervical and gastric cancer cells and hepatoma cells [78]
In vivo
Human breast carcinoma [80]
In vivo combination therapy
Human lung carcinoma (cisplatin) [79]

2,5-Bis(5-hydroxymethyl-2-
selenienyl)-3-hydroxymethyl-
N-methylpyrrole (D-501036)

In vitro
Human renal, breast, lung, prostate, colorectal and
nasopharyngeal cancer cells

[81]

Human cervical cancer cells and hepatoma cells [81–83]

1,2,5-Selenadiazolo[3,4-d]
pyrimidine-5,7(4H,6H)-dione
[7698-95-5]

In vitro
Human breast cancer cells human hepatoma and
melanoma cell

[84]

Anthrax[1,2-c][1,2,5]
selenadiazolo-6,11-dione

In vitro
Human breast cancer cells [85]

(continued on next page)
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Table 1 (continued)

Selenium compounds
[CAS number]

Structure Biological models Ref.

2-β-N-ribofuranosylselenazole-
4-carboxamide (Selenazofurin)
[83705-13-9]
and 5-β-D-
Ribofuranosylselenophene-3-
carboxamide
(Selenophenfurin)
[189145-39-9]

In vitro
Mouse leukemia cells [86]
Human colon, cervical, renal, bladder cancer cells and
lymphoma cells

[88]

In vivo
Mouse lung carcinoma [86]

2′-Deoxy-2′-fluoro-4′-
selenoarabinofuranosyl-
cytosine

In vitro
Human colon, lung, stomach cancer, breast, prostate cancer
cells and leukemia cells

[89]

Se-thymidine nucleosides In vitro
Human prostate cancer cells [90]

Se-uridine nucleosides In vitro
Human leukemia cells [91]
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Table 1 (continued)

Selenium compounds
[CAS number]

Structure Biological models Ref.

Xylitol selenious ester In vitro
Human liver cancer cells [92]

Sucrose selenious ester In vitro
Human liver cancer cells [92]
Human cervical, bladder, gastric cancer cells and
melanoma cells

[93]

Quinolinimidoselenocarbamate
and imidoselenocarbamate

In vitro
Human prostate cancer cells [94,95]
Human colon and breast cancer cells [94]
In vivo
Human prostate carcinoma [94]

Suberoylanilide hydroxamic
acid (SAHA) selenium
compounds

In vitro
Human lung cancer cells [96]
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human oral squamous, colon and breast carcinoma cells [39,44,45].
Despite this documented cell killing ability, in the last years MSC has
greatly attracted researcher attention thanks to its ability to modulate
cellular processes relevant to metastatic processes. The antiangiogenic
effects of MSC result in tumor growth inhibition, vascular maturation
and enhanced anticancer drug delivery of classical chemotherapeutic
drugs, thus leading to an excellent therapeutic synergy in vivo [46,47].
Notably,MSC enhances antitumor activities of irinotecan and tamoxifen
in a dose-dependent manner and protects from their toxicity [48–50].
Similar effects were seen cisplatin and oxaliplatin in a variety of drug
sensitive and resistant human tumor xenografts [48].

3.2.3. Methylseleninic acid
Many studies reported on the anticancer effects of the oxo-selenium

compound methylseleninic acid (MSA) [51]. Its cytotoxic efficacy has
been determined in human lung [52], prostate [53–56] and breast [5]
tumor cell models and in a mouse mammary epithelial tumor cell line
[57]. Moreover, in two prostate tumor xenograft models MSA, was
found to considerably reduce tumor growth without inducing substan-
tial animal weight loss or other signs of systemic toxicity nor any evi-
dence of genotoxic side effects [53,58]. In combination therapy, MSA
resulted in an enhancement of paclitaxel efficacy for the treatment of
triple-negative breast cancer [59].

3.2.4. Selenides and diselenides
Selenocystine, a diselenide oxidation product of Sec, recently gained

substantial attention owing to its significant anticancer activity and
great selectivity between human cancer cells and normal cells [60]. In
Please cite this article as: A.P. Fernandes, V. Gandin, Selenium compounds
dx.doi.org/10.1016/j.bbagen.2014.10.008
in vitro assays, selenocystine has been shown to be effective against
humanmelanoma, cervical and lung cancer cells [36,40,61]. In combina-
tion therapy, selenocystine potentiates cancer cell death induced by
5-FU against melanoma cells [62]. Selenocystine also demonstrated
potent in vivo anticancer activities in nude xenograft mouse models,
by significantly inhibiting tumor growth with no effect on animal
weight [61,63]. Even though selenocystine retains a higher antitumor
activity compared to SeMet, the poor stability and low solubility of
selenocystine strongly hinder its effectiveness and further development
as an anticancer drug.

Many other examples of selenides have been tested as antiprolifera-
tive agents. Moreno and co-workers have synthesized and tested a se-
ries of quinazoline and pyrido[2,3-d]pyrimidine selenium compounds,
some of them demonstrating a significant cytotoxicity against a range
of human cell cancer lines at low micromolar concentrations [64].
The same authors highlighted a very promising activity of bis(4-
aminophenyl)diselenide against lymphocytic leukemia cells [65]. In
fact, diphenyl diselenide (C6H5Se)2, and its substituted structures have
been extensively evaluated for their cytotoxic potential against several
cancer cell lines [66,67] and many of these compounds have shown a
promising in vitro anticancer activity.

