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Abstract 

Submodular functions are playing an increasing role in analyzing many discrete optimization problems. The 
purpose of this paper is to continue the trend by using submodular functions and their properties to develop a 
duality for discrete dynamic programming. 
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I.  Introduct ion 

Duality is one of the most elegant concepts and one of the important  computational  tools in 
mathematics.  Duality's contributions to analysis and optimization are many. However, as a result of the 
recursive nature of dynamic programming (DP), duality results for DP are quite limited. 

Bellman [1,2] was the first to introduce a duality concept in dynamic programming. Bellman [1] used 
Lagrange multipliers to reduce the state space. This in itself does not result in a general duality theory 
for DP. However,  this concept, which was later generalized by Everett  [4], has played an increasingly 
important  role in discrete optimization vis-a-vis Lagrangian relaxation. 

Dinkle and Peterson [3] developed a duality theory for the class of dynamic programming problems 
that have convex return functions and linear transition functions through the use of generalized 
geometric programming duality. In their approach,  Dinkle and Peterson viewed the primal and dual 
problems in terms of orthogonal spaces. This approach is not without possible drawbacks. As Rockafellar 
[9,10] noted, it may not be a very effective scheme since it doesn' t  always lead to unambiguous 
Lagrangians. It also does not provide the most natural setting for the study of the optimal value functions 
and it could create a conceptual stumbling block in application if there is not an obvious subspace at 
hand. Klein and Morin [6,7] overcame this problem with a more general approach using conjugate 
functions. Aside from the previously mentioned results and the fact that numerous other authors have 
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provided tantalizing hints, a general duality theory for dynamic programming does not appear to have 
been developed to date. 

We will look at the shortest route problem on a directed acyclic network which is the prototype 
problem for Dynamic Programming (DP). In this paper we will show how a duality can be achieved for 
the DP formulation of the shortest route problem. 

2. Preliminaries 

Let G(V, E) be a directed acyclic network. Then the vertices of G can be numbered so that 1 is the 
source and N is the sink, where N = I V I, and for any (i, j )  E E, i < j .  Without loss of generality let 
V =  {1, 2, 3 . . . . .  N}. For any edge (i, j ) ~ E ,  there is a corresponding weight cij with c u = + ~  if 
(i, j )  ~ E. 

To find the path with minimum weight one can use the following DP recursion: 

f ( i )  = min {cij + f ( j ) } .  (1) 
t < j  

Here f(i)  represents the shortest distance from i to the sink N. The shortest path for the graph G is 
given by f(1)  and f (N) := 0. 

In order  to develop a DP duality for this formulation we will use the concepts of submodularity and 
submodular polyhedra [8]. Recall that a set function f defined on all the subsets of a finite set S, i.e., 
f : 2 s --, E where 2 s represents the set of all subsets of S, is submodular if 

f (  A U B )  + f (  A r i B )  < f (  A) + f (  B), (2) 

for all A, B KS. Also, we can define a submodular polyhedron associated with a nonnegative 
submodular function f as follows. 

Definition 1. Let f : 2 s ~ R, and let f be submodular. The submodular polyhedron associated with f is 
Pf = {x ~ Es I x(T) < for all T _ S}. 

Note that if we restrict x(T) > 0 then the polyhedron is bounded and is referred to as a polymatroid. 
The property of interest in terms of submodular polyhedra is that the intersection of two submodular 
polyhedra, Pf and Pg, is described by the system 

x (T)  <min{ f (T ) ,  g ( T ) }  for all T. 

Based on this system description a duality for the intersection of two submodular polyhedra can be 
derived. This duality is given below. 

Let f and g be submodular functions defined on S, f (¢ )  = g(¢) = 0. Then the following holds: 

max{1 .x Ix ~PfnPg} = m i n { f ( A )  + g( S - A )  I A c_ S}. (3) 

The right-hand side of (3) is the convolution operator for set functions. The convolution function h is 
defined as 

h( A) = min { g( B - A )  + f ( A ) }  = ( g [] f ) (  A) (4) 
B c A  

In general, h will not be a submodular function. However, if f is submodular and g is modular in (4), 
then h is submodular. 
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3. DP duality for the shortest route problem 

In order to develop a DP duality for the shortest route problem we will use the functional equation 
given by (1) and the duality of submodular polyhedra intersection given in (3). First we must rewrite (1) 
in terms of set functions. To do this we define the following sets and set functions. For G(V, E) directed 
and acyclic, let 

J,={i ,  i + 1  . . . . .  N}, i ~ V =  {1, 2 . . . . .  N}. 

jo  = •. 

