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This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between
any pair of nodes is considered to be a fuzzy variable. A fuzzy expected value maximization model is
designed for such a problem. Moreover, a hybrid algorithm of fuzzy simulation and simulated annealing
(SA) is used to solve FMCLP. Some numerical examples are presented, solved and analyzed to show the
performance of the proposed algorithm. The results show that the proposed SA finds solutions with
objective values no worse than 1.35% below the optimal solution. Furthermore, the simulation-embedded
simulated annealing is robust in finding solutions.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction and problem description

The term location analysis refers to the modeling, formulation,
and solution of a class of problems that can best be described as
siting facilities in some given space. The expressions deployment,
positioning, and siting are frequently used as synonyms (ReVelle
& Eiselt, 2005). Applications of location problems range from gas
stations and fast food outlets to landfills and power plants. One
of the traditional location problems, which has been well studied
since its introduction, is the covering location problem. In a cover-
ing location problem, one seeks a solution to cover a subset of cus-
tomers considering one or more objectives. The covering location
problem is often categorized as location set covering problem
(LSCP) and maximal covering location problem (MCLP). In a stan-
dard MCLP, one seeks location of a number of facilities on a net-
work in such a way that the covered population is maximized. A
population is covered if at least one facility is located within a
pre-defined distance of it. This pre-defined distance is often called
coverage radius. The choice of this distance has a vital role and af-
fects the optimal solution of the problem to a great extent. MCLP is
of paramount importance in practice to locate many service facili-
ties such as schools, parks, hospitals and emergency units. The
problem was first introduced by Church and ReVelle (1974) on a
network and since then, various extensions to the original problem
have been made. Normally, MCLP is considered whenever there are
insufficient resources or budget to cover the demand of all the
nodes. Therefore, the decision maker determines a fixed budget/re-
source to cover the demands as much as possible.

Uncertainty is ubiquitous in reality and this makes description
of many parameters difficult or even impossible. Some examples
of uncertainty in real world problems are the estimation of
ll rights reserved.
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customer demands, travel times, inflation rate, etc. In this paper,
we assume that there is not precise information concerning travel
times on the arcs of network. In addition, there is not enough data
to be used in order to find a statistical distribution. Therefore, de-
mands are estimated based on the knowledge of experts. For
example, experts may state their ideas as ‘‘about 40 units per
day’’, ‘‘between 10 and 20 units weekly’’, etc. Fuzzy variables are
used in these cases to deal with this kind of uncertainty. Travel
time is an instance of variables which are difficult to estimate using
traditional methods such as probabilistic methods. In most of the
cases, there is not enough data to be used to fit a probability distri-
bution of travel times between nodes or probabilistic approach is
too costly to be used. On the other hand, based on the expert’s
judgment; one can easily estimate transportation times. Therefore,
we use fuzzy theory in order to model and solve our problem.

In this paper, we present a fuzzy version of MCLP (FMCLP)
where travel times are considered to be fuzzy variables. A model
based on credibility theory is presented and a hybrid intelligent
algorithm is proposed in order to solve this problem. The hybrid
algorithm is comprised of a simulation embedded within a simu-
lated annealing procedure.

The rest of the paper is organized as follows: First, a concise lit-
erature review of covering problems and related issues is pre-
sented. Then, fuzzy variables and basics of credibility theory are
discussed. Section 4 is dedicated to description of our problem.
The proposed solution algorithm is presented in Section 5 and a
numerical example appears in Section 6. Finally, conclusions and
outlooks for potential future research are given in Section 7.
2. Literature review

In the literature, there are several methods to solve MCLP
including exact, heuristic, and metaheuristic methods. The first
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wave of published location models are deterministic and, thus, do
not account for uncertainties, which may exist in covering prob-
lems such as the probability that a particular ambulance might
be busy at a given time or the fuzzy demands in a network.

