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Abstract
Vehicle tracking task plays an important role on the Internet of vehicles and intelligent transportation system. Beyond
the traditional Global Positioning System sensor, the image sensor can capture different kinds of vehicles, analyze their
driving situation, and can interact with them. Aiming at the problem that the traditional convolutional neural network is
vulnerable to background interference, this article proposes vehicle tracking method based on human attention mechan-
ism for self-selection of deep features with an inter-channel fully connected layer. It mainly includes the following con-
tents: (1) a fully convolutional neural network fused attention mechanism with the selection of the deep features for
convolution; (2) a separation method for template and semantic background region to separate target vehicles from the
background in the initial frame adaptively; (3) a two-stage method for model training using our traffic dataset. The
experimental results show that the proposed method improves the tracking accuracy without an increase in tracking
time. Meanwhile, it strengthens the robustness of algorithm under the condition of the complex background region. The
success rate of the proposed method in overall traffic datasets is higher than Siamese network by about 10%, and the
overall precision is higher than Siamese network by 8%.
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Introduction

The Internet of vehicles (IOV) can improve people’s
travel efficiency through urban traffic management,
traffic congestion detection, path planning, road
charge, and public transportation management, to alle-
viate traffic congestion. By the surveillance camera in
the bayonet and key sections of the city, we can per-
form recognition and tracking of all types of vehicles.
Based on the statistical analysis of the recognition and
tracking results on the server, we can calculate the driv-
ing path and determine the intention of the moving
vehicle. In this way, we can also analyze the real-time
road conditions at the location of the sensors and then
feed the results back to the user’s vehicle through a
wireless sensor, guiding the next step and

recommending the appropriate route. Vehicle tracking
is a key technology of IOV and intelligent transporta-
tion system (ITS), in which the image sensor and wire-
less sensor are complementary. The accuracy and speed
of vehicle tracking system directly affect the
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performance of IOV. In recent years, with the develop-
ment of computer hardware and improving the perfor-
mance of intelligent algorithms, the performance of the
vehicle tracking system is also increasing. The goal of
vehicle tracking task is to get the position information
of the target vehicle in the first frame in a video or an
image sequence. In each subsequent frame, the position
of the vehicle is predicted by various operations,
including the center coordinates and the width and
height of the target vehicle. The difficulty of vehicle
tracking is how to select effective feature extraction
methods for different scenes to express the target image
region, so that the tracking model can effectively learn
and predict the input samples.

Since 2012, convolution neural network (CNN) has
been popularized in the field of computer vision. More
and more researchers in the visual field choose CNN as
the main body of their algorithm. CNN compared with
the traditional pattern recognition method, the biggest
advantage is to save the previous heavy feature engi-
neering process. In natural scenes, illumination and
color are different. It is difficult to find a universal fea-
ture extraction method to apply to all scenes. The CNN
can transform the feature of the pixel domain into the
high-level abstract feature through the convolution
operation of the image, and the parameters used in the
extraction process can be trained and learned by a large
amount of data, and the interference of human factors
is eliminated.

In literatures,1–4 the authors try to use correlation fil-
ter of the target area on the feature map of the CNN.
They try the different feature layers and different struc-
ture neural networks, but the accuracy of the tracking
is not improved, and the time delay of each frame is
greatly increased. In Nam and Han,5 discard a large-
scale CNN, considering about a simple image block,
using a small network of VGG-M (only three layers of
coiling layer) to extract the image blocks around the
target to determine whether it is a target object. This
model has a very considerable accuracy rate, but it
needs to extract a large number of candidate regions
around the target area for decision. Each area needs to
be extracted by the neural network, and the full connec-
tion layer of the network needs to be updated online.
The tracking speed can only reach 1 frames per second
(FPS). In Held et al.6 and Chen and Tao,7 the authors
use two branch neural networks to calculate the similar-
ity between two image blocks. When tracking, the tar-
get image block in the last frame and the surrounding
image block are sent to two CNNs, respectively, and
then the output results are sent to the same full connec-
tion layer to judge the similarity degree of the two. This
method has omitted the online update process, and
after one training, the network only forecasts each
frame without two training and improves the time delay
and accuracy. In Tao et al.8 and Bertinetto et al.,9 the

authors use the fully convolutional neural network to
measure the similarity between the two frames, which is
to extract the CNNs from the two frames with the same
parameters. The output results do not pass through the
fully connected layer but are convoluted with each
other to obtain the similarity feature map, so that the
coordinates of the target rectangle frame in the entire
image frame are obtained.