J i = { 1  . . . . .  i } , i ~ V = { 1 , 2 , . . . , N } .  

Define the function f : 2 v ~ ~ to be the following function: 

l 0 if A = ¢ ,  

f ( A )  = shortest distance from i to N if A = Ji, 
+ ~ otherwise. 

Claim 1. f is submodular. 

Proof. Let A, B _ V. If A and B are such that f (A )  +f(B)  < + ~  then A =Ji for some i and B =Jk for 
some k. By definition either J/c_ Jk or Jk c Ji. Without loss of generality let Ji c_ Jk. Then A U B = Jk, 
A NB =Ji and f ( A ) + f ( B ) = f ( A  U B ) + f ( A  NB). If A and B are such that A ~Ji or B *Ji for some 
i then f ( A ) + f ( B ) =  + ~ a n d  f ( A ) + f ( B ) > f ( A u B ) + f ( A n B ) h o l d s .  [] 

Note that here f (A)  is actually a modular function for all A _ V such that f (A)  < +~. 
Now, define the set-functions gi : 2v ---) R, i = 1 . . . . .  N - 1, as follows: 

/O if A = ¢ ,  

g i ( A ) =  ci,k+ 1 i f A U J  i - l=Jk ,  

+ ~ otherwise, 

g N ( ' )  = 0 .  

Claim 2. gi, for i = 1 . . . . .  N - 1,/s  submodular. 

Proof. Let A, B ~_ V. If A and B are such that gi(h) +gi(B) < + ~  then A u J  i-~ = J k  for some k and 
B u j i - l = J  p for some p. Without loss of generality assume j k c j p .  Since ( A u J i - ~ ) = J  ~ and 
( B U j i - 1 ) = J  p and Jk c_JP it follows that (A UB)UJ  i-1 =JP. Hence, gi(A uB)=ci.p+ 1. Likewise, 
( A n  B) u j i -  1 _= jk which implies gi(A n B) = ci,k+ 1. Therefore, gi(A) + gi(B) = gi(A u B) + gi(A N 
B). If A and B are such that gg(A) + gi(n) = + ~ then g~(A) + gi(B) > gi(A N B) + gg(A U B). [] 

By definition, f(J /)  is the shortest path from i to N. We can write f(Ji) in DP recursion form as 
follows: 

f(Ji)  = min {g i (J i -A)  + f ( A ) } .  (5) 
A cJ i 

Note that the minimum is over A c J  i since A =Ji gives the identity f (J )=f(J / ) .  Also note that the 
right-hand side of (5) is just the convolution of two submodular functions. However, in this case, the 
convolution is again a submodular function since it is the function f. 
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Claim 3. f(Ji) = minA ~Ji{gi(Ji - A )  +f (A)}  yields the shortest distance from i to N in the directed acyclic 
network G(V, E). 

Proof. In order for f(Ji)--/= +oo the minimum will have to occur at some set Ji+e, k =  1 . . . . .  N - i ,  
otherwise f ( A )  = +oo. If the minimum occurs at A =Ji+k for some k < N -  i then 

J i - J i + k = { i , i + l  . . . . .  / + k - l }  and (J i -J i+k)  U J i - ~ = { 1 , 2  . . . .  , / + k - l } .  

Hence gi(Ji - h ) =  ci,i+ k. If (i, i + k) does not exist, ci,i+ k = +oo and the minimum will not be obtained. 
Therefore,  gi(Ji - A )  will yield only those values of the edges leaving vertex i. Hence, in the recursion 
given by (5 ) we  have A =Ji+k, for some k, g i ( J i - A )  = Ci,i+k, (i, i + k ) ~ E  and f(J/+k) < +oo. Since 
f(Ji+k) is the shortest distance from i + k to N and gi(J  i --Ji+k ) = Ci , i+ k it follows by the principle of 
optimality that the minimum given by 

min {gi( Jk - A )  + f ( A ) }  = ci,i+ k + f (  Ji+k), 
A cJ~ 

for some k, will be the shortest distance from i to N. [] 

We now can state a DP duality based on this formulation. The shortest distance from the source, node 
1, to the sink, node N, is given in set-function form by 

f ( V )  = min { g l ( V - A )  + f ( A ) }  
A c V  

which is just a convolution operator  between two submodular functions. Hence, 

m i n { g l ( V - A  ) + f ( A ) }  = max{1-x I x ( T )  < min{gl(T ),  f ( T ) } ,  T___ V}. (6) 

However, since the intersection of gi and f ,  for i = 1 . . . . .  N, is a submodular function, the right-hand 
side, i.e., the dual, can be written as 

max{1 -x I x ( T )  < min{gl(T ),  g2 (T)  . . . . .  g u ( T ) ,  f ( T ) } ,  T___ V}, (7) 

as was shown by Lovasz [8]. 
The purpose in developing (7) is that the gi(T)-values are based on cost coefficients that are already 

known. In order  to use (6), it is necessary to know a priori the shortest lengths from each node to the 
sink. It can be shown that the constraints produced by the shortest lengths, i.e., f (T) ,  are redundant in 
(7). 