The literature of covering models is too diverse to be completely
studied in this paper. Hereby, just a few interesting papers are ad-
dressed. There has been numerous papers and technical manu-
scripts related to covering problem since its introduction. Resende
(1998) studied the performance of GRASP in solving the maximal
covering problem. Qu and Weng (2009) studied the problem of mul-
tiple allocation hub maximal covering problem. In their work, it is
assumed that to reach a destination, it is mandatory to pass one or
two hubs in a limited time, cost or distance. The problem in Qu
and Weng (2009) is to locate p hubs so that the serviced flows are
maximized. The proposed method to solve such a problem is an evo-
lutionary approach based on path relinking. De Assis Correa, Lorena,
and Ribeiro (2009) analyzed the probabilistic version of MCLP in
which there is one server per center. They used a combination of col-
umn generation and covering graph approaches in order to solve this
problem. Araz, Selim, and Ozkarahan (2007) considered a multi-
objective fuzzy goal programming for covering-based emergency
vehicle location model. The objective of Araz et al. (2007) is to max-
imize the population with backup coverage and increasing the ser-
vice level by minimizing the total travel distance from locations at
a distance larger than a pre-specified distance standard. Berman
and Krass (2002) considered partial coverage of customers for a gen-
eral class of MCLP. The same problem was considered by Karasakal
and Karasakal (2004) where they used a Lagrangean Relaxation to
solve the problem. To solve a covering problem, Murawski and
Church (2009)) proposed a model to assume that the established
facilities are fixed and the accessibility of demand nodes are to be
improved. Their model is called maximal covering network
improvement problem which was formulated as an integer-linear
programming problem and a case study in Ghana is surveyed.
Shavandi and Mahlooji (2006)) presented a fuzzy location–allocation
model for congested systems and called it fuzzy queuing maximal
covering location–allocation. They used a genetic algorithm to solve
the problem. Batanovic, Petrovic, and Petrovic (2009) suggested
maximal covering location problems in networks with uncertainty.
They studied problems with equal importance of demand nodes, rel-
ative deterministic weights of demand nodes, and linguistic terms
for weights of demands. In addition, they proposed suitable algo-
rithms to solve these models. ReVelle, Eiselt, and Daskin (2008) re-
viewed papers relating median, center and covering problems and
the contributions made in these location models. Interested readers
may refer to this paper for a thorough review of covering problems.

Table 1 shows some maximal covering location problems which
have been studied in the literature. It can be observed that most of
the literature is devoted to deterministic cases and heuristics/meta-
heuristics have been a major tool to solve these problems so far.

Considering the literature review, it is clear that there is no
work on maximal covering location problems with fuzzy travel
times. Based on such a finding and the fact that uncertainty is pres-
ent in most of the real world problems, we propose using fuzzy lo-
gic in modeling the problem. This paper makes the following
significant contributions to the literature. We model MCLP in a fuz-
zy environment with expected value maximization programming.
Moreover, the model is solved using credibility theory and simu-
lated annealing. Finally, a new approach is proposed in order to
validate such a problem.

3. Fuzzy variable

The term ‘‘Fuzzy variable’’ was coined by Kaufmann (1975) and
then discussed in Zadeh (1975, 1978) and Nahmias (1978). Possi-
bility theory was proposed by Zadeh (1978) and its extensions
and developments were followed by Dubois and Prade in many
publication such as Dubois and Prade (1988). A modification to
possibility theory which is called credibility theory was founded
by Liu (2008) and recently studied by many scholars all over the
world. Since a fuzzy version of covering problem in credibility
space will be considered in this paper, we present a brief introduc-
tion to basic concepts and definitions as follows:

Definition 1 (Nahmias (1978)). Let H be a nonempty set, and
P(H) as the power set of H, for each A e P(H), there is a
nonnegative number Pos(A), called as possibility, such that
(i) Pos{£} = 0.
(ii) Pos{H} = 1.

(iii) Pos{UkAk} = supk Pos{Ak} for any arbitrary collection {Ak} in
P{H}.

The triplet (H, P(H), Pos) is called a possibility space and Pos is a
possibility measure.

Definition 2 ((Zheng and Liu, 2006)). A fuzzy variable is defined as
a function from the possibility space (H, P(H), Pos) to the real line
R.

