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Abstract – Bearing degradation is the most common source 
of faults in electrical machines. In this context this work 
presents a novel monitoring scheme applied to diagnose 
bearing faults. Apart from detecting local defects, i.e. single 
point balls and raceways faults, it takes also into account the 
detection of distributed defects, such as roughness. The 
development of diagnosis methodologies considering both kind 
of bearing faults is, nowadays, subject of concern in fault 
diagnosis of electrical machines. First, the method analysis the 
most significant statistical-time features calculated from 
vibration signal. Then it uses a variant of the Curvilinear 
Component Analysis, a nonlinear manifold learning 
technique, for compression and visualization of the features 
behavior. It allows interpreting the underlying physical 
phenomenon. This technique has demonstrated to be a very 
powerful and promising tool in the diagnosis area. Finally, a 
hierarchical Neural Network structure is used to perform the 
classification stage. The effectiveness of this condition 
monitoring scheme has been verified by experimental results 
obtained from different operation conditions. 
 

Index Terms— Ball bearings, Classification algorithms, 
Condition monitoring, Fault diagnosis, Feature extraction, 
Induction motors, Neural networks, Vibrations. 

NOMENCLATURE 

∑       Covariance matrix. 
D       Data space dimension. 
d       Latent space dimension. 
Dij Euclidian distance between i and j points in 

data space. 
k       Number of neighbors considered. 
Lij Euclidian distance between i and j points in 

latent space. 
N      Number of measurements in a data set. 
p       Vector of operating conditions. 
Xi

l      The i-th data point from a l set. 
Yi

l      The i-th projection from a l set. 
α       Learning rate. 
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λ       Neighborhood radius. 
RD     D dimensional feature space. 
xi      The i-th vector of features in data space. 
yi      The i-th vector of features in latent space. 
wi      Weighting factor. 

I.    INTRODUCTION 

HE reliability of electrical drives is an extensively 
investigated field for cost and maintenance savings, but 

also because a safe operation is desired in critical 
applications [1]-[4]. It is well known that the bearings 
represent one of the most common sources of faults in 
electromechanical systems [5]-[8]. Bearing defects have 
been categorized as local (due to cracks, pits and spalls, 
basically) and distributed (including surface roughness, 
waviness and misaligned races) [9], [10]. Localized bearing 
faults are classified by the fault specific location in: inner 
race, outer race and ball. Conversely, in generalized 
roughness fault, the bearing surface has been degraded 
considerably over a large area and becomes rough, 
irregular, or deformed [11]. 

Most of the bearings monitoring schemes are focused on 
bearing localized defects [12], [13]. They are based on the 
detection of some characteristic fault harmonic components 
of the vibration spectra [14]. However, apart from possible 
electrical and mechanical noise during the acquisition, it 
will be affected by the intrinsic vibration modes of the 
system, and the bearing deterioration stage. Besides, the 
absence of clear characteristic fault frequencies should not 
be interpreted as a completely healthy condition of the 
bearing. The analysis of the classical characteristic fault 
frequencies is not a simplistic matter since the basic 
diagnosis schemes may leads to a delayed diagnosis until 
the characteristic fault frequencies have enough presence in 
the spectra to be clearly localized. On the other hand, the 
generalized roughness faults produce unpredictable 
broadband effects which are not necessarily related with 
specific fault frequencies [15]. However, these faults are 
common in industry, while they are often neglected in the 
research literature. 

Afterwards, advanced signal processing techniques, such 
as probabilistic models [16], high-resolution frequency 
analysis [6] or enhanced wavaletes decompositions [17], 
[18], applied over the measured physical magnitude have 
been used to to obtain reliable fault indicators. However, 
most of these approaches cannot deal with the identification 
of single and generalized bearing faults at the same time, 
which makes the development of a whole bearing fault 
diagnosis system still an open point. In this sense, over the 
last years, instead of looking for highly significative 
features, a trend towards the fusion of different features to 
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enhance the performance of the diagnosis system have been 
carried out. In order to analyze and manage the significance 
and relations between the features, advanced techniques 
based on artificial intelligent are used [19]-[24]. 

In this sense a general diagnosis methodology based on 
pattern recognition scheme is composed by three blocks as 
follows. Firstly, the calculation of numerical features from 
the acquired physical measurment, secondly a feature 
reduction procedure to highlight the hidden patterns and to 
compress the information and, finally, a classification stage 
in which the different classes (considered degradation 
types) are identified. The feature reduction represents the 
most critical stage in this diagnosis process. Classification 
systems fed by raw vectors of features will decrease its 
performance, while an inaccurate reduction may remove 
useful information. In this way, the feature reduction 
process has been typically implemented with linear 
techniques such as Principal Component Analysis (PCA). 
However, PCA techniques has been discussed by many 
authors emphasizing its limitation dealing with large data 
sets, because it seeks for a global structure of the data [20], 
[25]. 

A feature vector is formed by the D calculated features 
and these vectors are represented in a D-dimensional space. 
The information contained in such a D-space mostly has a 
nonlinear structure. Concerning with this problem manifold 
learning methods has been applied in the last years [26], 
[27] to preserve this information in a lower d-dimensional 
space, where D>d. Among them, Self-Organizing Maps 
(SOM) is the most used, which is based on developing a 
neural network grid to preserve most of the original 
distances between feature vectors representations in the D-
space.  

This procedure, although exhibits generally good 
performances, requires to fix an initial shape of the neural 
network. That is, some idea of the data behavior in the d-
dimensional space should be known a priori. This fact may 
present convergence problems, difficulties to unfold high 
nonlinearities and large computational time, which make 
them very difficult to use with high-dimensional data sets. 

Other approaches, as Curvilinear Component Analysis 
(CCA), automatically “finds” the correct shape of the sub-
manifold, that is, the neurons “search” a proper position in 
the output space preserving as much as possible the original 
feature space distances. For that reason, CCA has been 
applied in different fields: initially to pattern recognition 
[28], after in electrical power systems [29] and, finally this 
work introduce the technique in the electromechanical 
systems diagnosis field. 

The originality of this work includes a complete fault 
analysis and diagnosis methodology applied to detect 
different bearing faults including localized and generalized 
defects. The method begins with the selection of the most 
significant features from an initial set formed by statistical-
time features calculated from vibration signals. Next, it has 
implemented a new set of improvements in the CCA with 
the objective that it can be applied in fault classification 
structures, in such a way that the feature reduction stage is 
performed. In this context, this implemented CCA allows 
the data visualization and interpretation of the underlying 
physical phenomenon. Finally, the classification stage is 
proposed to be solved by a hierarchical neural network. 
This work represents an important step to the introduction 
of manifold learning techniques, and advanced 

classification structures, to the development of 
electromechanical system diagnosis procedures, being the 
first time that it has been applied. 

II.   CCA IMPLEMENTATION FOR FAULT CLASSIFICATION 

STRUCTURES 

As it has been mentioned, one of the most novel 
strategies of nonlinear feature extraction is based on 
distance preservation concept. For every pair of different 
features vectors in the original feature space (data space), a 
between-points distance Dij, is calculated, Dij =||xi-xj||. The 
objective is to preserve these distances between the same 
points in the reduced feature space (latent space), Lij =||yi-
yj||, formed by a reduced set of features. The perfect 
projection of the feature vectors in the latent space is only 
possible if the original feature set contains redundant 
features which can be removed without negative effect 
from the loss of information point of view. Otherwise, some 
information will be lost. In order to face this problem the 
CCA technique defines a distance function threshold in 
order to determine short and long distances between feature 
vectors, Dij. By this way, the CCA prioritizes the short 
distances, which means local distance preservation. The 
CCA used in this study considers the distance function 
threshold as a decreasing exponential function [30]; whose 
corresponding error function is the right-Bregman 
divergence [31]. Indeed, this function penalizes long 
distances and its asymmetry allows a better unfolding of 
data. The basic procedure of the CCA is shown 
schematically in Fig. 1. 

 
Fig. 1. CCA operation scheme sequence. (a) Seven feature vectors for each 
of the two operating conditions (circles and squares) represented in a 
three-dimensional data space. (b) CCA projection of the first feature vector 
of one operating condition (circles) in the latent space. (c) CCA projection 
of the second feature vector of the same operating condition (circles) in the 
latent space. Two iterations are represented until reach L1-2 ~ D1-2. (d) 
Resultant CCA projection of the feature vectors corresponding to one 
operating condition (circles). 

Although the projected topology in the latent space will 
exhibit the same performance, the global position of the 
projected map in the latent space changes at each new CCA 
execution, as it is represented in Fig. 2. That is, the CCA 
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