In this article, we propose a fully convolutional
neural network combined with an attention mechanism
to measure the similarity of a template and a search
area using selected deep features of multiple channels.
We separate template and semantics from the back-
ground area of target vehicles in the initial frame adap-
tively. We use a two-stage method and an analog loss
function for model training. The experimental results
show that the proposed method achieves ideal accuracy
with a decrease in tracking time. The robustness of
algorithm under the condition of complex background
region has been strengthened. The proposed method in
overall traffic datasets on the success rate is higher than
Kernelized Correlation Filter (KCF), Discriminative
Scale Space Tracking (DSST), and Siamese-FC by at
most 15%; the overall precision is higher than the three
methods by at most 20%.

The rest of the article is organized as follows:
Section ‘‘Background and related work’’ introduces the
traditional CNN and similarity neural networks.
Section ‘‘Semantic attentional bilinear network (SAS-
Net)’’ describes the semantic attention similarity neural
network for vehicle tracking and implementation of it,
including the architecture of our similarity neural net-
work, the architecture of our attention mechanism, and
an extraction method of adaptive target scale. The loss
function and a two-stage training method are presented
in section ‘‘Loss function and training.’’ Section
‘‘Experiments’’ compares the success rate, precisions,
and speed of the proposed semantic attentional similar-
ity network (SAS-Net) with other three methods based
on the experiments on our traffic dataset. We conclude
this article and discuss the next research focus in sec-
tion ‘‘Conclusion and future work.’’

Background and related work

Convolutional neural networks

The general CNN, as shown in Figure 1, is mainly com-
posed of a convolution layer and a fully connected
layer, usually with a down-sampling layer and an acti-
vation function layer. Each neuron in the convolution
layer is connected only to the part of the previous fea-
ture map. The number of parameters is the size of the
convolution kernel and the kernels are shared, which
greatly reduces the weight of the convolution. If the
step size increases when the convolution kernel slips on
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the feature map, the overlapping area of kernels and
the computational complexity can be reduced. For the
fully connected layer, it is to connect all the output of
the upper neuron and output a one-dimensional feature
vector to play a unified role in dimension. Since the full
connection layer is connected to all the output of the
previous layer, the number of parameters it contains is
much more than the convolution layer, and there is lots
of redundancy, so it needs to be used with some specific
activation functions. For example, the dropout layer
can inhibit neurons from propagating forward with a
certain probability (usually 0.5). The down-sampling
layer samples the original feature map to a smaller size
without any multiplication or addition operation with-
out any parameters. The sliding method of the lower
sampling area in the lower sampling layer is the same as
the method of the convolution kernel sliding in the con-
volution layer. When the current sampling area slides
to a position, the maximum value or the average value
of all the pixels in the sampled area is taken instead of
the whole region. This process is separately called the
maximum pooling and the average pooling process.
The pooling process is the best method to reduce the
amount of data of the feature map, which does not
change the feature structure of the image as a whole,
and can be intuitively understood as the reduction of
the resolution of the feature map.