Let us clarify the difference between a fuzzy variable and a ran-
dom variable. Suppose that a fair coin is tossed, we know that the
probability of each side is equal (Pr(h1) = Pr(h2) = 0.5). In such a
case, one may define a random variable as:

wðhÞ ¼
0 if h ¼ h1;

1 if h ¼ h2:

�
ð1Þ

If the problem is defined in a credibility space (will be discussed
later) and a measure is used called credibility instead of probability
(Cr(h1) = Cr(h2) = 0.5), then a fuzzy variable can be defined as
follows:

nðhÞ ¼
0 if h ¼ h1

1 if h ¼ h2

�
ð2Þ

It is easily recognized that both variables are a mapping to the
set of real numbers from a space with known properties and axi-
oms. It should be noted that while probability theory is used to
study the behavior of random variables, credibility theory is used
in order to study fuzzy variables.

Definition 3 ((Zheng and Liu, 2006)). Let n be a fuzzy variable on a
possibility space (H, P(H), Pos). Then its membership function is
derived from the possibility measure Pos by:

lðxÞ ¼ Posfh 2 HjnðhÞ ¼ xgx 2 R: ð3Þ
Definition 4 ((Zheng and Liu, 2006)). Let (H, P(H), Pos) be a pos-
sibility space, and A be a set in P(H). Then the necessity measure
of A is defined by: Nec{A} = 1 � Pos{Ac}.
Definition 5 ((Zheng and Liu, 2006)). Let n be a fuzzy variable on a
possibility space (H, P(H), Pos). Then the set

na ¼ fnðhÞjh 2 H; PosfhgP ag: ð4Þ

Is called the a-level set of n.
Definition 6 ((Zheng and Liu, 2006)). Let (H, P(H), Pos) be a possi-
bility space, and A be a set in P(H). Then the credibility measure of
A is defined by: CrfAg ¼ 1

2 ðPosfAg þ NecfAgÞ which is a self-dual
measure. (Possibility and Necessity measures lack the self-duality
property.)



Table 1
The literature review matrix.

Paper Parameter type Solution type Solution procedure

Deterministic Probabilistic Fuzzy Exact Heuristic Metaheuristic

Galvao, Espejo, and Boffey (2000)
p p

LR
Aytug and Saydam (2002)

p p
GA

Berman and Krass (2002)
p p

LR
Espejo, Galvao, and Boffey (2003)

p p
LR

Karasakal and Karasakal (2004)
p p

LR
Barbas and Marin (2004)

p p
DC

Younies and Wesolowski (2004)
p p

N/A
Shavandi and Mahlooji (2006)

p p
GA

Araz et al. (2007)
p p

N/A
Curtin et al. (2007)

p p
N/A

Berman and Huang (2008)
p p

TS/LR
Plastria and Vanhaverbeke (2008)

p p
IE

ReVelle et al. (2008)
p p

HC
Batanovic et al. (2009)

p p
N/A

Canbolat and Massow (2009)
p p

SA
Murawski and Church (2009)

p p
N/A

Qu & Weng (2009)
p p

PR
Ratick, Osleeb, and Hozumi (2009)

p p
N/A

IE, intelligent enumeration; PR, path relinking; SA, simulated annealing; HC, heuristic concentration; DC, decomposition; LR, Lagrangean relaxation; CG, column generation;
GA, genetic algorithm; TS, tabu search.
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If the membership function l(u) of n is given as l (u is an event),
then the possibility, necessity, credibility of the fuzzy event {n P r}
can be represented by:

Posfn P rg ¼ sup
uPr

lðuÞ; ð5Þ
hj Demand of node j (the weight of jth node)

Necfn P rg ¼ 1� sup

u<r
lðuÞ; ð6Þ
P Number of facilities to be located
tij Travel time between nodes i and j
R Coverage radius

aij ¼
1 if node j is covered by the facility in node i or tij 6 R

0 otherwise

�

Decision variables

Xj ¼
1 if node j is covered by a facility
0 otherwise

�

Yi ¼
1 if a facility is established in node i

0 otherwise

�

Now the problem of fuzzy MCLP (MCLP) could be stated as
follows:

Max E
X

j

hjXj

 !
; ð11Þ

X

Crfn P rg ¼ 1
2

Posfn P rg þ Necfn P rgð Þ: ð7Þ

Considering Eq. (7), the credibility of a fuzzy event is defined as
the average of its possibility and necessity. The credibility measure
is self-dual. A fuzzy event may fail even though its possibility
achieves 1, and hold even though its necessity is 0. However, the
fuzzy event must hold if its credibility is 1, and fail if its credibility
is 0. Now let us consider an example of a trapezoidal fuzzy variable
n = (r1, r2, r3, r4). From the definitions of possibility, necessity and
credibility, it is easy to obtain:

Posfn P rg ¼
1 if r 6 r3
r4�r

r4�r3
if r3 6 r 6 r4

0 if r P r4;

8><
>: ð8Þ

Necfn P rg ¼
1 if r 6 r1
r2�r

r2�r1
if r1 6 r 6 r2

0 if r P r2;

8><
>: ð9Þ

Crfn P rg ¼

1 if r 6 r1
2r2�r1�r
2ðr2�r1Þ

if r1 6 r 6 r2

1
2 if r2 6 r 6 r3

r4�r
2ðr4�r3Þ

if r3 6 r 6 r4

0 if r P r4:

8>>>>>><
>>>>>>:

ð10Þ
i

aijYi � Xj P 0 8j; ð12Þ

X
i

Y i ¼ P; ð13Þ

Xj;Yij 2 f0;1g: ð14Þ
4. The fuzzy maximal covering location problem (FMCLP)

Assume that there is a network G = (N, A) where N and A repre-
sent nodes and arcs respectively. There is a weight associated with
each node which represents its demand. The travel times on the
arcs of the network are uncertain which are presented as fuzzy
variables. Before introducing the problem formulation and our
solution approach, decision variables and parameters are pre-
sented as follows:
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Objective function (11) states that the total value of covered de-
mand is to be maximized. Constraint (12) states that the demand
of node j is covered if there is at least one located facility with a dis-
tance less than the coverage radius. Constraint (13) holds that there
are P facilities to be located. Finally, constraint (14) imposes binary
restriction on decision variables.

Solution of large instances of the maximal covering location
problem with high percentage coverage is cumbersome using ex-
act methods (ReVelle, Scholssberg, & Williams, 2008). Exact meth-
ods are handicapped to render an optimal solution for all instances
of MCLP within a reasonable amount of time. Therefore, using heu-
ristic or metaheuristic methods to solve MCLP is reasonable. There
are exact methods such as Branch and Bound which do not search
the solution space exhaustively. Despite this fact, due to the rapid
increase in the number of possible solutions of MCLP, even these
methods are unfit to solve larger instances.
5. Proposed solution algorithm

Although exact methods are capable of solving MCLPs of small
and medium size, our experiments show that runtimes needed to
solve MCLP instances of larger size balloon to as much as more
than 24 h. This shows that exact methods are unable to solve
real-world problems of MCLP and one may use heuristics or meta-
heuristics. In this section of the paper, we will propose and elabo-
rate a simulated annealing approach to solve MCLP. We will show
how well this procedure works on the crisp version of the problem.
Then, a fuzzy simulation will be embedded within simulated
annealing to solve the fuzzy version of MCLP.

5.1. Overall structure of the solution procedure

In this paper, a simulation-embedded simulated annealing (SA)
is used to solve FMCLP. The simulation is embedded within SA in
order to estimate the expected value of the covered demand.
Moreover, SA is utilized to search the solution space effectively.
Arostegui, Kadipasaoglu, and Khumawala (2006) evaluated using
different heuristics in different location problems. They found that
although Tabu Search (TS) shows the best performance, SA has
shown good performance for many location problems. In this
paper, SA shows promising results to solve FMCLP.

5.2. Fitness evaluation and simulating the expected value of a solution

Eq. (12) shows that the value of X is determined by the value of
Y. Since the value of Y depends on the travel time between the de-
mand node and the facility, it can easily be observed that X may be
considered as a fuzzy variable. Therefore, to determine the ex-
pected value of (11), one might use fuzzy simulation. In order to
solve a fuzzy programming model like our model which is gener-
ally stated as U : x! E½f ðx; nÞ; gjðxÞj ¼ 1;2; :::;m�, Liu (2008)
presented the algorithm to estimate the expected value as shown
in Fig. 1.