4. Example 

For the graph in Fig. 1 we have the following function evaluations. For those sets not given the 
function values are +~ .  g~({1}) = 4, gl({1, 2}) = 3; g2({2}) = 4, g2({2, 3}) = 8, g2({2, 3, 4}) = 7; g3({3}) = 9, 
g3({3, 4}) = 10; g4({4, 5}) = 6; g5({5}) = 4; g6( ')  = 0; f({6}) = 0, f({5, 6}) = 4, f({4, 5, 6}) = 6, f({3, 4, 5, 6}) 
= 14, f({2,  3, 4, 5, 6}) = 11, f({1,  2, 3, 4, 5 } ) =  15. 

We need to determine an x(T) < min{gl(T) . . . . .  g6(T), f(T)} where x ~ R v, x(T) = S,e~rx(e). Here 
e represents a single element of T, x(e) represents the component.  That is, if T =  {1, 4, 6} then 
F.x(e) =x 1 +x 4 + x  6. Also recall that V is the set of vertices. Therefore,  the maximum possible values 
for x = (x l, x 2, x3, x4, x5, x 6) would be Xm= = (4, 4, 9, co, 4, 0), based on the sets {1}, {2} . . . . .  {N}. 
However, we must also take into account the other sets and the restrictions they place. Taking these into 
account, we obtain x = (4, - 1, 8, 0, 4, 0) as the maximum of 1 • x. 
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Fig. 1. A directed acyclic graph.  

This value can be obtained by solving the corresponding LP of the problem. In this case the LP is 
given by 

(DLP) 

m a x  x 1 +X2 +X3 +X4-4-X5 +X 6 

subject to x 1_<4, 

x 1 + x 2 < 3, 

x 2 _< 4, 

X 2 + X  3 _~< 8 ,  

X2"4-X3 + X 4 G 7 ,  

x 3 <_ 9 ,  

x 3 + x  4 < 10, 

X 4 + X  5 _~< 6, 

x 5 < 4, 

X 6 ___ 0 ,  

x i unrestricted. 

Note that this LP does not make use of the restrictions imposed by the function evaluations of f since 
they are redundant.  

5. Analysis of the dual problem 

Notice that DLP has a unimodular  structure and does not need to be restricted to integer values. This 
is anticipated since the theory of submodular  polyhedron tells us that the intersection of two integral 
submodular  polyhedra will have integral vertices. However,  due to the construction of the convolution, 
what we have is the intersection of two submodular  polyhedron being guaranteed to be a submodular 
polyhedron again. Therefore,  we can maximize 1 .x over the intersection of all the corresponding 
submodular polyhedron, i.e., 

(G, nGn...nGner) 
and still be guaranteed integral vertices. 
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To obtain a true DP duality we must take this DLP a step further. The general form of the DLP is 

(DLP1) 

max 1 • x 
s.t. Zx_<c  

x unrestricted. 

If  we restrict x, i.e., set x = u - w, u > 0, w > 0, we obtain 

(DLP2) 

max 1 . ( u - w )  

s.t. A u  - A w  < c 
u > O ,  w > O .  

For ease of presentat ion let z = ( u  l . . . . .  u n, w 1 . . . . .  wn), B = ( A ,  - A ) ,  and e - ( 1  . . . . .  1, - 1  . . . . .  - 1 ) .  
Then the problem is 

(DLP3) 

max e • z 
s.t. B z  < c 

z>_0 

The integrality of z is implicitly taken care of through the unimodularity of  A. But if we explicitly state 
that z must be integral, then DLP3 is a multi-dimensional knapsack type problem and we have the DP 
formulation for DLP3 given below. 

max f / ( y )  = m a x  {eiziq-fi_l(y-bizi)} 
zi~Zi(y) 

where b i is the i-th column of B, B is m × 2 n ,  y is an m-vector where y < c  and Z i ( y ) =  

{0, 1 . . . . .  minj([ yJbi i ] )} .  There  is also the boundary condition f o ( Y )  = O. 