Similarity neural network

The similarity neural network is a little different from
the traditional CNN. The two image blocks, through
the convolution layer and pooling layer, output the

high dimensional feature maps. Then the features are
input into the decision network to calculate the similar-
ity of two image blocks.10 The decision network is usu-
ally a fully connected neural network. The output
result is a similarity value, representing the matching
degree of the two image blocks. Before training, the
matching degree of two image blocks needs to be
labeled artificially. If the two image blocks match, the
output label value is labeled as y = 1. If the two image
blocks do not match, then the label of the training data
is labeled as y = 0. The annotation method of training
data is not a similarity value at all, but a boolean value.
The loss function of the convolutional neural network
is the cross-entropy between the true probability distri-
bution of the input image and the probability distribu-
tion predicted by the network. It is the sum of the
entropy of label distribution and the Kullback-Leibler
(KL) divergence between label distribution and pre-
dicted distribution

H p, qð Þ= �
X

x

p xð Þlog q xð Þ

= �
X

x

p xð Þlog p xð Þ �
X

x

p xð Þlog q xð Þ
p xð Þ

=H pð Þ+KL pjjqð Þ

ð1Þ

It represents the information difference between two
probability distributions, the greater the value, the
greater the difference between the two probability dis-
tributions, which means that the two probability distri-
butions are closer. The illustration of the bilinear
similarity neural network is shown in Figure 2. The
main idea is to pass the two image blocks through two

Figure 1. Architecture of a convolutional neural network. The general convolution neural network is mainly composed of a
convolution layer and a fully connected layer, usually with a down-sampling layer and an activation function layer. Each neuron in the
convolution layer is connected only to the part of the previous feature map. For the fully connected layer, it is to connect all the
output of the upper neuron and output a one-dimensional feature vector.
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branches, respectively, to input the subsequent two fea-
tures into a fully connected decision network. If the
two branches have completely different network struc-
tures and weight values, the feature extraction func-
tions of the two branches are unrelated and different.
The two extracted features differ in values and dimen-
sions. When the two high-level feature maps pass
through the first fully connected layer, their feature
vectors are fused together. The parameters of this net-
work are nearly twice as much as the bilinear network
with shared weights. Also, it requires a greater amount
of data and longer time in training, but it is more
flexible.

Figure 3 shows the illustration of the dual channel
similarity neural network. The two image blocks are
superimposed as the input. They share both the weights
and feature maps during forwarding propagation. The
scale of the model is greatly reduced.

For a long time, there are many algorithms using
similarity neural network before the vehicle tracking
task. As early as 2005, Chopra et al.11 used a bilinear
structure to measure the face similarity. Lin et al.12 used
a similar bilinear structure in fine-grained bird classifi-
cations, which locates the object by one branch and
extracts the features by the other branch. Bertinetto et
al.9 use the full convolutional Siamese network to
search the closet area to the original target in the sur-

rounding area of the target object, and the online learn-
ing is not needed in this process.

Semantic attentional bilinear network
(SAS-Net)

In recent years, visual attention mechanism13–21 is one
of the most popular research hotspots on visual images.
The models based on CNN and recurrent neural net-
work (RNN) are widely used in various types of visual
tasks, such as target recognition, fine-grained classifica-
tion, image segmentation, image caption, and visual
question answering (VQA). In these tasks, common
usage of attention mechanisms is to extract features
from text or images and embed them into another
CNN to achieve information fusion. The advantage of
the attention mechanism is its ability to predict the
weight vector for feature maps by model learning.

A typical example is in Seo et al.,16 they fused the
digit and their color feature vectors in the image. This
enabled the network to predict the color of the digit
while focusing on the location of the digit. Inspired by
this model, the tracking model of fully convolutional
neural network embedded by an inter-channel visual
attention mechanism is proposed in this article. With
the target area combined with its background pixels as
the semantic input in the first frame, the model can
selectively predict the channel weights of convoluted
template features and search area features according to
feature maps of different channels. The weights are
embedded into the corresponding channels of convo-
luted features to enhance or weaken the features of
some channels.

In the CNN, the high-level features of semantics are
robust to the changes of the target appearance, which
improves the discriminative power and enhances the
generalization ability of the model. In order to make
the model more discriminant, we use the inter-channel
attention mechanism. Intuitively, the contributions of
each channel to the predicted similarity value are differ-
ent. For the vehicle tracking task, the features of some
channels seem to be more important and the others
may have no significant impact on the predicted results.
If the model can calculate the similarity according to
features of different channels selectively, it will improve
the performance of the model for vehicle tracking task.