From now on, we will call the above algorithm as simulate. The
algorithm to solve FMCLP is shown in Fig. 2:

5.3. Simulated annealing

5.3.1. General framework
Metaheuristics are often categorized into two distinct groups:

population-based and local search methods. Simulated annealing
(SA) is a local search procedure that is capable of searching the
space stochastically and tries to escape from being trapped in local
minima. SA avoids local minima by accepting worse solutions dur-
ing search with a monotonically decreasing probability. It has been
applied to various combinatorial optimization problems as well as
real world problems. Vehicle routing, scheduling and facility loca-
tion are some problems in which SA has shown its ability. SA was
first introduced by Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller (1953) and popularized by Kirkpatrick Gelatt and Vecchi
(1983).

There is an analogy between SA and the annealing process used
in metallurgical industry. SA mimics the annealing process starting
from an initial solution. In each iteration of SA, the algorithm looks
for a new solution in a neighborhood of the current solution. Then,
the fitness of the new solution is compared with that of the current
solution in order to determine if an improvement has attained. If
an improvement is attained, the new solution becomes the current
solution. If the solution has a worse fitness, it is accepted as the
current solution with a probability determined using the Boltz-
mann function Exp. (�D/kT), where k is the predetermined con-
stant and T is the current temperature. A chance of acceptance is
given to worse solutions in order to avoid restricting moves to only
those leading to better solutions. This mechanism avoids prema-
ture convergence (being trapped in local minima) to a great extent.

In the following sections, the proposed SA of this paper will be
discussed in detail, including solution representation, neighbor-
hood generation, fitness evaluation and tuning SA parameters.

5.3.2. Encoding scheme and initial solution generation
An effective encoding scheme has significant impact on the per-

formance of SA. A possibility to encode the solutions of our prob-
lem is to use binary representation to show establishment of
facilities in candidate nodes. The procedures of encoding and
decoding a candidate solution are illustrated by applying them to
an example. Consider a problem with six candidate nodes to estab-
lish a facility in which two facilities are to be located. A feasible
solution may look like [1 0 0 0 1 0] which shows that two facilities
are to be located at 1st and 5th nodes. It should be noted that using
the solution vector, travel times matrix and covering radius, one
can easily find the set of covered nodes.

5.3.3. Cooling schedule and stopping criterion
Generally, a few cooling schedules are used such as linearly,

exponentially or hyperbolic cooling schedules. The acceptance
probability of worse solutions in SA is highly dependent on the
cooling schedule. Therefore, how to update temperatures plays a
pivotal role in the quality of solutions in simulated annealing.

In this paper, we used the methodology proposed in Crama and
Schyns (2003). We set the initial temperature in a way that during
the first L steps of the algorithm, there is a pre-defined acceptance
probability for moves that lead to worse solutions. This probability
should be relatively high and is represented as v. We set the value
of v to be 0.8 and run the algorithm for 100 steps without rejecting
any moves. Then the average increase of the objective function
over this phase is computed and shown by D. Finally, T0 is set equal
to T0 ¼ �D

lnv where ln is the logarithm operand. Furthermore, the
scale factor equals 0.95. In this paper, the algorithm stops when-
ever the current temperature reaches T0.

5.3.4. Neighborhood structure
In order to search for better solutions, we define the set N(X) to

be the set of solutions neighboring a solution X. In each iteration,
the next solution Y is generated from N(X) by a 2-opt, reorder or
shuffle move as follows. These moves guarantee the feasibility of
the generated neighbors by fixing the number of located facilities.
A 2-opt move is carried out when the values of two elements in a
solution is substituted with each other. In our problem, the num-
ber of open facilities must be fixed. Therefore, a 2-opt move always
substitutes two elements with different values. To show the per-
formance of the encoding scheme, take the example in Fig. 3. It



Fig. 2. The outline of our simulation-embedded simulated annealing.

