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Abstract — Bearing degradation is the most common source
of faults in electrical machines. In this context this work
presents a novel monitoring scheme applied to diagnose
bearing faults. Apart from detecting local defects, i.e. single
point balls and raceways faults, it takes also into account the
detection of distributed defects, such as roughness. The
development of diagnosis methodologies considering both kind
of bearing faults is, nowadays, subject of concern in fault
diagnosis of electrical machines. First, the method analysis the
most significant statistical-time features calculated from
vibration signal. Then it uses a variant of the Curvilinear
Component Analysis, a nonlinear manifold learning
technique, for compression and visualization of the features
behavior. It allows interpreting the underlying physical
phenomenon. This technique has demonstrated to be a very
powerful and promising tool in the diagnosis area. Finally, a
hierarchical Neural Network structure is used to perform the
classification stage. The effectiveness of this condition
monitoring scheme has been verified by experimental results
obtained from different operation conditions.

Index Terms— Ball bearings, Classification algorithms,
Condition monitoring, Fault diagnosis, Feature extraction,
Induction motors, Neural networks, Vibrations.
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Covariance matrix.

Data space dimension.

Latent space dimension.

Euclidian distance between i and j points in

data space.

Number of neighbors considered.

i Euclidian distance between i and j points in
latent space.

N Number of measurements in a data set.

P Vector of operating conditions.

X The i-th data point from a / set.

Y/ The i-th projection from a / set.

o Learning rate.
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A Neighborhood radius.

R° D dimensional feature space.

X; The i-th vector of features in data space.
Vi The i-th vector of features in latent space.
w; Weighting factor.

I. INTRODUCTION

HE reliability of electrical drives is an extensively

investigated field for cost and maintenance savings, but
also because a safe operation is desired in critical
applications [1]-[4]. It is well known that the bearings
represent one of the most common sources of faults in
electromechanical systems [5]-[8]. Bearing defects have
been categorized as local (due to cracks, pits and spalls,
basically) and distributed (including surface roughness,
waviness and misaligned races) [9], [10]. Localized bearing
faults are classified by the fault specific location in: inner
race, outer race and ball. Conversely, in generalized
roughness fault, the bearing surface has been degraded
considerably over a large area and becomes rough,
irregular, or deformed [11].

Most of the bearings monitoring schemes are focused on
bearing localized defects [12], [13]. They are based on the
detection of some characteristic fault harmonic components
of the vibration spectra [14]. However, apart from possible
electrical and mechanical noise during the acquisition, it
will be affected by the intrinsic vibration modes of the
system, and the bearing deterioration stage. Besides, the
absence of clear characteristic fault frequencies should not
be interpreted as a completely healthy condition of the
bearing. The analysis of the classical characteristic fault
frequencies is not a simplistic matter since the basic
diagnosis schemes may leads to a delayed diagnosis until
the characteristic fault frequencies have enough presence in
the spectra to be clearly localized. On the other hand, the
generalized roughness faults produce unpredictable
broadband effects which are not necessarily related with
specific fault frequencies [15]. However, these faults are
common in industry, while they are often neglected in the
research literature.

Afterwards, advanced signal processing techniques, such
as probabilistic models [16], high-resolution frequency
analysis [6] or enhanced wavaletes decompositions [17],
[18], applied over the measured physical magnitude have
been used to to obtain reliable fault indicators. However,
most of these approaches cannot deal with the identification
of single and generalized bearing faults at the same time,
which makes the development of a whole bearing fault
diagnosis system still an open point. In this sense, over the
last years, instead of looking for highly significative
features, a trend towards the fusion of different features to
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enhance the performance of the diagnosis system have been
carried out. In order to analyze and manage the significance
and relations between the features, advanced techniques
based on artificial intelligent are used [19]-[24].

In this sense a general diagnosis methodology based on
pattern recognition scheme is composed by three blocks as
follows. Firstly, the calculation of numerical features from
the acquired physical measurment, secondly a feature
reduction procedure to highlight the hidden patterns and to
compress the information and, finally, a classification stage
in which the different classes (considered degradation
types) are identified. The feature reduction represents the
most critical stage in this diagnosis process. Classification
systems fed by raw vectors of features will decrease its
performance, while an inaccurate reduction may remove
useful information. In this way, the feature reduction
process has been typically implemented with linear
techniques such as Principal Component Analysis (PCA).
However, PCA techniques has been discussed by many
authors emphasizing its limitation dealing with large data
sets, because it seeks for a global structure of the data [20],
[25].