3.2.5. Selenocyanates
Among Se compounds, organic selenocyanates have emerged as a

promising candidate during the last years. The first selenocyanate de-
scribed was the 1,4-phenylenebis(methylene)selenocyanate (p-XSC),
that proved to be effective against prostate and oral carcinoma cells
[35,41]. Later on, phenylalkyl isoselenocyanates, the isosteric Se analogs
as therapeutic agents in cancer, Biochim. Biophys. Acta (2014), http://
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of naturally occurring phenylalkyl isothiocyanates, have shown to be ef-
fective both in vitro, against melanoma, prostate, breast, glioblastoma,
sarcoma, and colon cancer cell lines as well as in vivo, inducing a
substantial reduction of tumor size in a preclinical melanoma tumor
xenograft model with no evidence of systemic toxicity. Interestingly,
the structure activity relationship studies concluded that tumor
inhibitory effect increased with increasing chain length (probably due
to an increase in lipophilicity), where n = 4 was found to be the
optimal [68].

3.2.6. Se containing heterocycles
Another class of Se compounds that is gaining increasing attention in

recent years is represented by heterocycles containing Se. Among all,
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is ostensibly the
first andmost studied heterocyclic compounds derived from Se. Ebselen
was first prepared in 1924 [69] and has been widely studied for its anti-
inflammatory anti-oxidant properties. More recently, this heterocyclic
organoselenium compound has also been proven to inhibit the cell
growth of human breast, colon, and hepatoma cancer cells [70–72].
Noteworthy, is the key role of Se in the molecule, clearly shown by the
fact that the sulfur analog is completely inactive. On the other hand,
its poor solubility remains a problem for optimal therapeutic develop-
ment. In order to enhance its solubility and to increase its activity, re-
search has focused on modifications of its structure. On these bases,
ethaselen (1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]ethane),
also known as BBSKE, has been synthesized and extensively investigat-
ed by Deng and co-workers. In both in vitro and in vivo studies, this
compound demonstrated a significant anticancer efficacy against a vari-
ety of human cancers with a moderate toxicity [73–78].

More recently, ethaselen was tested in vivo in combination with cis-
platin (cis-diaminedichloroplatinum II, DDP) in a lung xenograft mouse
model. Compared to single drug administration, the combination thera-
py showed a synergistic reduction of tumor size and no obvious signs of
systemic or organ toxicity [79]. Despite its promising activity, the goal of
increasing solubility in physiological media was not completely accom-
plished with BBSKE and many solubility and stability problems still re-
main. Only the formulation as copolymer micelles performed lately by
the group of Liu allowed for an increase in water solubility that
ultimately led to a further superior antitumor activity due to a massive
accumulation into tumor site [80].

The diselenophene derivative D-501036, 2,5-bis(5-hydroxymethyl-
2-selenienyl)-3-hydroxymethyl-N-methylpyrrole, has been recently
identified as a novel antineoplastic agent with a broad spectrum of
activity against several human cancer cells, with IC50 values in the
low-micromolar range [81–83]. Remarkably, D-501036 elicits a selec-
tive cell killing ability against cancer cells compared to normal cells
and seems to be highly effective against tumor cell lines that develop
Multidrug Resistance phenotype.

1,2,5-Selenadiazoles are also interesting compounds as medicinal
agents. Among all, 1,2,5-Selenadiazolo[3,4-d]pyrimidine-5,7(4H,6H)-
dione has shown a broad spectrum of cytotoxicity against different
human cancer cells [84], and Anthrax[1,2-c][1,2,5]selenadiazolo-6,11-
dione induces time- and dose-dependent cell death in human breast
carcinomacells [85].Many Se-containingheterocycles based onbiomol-
ecules (sugars, nucleosides, steroids, and vitamins) have been devel-
oped or isolated from natural products in recent years, owing to
the success gained in the 80s by Selenazofurin. The nucleoside Se
analog of tiazofurin Selenazofurin (2-β-N-ribofuranosylselenazole-4-
carboxamide) was synthesized in 1983 by Srivastava and Robins and
showed a pronounced anti-tumor activity towards P388, Lewis lung
and Ridgeway osteogenic sarcoma animal tumormodels [86]. However,
N-substituted derivatives were found completely ineffective, both in
in vitro and in vivo assays [87]. Conversely, the replacement of the
selenazole ring with a selenophene heterocycle led to the formation of
Selenophenfurin derivatives, with antiproliferative potencies strictly
comparable to that of Selenazofurin [88]. Among the latest Se-
Please cite this article as: A.P. Fernandes, V. Gandin, Selenium compounds
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nucleoside developed, 2′-deoxy-2′-fluoro-4′-selenoarabinofuranosyl-
cytosine (2′-F-4′-seleno-ara-C) [89], thymidine [90] and uridine
Se-nucleosides [91] deserve to be mentioned. Among sugars, sucrose
selenious ester and xylitol selenious ester have recently gained substan-
tial attention owing to their efficacy against a panel of different cancer
cells without affecting normal fibroblasts [92,93].

3.2.7. Miscellaneus Se compounds
Quinolinimidoselenocarbamate and imidoselenocarbamate have

been shown to determine cell death in human prostate cancer cells at
low-micromolar concentrations [94,95]. Imidoselenocarbamate, in
addition, were effective also against breast cancer and lymphoblastic
leukemia cells. Desai et al. have synthesized and studied several Se
containing analogs of suberoylanilide hydroxamic acid (SAHA), a well-
known HDAC inhibitor. Among the reported compounds, bis(5-
phenylcarbamoylpentyl) diselenide and 5-phenylcarbamoylpentyl
selenocyanidewere found significantly more effective in inducing cyto-
toxicity towards different lung cancer cell lines than the corresponding
parent hydroxamic acid [96,97].