Fig. 3. Neighborhood search structures.

+ +

Fig. 1. The outline of the simulation based on credibility theory.
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is shown that the facility in node 3 is closed and a facility is opened
in node 6. Shuffle is associated with flipping the solution from a
random position. Fig. 3 shows the performance of shuffle on a sam-
ple solution. Finally, in a reorder move, the elements of l consecu-
tive bits are reordered randomly as shown in Fig. 3. It should be
noted that while 2-opt and reorder moves are used to intensify
the search, in order to diversify the search, one may use shuffle.

6. Numerical examples

6.1. Test problems

To generate the test problems, we have used the following pro-
cedure: The locations of the nodes in the test problems are ran-
domly generated using a uniform distribution between 0 and 30
for x and y-coordinates. The distances between the nodes are then
defined as their Euclidean distances. Populations on the nodes are
randomly generated using a uniform distribution between [0, 100].
This procedure is used to generate sets of crisp problems with 50,
100, 200, 500 and 900 nodes. Moreover, travel times are generated
randomly as a function of the distance between nodes. In other
words, travel times are generated as triangular fuzzy variables
which are represented as (a, b, c). The first, second and third
parameters of these fuzzy variables are set to be equal to the dis-
tance between the two nodes with some noise. These noises are
set to be 10, 30 and 50 for a, b, c, respectively. It is remarkable that
triangle inequality do not necessarily hold for our problem due to
the random noises added to the travel times.

6.2. Computer specifications

Both fuzzy simulation and simulated annealing were pro-
grammed using MatLab 2009a and run on a high-level computer
system. In addition, LINGO 8 was used in order to solve the crisp
version of the problem on a computer with the same specification.
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6.3. Results, validation, and discussions

To validate the results, we have implemented a couple of anal-
ysis. First, using the crisp version of the problem (with determinis-
tic travel times), we solved problems using various combinations
of SA parameters. Table 2 shows various levels of SA used in this
step. Using each of the 12 combinations, the problem was solved
10 times and best, average, and worst fitness are reported in Ta-
ble 3. The results show that the proposed SA performs well and
Table 2
Various settings to solve the problem with simulated annealing.

Factor Types

Cooling schedule (a) Linear
(b) Exponential

Number of iterations per
temperature

(a) 10
(b) 20
(c) 50

Scale factor (a) Rapid (100 iterations to reach the
termination temperature)
(b) Slow (200 iterations to reach the
termination temperature)

Table 3
Fitness results in 10 runs (coverage percentage).

Cooling schedule Linear

Num of iterations 10 20 50

Cooling rate Slow Rapid Slow Rapid Slow
Best 0.4049 0.3848 0.3697 0.3802 0.393
Average 0.3857 0.3687 0.3562 0.3643 0.390
Worst 0.3729 0.3377 0.3478 0.3538 0.371

Table 4
Comparison of solutions obtained from exact solution and simulated annealing.

# of Nodes P* LINGO Simulated annealing

Optimal solution Time (s) Worst fitness Avera

50 1 417.5 <1 417.5 417.5
50 2 826.7 <1 826.7 826.7
100 2 1777.5 <1 1777.5 1777.
100 5 3298.9 <1 3298.9 3298.
200 3 5710.3 1 5710.3 5710.
200 8 10,325.7 1 10325.7 10325
500 10 24,717.9 30 24498.7 24536
500 15 25,068.7 104 25068.7 25068
900 10 44,793.4 299 44190.1 44413
900 15 45,003.2 207 45003.2 45003

* P: Number of facilities to locate.

Table 5
Comparing solutions of fuzzy version using various settings.

CS NIT NTB Fitness

Best Avera

Linear 20 100 0.7362 0.7362
Linear 20 200 0.7398 0.7381
Linear 50 100 0.7404 0.7401
Linear 50 200 0.7404 0.7399
Exponential 20 100 0.7391 0.7389
Exponential 20 200 0.7398 0.7391
Exponential 50 100 0.7398 0.7395
Exponential 50 200 0.7398 0.7398

CS, cooling schedule; NIT, number of iterations per temperature; NTB, number of temper
the best results are obtained using more runs in each temperature,
cooling the schedule slowly, and using an exponential type of
scheduling. Although these results were almost expected, even be-
fore running the algorithm, we have used these results to validate
our proposed algorithm.