Architecture of SAS-Net

The structure of proposed SAS-Net is shown in Figure
4. Unlike previous networks that require a fixed size
image as input, a template Z based on the adaptive
length-width ratio is used as a vehicle sample, in order

Figure 2. Bilinear similarity network. The two image blocks are
passed through two branches, respectively. Then the subsequent
two features are input into a fully connected decision network.

Figure 3. Double channel bilinear network. The two image
blocks are superimposed as the input. They share both the
weights and feature maps during forwarding propagation.
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to make the background information in vehicle features
as little as possible. When a video captured by an image
sensor, the image patch of the vehicle in the first frame
is extracted. Its long side is resized to 127 pixels, and
the whole vehicle patch is resized according to the same
ratio as an exemplary image.

The template in the first frame surrounded by the
background pixels is extracted as a square patch. Then
it is resized to size 255 3 255 and is input into the net-
work as a semantic image. In each subsequent frame of
the video, the candidate area predicted from the previ-
ous frame is resized to size 255 3 255 as an instance
image X. The exemplar Z, the semantics Zs, and the
instance X are all passed into the fully convolutional
neural network with shared parameters, respectively,
then the corresponding feature maps u(Z), u(Zs), u(X )
are obtained. Among them, u(Zs) and u(X ) have the
same size. u(Zs) passes through the attention mechan-
ism and get a channel vector of 128 pixels. It means the
weight distribution of the semantic features combines
the information of background area. Then the exemp-
lary feature u(Z) and the instance feature u(X ) are
element-wisely multiplied by the 128-channel weights.
The features of each channel are filtered according to
the importance. Then the features of the exemplar and
the sampled instance after multiplication are obtained.
Compared to the feature u(Z) and u(X ) in the bilinear
network, the semantic information is added to the

network, which makes it clear which channels are sig-
nificant and which channels are unnecessary when
computing the similarity. Using the same convolution
operation, the similarity response map can be calcu-
lated by the convolution of the two features filtered by
the attention mechanism.

The final similarity response map is output by map-
ping all the values of the similarity response to 0 to 1
through the sigmoid function. The whole process can
be expressed in formula (2), where Zs, Z,X respectively
represent semantic images, templates, and search areas.
u(Zs), u(Z), u(X ) represent the feature maps of the
three input images through the same neural network u
with shared parameters, and us, uatt represent the para-
meters of the bilinear network and the parameter of the
attention mechanism, respectively. att( � ) indicates the
mapping function of the attention mechanism, and the
� indicates the element-wise multiplication of two fea-
ture maps, and the Ratt represents the response of the
final output of the SAS-Net model. The proposed
model finally maps the similarity response map to 0 to
1 through a sigmoid function, so that all values on the
response map are positive

Ratt =Sigmoid conv att u Zsð Þð Þ � u Zð Þ, att u Zsð Þð Þ � u Xð Þ½ �f g
=Sigmoid att u Zsð Þð Þ � u Zð Þ½ � � att u Zsð Þð Þ � u Xð Þ½ �f g
= g Zs, Z,X ; us, uattð Þ

ð2Þ

Figure 4. Architecture of SAS-Net. The exemplar Z, the semantics Zs, and the instance X are all passed through the fully
convolutional neural network with shared parameters. The corresponding feature maps of each input image are u(Z), (Zs), u(X).
u(Zs) passes through the attention mechanism and get a channel vector. It used to compute the attentional exemplar and attentional
instance. The final response is the convolution of the two features. The details of attention model are shown in Figure 5.
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Architecture of our bilinear network

The illustration of bilinear network structure is shown
in Figure 5. The kernel size of each layer is similar to
the AlexNet,22 the difference is that the fully convolu-
tional structure is adopted in the network, and the fully
connected layer is not included. The bilinear network is
composed of layers of conv1, pool1, conv2, pool2,
conv3, conv4, conv5. The rectified linear unit (RELU)
is used after each convolution layer.

When the sizes of the input image patches are
127 3 127 3 3 and 255 3 255 3 3, respectively, the sizes
of two features are 6 3 6 3 128 and 22 3 22 3 128,
respectively. Then the similarity response map can be
generated by the convolution of the two features. The
process can be described in formula (3)

R=conv u Zð Þ,u Xð Þð Þ
=u Zð Þ � u Xð Þ
=f Z,X ; usð Þ

ð3Þ

The AlexNet does three times down-sampling opera-
tion with a stride of 2, apart from once convolution
with a stride of 4. The overall scale is reduced by 31
times compared to the input image. The � in the table
indicates that the scale of the image or feature map is
freely adaptive in this dimension.

Because the ratio of the length to width is kept dur-
ing interpolation and the length of the long side is
resized to 127 pixels, the length of the short side is
adapt111e. During forward propagation of input exem-
plar, the output feature map size is computed according
to the input feature size as follows

hout = hin + 2 3 hpad � hkernel

� �
=hstride

� �
+ 1

wout = win + 2 3 wpad � wkernel

� �
=wstride

� �
+ 1

ð4Þ

In the formula above, hin,win denote the height and
width of input feature map and the input image espe-
cially in the first layer, respectively. Similarly, hout,wout

denote the height and width of input feature map,
respectively. hkernel,wkernel denote the height and width
of convolution kernel or down-sampling kernel, respec-
tively. hstride,wstride denote the stride on height side and
width side when the kernel is sliding on the feature
maps, respectively. hpad,wpad indicate the padding pix-
els on each side of feature maps if the input size cannot
divide the stride exactly. According to the formula
above, the scale of the last feature map of the input
exemplar u(Z) is �3 6 3 128 and the scale range of � is
½1, 6�. However, the size of the feature of input instance
u(X ) in the search area is fixed to 22 3 22 3 128. The
response is obtained by the convolution of the exemp-
lary feature u(Z) and the instance feature u(X ) and its
size is �3 17. The final convolution can be considered
as the weighted sum calculated when the upper feature
slides on the lower feature. The weighted sum is carried
out in three dimensions: height, width, and channels.
The upper feature can be regarded as the convolution
kernel. According to formula (4), outputSize=
(22+ 2 3 0� 6)=1+ 1= 17. In consideration of the
adaptive dimension, the range of the length of corre-
sponding side � is ½17, 22�.

After the upsampling with step stride of 16, the
range of the � side of response for positioning changes
to ½272, 352�. Since all the forward propagation ways
from the picture to the final feature map is consistent
with the situation that all inputs have fixed size. The
scaling ratio of the feature map has not changed.

Architecture of inter-channel attention mechanism

The internal structure of the attention mechanism
depicted in Figure 6 is the attention model in the main

Figure 5. Bilinear network with parameters sharing. The two input with size of 255325533 and 127312733 pass through our
bilinear network like AlexNet, and the size of final response will be 17317. The parameters and feature dimensions of each layer are
depicted in Table 1.
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system model shown in Figure 4. The input is the
semantic feature u(Zs) output from the bilinear net-
work in the first frame with the semantics Zs as the
input. The output is the weight vector of each channel
based on the semantic features. It is used to calculate
the attentional exemplar and attentional instance in the
main system. u(Zs) is passed through a 4 3 4 grid max
down-sampling layer. The specific implementations are
as follows: first, the 22 3 22 feature map of each chan-
nel in u(Zs) was divided into a 4 3 4 pixels grid, as
shown in the left of Figure 6.

The four grids in the central area are 5 3 5 pixels
size, as shown in the green region, and the sizes of the
12 white grids around are all 6 3 6 pixels; then do
down-sampling for all the pixels in each grid (as men-
tioned in the previous article), getting the 4 3 4 3 128

feature maps. On the basis of the convolution principle
and the extraction method of exemplar and back-
ground area, the features of the target vehicle should
be located in the central area of the u(Zs), as the green
part of Figure 6 on the left. The target features com-
bined with the surrounding pixels make up the seman-
tic information of the attention mechanism. The 4 3 4

down-sampled feature maps of 128 channels are next
passed through the inter-channel fully connected layer.
The difference between inter-channel fully connected

layer and the ordinary fully connected layer is as fol-
lows: In the ordinary fully connected layer, all the pix-
els in the input layer are connected to all pixels in the
output layer; it includes more parameters. If the feature
size of the input layer is 4 3 4 3 128 and the feature size
of the output layer is 1 3 1 3 128, the number of the
parameters of this fully connected layer is
4 3 4 3 128 3 128= 262, 144. The pixels in the input
features of the inter-channel fully connected layer are
only connected to the output vector in accordance with
the corresponding channels. Namely, the ith channel of
the input feature is connected to the ith channel of the
output feature, so that there are only
4 3 4 3 128= 2048 parameters between the 4 3 4 3 128

input feature and the 1 3 1 3 128 output feature. The
semantic features are mapped into a 128-dimensional
feature vector after the inter-channel fully connected
layer. Through a sigmoid function, all the values in the
feature vector can be mapped to ½0, 1�, and the self-
selected weights can be obtained. The weights based on
the background semantics are multiplied by the exemp-
lary feature u(Z) and the instance feature u(X ) for each
frame, and their self-selected feature maps can be
obtained. In the model tracking stage, the same as the
exemplar, it only needs to predict the weight vector of
the feature maps of each channel according to the

Figure 6. Inter-channel attention mechanism. The details of the attention model in Figure 5 are shown in this figure. The input is
the semantic features obtained by bilinear networks. Through a process of the 434 grid max-pooling and inter-channel fully
connected layer, the final channel_weight will be generated.

Table 1. Parameters and feature dimensions of SAS-Net.

Layer Kernel size stride Size of attentional instance Size of attentional exemplar

Input 255325533 �312733 or 1273 �33
Conv1 11311396 2 1233123396 �359396 or 593 �396
Pool1 333 2 61361396 �329396 or 293 �396
Conv2 5353256 1 573573256 �3253256 or 253 �3256
Pool2 333 2 283283256 �3123256 or 123 �3256
Conv3 3333192 1 263263192 �3103192 or 103 �3192
Conv4 3333192 1 243243192 �383192 or 83 �3192
Conv5 3333128 1 255325533 �363128 or 63 �3128

SAS-Net: semantic attentional similarity network.
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semantic information of the target vehicle and back-
ground provided by the first frame. No repeated calcu-
lation is needed in the subsequent frames.

Extraction method of adaptive target scale

In this article, a target template extraction method
based on the adaptive target size is proposed to break
the rule that the network input should be fixed size. To
follow the target object, the target features can be adap-
tively changed, so the influence of the background to
the target template can be reduced down to the lowest.
Figure 7 shows a sample template without background
area and the search area with the background filled
around. The target box is directly used as the sample
template with its long side interpolated to 127-pixel
length. The scaling ratio of this procedure is calculated
for interpolation of the short side at the same time.

In this way, the input of the network is no longer in
a fixed size, but a rectangle with arbitrary aspect ratio.
It is flexible for the network to adapt to various scales
of the target vehicles, whether it is a moving motorcycle

with larger aspect ratio or a driving car with relatively
smaller aspect ratio. After determining the size of the
sample template, a square search area is taken with the
long side of target padded with a long side. The long
edge of the rectangular target box is filled two times as
long as before, and the short side is padded with more
pixels from the background. Thus, when the search area
is adjusted to 255 3 255 pixels, it can have the same
scaling ratio with the target box and the sample tem-
plate in the first frame.

Figure 8 is shown as the first eight layer feature
maps of the exemplary feature u(Z) and the instance
feature u(X ). The input pair of variable scale–based
sample template Z and search area X is shown in the
left. As introduced above, the exemplar Z is almost
cropped without background pixels in it. When feature
u(X ) is convoluted by feature u(Z), the number of fea-
ture points and multiplications involved in the opera-
tion is greatly reduced if the aspect ratio of the target
vehicles increases. Compared to the circumstances in
which a fixed square exemplar is input to the model,
the tracking velocity has been improved. In the previ-
ous eight channels of features, it is obvious that the
response of each channel feature to the target object is
different. The convolution operation will pay more
attention to the influence of the target object itself. The
center area in the first and fifth channel features of
u(X ) does not seem to be very discriminable, while the
apparent contours of the target are visible in fourth or
eighth channels. Therefore, when the feature of the
sample template and the feature of the search area are
convoluted, the contribution to the similarity measure-
ment of different channels should be different.

The channels that have a strong response of the tar-
get vehicles should be considered, and the channels
which are not sensitive enough to the target object
should be weakened. The attention mechanism is able
to learn the importance of different channels

Figure 8. The first 8 layer feature maps of sample template and search area. The response of each channel feature to the target
object is different. The convolution operation will pay more attention to the influence of the target object itself.

Figure 7. Adaptive sample template and search area. The long
side of the target will be resized to 127; the searching area will
be resized to 2553255, so do the other two scales.
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effectively, make the model focus on the specific chan-
nels, and increase effective calculation model. Based on
the fact that different feature map channels have differ-
ent importance, the fully convolutional neural network
combined with a visual attention mechanism is pro-
posed for tracking. The network can select different
features according to the weight of features among
multiple channels from the semantic patches of the
input image.

Loss function and training

The parameters of our inter-channel attention–based
fully convolutional neural tracking model are mainly
divided into two parts: one part is the parameters of
the convolution kernels of the fully convolutional layer
in the shared bilinear network and the other part is the
parameters involved in the inter-channel fully con-
nected layer in the visual attention mechanism.
Therefore, a two-stage method for training our model
is adopted. First, we use a large public dataset to pre-
train bilinear network, making the bilinear part achieve
an optimal result on this dataset. Then, we use our traf-
fic dataset to train the visual attention network, while
fine-tuning the parameters of the bilinear network. A
large learning rate is used for the attention mechanism,
and a lower learning rate is used for the bilinear net-
work. At the same time, the parameters of the whole
model are optimized jointly.

According to the section ‘‘Similarity neural net-
work,’’ the method of labeling the similarity of two
image blocks with binary value 0 and 1 is too ‘‘abso-
lute.’’ In this way, the intermediate state is never
involved. The judgment of the similarity should be an
analog process, but the 0-1 annotations digitize the
probability distribution. This will inevitably result in
the loss of information. In the proposed method, we
use an analog tagging method to train the network and
finally achieve good results.

When the bilinear network is trained in the first
stage, the network input is the image patch pair (Z,X )
composed of the sample template Z and the search area
X. The extraction method of them in the original image
frames has been introduced in the previous article.
Because the size of the input template is adaptive to the
size of the target in input image, the size of the similar-
ity response map is �3 17, � 2 ½17, 22�, and the two-
dimensional Gaussian label matrix Y can be generated
at the center of the response map, as shown in Figure 9.

The extracted image pair (Z,X ) is in the center of
the searching area. If the pixels are closer to the center
of the response map, they will be closer to the target
template, so similarity value will be higher. On the con-
trary, the farther away from the center, the farther the
distance from the target template, the lower value the

similarity will be greatly reduced. The loss function at
the location of (i, j) is defined as

l i, jð Þ=log 1+exp �Y i, jð ÞR i, jð Þð Þð Þ ð5Þ

where R(i, j) is the response value at the position (i, j) in
the output response map, and Y (i, j) is the value of the
two-dimensional label matrix at the position (i, j). If the
similarity response value at the location (i, j) and the
two-dimensional label matrix value Y (i, j) are both
high, the similarity degree of the sample template at the
position (i, j) and this search area is higher than that in
other search areas. Obviously, l(i, j) is a monotonically
decreasing function of Y (i, j)R(i, j). The position of
higher similarity has a lower loss value. Then, with n0th
pair of the sample template and the search area as the
network input, the overall loss function of the similar-
ity response map is defined as

L f Zn,Xn; usð Þ, Ynð Þ= 1

Dnj j
X

i, j2Dn

ln i, jð Þ

=
1

Dnj j
X

i, j2Dn

log 1+exp �Yn i, jð ÞRn i, jð Þð Þð Þ
ð6Þ

where (Zn,Xn) is the n0th pair of the sample template
and the search area. Dn represents the coordinates set
of output response map with n0th pair image patch as
input. Rn and Yn represent the n0th output response
map and the n0th two-dimensional label matrix accord-
ing to the size of Rn. ln(i, j) is the loss at position (i, j)
on the n0th output response map Rn defined in formula
(5). us represent all the parameters in similarity bilinear
network.

During training, the batch gradient descent (BGD)
is used to optimize the parameters of the bilinear part,
and the whole process can be written as an optimiza-
tion function

argmin
us

E L f Zn,Xn; usð Þ, Ynð Þ½ � ð7Þ

Figure 9. Similarity response and two-dimensional label.
Different from traditional binary labels to each pixel, an analog
label method is applied.
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where E represents the mathematical expectation of
the loss function of all sample pairs. After calculating
the loss function value of each sample through the
network, BGD is used to find and update the partial
derivative of parameters us in the bilinear network by
backpropagation. Thus, the optimal parameter for
the mathematical expectation of the loss function is
finally obtained. In this procedure, the learning rate
of the optimizer is set to 0.001. The number of batch
pairs is 4 during training. The traffic vehicle dataset in
our laboratory is not quite sufficient compared with
some public datasets, and the neural network built in
this article is large scale.

This article chooses to use the public dataset based
on ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) for pre-training bilinear network to prevent
the overfitting problem of the model in the pre-training
stage. The dataset contains about 4500 video sequences
and 30 different vehicles and animals. Compared to
other datasets, the target species and the number of
video sequences in the dataset satisfy the requirements
of proposed network in this article.

After the pre-training stage of our bilinear network
is completed using the ILSVRC dataset, the traffic
dataset in this article is used to train the visual atten-
tion mechanism and fine-tune the parameters in the

bilinear network. The traffic dataset consists of 40
video sequences, which contain crossroads, bus sta-
tions, and other densely populated scenes. The targets
in the video are mainly traffic participants, such as
vehicles, bicycles, and pedestrians. Figure 10 shows the
sample template, the semantic information, and the
search area extraction method under the traffic dataset
of our laboratory. The rectangular box of sample tem-
plate tightly encapsulates the target vehicle, the seman-
tic feature of the background area, and the feature of
the search area extracted around the rectangular target
box in the process of tracking. All of them are interpo-
lated according to the target scale. Sample template
and semantic information are extracted from the initial
frame of the video, and the search area is extracted in
each subsequent frame. When the sample template is
input into the network, it is adjusted to �3 127 or
127 3 � size; semantic information and search area are
adjusted to 255 3 255 size.

In the second stage of joint training, the loss function
at the location (i, j) of response map Ratt is still defined
according to formula (8)

l i, jð Þ=logð1+expð�Yi, jR
att
i, jÞÞ ð8Þ

where Ratt
i, j is the value at location (i, j) on the ouput

similarity map of SAS-Net; Yi, j is the label value at

Figure 10. Exemplar, semantics, instance, and response map from traffic dataset. The rectangular box of sample template tightly
encapsulates the target vehicle, the semantic feature of the background area, and the feature of the search area extracted around the
rectangular target box in the process of tracking. All of them are interpolated according to the target scale: (a) exemplar, semantics,
instance, and response map of a turning red car and (b) exemplar, semantics, instance, and response map of a straight white car.
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location (i, j) as defined before. Then, with n0th pair of
the exemplar and the instance as the network input, the
overall loss function of the similarity response map of
SAS-Net is

L g Zs, Zn,Xn; us, uattð Þ, