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Abstract 

This article presents an effective genetic algorithm (GA) based fuzzy goal programming (FGP) for modelling and solving 
multiobjective decision making (MODM) problems with fractional criteria. In the proposed approach, GA, inspired by the natural 
selection and population genetics, is introduced first for searching of solutions at different stages and thereby solving the 
problem. In the proposed GA scheme, tournament selection scheme, arithmetic crossover and uniform mutation are adopted to 
search a satisfactory solution in complex decision making environment. To illustrate the potential use of the approach, a 
numerical example is solved and compared with the solutions obtained in previous study. 
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1. Introduction 

Fractional programming, introduced by Charnes and Cooper [1], as a special field of study in the area of non-
linear programming has been studied extensively by Bitran and Novaes [2] , Craven [3] , and others  in the past. 
Also considering the multiobjective nature of most of the real-life decision problems, fractional programming with 
multiplicity of objectives has been studied by Kornbluth and Steuer [4] and other pioneer researchers in the field. In 
most of the approaches developed so far in the past, the linearization method discussed by Charnes and Cooper [1] 
has been extended to solve fractional programming problems.  

In contrast to single objective fractional programming problems, multiobjective fractional programming (MOFP) 
problems are yet to widely circulate in the literature.  

The goal programming (GP) approaches [5], [6], as prominent tools for solving MODM problems, have been 
studied [7] for decision analysis with fractional objectives in crisp decision making environment.  

However, in most of the real-life multiobjective decision situation, decision makers (DMs) often faced the 
problem of setting exact aspiration levels to their objectives due to the imprecise nature of model parameters 
involved with the practical problems. To overcome such a situation, the fuzzy set theory (FST) [8], [9], has been 
used to decision making problems which involve imprecise data. 

Now, the linear approximation approaches [7] are conventionally used to single objective as well as 
multiobjective decision problems with fractional objectives. But, a great computational difficulty arises in the 
solution process due to the big data type of the problems and as such inherent approximation errors occur in the 
decision search process of the MODM problems.  

To overcome such a situation in a decision making environment, GA [10], [11], a bio-inspired computational 
technique, have appeared as prominent tool for multiobjective decision analysis. The GA approaches to different 
real-world problems have been investigated in the past. The uses of GAs to different frameworks of several 
problems as well as implementation to real-life problems with fractional criteria have been studied by Pal et al. [12], 
[13] in the past. But, exploration to the potential use of GA to MODM problems is at an early stage. Furthermore, 
the methodological development of GA based approaches to general MOFP problems is yet to be circulated in the 
literature. 

This article demonstrates the efficient application of the GA method to the general framework of FGP 
formulation of an MOFP problem. In the proposed model, first the fractional objectives are transformed into fuzzy 
goals by assigning fuzzy aspiration levels to each of them using the GA scheme. Then, the membership functions for 
measuring the degree of achievement of fuzzy goals by defining the tolerance ranges for goal achievement are 
constructed. In the executable FGP model, minimization of the under-deviational variables of the defined 
membership goals with highest membership value (unity) as the aspiration levels of them on the basis of relative 
weights of importance of achieving the objective is taken into consideration. In the solution process, the GA scheme 
is iteratively used to achieve a balanced solution of the objectives in the MODM situation.  

In the solution search process, the optimal decision of the problem under the framework of weighted FGP is 
determined through the proposed GA scheme.  

 

A numerical example is illustrated to expound the potential use of the proposed approach.  

2. Problem Formulation 

The general format of a real valued MOFP problem can be stated as: 
Find )x,...,x,x(X n21  so as to  

         Maximize  ),X(Zk  1Kk   
and    Minimize  ),X(Zk  2Kk   

Subject to 
mn Rb0,Xb,  AX|RXSX            

                                                                                                                             (1) 
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where A is a coefficient matrix and b is a resource vector. It is assumed that the feasible region  S  is 
nonempty S( , and K}{1,2,..,KK 21  with 21 KK . 

Now, in the field of fuzzy programming, an imprecise aspiration level is assigned to each of the objectives and 
certain tolerance limit for achievement of the respective aspired level is taken into account. 

In the proposed problem, since the objectives are fractional in form, an GA scheme is introduced in the solution 
search process for assigning the fuzzy aspiration level and then the tolerance limit to each of them. 

The GA scheme used in the process of solving the problem is presented in the following Section 3. 

3. GA Scheme for MOFP Problems 

In the literature of GAs, there is a variety of schemes [10,11] for generating new population with the use of 
different operators: selection, crossover and mutation. In the present GA scheme, real-valued representation of 
candidate solutions is considered in the evaluation process of the problem. The tournament selection scheme in [10], 
arithmetic crossover [11] and uniform mutation operations are adopted to generate offspring in new population in 
search domain defined in the decision making environment. 

The basic steps of the GA scheme adopted in the solution search process are presented in the following 
algorithmic steps.  
 

Step 1. Representation and initialization 
In the present GA scheme, real-valued representation of candidate solutions, i.e., real coded chromosomes 
are considered in the evaluation process of the problem. Let ‘E’ denote the chromosome in a population. 
The population size is defined by pop_size. The initial population is generated randomly in the domain of 
feasible set defined in (1). 
 

 Step 2. Fitness function  
The fitness value of each chromosome is determined by evaluating an objective function. The fitness 
function is defined as: 

                      ,,...,2,1,}dw{)()(eval
K

1k
kk sizepopvZE vvv                                   (2)          

               where v)(Z represents the objective function of the DM, and where the    subscript v  is used to indicate the 
fitness value of the v -th chromosome, ,...,2,1v  pop_size.  
The best chromosome with largest fitness value at each generation is determined as: 

                                     },...,2,1)(evalmax{* pop_sizevEE v     

                               or, },...,2,1)(evalmin{* pop_sizevEE v ,  
              which depends on searching of the maximum or minimum value of an objective function. 

  Step 3. Selection 
Selection is a method of selecting an individual from a population of individuals in a GA search process. In 
tournament selection [10] several "tournaments" running among the few individuals chosen at random from 
the population. The best cromosome of each tournament is selected for crossover. The efficiency of this 
scheme depends on the size of the tournament. With the increase of tournament size, weak individuals have 
a smaller chance to be selected. In the present scheme, the tournament selection with tournament size four 
is used for the selection of two parents for mating purpose in the genetic search process. 

 Step 4. Crossover 
The parameter cp  is defined as the probability of crossover. The arithmetic crossover operation in [14] of a 
genetic system is applied here from the view point that the resulting offspring always satisfy the system 
constraints set S. Here, a chromosome is selected as a parent for a defined random number 

]1,0[r cpr if, is satisfied. 
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  The arithmetic crossover for the two parents SE E 21 and is defined as: 
                             1

1E 1 1E 2 2E , 2
1E 2 1E 1 2E , 

for producing two offspring 1
1E and 2

1E 1
1(E 2

1E and ,)S where 0, 21    .1with 21  
  Step 5. Mutation 

   Mutation operation is applied over the population after performing crossover operation. It alters one or 
more genes of a selected chromosome to re-introduce the genetic material. As in the conventional GA 
scheme, a parameter mp  of the genetic system is defined as the probability of mutation. The uniform 
mutation operation is performed. 

   

Step 6. Termination 
            The execution of the whole process terminates when the objective function reach with in a specific 

tolerance range in the solution search process. 
 
The pseudo code of the standard genetic algorithm is presented as: 
 

Initialize population of chromosomes E (x)  
 
Evaluate the initialized population by computing its fitness measure 
 
While not termination criteria do 

x : = x + 1 

Select E (x +1) from E (x)  

Crossover E (x+1) 

Mutate E (x + 1) 

Evaluate E ( x +1 ) 

End While 

 Now, the model formulation of the problem is described in the Section 4. 

4. FGP Model Formulation 

In the present decision situation, the individual best solution of each of the objectives is considered as the fuzzy 
aspiration levels of the objectives and they are determined by employing the proposed GA scheme. 
  Let, *

B k1
Z   and *

B k2
Z  be the best solutions of the two types of objectives (max and min), respectively,  

where      ),X(Z MaxZ kSX

*
B k1

             1Kk               (3)        

and            ,X)(Z  MinZ kSX

*
B k2

            2Kk                      (4) 

Then, the fuzzy objective goals can be obtained as: 

        )X(Z k ~
*
B k1

Z ,          1Kk        (5) 

     and      )X(Z k  ~
*
B k2

Z ,         2Kk                           (6)        

where ~  and  ~  refers to the fuzziness of the aspiration levels in [7]. 
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Now, in the multiobjective decision situation, since the objectives often conflict each other for individual goal 
achievement, a certain tolerance level for goal achievement need be given to make an overall satisfactory decision 
under the given system constraints in the decision making context. 

To make a reasonable balance of goal achievement, the individual worst objective function values are considered 
as the lower tolerance limit of the objective goals.  

Let, 
k1LZ   and  

k2LZ  be the worst objective function values of the respective objectives, where   

                      , )X(Z  MinZ kSXL k1       1Kk   

and       , )X(Z MaxZ kSXL k2
     2Kk                                                                       (7) 

Then, characterization of membership functions for goal achievement of the objectives within the tolerance 
ranges specified in the decision situation is presented in the following Section 4.1. 

4.1. Characterization of membership function 

Let )X(k  be the membership function representation of the k-th fuzzy goal. 

Then, for  ~  type of restriction, )X(k  takes the form:                                                         

    

k1

k1k1
K1

k1

Lk

*
BkL

k1

Lk

*
Bk

k

Z(X) Zif       ,                       0       

Z(X)Z Zif   , 
t

Z(X)Z
       

Z(X)Z if        ,                       1       

)X(                   (8)     

where, )Z(Zt
K1k1 L

*
Bk1  is the tolerance range for achievement of the k-th fuzzy goal, 1Kk  .  

Similarly, for ~  type of restriction, )X(k  appear as: 

k2

k2k2
K2

k2

Lk

Lk
*
B

k2

kL

*
Bk

k

Z(X) Zif      ,                        0       

Z(X)ZZif  ,  
t

(X)ZZ
       

Z(X)Z if        ,                       1       

)X(                     (9) 

where, )Z(Zt *
BLk2 k2k2

 is the tolerance range for achievement of the k-th fuzzy goal, 2Kk  .  
Now, the FGP model formulation of the problem for the defined membership functions is presented in the 

following Section 4.2. 

4.2. Minsum FGP model  

In the process of formulating FGP model of the problem, the membership functions are transformed into 
membership goals by assigning the highest membership value (unity) as the aspiration level and introducing under- 
and over-deviational variables to each of them. In minsum FGP, minimization of the sum of weighted under-
deviational variables of the membership goals in the goal achievement function on the basis of relative weights of 
importance of achieving the aspired goal levels is considered. 
 

The general minsum FGP model can be presented as [7]: 
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Find X(x1, x2, ...., xn)   so as to  

    Minimize Z = k

K

1k
kdw                                                                                        

 and satisfy    
k1

Lk

t
Z)X(Z

K1 + 1dd kk                                                        

                     
k2

kL

t
)X(ZZ

 K2 + 1dd kk                                                          

                     0d,d kk ,     k=1,2……K                                    
subject to the given system constraints in (1),  
            (10) 

Here, kk d,d  are the under- and over-deviational variables, respectively, of the k-th membership goal, Z  represents 
the goal achievement functions consisting the weighted under-deviational variables, where the numerical weights 

kw  represent the relative weights of importance of achieving the goals to their aspired levels, and they are 
determined as: 

           
k1

k t
1w , defined for the goal expression in (5),  

           
k2

k t
1w , defined for the goal expression in (6). 

 

The efficient use of the proposed approach is illustrated by a numerical example.  
 

5. Numerical Example 

The following fractional MODM problem is considered: 
Find )x,xX( 21 so as to: 

Minimize  
1x2x

05.19x95.10x12Z
21

21
1 , 

Minimize  
21

21
2 x2x

4x6x5Z , 

Maximize 2x2x
x9.5x8Z

21

21
3 , 

Maximize 
1x

2xx12
Z

1

21
4 , 

Subject to  

    
.0x,x

,6x
,9x

,12x2x

21

2

1

21

                                                                            

            (11) 
The GA is implemented using the Optimization Toolbox under MATLAB (MATLAB R 2010a) is employed at 

different stages for evaluation of the problem. The execution is made in Intel Pentium IV with 2.66 GHz. Clock-
pulse and 3 GB RAM. The parameter values used in genetic algorithm solution are given in Table 1.  
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Table 1. The parameter values used in GA 

Parameter Value 
Selection Tournament 
Crossover function 
Tournament size 

Arithmetic 
4 

Crossover probability 0.8 
Mutation Probabiliy  0.06 
Stopping criteria Constraint tolerance 

 
Then, following the procedure, the individual best and worst values of the successive objectives are obtained as: 

 (i)  *
B21

Z = 8.5608,    21LZ =10.3607 

(ii) *
B22

Z = 4.833,     22LZ =5.4962 

(iii) *
B13

Z = 10.1062,  13LZ = 6.4108 

(iv) *
B14

Z = 11.2308,  14LZ =10.7882 
 
Then, the fuzzy objective goals appear as: 

1x2x
05.19x95.10x12:Z

21

21
1 ~ 8.5608 

21

21
2 x2x

4x6x5:Z ~  4.833 

2x2x
x9.5x8

:Z
21

21
3 ~  10.1062 

1x
2xx12:Z

1

21
4 ~  11.2308 

Now, defining the tolerance limits for the worst values of the objectives and then following the procedure, the 
membership functions of the fuzzy objectives are successively obtained as: 

8.1
1x2x

05.19x95.10x123607.10
21

21

Z1
,  

6632.0
x2x

4x6x54962.5
21

21

Z2
, 

7.3

4108.6
2x2x

x9.5x8

21

21

Z3
, 

4426.0

7882.10
1x

2xx12

1

21

Z4
.                                     

                                                                                                                    (12) 
Then the resultant minsum FGP model appears as: 
Find )x,x( 21 so as to 

Minimize 4321 d
4426.0
1d

7.3
1d

6632.0
1d

8.1
1Z  
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and satisfy the membership goal constraints 
 

1dd
8.1

1x2x
05.19x95.10x123706.10

11
21

21

,  

1dd
6632.0

x2x
4x6x54962.5

22
21

21

, 

1dd
7.3

4108.6
2x2x

x9.5x8

33
21

21

, 

1dd
4426.0

7882.10
1x

2xx12

44
1

21

.               

subject to the given system constraints in (11)      
                                                                                                                                (13)        

 

The goal achievement function Z in (13) appears as the evaluation function in the GA search process of solving the 
problem. 
The evaluation function to determine the fitness of a chromosome appears as: 

,,...,2,1,}dw{)()(eval
4

1k
kk sizepopvZE vvv       (14)

       where vZ )(  is used to represent the achievement function Z in (13) for measuring the  fitness value of v-th 
chromosome in the decision process. 

The best objective value )( *Z for the fittest chromosome at a generation in the solution search process is 
determined as:                      

                              },...,2,1)(evalmin{* pop_sizevEE v ,                                       (15) 

The achieved values of the objectives are )Z,Z,Z,Z( 4321  = (9.7493, 4.999, 8.6557, 10.8997), 
with respective membership values are (0.3451, 0.7481, 0.6067, 0.2520). 
The plotting of the best individual from MATLAB Optimization Toolbox in presented in Fig. 1. 
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Fig. 1. Plotting of best individual from MATLAB optimization toolbox 
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Fig. 1 representing the output plot of best individual from optimization toolbox. First two bars in fig 1 are the
decision variables, 1x and 2x , respectively and last eight bars are objective values )Z,Z,Z,Z( 4321 and the achieved 

membership values ),,,(
4321 ZZZZ of the problem.

The membership functions obtained by pre-emptive priority structure in [15] are appearing as: (0.06, 0.96, 0.92, 
0.15).

The graphical representation of membership values of the objectives achieved under the proposed method and
priority-base approach is displayed in Figure 2.

Fig. 2. Comparison of the achieved membership values of the objectives

The result indicates that a better distribution of decision is obtained here from the viewpoint of achieving the
aspired goal values on the basis of the needs and desires of the DM in the decision making environment.

Note 1: GA parameter values in Table 1are adopted from the test results. Here, the parameter setting is particularly
adopted to avoid any early convergence with suboptimal decision and substantial increase in generation numbers in
the decision making horizon. The experiments with the different values of probability of crossover ( cp ) and
probability of mutation ( mp ) in the ranges )9.06.0( cp and )8.003.0( mp are made with the proposed GA
scheme. It is found that cp = 0.8 and mp = 0.06 are most successful in the present decision search process. Again,
the use of arithmetic crossover increase the efficiency of the GA as there is no need to convert chromosome to the 
binary, less memory and time required for the execution of the problem. However, it is worthy to mention here that
the selection of GA parameter values highly depends on the characteristics as well as size of a problem in the
decision making environment.

6. Conclusions

The main advantage of the GA solution approach to the minsum FGP model of the problem is that the higher 
degree of satisfaction of the solution can be searched on the basis of the needs and desires of the DMs in the
decision making environment. Again, the computational load with the use of conventional linearization technique
can be avoided here with the use of the proposed GA scheme. The approach can easily be extended to complex real-
life MODM problems with quadratic as well as general non-linear form of objectives in the decision making
horizon. In future study, the proposed approach can be extended to solve large scale hierarchical decision making
problems in an uncertain environment. However, it is hoped that the proposed approach may open up many new
areas for study in the current inexact MODM arena.
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