Therefore,  in terms of DP duality we have the dual of the DP recursion of the shortest path problem 
being the DP recursion of a knapsack problem. This is intuitively appealing since we already 'know that a 
1-dimensional knapsack problem can be formulated and solved as a longest path problem. This duality is 
further emphasized by these results. 

Another  interesting relationship of the dual problems can be found by looking at the LP's involved. As 
Wagner  [11] noted, the DP recursion for the shortest path problem actually solves the dual of the LP 
formulation of the shortest path problem. 

The shortest path problem for a directed acyclic graph can be formulated as 

(SRP) 

min 

s.t. 

E E CijXij 

~ x k j -  ~x ik  = 0 
j i" --1 

xi j  >__ O. 

if k is source, 
other,  
if k is sink, 
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If we look at the example problem and DLP we see that this formulation is in the same basic form as the 
dual to SRP. The right hand side of DLP is given by the ci~'s and there is one constraint for each edge in 
the graph. This is similar to the maximum packing of (s, t) cuts given by Fulkerson [5]. That  is, there is 
one constraint for each edge, but this formulation has only one variable for each node and the variables 
are unrestricted. If  we formulate the max packing of (s, t) cuts problem for this example, we obtain the 
formulation MPLP given below. Note that there is one variable for each cut. 

(MPLP) 

max 

s . t .  

IKI 
~,Xi  

i=1 

X 1 q-X 2 q'-X 3 q-X 4 _~ 4,  

X 1 q-X 9 q-Xl0 -[- Xl l  ~__ 3, 

x9Wx~o+Xl l  <4 ,  

x 2 + x  3 + x  6 + x  8 < 9, 

X2-l-X4-l-X6 q-X7 ~_~ 10, 

X 3 -[-X 5 -}-X 8 -~- Xl l  _~ 4, 

X 4 -{'-X 5 "}-X 7 q-Xl0 _~ 6, 

X 6 -I-X 7 q-X 9 -}- Xl l  ~ 7, 

X6 q'-Xs q-X9 q-Xll <_~8, 

X i >_ O, 

where K is the set of all cuts separating s from t, for which there are 11 in this problem. 
As stated, this is similar to DLP in terms of the right hand side, but differs in terms of the number  of 

variables and their restriction. If  we take the dual of DLP we obtain 

(SRP1) 

min 

s . t .  

E E c i j x i j  

x t 2  --f-Xl3 = 1, 

x i  3 _{_x23 q_x24 q_x25 m. 1, 

X24 q-X25 q-X34 -1- X35 ~--- 1, 

X25 q-X35 q"X46 = 1, 
X46 "}- X56 = 1, 
xij 2> 0,  

which is a different formulation of the shortest path problem. In this formulation, each constraint 
represents a particular cut in the network. Constraint i represents the cut that separates the sets of 
nodes (1 . . . . .  i) and (i + 1 . . . . .  N).  Note, however, that this particularly nice representat ion of the subset 
of cuts occurred only due to the manner  in which the nodes were numbered.  In general, this will not be 
the subset of cuts that constitutes the linear program. 

In general, for the DP duality stated, we are solving the duals to two different formulations of the 
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shortest path problem. This can be seen below. Assume that 1 is the source node and N is the sink. Then 
for the primal DP we have 

(SRP) (DSRP) 

min ~ ECi jX i j  m a x  --Yn -t-YI 

subject to subject to 

(SRP1) 

min ~ ~ c i j x i j  

subject to 

A x = l ,  

Xij >-~ 0, 

1 if k is source, 
0, other, 

- 1  if k is sink, 
E Xkj- -  E Xik = 

(k,j) (i,k) 

xiy >_ O, 

and the DP recursion for shortest paths solves (DSRP). 
For the Dual DP we have 

(DLP) 

m a x  ~ Yi 
i 

subject to 

ATy < C, 

y unrestricted, 

Yi - Yj <- C ij' 

Yk unrestricted, 

and the dual DP formulation solves DLP after y is restricted. 
These LP's and their duals are interesting in that we see two different formulations that are close to 

each other, but yield different recursions to solve the duals. In addition, these duals, DSRP and DLP, 
are dual to each other in terms of the DP recursion. 

6. Conclusions 

It has been shown that it is possible to develop a DP duality through the shortest route problem. The 
dual then becomes a multidimensional knapsack problem. This has some intuitive feel since the 
one-dimensional knapsack problem can be reformulated as a longest path problem. Computationally, 
this dual does not have any advantage since shortest path problems are well solved. However, the 
primary result is the development of a duality that has not existed before for general DP. It may be 
possible though to gain a computational advantage when looking at DP's other than the shortest path 
problem and their duals. These problems and the relationships and implications of these results warrant 
further investigation. 
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