Then, to assess the performance of SA from another aspect, the
crisp version of the problem was coded using LINGO 8 and the same
problem was solved with the proposed SA. Table 4 depicts that
although the proposed SA was unable to find optimal solutions in
larger instances, there are only negligible gaps compared to optimal
solutions. Furthermore, runtimes of SA are very small. Therefore, SA
may be used to get solutions in cases where exact solutions are un-
able to reach a solution. It should be noted that in all of the cases
considered in Table 4, the coverage radius equals 6.

Moreover, we show how robust our algorithm works using var-
ious SA parameters. The results of the numerical example are com-
pared in Table 5 using various settings for our hybrid algorithm. To
compare these results, an index is used called error ratio (ER)
which corresponds with the last three columns of Table 5. The er-
ror ratio is calculated as:

Error ratio ¼ Fitness� Fitness�

Fitness�
� 100%; ð15Þ
Exponential

10 20 50

Rapid Slow Rapid Slow Rapid Slow Rapid
0.384 0.372 0.374 0.385 0.410 0.443 0.365
0.375 0.361 0.351 0.372 0.355 0.399 0.354
0.365 0.342 0.309 0.358 0.323 0.384 0.338

Gap (%) Gap (%) Gap (%)

ge fitness Best fitness Time (s)

417.5 1 0.00 0.00 0.00
826.7 1 0.00 0.00 0.00

5 1777.5 2 0.00 0.00 0.00
9 3298.9 2 0.00 0.00 0.00
3 5710.3 5 0.00 0.00 0.00
.7 10325.7 5 0.00 0.00 0.00
.1 24717.9 69 0.89 0.74 0.00
.7 25068.7 71 0.00 0.00 0.00
.7 44685.1 263 1.35 0.85 0.24
.2 45003.2 251 0.00 0.00 0.00

Worst Average Best

Error ratio (%)

ge Worst Best Average Worst

0.7362 0.57 0.57 0.57
0.7362 0.08 0.31 0.57
0.7401 0.00 0.04 0.04
0.7395 0.00 0.07 0.12
0.7388 0.18 0.20 0.22
0.7377 0.08 0.18 0.36
0.7362 0.08 0.12 0.57
0.7398 0.08 0.08 0.08

atures between T0 and Tf; Coverage radius = 15; P (number of facilities to locate) = 2.
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where, Fitness⁄ is the best fitness found among the runs. It is shown
that ER does not exceed 0.57% using various settings of solution
procedure. Therefore, the algorithm is stable and the proposed ap-
proach is effective to solve the problem considered in this paper.

7. Conclusion and future research areas

Locating facilities on a network to cover demands fully or par-
tially has been a challenging problem for many years. While a large
number of publications concerning covering problems are avail-
able in which parameters are considered to be deterministic, there
are few papers discussing stochastic or fuzzy covering problems. In
this paper, we have attempted to model and solve a maximal cov-
ering location problem (MCLP) in which travel times are consid-
ered to be fuzzy variables. A fuzzy formulation of the problem
was presented and fuzzy simulation was used to estimate the ex-
pected coverage. To solve the problem, the fuzzy simulation was
embedded inside a simulated annealing approach and the perfor-
mance of the proposed methodology was shown using a set of test
problems.

We believe that our model is a move forward to model and
solve covering location problems in uncertain and especially fuzzy
environments. This paper contributes to covering location litera-
ture in the following respects: (a) A fuzzy chance constrained pro-
gramming model of the problem is given. (b) A simulation-
embedded simulated annealing is proposed to solve the problem.
(c) Proposal of a validation approach for the problem.

It may be possible to consider the same problem for other loca-
tion problems such as p-median or center. Moreover, there is the
possibility of using other solution methods such as genetic algo-
rithm to solve the same model. Finally, the problem may be consid-
ered in an environment where fuzzy and random variables coexist.
For example, demands may be considered to be random variables.
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