A feature vector is formed by the D calculated features
and these vectors are represented in a D-dimensional space.
The information contained in such a D-space mostly has a
nonlinear structure. Concerning with this problem manifold
learning methods has been applied in the last years [26],
[27] to preserve this information in a lower d-dimensional
space, where D>d. Among them, Self-Organizing Maps
(SOM) is the most used, which is based on developing a
neural network grid to preserve most of the original
distances between feature vectors representations in the D-
space.

This procedure, although exhibits generally good
performances, requires to fix an initial shape of the neural
network. That is, some idea of the data behavior in the d-
dimensional space should be known a priori. This fact may
present convergence problems, difficulties to unfold high
nonlinearities and large computational time, which make
them very difficult to use with high-dimensional data sets.

Other approaches, as Curvilinear Component Analysis
(CCA), automatically “finds” the correct shape of the sub-
manifold, that is, the neurons “search” a proper position in
the output space preserving as much as possible the original
feature space distances. For that reason, CCA has been
applied in different fields: initially to pattern recognition
[28], after in electrical power systems [29] and, finally this
work introduce the technique in the electromechanical
systems diagnosis field.

The originality of this work includes a complete fault
analysis and diagnosis methodology applied to detect
different bearing faults including localized and generalized
defects. The method begins with the selection of the most
significant features from an initial set formed by statistical-
time features calculated from vibration signals. Next, it has
implemented a new set of improvements in the CCA with
the objective that it can be applied in fault classification
structures, in such a way that the feature reduction stage is
performed. In this context, this implemented CCA allows
the data visualization and interpretation of the underlying
physical phenomenon. Finally, the classification stage is
proposed to be solved by a hierarchical neural network.
This work represents an important step to the introduction
of manifold learning techniques, and advanced

classification  structures, to the development of
electromechanical system diagnosis procedures, being the
first time that it has been applied.

II. CCA IMPLEMENTATION FOR FAULT CLASSIFICATION
STRUCTURES

As it has been mentioned, one of the most novel
strategies of nonlinear feature extraction is based on
distance preservation concept. For every pair of different
features vectors in the original feature space (data space), a
between-points distance Dj;, is calculated, D; =|jx;-x;||. The
objective is to preserve these distances between the same
points in the reduced feature space (latent space), L; =||y-
yill, formed by a reduced set of features. The perfect
projection of the feature vectors in the latent space is only
possible if the original feature set contains redundant
features which can be removed without negative effect
from the loss of information point of view. Otherwise, some
information will be lost. In order to face this problem the
CCA technique defines a distance function threshold in
order to determine short and long distances between feature
vectors, Dy. By this way, the CCA prioritizes the short
distances, which means local distance preservation. The
CCA used in this study considers the distance function
threshold as a decreasing exponential function [30]; whose
corresponding error function is the right-Bregman
divergence [31]. Indeed, this function penalizes long
distances and its asymmetry allows a better unfolding of

data. The basic procedure of the CCA is shown
schematically in Fig. 1.
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Fig. 1. CCA operation scheme sequence. (a) Seven feature vectors for each
of the two operating conditions (circles and squares) represented in a
three-dimensional data space. (b) CCA projection of the first feature vector
of one operating condition (circles) in the latent space. (¢) CCA projection
of the second feature vector of the same operating condition (circles) in the
latent space. Two iterations are represented until reach L;, ~ D;,. (d)
Resultant CCA projection of the feature vectors corresponding to one
operating condition (circles).

Although the projected topology in the latent space will
exhibit the same performance, the global position of the
projected map in the latent space changes at each new CCA
execution, as it is represented in Fig. 2. That is, the CCA
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projection is not invariant. Indeed, it changes because it is
only constrained by the distance preservation. There are
two sources of randomness: the projection of the first
sample in the latent space, from which the rest of data will
be projected, and the index sequence of the fixed samples.
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Fig. 2. Representation of two CCA executions over a same original set of
feature vectors. The resulting two-dimensional projection are identical, but
the global latent space position changes.