3.3. Nanoparticles

Cancer nanotechnology (a multidisciplinary scientific field merging
chemistry, biology, bioengineering and medicine) has raised extraordi-
nary high expectation in oncotherapy in the last two decades. Nanopar-
ticles of both metallic and non-metallic origin are under research
and development for applications in various nanomedicine fields.
Selenium-containing nanoparticles (SeNPs) have recently garnered a
great deal of attention as potential cancer therapeutic payloads, due to
their excellent biological activities and low toxicity [98,99]. Abundant
evidence actually supports the better biocompatibility and bioefficacy
of SeNPs when comparing to inorganic and organic Se compounds. A
plethora of SeNPs has been developed in the last decade with the aim
of obtaining new Se-based therapeutics and theranostics. Non-
functionalized SeNPs, synthesized by means of different green chemical
and biotechnological procedures, proved to be efficient against a great
variety of cancer cells in a dose- and time-dependent manner [100,
101]. However, besides the promising antitumor activity elicited by
non-functionalized elemental SeNPs, greater attention is growing in
the field of surface-decorated SeNPs. Being colloidal systems, SeNPs
offer the opportunity of surface functionalization with a variety of dif-
ferent agents, which can be driven to modulate their physicochemical
properties, and in vivo pharmacokinetic and biodistribution profiles.
Conjugation with functional ligands, indeed, cannot only prevent the
aggregation of nanoparticles via plus-to-minus charge interactions,
but also enhance the bioactivity of SeNPs.

On these bases, SeNP surface-decorated with ATP [102], AAs [98],
Spirulina [103] or Undaria pinnatifida [104] polysaccharides, Polyporus
rhinocerus polysaccharides [105], transferrin [106], sialic acid [107],
chitosan [108], and folate [109] have been developed. The rationale be-
hind this conjugation is the ability of decorating ligand to target mem-
brane receptors/transporters that are overexpressed on cancer cell
plasma membrane. Almost all of the tested surface-functionalized
SeNPs were endowed with a superior cancer cell uptake and an im-
proved antiproliferative efficacy with respect to elemental “nude”
SeNPs. Based on this, some authors suggest that conjugated-SeNPs
might have potential application as chemotherapeutic agents for the
management of human cancers. However, at present no in vivo studies
have been performed in order to assess the effective bioavailability and
pharmacodynamic profile of these SeNP systems that could concretely
prove their efficacy in an animal cancer model.

4. Selenium metabolism

The metabolic pathways between different selenium compounds
differ significantly and can produce various selenium metabolites
as therapeutic agents in cancer, Biochim. Biophys. Acta (2014), http://
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(Fig. 2). This becomes particularly relevant when exploring selenium
compounds in treatment of various diseases, as the biological activities
of the selenium compounds are mainly exerted via their metabolites
and thus determines the efficacy of the compound use. To this extent,
a brief overview of the seleniummetabolism, with themost extensively
studied compounds, is discussed below, but more comprehensive re-
views are available [110–112]. These compounds,which are also dietary
compounds, include selenate, selenite, SeMet, selenocystine, MSC and
γ-glutamyl-selenomethyl-selenocysteine among others. In addition to
the naturally occurring forms, there are also several synthetically
produced used in supplementation (e.g. MSA).

Selenide is the key metabolite, as all dietary selenium compounds
have the ability to directly or indirectly form this common Se interme-
diate. It is directly formed from inorganic selenite or SDG, through
reduction by thiols. It can also be formed through demethylation of
methylselenol (CH3SeH) via methyltransferases or be released from
Sec through β-lyase. The reduction of selenate, selenite and SDG can
all be facilitated by GSH or the Trx or the glutaredoxin (Grx) systems
[113,114]. Noteworthy, are the changes in chemical properties of
oxidized glutathione (GSSG) by the insertion of a selenium atom into
the molecule to produce GS-Se-SG (or SDG). Normally, GSSG is not a
substrate for the mammalian TrxR, whereas SDG has been shown to
be an excellent substrate [114]. Even the reduction of SDG by Trx is
dramatically altered compared to GSSG. Furthermore, even though
GSH is able to reduce these three selenium forms (selenate, selenite
and SDG), addition of Grx to the reaction mixture, greatly facilitates
the reaction rate [113].

Selenide is also required for selenoprotein synthesis. The selenide
formed during metabolism, may then be further converted to seleno-
phosphate, which in turn can react with tRNA-bound serinyl residues
to give Sec-bound tRNA from which Sec can be inserted. Sec insertion
into selenoproteins is dictated by the UGA codon, and instead of termi-
nation of translation, requires the presence of several specific elements
such as the conserved stem–loop structure, known as the Sec insertion
sequence (SECIS) element [115]. In eukaryotes, the SECIS element is lo-
cated in the 3′-UTR [1]. SeMet, Sec and CH3SeH can also be metabolized
Fig. 2. A schematic overview of the selenium metabolism o
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for the use in selenoprotein synthesis. For this purpose, SeMet needs to
be trans-selenated to Sec (in analogy with the trans-sulfuration path-
way). Sec, either from this source or directly from the diet, can then
be converted to selenide by β-lyase (also known as S-conjugated
β-lyase), or produced through the reduction of selenocystine, which
is a substrate for TrxR, and the Trx and Grx systems [113,116].
Methylselenol can be demethylated to selenide in an equilibrium reac-
tion for further conversion to selenophosphate. SeMet can in vitro also
undergo methylation catalyzed by a γ-lyase to yield methylselenol,
but this has however not been detected in vivo [117]. It is thus very like-
ly that SeMet almost entirely is incorporated into selenoproteins, while
the alternative γ-lyase pathway only has a minor role. Methylselenol
can in turn be formed via cleavage of MSC (or through other
Sec-conjugates) by selenocysteine Se-conjugated β-lyase or through
the reduction of MSA. Excessive amount of selenide or methylselenol
can however be deleterious to the cell, as these forms readily oxidize
and can lead to the production of superoxide and other reactive
oxygen species with add-on toxic effects [118,119]. Importantly,
monomethylated selenium compounds, are direct precursors of puta-
tive active anticancer metabolite methylselenol [113]. The relative abil-
ity to produce this metabolite should be readily considered in the
development of new selenium compounds for cancer therapy. Despite
in vitro studies showing higher antiproliferative activity of MSA com-
pared to SeMet and MSC, it retains a similar efficacy profile as MSC
in vivo [120]. However, the efficacy of MSC is entirely dependent on
the β-lyase activity in organs/tissues, which can vary to a great extent,
in order to generate the active methylselenol metabolite [121,122].