As a part of the proposed methodology, in order to
maximize the performance of the CCA projection, one
different CCA will be executed over each set of feature
vectors corresponding to a different operating condition, i.e
speed and torque. The quality of the projection is generally
reduced while increasing the complexity of the data set
distribution. Then, dividing the whole data set in different
subsets implies a CCA projection improvement. Therefore,
the CCA variability is a problem in case of classification,
where the different regions defined in the latent space
should be used to classify after new projections.

In order to achieve the CCA projection invariance, the
following new developed procedure, consisting on three
steps is presented.

1) The first CCA projection of samples corresponding to
the first operating condition is executed.

2) The resulting projection of the previous CCA is used
as initial projection of the next CCA in the latent
space. The learning rate « is lowered in order to have
fewer variations during the iterations. This is applied
consecutively until no more operating conditions are
available. With this step, all the CCA projections
share approximately the global latent space position.

3) Then, in order to match perfectly all the resulting
CCA projection maps, a refinement (affine)
transformation is applied.

Indeed, one of the resulting CCA projection maps is
chosen as a rated CCA. For the estimation of the affine
transformation, consider that for each data point X/, two
different d-dimensional projected points ¥/’ and Y} are
obtained from the rated CCA and the p-th CCA
respectively. Then, the entire data set / is transformed to the
rated projection, by means of ¥/““’=4 Y/+b for each i,
where is defined 6=/(vec4)” b']" as the affine parameter
vector containing the necessary A4 rotations and b
translations as is schematically represented in Fig 3.

The affine transformation can be solved with success by
ordinary least squares (OLS) because the differences
between the different CCA projection maps references are
small. Finally, the obtained rated CCA projection map
allows developing a fault classification strategy common to
all the range of operating conditions.

Fig. 3. Representation of the refinement transformation applied to two
resulting CCAs projection maps (solid axes) to the rated CCA (dotted
axes). Slight rotations and translations are applied by the affine parameters
6, and 65 respectively.

If it is required to project a new input, a recall phase is
needed, which depends on the operating conditions. That is
the new input will be projected using the corresponding
CCA projection map, and then the corresponding affine
transformation 6 will be applied to obtain its representation
in the rated CCA map. However, this approach is
acceptable only if new inputs match to one of the
considered operating conditions. It is necessary, for a
practical industrial application, to propose a solution to take
into account whatever operating condition comprised
between the considered operating conditions range. This is
carried out by means of a nonlinear interpolation as
follows. The nearest CCAs projection maps (regarding the
operating conditions) are used. This fact implies that the
distances of the new feature vector regarding the nearest
sets of features vectors will be preserved. However, the
weighting factor will prioritize to maintain the distances
with the feature vectors corresponding to the nearest
operating conditions. The proposed factor uses Gaussian
probability density functions, as is represented as:

e—(pne'w—Pl)Tz(pnew—Pl)

(1

Wi (pnew) = TX
Z}‘zl e—(P’new—Pl) (Pnew—pp)

The k parameter yields the problem-dependent number
of neighbor CCA’s whose working conditions are close to
Prew between all the CCAs (in Fig. 4, four neighbors). That
is, choosing £ means deciding how many CCAs are used in
the recall phase. Therefore, when the operating condition
point is too far, the associated projection is given less
importance by decreasing the weight factor.

Torque

Fig. 4. Representation of the weighting factor between four operating
conditions (p;, p, p; and p,) and the new one p,.,. With /=4, the four
nearest CCA projections will be used to project the new sample/s under
Pnew- Each of the CCA projections will be weighted by a weighting factor
obtained from Gaussian probability density functions as is represented.
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Therefore, the projection process is carried out by the
successive application of the next stochastic gradient
algorithm:

Yjpnew P Yjpnewawl(pnew) l)Lij ij e 2 (Y}pnew _ Y; ( )) (2)

where sample i#. This formula assumes that only the
projected data from the & nearest neighbor CCA’s are to be
considered in training and recall. It must be noted that the
proposed weight acts by multiplying (modulating) the
learning rate o of the CCA gradient algorithm. In the same
way, in the recall phase, the parameters of the affine
transformation 6 are estimated by interpolation, using a
radial basis function (RBF) neural network. This approach
is possible because all CCA frameworks are coherent, and
then an interpolation of the affine transformations is
possible. The final projection of the new sample respects
the global latent space positions of the rated CCA
projection, and therefore can be applied in classification
structures.

III. DIAGNOSIS METHODOLOGY

It can be said that the diagnosis methodology is
composed by four steps, first the calculation of the diferent
features of the vibration signal, the feature calculation.
Second feature selection, where only the most significant
features are selected during the training process. Then the
feature reduction, to compress and maintain the useful
information for diagnosis purposes, and finally the
classification stage based on neural network, wherein the
different considered faults are diagnosticated. The complete
proposed diagnosis methodology is represented in Fig. 5.

In this work six bearing fault scenarios have been
considered, namely: healthy (%), inner race fault (i), outer
race fault (o), ball fault (b), inner-outer-ball faults at the
same time (iob), and generalized degradation in inner and
outer races (gdio). Moreover, twenty five different steady
state operating conditions have been considered: from 80%
to 100% of rated speed, and from 80% to 100% of rated
torque every variation of 5% of each parameter. For each
combination of bearing fault scenario and operating
condition, twenty x and y vibration axis measurements
(radial and axial axis) have been acquired respectively.

...........
Motor conditions

A. Features calculation

From each acquired vibration signal axis (x and y axis), a
set of statistical-time features is computed. A total of 15
features from time-domain are proposed for each acquired
vibration axis: mean, maximum value, root mean square,
square root mean, standard deviation, variance, root mean
square shape factor, square root mean shape factor, crest
factor, latitude factor, impulse factor, skewness, kurtosis,
normalized 5-th and 6-th moments.

B. Features Selection

The proposed features will contain a large portion of the
information contained in the vibration signal; however only
some of them will be really significant. These, in turns
depend on the considered bearing defects, the apparition of
additional sources of vibration, and the bearing location. In
the latter case, be them either in the motor frame or
externally mounted such as the case here presented, the
selected features do not have to be the same. In this way the
proposed methodology can be applied regardless where the
bearings are installed.

Different techniques can be applied to analyze the
features significance regarding the considered diagnosis
scenario. The Discriminant Analysis (DA) is one of the
classical techniques for a feature selection procedure.

The DA evaluates quantitatively the discriminant
capabilities of the proposed features regarding the
considered classes. A large value of DA implies that the
analyzed feature/s contributes to a proper representation of
the measurements in the data space. That is the classes are
well delimited and well separated.

Every two and three combinations of the calculated
features, as well as their individual capabilities have been
evaluated, obtaining finally an ordered list with the most
significance set of features. It has been observed, that
although the x axis exhibits a bigger discriminant capability
than the y axis, the most significant features in each axis
correspond to the RMS, Variance and Shape factor. Then, a
set of six features is proposed to define the considered
classes in the data space.

C. Features Extraction

The projections of the six-dimensional vectors are
computed by using CCA as it has been explained in Section
II to avoid the CCA projection variability.
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Fig. 5. Proposed diagnosis methodology scheme including feature calculation, feature selection, feature extraction and classification stages. The training set
(dotted line) is used to select the most significant features during the feature selection stage, and train the RBFs, the CICAs and the hmlp. Then, the test set

(solid line) is evaluated.
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The initial learning rate (which decreases exponentially
in time) is fixed to 0.5 for the selected rated CCA and 0.1
otherwise. Specifically, the rated CCA has been fixed as the
one related with the rated working conditions (100% speed
and 100% torque).

The refinement transformation follows. The RBF is
trained with the 25 affine parameter vectors 6, each one
corresponding to each CCA. Therefore, the remaining
variability in the rated CCA depends on the change of class
position and shape under different values of the operating
conditions, which 1is exploited in the next step
(classification). In this sense the feature extraction
transforms the original data base of six dimensional vectors
into a data base of two-dimensional vectors, as it is shown
in Fig. 6.
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Fig. 6. Application of the feature reduction to the original feature space.

In the recall (test) phase, that is when data drawn under
new working conditions have to be classified, the six-
dimensional feature vector is fed to the corresponding &
CCAs, and the corresponding torque and speed parameters
are fed to the RBF in order to find the parameters of the
affine transformation. A simple adaline neural network,
composed by two adalines (madaline) [32], is used for
transforming the new CCA projection to the rated CCA
map. Then, the data is ready for classification.

D. Classification

Due to the different number of considered operating
conditions (twenty-five), and the number of considered
bearing fault scenarios (six), a two-level hierarchical neural
network is applied to assure the optimum pattern
recognition. Specifically, a hierarchy of multilayer
perceptrons (hMLP) has been developed. This structure
allows the classification in two steps: a first neural network
classifies a two-dimensional feature vector (resulting from
the CCA projection) between three predefined class pairs
(in this application: /i, o/b and iob/gdio), and enables three
neural networks, each trained on a pair of classes. Once the
input has been classified in the first neural network, the
corresponding second neural network follows, and the
bearing status diagnosis is obtained.

Additionally to the resulting class, the proposed
classification structure offers also a diagnosis probability.
As it is schematically represented in Fig. 7, the
classification result in each neural network is related with a
probability value following a sigmoid function.

Therefore, the posterior probability for each class is
given by the product of the three-class neural network
output with the corresponding two-class neural network
output. For instance, define as /4 the event healthy, as hi the
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event pair healthy/inner and as new vector y,.,, the two
dimensional input from CCA:

P(hlynew) = P(h|hi, ynew)P(hilynew) 3)

where P(h|hi, yne) is the probability to obtain a &
classification as output of the 2-class neural network, and
P (hi|yyew) is the probability to obtain a /i classification as
output of the 3-class neural network.

hl i
|
new |
sample |

CCA Feature 1

CCA Feature 2

Probability

CCA Feature 1

a)

K

Fig. 7. Representation of the probability calculation in one neural network.
(a) Neural network for classificationt between /4 and i, the dotted line
represents the boundary between classes. (b) Sigmoidal functions for each
of the classes (/4 and i) to calculate the probability.

The building block of the classification setup is a
multilayer perceptron (MLP). Each MLP has two layers and
the hidden activation function is the hyperbolic tangent. For
the two-class problem, the output activation function is the
logistic sigmoid. Training uses the backpropagation rule for
the gradient estimation and the scaled conjugate gradient as
minimization technique [32]. All MLPs have 45 neurons.

IV. EXPERIMENTAL RESULTS

The experimental set-up is based on one induction motor
and a controlled brake. They are connected by means of an
additional shaft in which two bearing supports are mounted.
The driving motor is controlled by an inverter. The drive is
a 0.37 kW motor at 2780 rpm of rated speed.

A set of six identical bearings have been used covering
the most important bearing fault scenarios: healthy (k),
inner race fault (i), outer race fault (o), ball fault (), inner-
outer-ball (iob) faults at the same time, and generalized
degradation in inner and outer races (gdio). The parameters
of the bearings under test can be seen in Table 1.

TABLE I
BEARING PARAMETERS
Outside Inside
Type diameter  diameter Np Bd Pd cos ¢
SKF 6004 42mm 20mm 9 6.35mm  31mm 1

It is important to notice that this set of bearing conditions
covers: three cyclic single point defects (i, o, b), one non-
cyclic generalization-roughness defect (gdio), and a
multiple cyclic single point defects (iob), which is a rare
case not usually studied. The bearing faults were carried out
during the manufacture. A milling cuter was used to scratch
the corresponding surfaces.

The experimental setup and the bearing set are shown in
Fig. 8. Two monoaxial (orthogonal x and y axis)
piezoelectric accelerometers are attached using screw
mounting to one of the bearing supports, and its data were
collected using an acquisition card sampling at 10 kS/s, 1
second for each measurement.
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Fig. 8. Experimental arrangements. (a) Scheme of the experimental setup formed by a drive motor, a controlled break, two vibration sensors and an

acquisition card. (b) Set of six bearings used, and schematic view of the faults.

In order to take into account different speed and torque
combinations twenty measurements are performed for each
fault and operating condition and twenty five operating
conditions have been considered as it has been mentioned.

Previously to the evaluation of the proposed
methodology, the characteristic fault harmonic components
fis fo» f5» [9] have been analyzed as well as RMS values, as
classical indicators for bearing faults detection. For each
measurement corresponding to each operating condition,
these indicators are calculated and then the average value is
obtained. It is shown in Table II these values corresponding
to the rated operating condition, 100% torque and 100%
speed. Although most of the indicators analyzed in Table 11
exhibit values bigger than the obtained under healthy
conditions, it is difficult to fix thresholds values to
distinguish between the six bearings conditions. Some of
the indicators, specially the corresponding to the
characteristic fault frequencies, are masked between them.

TABLE I
CLASSICAL BEARING FAULTS INDICATORS
ANALYZED UNDER RATED CONDITIONS

S 266tz Jo. 1731 So, 11212 RMS [mV]
[db ref.:1V RMS] [db ref.:1V RMS] [db ref.:1V RMS]

x Yy x y x J X J
h -47.7  -563 -553 -57.1  -54.7 -56 182 155
i -45.6  -484 -46.1 -46.6 -46.1 -483 766 494
o -40,5 -42 -412 -413 433 -38.7 1005 702
b -44.3 -46 -58.7 522 -48 -48.4 823 517
iob -44.1 -442 -445 472 454 434 1598 1116
gdio -372 -392 -40.1 -435 -383 -432 2542 1720

It should be noticed that these results regard only one of
the considered operating points, which implies that the
analysis of these features in the complete range of working
conditions will be more complex. However, the RMS value
shows good discrimination capabilities and enough
dynamic range to distinguish between the considered
conditions. This fact confirms the inclusion of this
parameter in the proposed statistical-time features set.

A. Experimental validation of the proposed methodology

Regarding the proposed methodology, as it has been
mentioned, twenty-five CCAs are executed, one for each
operating condition considered. Indeed, the projection of

the whole data set, considering the six bearing conditions
and the 25 operating conditions at the same time, results in
a saturation of the projection capabilities of the CCA. It can
be seen, in Fig. 9(a), the CCA projection for the whole data
set by a unique CCA. The corresponding dy-dx diagram,
Fig. 9(b) relates the distances of the samples in the data
space (dx) with the distances in the latent space (dy). It can
be seen that a great deal of samples are out of the bisector
which implies a poor projection quality. Therefore the
obtained latent space, Fig. 9(b) presents inconsistencies, as
the overlapped region between classes 4/i. However,
following the proposed methodology, by means a
distributed CCA, operation the projection quality is
increased. It can be seen in Fig. 10(a) the resulting CCA
projection for the feature wectors drawn under rated
operation conditions. This is the similar for each operating
condition. It can be seen that most points lie on the bisector.
Indeed, the small distances are well represented. However,
there is a thickening of points around the bisector for bigger
distances (distances between classes): detected as A/i, b/o
and iob/gdio.

CCA component 2
~N

2 o0 2 4 % 2 4 & 8 10 12 1
CCA component 1 dy

a) b)
Fig. 9. Unique CCA projection for the whole data set, 20 samples per

class, a=0.5, 10 iterations. (a) CCA projection. (b) dy-dx diagram.
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Fig. 10. CCA projection of feature vectors corresponding to 100%speed
and 100% torque, 20 samples per class, a=0.5, 10 iterations. (a) CCA
projection. (b) dy-dx diagram.
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This analysis reveals that the selected and compressed
features represent the considered bearing faults as a set of
disconnected manifolds. This fact implies that the use of
common reduction techniques as PCA, would not be
capable to characterize the considered faults.

The resulting rated CCA projection map, that will be
used for classification, is shown in Fig. 11, formed by the
projection of the 25 CCAs. The class pairs are well
separated, although there is an overlapping in A/i. This
figure shows the real bearing conditions behavior and how
the working conditions influence on them. This resulting
global CCA can be compared with the analysis of the data
by PCA shown in Fig. 12.
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Fig. 11. Resulting global rated CCA projection.
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Fig. 12. PCA projection of the whole data set.

For checking the generalization properties of the
proposed methodology, a test set for the recall phase has
been considered. The test data base is formed by 20 vectors
of features for each of the six considered bearing
conditions, and calculated from the measurement of
vibration signals under 98% rated speed and 93% rated
torque.

TABLE III

CONFUSION MATRIX RESULTING FROM THE
EVALUATION OF THE WHOLE DATA SET

h i 0 b iob gdio
h 20 0 0 0 0 0
i 0 20 0 0 0 0
0 0 0 17 3 0 0
b 0 0 0 20 0 0
iob 0 0 0 0 16 4
gdio 0 0 0 0 0 20

The projected data is projected by the weighting
procedure of k£ closest CCAs to the test operating
conditions, with £&=4. The classification ratio for the test set
is 95% approximately. The hMLP decision regions are
shown in Fig. 13. It can be seen that all points

corresponding to healthy machine are correctly classified,
and only some samples between some clusters, o/b and
iob/gdio, are misclassified.

It should be noticed that the evaluation of the proposed
methodology has been done taken into account a wide
range of working conditions (a 10% of the whole nominal
speed/torque motor map). The methodology, under these
diagnosis requirements, exhibits a good performance.

Moreover, and due to the distributed processing of the
data in different CCAs, depending on working conditions, it
suggest that the same procedure can be increase for any
range of operation conditions.
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Fig. 13. Decision regions for the four MLP’s of the hierarchical MLP. (a)
Decision regions between #4/i, o/b and iob/gdio. (b) Decision regions
between A and i. (c) Decision regions between o and b. (d) Decision
regions between iob and gdio.
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B.  Experimental validation of the proposed methodology
applied to a lower range of operating conditions.

The proposed methodology is, initially, presented to be
feasible under a wide range of operating conditions. That is,
from 80% to 100% of rated speed, and from 80% to 100%
of rated torque. In this sense, if the motor is working within
the specified range, the proposed bearings diagnosis
method could be executed obtaining high levels of
reliability. However, if a small range of operating
conditions is considered, some simplifications can be
applied to the proposed methodology to facilitate the
implementation. Under this scenario, the use of a unique
CCA projection to obtain the global CCA projection map is
affordable. In order to evaluate this simplification of the
proposed methodology only four operating conditions are
considered: 95% and 100% of rated speed, and 90% and
95% of rated torque. The resulting CCA projection map by
the application of a unique CCA is shown in Fig. 14(a). As
it can be seen in Fig. 14(b), the projection preserves most of
the original information.

o
N

S

CCA component 2
d:

2 TS x
fob Q &% 4
0 b -
2
2 ;
'i h o
-3 -2 -1 0 1 2 3 0 2 4 6 8 10
a) CCA component 1 b) dy

Fig. 14. CCA projection of four working conditions, 20 samples per class,
a=0.5, 10 iterations. (a) CCA projection. (b) dy-dx diagram.

The CCA projection map is used for classification. Due
to the reduced number of working conditions, the
complexity of the data distribution has decreased, and only
one neural network is proposed to manage the
classification. In order to evaluate this results the same test
data base used previously is applied. It can be seen in Fig.
15 the classification results.
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Fig. 15. Decision regions for the MLP.

TABLE IV
CONFUSION MATRIX RESULTING FROM THE
EVALUATION OF A LOWER RANGE OF OPERATING CONDITIONS

h 1 0 b iob gdio
h 20 0 0 0 0 0
i 0 20 0 0 0 0
0 0 0 17 1 0 0
b 0 0 4 16 0 0
iob 0 0 0 0 20 0
gdio 0 0 0 0 1 19

The classification ratio for the test set is 95%. It can be
seen in Table IV that all points corresponding to healthy
machine are correctly classified.

This simplification of the proposed methodology is speed
and torque independent as long as it can be assured the
operation of the electromechanical system in the fixed
range of operating conditions.

V. CONCLUSIONS

This paper introduces a novel diagnosis methodology
applied to bearings faults using information in time-domain
from the vibration data.

Six different bearing scenarios have been considered,
these include single points defects, combined single points
defects and generalized degradation. These scenarios have
been analyzed over 25 operating conditions, i.e speed and
torque.

From the acquired vibration signals, a feature calculation
process is performed. Then the selection process is applied,
resulting in a selected set of the most significant features to
maximize the discrimination between the considered faults.

Afterwards, the reduction process is carried out by means
of the CCA, wherein a new set of improvements to apply
this technique in fault diagnosis structures are presented. By
this way, all the operating conditions as well as the different
fault scenarios and its evolution, can be shown in easy and
understandable two dimensional space, so that a physical
interpretation of the phenomena can be performed.

Lastly, the fault identification is obtained classifying the
information coming from the reduction process by means of
a hierarchical neural network.

This fault diagnosis system has been trained with 25
different operating conditions, from 80%-100% rated speed
and 80%-100% rated torque, every variation of 5% of each
parameter. The methodology carries out the diagnosis for
whatever operating condition within the aforesaid range,
contrary as it could be though. This is so, the new
developed improvements based on the CCA interpolation
capabilities.

It should be noted that this methodology can be applied
in whatever electromechanical structure where the bearings
are present. The potential of the selection and extraction
stages has the processing capability to extract the
information coming from the defects in the bearings
themselves that from other machine vibration sources.

This work results in a high performance and advanced
classification  structure, to the development of
electromechanical system diagnosis procedures.
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