There are two distinct pathways for excretion of Se: either through
selenosugars (most frequently as 1b-methylseleno-Nacetyl-D-galactos-
amine) that is excreted in urine, or by the methylation pathway where
methylation of CH3SeH to dimethyl selenide is exhaled while breathing,
and trimethyl selenonium ion is excreted in urine. The biological rele-
vance of the selenosugars in not clear, but methylation is considered a
detoxification pathway [123,124]. Recent reports of novel selenium
compounds that have been identified include selenoneine, originally
discovered in fish, but lately also found in human blood along with its
f the most extensively studied selenium compounds.
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novel methylated metabolite Se-methylselenoneine [125]. In terms of
novel Se containing anticancer agents, it is vital, not the least from a
pharmacological point of view, to elucidate their metabolic pathways
in order to understand the fate of the active metabolite, where it accu-
mulates and how it is secreted/detoxified.

5. Selenium and mechanisms of action in cancer cells

The mechanism behind the mediated cell death is diverse, and as
previously mentioned it is widely recognized that the effectiveness of
selenium compounds as cancer agents is dependent on the chemical
form and dose, as well as on redox state and experimental model [5].
There is emerging evidence that cell death by selenium compounds is
associated with alterations in uptake, protein modification (including
activation/inactivation of signalingmolecules and transcription factors),
ROS formation, cell growth arrest, induction of programed cell deaths,
anti-angiogenic effects and accumulation of misfolded proteins. Seleni-
um compoundsmaymoreover induce cell death by distinct and diverse
pathways depending on chemical form and system studied, and include
apoptosis (either caspase dependent and independent), necrosis,
necroptosis, ER-stress, and autophagy, although autophagymight even-
tually be a mechanism of resistance rather than cell death. Mechanisms
of actions of selenium compounds are discussed below and summarized
in Fig. 3.

5.1. Selenium uptake

One of the mechanisms behind Se tumor specificity has been sug-
gested to be attributed to the selective uptake of Se in tumor cells. The
first evidence of a selective uptake in tumors was first shown in studies
in the 60s where 75Se-sodium selenite and 75Se-SeMetwere assessed as
scanning agents in the diagnosis of tumors. Through the use of 75Se as a
tumor radiotracer, a high accuracy in localizing intracranial tumors as
well as thoracic and abdominal neoplasms was observed [126–129].
The mechanism behind selenium uptake is, however, not fully under-
stood, and varies between compounds. Selenide has been suggested to
be transported via ATPases [130],while selenite uptake has been report-
ed to be via anion transporters, as hypothesized by Galanter et al. [131],
and later demonstrated by the use of 4,40-diisothiocyanatostilbene-
2,20-disulfonic (DIDS), an inhibitor of anion transporters [130,132].
The uptake of selenite in cell lines has further been shown to be facilitat-
ed by the presence of reducing thiols, indicating that the reduced form is
more readily taken up [130]. It was later shown that the accumulation in
Fig. 3. Illustration of the pro-oxidative effects and

Please cite this article as: A.P. Fernandes, V. Gandin, Selenium compounds
dx.doi.org/10.1016/j.bbagen.2014.10.008
tumors partly could be explained by the overexpression of the cystine/
glutamate antiporter xCT observed in several tumors [133], generating
a more reducing extracellular microenvironment, and thus facilitating
the uptake of a reduced form of selenium, presumably selenide [134].

5.2. Stress response and cellular targets

Asmentioned above, the redox active Semetabolites have proven to
be superior as anticancer agents. These compounds have the ability to
generate ROS, mainly through redox cycling of selenolates with GSH
or the Trx/Grx systems and oxygen to produce superoxide and hydro-
gen peroxide, and thereby generating oxidative stress and a ROS pro-
moting cellular stress response. As a consequence of the increased
ROS formation, as well as by direct interaction and binding, redox active
selenium compounds are also known to cause DNA damage and an al-
tered DNA response [36,135–138]. These redox active metabolites
have been shown to cause both single and double strand brakes [139].
In addition, selenium compounds may also, by direct interaction with
free thiols, cause thiol oxidation. These modifications, which result in
the formation of intra- or intermolecular bonds, include the formation
of selenotrisulfide bonds (S–Se–S), selenenylsulfide bonds (Se–S), and
diselenide bonds (Se–Se) with protein selenols [140]. The redox active
selenium compounds may also catalyze the formation of disulfide
bonds (S–S) and/or mixed disulfide bonds with glutathione (S–SG) or
nitric oxide (S–NO).

Oxidation of structural Cys or Sec residues leading to thiol modifica-
tion in proteins, consequently results in numerous biological down-
stream effects, as oxidation of thiols may directly affect the protein
structure, biological function or enzyme activity of proteins. Direct mod-
ification and regulation of signaling proteins through thiol oxidation in-
clude protein kinases, phosphatases, and transcription factors (e.g. the
nuclear factor kappaB (NF-κB) and Jun N-terminal kinase (JNK)-signal-
ing pathways) [141]. The best characterized among these are caspases,
p53, Jun, AP-1, APE-1/Ref-1, Sp1, NF-κB, ASK-1 and JNK [142–145]. The
functions of many of these proteins are in turn regulated through thiol
modification by the Grx and/or the Trx systems [146,147]. Furthermore,
modifications of critical thiol residues may also result in an altered iron–
sulfur cluster biogenesis [148], aswell as changes in iron and calciumho-
meostasis [149–151]. There is also a significant amount of work on sele-
nium compounds demonstrating their interaction with proteins
containing zinc-thiolate coordination sites (e.g. metallothioneins)
[152–154]. In the presence of GSH the selenium compounds are able to
catalyze the release of zinc from these proteins. Selenium compounds
downstream targets of selenium compounds.
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are also capable of releasing zinc from Cys-rich zinc finger proteins
(e.g. transcription factor IIIA and Sp1) and thereby inhibiting their
DNA-binding activity [155–157].

Redoxmodification of thiol/disulfide exchange in proteins by Semay
ultimately also lead to protein unfolding. The unfolding of proteins by
selenium compounds can either be a consequence of the aforemen-
tioned thiol modifications, but presumably also due to unspecific
misincorporation of Sec into proteins in place of Cys [158]. This may
occur during high levels of intracellular Sec, when a tRNAcys inadver-
tently binds to Sec instead of Cys during translation to form nonspecific
selenoproteins (selenylated proteins), which in turn can result in
misfolded proteins with altered structures and biological functions/
activities [158,159]. When this occurs, the endoplasmic reticulum (ER)
orchestrates a process known as unfolded protein response (UPR) for
cell survival. PERK, ATFalpha and XBP1 are three UPR transducer path-
ways that are all rapidly upregulated when exposed to MSA [160,161].
Moreover, the ER stress markers CHOP and PERK are also altered by
MSA exposure. Selenocystine treatment also results in a clear ER stress
with effects on the UPR markers CHOP, Bim, ERdj5 and Bip [36]. A few
studies have also reported that selenium compounds may result in
heat shock response. One group has shown that selenite downregulates
heat shock protein 90 (hsp90), which in turn mediates inactivation of
NF-κB that switches autophagy to apoptosis in NB4 cells [162].

5.3. Cell signaling pathways

With themounting evidences of the anticancer potential of selenium
compounds, the underlying cell signaling pathways have been explored
for a variety of compounds. In a proteomic approach using selenite in
promyelocytic leukemia cells (NB4), members of the MAPK family
were identified to be affected as were c-myc, c-fos and c-jun that were
all downregulated [163]. It has further been suggested that ERK is
required and plays an active role in mediating selenite induced cell
death in NB4 cells, with slight effects on p38 [164]. Both activation [6,
55,56,165,166], or suppression [167] of p38MAP kinase and the JNK
have been detected, depending upon the cell type. Similarly, in cervical
cancer cells selenite was able to activate p38 pathways affecting other
proteins like p21 [168]. Moreover, selenite has been shown to suppress
β-catenin and COX2 [166,169]. The effect on β-catenin is exerted by the
inhibition of Akt, and the suppression of β-catenin in turn affects its
downstream targets cyclin D1 and surviving [169]. The same authors
later demonstrated that the inhibition of Akt was via PI3k that caused
nuclear accumulation of FoxO3a, which in turn facilitated the transcrip-
tion of the targeted genes Bim and PTEN in colorectal cancer (CRC) [28].
The organic selenium compounds SDG, in human oral squamous carci-
noma cells has been shown to affect stress pathway kinases, JNK and
p38 kinase as well as activate ERKs 1&2 and Akt [35]. MSC like selenite
has been reported to inhibit the activity of PI3k, following dephosphor-
ylation of Akt and p38. In parallel, MSC may inhibit the Raf/MEK/ERK
signaling pathway [170]. Likewise, methylselenol inhibits the ERK1/2
pathway activation and c-myc expression [171,172]. Interestingly,
methylselenol has shown to exhibit a stronger inhibition of the cell sig-
naling in the colon cancer (HCT-116) cells compared with the noncan-
cerous (NCM460) cells [171]. MSA has in prostate cancer cells caused
a decrease in pAkt and pERK1/2, but here the effects were not mediated
by p38MAPK and JNK1/2 [56]. In addition,MSAhas been shown to ham-
per the estrogen receptor (ER) signaling by downregulating ERalpha,
highly involved in breast cancer [173].

Despite the fact that selenium compounds like MSA show similar
patterns as selenite, with dephosphorylation of Akt and involvement
of PI3k, ERK1/2, and p38 [174–176], clear differences have been
observed. When comparing the effects of the androgen receptor (AR)
expression, which is highly connected to prostate cancer, it was report-
ed that even though both selenite and MSA could disrupt AR signaling,
they had distinct mechanisms of action. Selenite decreased the levels
of Sp1 known to regulate AR expression, while MSA did not [145].
Please cite this article as: A.P. Fernandes, V. Gandin, Selenium compounds
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While MSA, selenite, SDG and selenocystine have all been shown to
catalyze the oxidation of active site Cys thiols in protein kinase C, only
SDG and selenocystine were capable of inhibiting protein kinase A
[177–179]. Selenate on the other hand, has been associated with the
suppression of mTOR via Akt dependent and independent mechanisms
in colon cancer cells [180]. Dysregulation of mTOR has also been ob-
served for MSA via induction of REDD1 and Akt, in prostate cancer
cells grown under hypoxic conditions [181].

Differences between selenium compounds as kinase modulators
have also been investigated using a library comprising of organo-
selenium compounds [95]. In the specific study, the authors registered
interesting differences between the structural subsets within the li-
brary. Generally, one can say that the symmetric compounds with an
imidoselenocarbamate moiety exhibited the broadest inhibitory effect
on the tested kinases, while selenylacitic acids and selenodiazoles in
contrast, did not inhibit kinase activity at all [95].

5.4. Cell cycle arrest and programed cell death pathways

A myriad of studies have proven, in diverse cancer cell lines, the ef-
fects of seleniumcompounds on cell cycle arrest and the cell death path-
ways involved. However, as mentioned above, the mediated cell cycle
arrest and cell death mechanism vary depending on selenium com-
pounds and on cell phenotype (summarized in Fig. 4).

Selenite has been shown to induce different cell death pathways, in-
cluding apoptosis, necroptosis, necrosis and autophagy. Many authors
have demonstrated that selenite treatment determined morphological
signs of apoptosis [21,182–187], but the regulatingmechanisms of sele-
nite induced apoptosis look very complex. In a murine melanoma
C57BL/6 mouse model [188], in human prostate [165,187], and lung
[189] cancer cell lines as well as in leukemia [29] cells, apoptosis was
caused through arrest of cell cycle distribution at sub-G1/G1 stage. On
the other hand, diverse papers have reported the ability of selenite to
block cell cycle at S or G2/Mphases, determining a concomitant increase
of cells in sub-G1 phase [17,20,26,30,44,56,136,190,191]. Many reports
converge in asserting that selenite induces p53-dependent apoptosis
[44,192–195]. Concerning caspase involvement, in human prostate
[56], cervical [168] and lung [23] cancer cells, selenite exposure trig-
gered a caspase-independent apoptosis, whereas a caspase-dependent
pathway was detected in lung [167], mesothelioma [6], osteosarcoma
[196], colon [44] cancer cells and in leukemia cells [192]. Inmany cancer
cells, Baxwas up-regulated and Bcl-2was down-regulated after sodium
selenite treatment [6,17,20,26,189,197]. Accordingly, mitochondrial-
related apoptosis, revealed by cytochrome c release and mitochondrial
membrane potential loss, was detected in many different cancer cell
lines subjected to selenite treatment [6,14,17,26,30,31,54,186,189,
197–199]. Conversely, only few papers have reported the induction of
necrosis by selenite treatment [200–202]. Recently, we highlighted a
partial inhibition of cell death by necrostatin-1 in cervical cancer cells,
suggesting the involvement of necroptosis, rather than necrosis, in
selenite-induced cell death [36]. Several studies have reported that
sodium selenite induced autophagy in cancer cells. However, the role
played by sodium selenite-induced autophagy in cell death has been
disputed. Kim et al. reported that selenite triggered superoxide-
mediated autophagic cell death in glioma cells [199,203]. On the other
hand, it has been also shown that sodium selenite-induced autophagy
functioned as a survival mechanism in leukemia [204] and lung cancer
cells [189].

Inorganic selenate has been shown to induce apoptosis in leukemia
and hepatoma cells involving the down-regulation of Bcl-2 and up-
regulation of p53 [205]. Moreover, Takahashi et al. showed that selenate
induced apoptosis in human oral squamous carcinoma cells [31]. Re-
markably, selenium dioxide has been proven to effectively enhance
lymphocyte progression into the S-phase of the cell cycle in patients
with stage IV cancer, thus restoring immune function and controlling
cancer progression [206].
as therapeutic agents in cancer, Biochim. Biophys. Acta (2014), http://
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Fig. 4. Summary of the known mode of programmed cell death generated by selenium compounds.
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Concerning organic selenium compounds, SeMet has been shown to
induce apoptosis by both causing G0/G1 [165] or G2/M phase arrest
[165,207–209]. Apoptosis caused by SeMet, has been shown to be
both p53-dependent [39,208] and independent [210], and correlated
with an increase in ERK phosphorylation [211] and PARP cleavage
[165]. As regards to SDG, Lanfear and co-workers underlined that it
can induce cell death by an apoptotic pathway in a p53-independent
manner [33]. Themethylated selenium formMSC has been shown to in-
duce apoptosis in several model systems. Notably, it has been shown to
induce apoptosis by cell growth arrest in S phase in a mouse mammary
epithelial tumor cell model [212]. Moreover, MSC activated apoptosis
cell death by increasing caspase activities in human promyelocytic leu-
kemia cells as well as in ovarian and oral squamous tumor cells [39,
213–215]. Even though no release of cytochrome c was detected in
MSC-treated ovarian cancer cells, MSC caused a cytochrome c accumu-
lation in time- and dose-dependent manner in the cytosol of human
leukemia cells, thus suggesting that its apoptotic effect in this latter phe-
notype is mitochondrial-dependent [213]. Similarly, MSA has been
Please cite this article as: A.P. Fernandes, V. Gandin, Selenium compounds
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shown to induce apoptosis in different cancer cell lines. Against prostate
cancer cells, MSA treatment resulted in a G(1) arrest, with reduction of
cyclin D1 and induction of the cyclin-dependent kinase-inhibitory
proteins p27kip1 and p21cip1 [56,216,217]. Notably, MSA induced
apoptosis either in p53 wild-type [54], p53-mutant [55] and in
p53-null cells [161], thus attesting to act by a p53-independent way.
MSA-induced apoptosis was accompanied by the activation of multiple
caspases (caspase-3, -7, -8 and -9), cytochrome c release and PARP
cleavage [55,56].

Selenocystine has been shown to trigger a p53- and caspase-
dependent apoptosis pathway in human melanoma and breast cancer
cells [61,63]. In particular, PARP cleavage, activation of multiple
caspases (-3, -7, -9, -8, -10), release of cytochrome c, apoptosis-
inducing factor (AIF) and Smac/Diablo frommitochondria to the cytosol
and truncation of Bid were distinctive signs of selenocystine-induced
apoptosis in human melanoma cells, thus indicating the activation of
both intrinsic and extrinsic apoptosis. Besides the expression of Bclxl,
Mcl-1, Bad, Bik and Bok was not affected by selenocystine treatment,
as therapeutic agents in cancer, Biochim. Biophys. Acta (2014), http://
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the expression level of Bcl-2 was significantly decreased and those of
Bax and PUMA-α were slightly increased. On the other hand, the
same authors reported that selenocystine determined caspase-
independent apoptosis in humanMCF-7 breast cancer cells [63]. More-
over, we have recently demonstrated that in cervical cancer cells
selenocystine induced both paraptosis and apoptosis-like cell death,
the latter being accompanied by induction of BIM and caspase-3 cleav-
age [36]. On the contrary, little is known about the mechanism of cell
death induction by other selenides. Only recently, Posser et al. showed
that diphenyl diselenide was able to induce apoptosis in human neuro-
blastoma cells by the ERK1/2 pathway [66] and, likewise, Nedel and co-
workers showed that other diselenides caused apoptosis by inducing
G2/M cell cycle arrest as well as caspase and p53 activation [67].

Selenocyanate derivatives have been shown to induce apoptosis in
human cancer cells by decreasing Akt phosphorylation [65,218–221].
In particular, similarly to that observed for SDG, against human oral
squamous carcinoma cells, p-XSC induced JNK and p38 kinase, and acti-
vated ERKs 1&2 and Akt [35]. Furthermore, p-XSC-mediated apoptosis
was proven not to be dependent on p53 expression in human colon can-
cer cells [222].

Among Se heterocycles, Ebselen has shown to cause a dose- and
time-dependent loss of mitochondrial membrane potential and release
of cytochrome c in human hepatoma cells, but the apoptosis induction
was caspase-independent [223]. Conversely, its structurally related de-
rivative BBSKE inhibited tongue cancer cell growth by promoting apo-
ptosis through the activation of caspase-3 [77]. Juang and co-workers
showed, in addition, that selenophene derivative D-501036 determined
cell death in both hepatic and renal carcinoma cells through a dose-
dependent accumulation in S phase with concomitant loss of both the
G0/G1 and G2/M phase [81]. Later, the same authors denoted that D-
501036-induced apoptosis was caspase dependent, as attested by its
ability to increase the activities of caspase-9 and -3 in a dose and time
dependent manner [82].

Apoptosis was the main cell death mechanism triggered by either
Se-nucleosides or Se-sugars. Kim et al. reported that uridine Se-
nucleosides induced apoptosis in human cancer cells involving p38
pathway, caspase-2 and -3 and, to a lesser extent, caspase-8 and -9
[91,224]. Guo et al., in addition, highlighted that xylitol-Se and
sucrose-Se induced mitochondrial apoptosis by depletion of mitochon-
drial membrane potential and activation of caspase-3 in liver cancer
cells [92].

Despite the fact that the SeNP field has been receiving increasing at-
tention, at present very little is known about the mechanism by which
SeNP exerted their antiproliferative activity. Even though cell death
mechanism seems to be strongly affected by surface SeNP func-
tionalizing molecules, apoptosis has been reported to be the principal
cell death pathway [100,103,104,225]. Kong and collaborators reported
that SeNP inhibits prostate cancer cell growth partially by caspase-
mediated apoptosis, which was through activation of the Akt/Mdm2
pathway [225]. SeNP functionalized with U. pinnatifida polysaccharides
induced apoptosis in human melanoma cells through mitochondria-
mediated pathways [104].

5.5. Epigenetic effects of selenium compounds

A few relatively recent studies have also connected the chemother-
apeutic effects of selenium compounds to inhibition of histone
deacetylases (HDACs). HDACs are involved in the regulation of gene
expression and are promising anti-cancer targets, being upregulated
in many cancers. α-Keto-γ-methylselenobutyrate (KMSB) and β-
methylselenopyruvate (MSP) resemble short chain fatty acid inhibitors
of HDACs, and are formed during the transamination reactions of SeMet
and SMC. Both KMSB and MSP have in vitro been shown to act as com-
petitive inhibitors of HDAC [226,227]. These metabolites are however
only formed in cells where the transaminases are active. MSA has also
been suggested to inhibit HDAC activity in diffuse large B-cell
Please cite this article as: A.P. Fernandes, V. Gandin, Selenium compounds
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lymphoma cell lines [228], aswell as in esophageal squamous cell carci-
noma [229]. In the latter, an induction of acetylation of histone H3 at
Lys9 was observed. Selenite in accordance with MSA has also shown
to increase the levels of acetylated lysine 9 on histone H3 and to de-
crease levels of methylated H3-Lys 9 in prostate cancer cells [230]. In
the same study, a general decrease of histone deacetylase activity and
DNA methylation was also observed. In breast cancer distinct effects
have been observed forMSA and selenite, whereMSAwas shown to de-
crease H3K9me3 and increase H4K16ac, while selenite decreased the
latter histone mark [231]. The suggested mechanism behind the effects
of selenite andMSA is believed to be through oxidation of conserved Cys
residues, known to disrupt the activity of class I HDACs [228,232], and
therefore differs from the underlying mechanism of SeMet and SMC.
Selenium compounds may thus have two distinct mechanisms of
HDAC inhibition.

6. Selenium in angiogenesis and metastasis processes

Angiogenesis, defined as the formation ofmicrovessels from existing
vessels, is a vital and mandatory step in solid tumor development and
metastasis. There is growing and supporting evidence that Se may reg-
ulate vascularization and that the effects may depend on the selenium
compounds used. For instance, downregulation of the mRNA levels of
matrix metalloproteases (MMP-2, 9, 14, 15, 16, 24), tissue inhibitors of
metalloproteinases (TIMPs) and epidermal growth factor receptor
(EGFR) after selenite treatment has been observed in low-passage cul-
ture of biopsy derived glioma cells (IPSB-18) [9]. Others have reported
similar findings where selenite caused increased loss of MMP in colon
cancer cells [17]. MSA has also shown to cause a decrease of the secre-
tion and protein expression of MMP-2 and TIMP-1 [233,234]. This has
been suggested to occur via inhibition of pro-MMP-2 activationmediat-
ed by suppression of MT1-MMP expression, which in turn is mediated
through suppression of the NF-κB activity [235]. The active form of
MMP-2 has also been decreased in HT1080 cells after treatment with
methylselenol. In the same study, methylselenol increased the protein
levels of TIMP-1 and TIMP-2 [236].

Vascular endothelial growth factor (VEGF) is a central protein in an-
giogenesis, stimulating the formation of new blood vessels. Selenite in
many studies has been shown to have the potential to inhibit VEGF,
and this is further believed to occur in a MAPK-independent manner
[234,237]. Selenite has also been shown to inhibit LPS-induced expres-
sion of TGFβ-1 and VEGF as well as IL-6 in prostate cancer cells [238]. In
the same study, an inhibition of the translocation of the NF-κB p65 sub-
unit to the nucleuswas also observed. Likewise, MSA treated bonemet-
astatic mammary cancer cells resulted in decreased VEGF levels [239].
MSA also inhibitedHIF-1α expression and VEGF secretion in lymphoma
cell lines and in prostate cancer cells [228,240]. Selenite-treated mela-
noma cells do not only inhibit the VEGF expression, but also decrease
hypoxia-inducible factor-1α (HIF-1α) and inhibit IL-18 [241]. Treat-
ment of metastatic rat and human prostate cancer cell lines with MSA
also decreases HIF-1α levels and reduces VEGF and GLUT1 [240]. In
this model, significant decrease in microvascular density, and promo-
tion of vascular normalizationwas also observed. Consistently, rats sup-
plemented with relative high levels of selenite (3 ppm) exhibited a
similar reduction ofmicrovascular density [237]. The effect ofmicrovas-
cular density seems to be quite rapid, with a significant reduction seen
after only three days [237]. In accordance with selenite and MSA, MSC
has been reported to cause reduction of HIF-α 1 and 2 levels in renal
cell carcinoma [242]. CRC xenografts, HCT-8 (uniformly poorly differen-
tiated) and HT-29 (moderately differentiated tumor with avascular
glandular regions) have been used to study tumor vasculature. MSC
led to a significant tumor growth inhibition, a reducedmicrovessel den-
sity, and a more normalized vasculature in both colorectal xenografts
[243]. Other models (human head and neck squamous cell carcinoma
xenograft models) have been used to prove the reduced microvessel
density and increased vascular maturation by MSC through HIF-1α
as therapeutic agents in cancer, Biochim. Biophys. Acta (2014), http://
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and VEGF [49,244]. In telomerase-immortalized microvascular endo-
thelial (TIME) cells, the microvessel density of the tumors in the high
MSA treated group was decreased by more than half from the control
[245]. In a nudemousemodel with hormone refractory prostate cancer,
selenite was shown to be the most effective selenium compounds used
(compared to SeMet, selenocystine and selenized yeast), with a signifi-
cant decrease in tumor size, lymph nodemetastases, andmicrovascular
density [246]. In human umbilical vein endothelial cells (HUVEC),
p38 MAPK was shown to be a key upstream mediator for the
methylselenol-specific induction of vascular endothelial caspase-
dependent apoptosis [247].

In spontaneous metastasis of Lewis lung carcinoma C57BL/6 mice,
MSA significantly reduced pulmonary metastatic yield, reduced plasma
concentrations of VEGF, fibroblast growth factor basic and platelet-
derived growth factor-BB. In a murine melanoma C57BL/6 mouse
model the tumor metastasis was suppressed by selenite [188].
Conversely, the non-redox active metabolite, SeMet, did not affect any
of the aforementioned measurements [248].

7. Selenium and immune response

Even though a pile of evidence is gathered for the importance of Se
for the immune response at nutritional levels, especially in viral
immune responses, surprisingly little is still known about the effects
of Se on the immune systemat higher/chemotherapeutical doses in can-
cer. One early study in rats demonstrated an increase in NK-cell activity
as well as an enhanced NK-cell cytotoxic response [249]. This has been
supported by others that have shown that selenium supplementation
caused enhanced expression of spontaneous NK-cell cytotoxicity in
spleen cells and of specific cytotoxic T-lymphocyte cytotoxicity in peri-
toneal exudate cells in mice [250]. In a bilayer lipid membrane system
Se enhanced the NK-cell cytotoxicity [251]. Supplementation of selenite
in a mouse model has also resulted in the formation of significantly
higher numbers of high affinity IL-2R/cell [252]. More recently, treat-
mentwith selenite on tumor cells resulted in a loss of HLA-E expression,
and caused increased susceptibility to CD94/NK group 2A-positive NK
cells [253]. The underlying mechanism behind these effects remains
largely unclear.

8. Concluding remarks

Selenium compounds are potent anti-proliferative agents, with
modest effect on normal tissues and clinically well tolerated. The exact
mechanism by which this anti-tumor activity is mediated remains
unclear, although numerous mechanisms have been proposed and is
distinct depending on compound and system examined. Selenate has,
per orally, been shown to be well tolerated at a dose of 60 mg per day,
and with modest single-agent efficacy similar to other anti-angiogenic
compounds in an open-labeled phase 1 study [254]. Ethaselen is one
compound which seems very promising as an anti-tumor and anti-
cancer drug, and has now entered phase I clinical trials in China [79].
Further clinical trials are warranted and it is likely that the full potential
of selenium compounds as anticancer agents in both solid and hemato-
logical cancerswill only be realized once novel tumor targeted selenium
compounds/SeNP have been developed and tested in clinical trials. It
might also require the development of rational combination therapies
that can be predicted to have synergistic or additive effects. To this
end, understanding the underlying mechanisms of specific selenium
compounds is an essential feature.
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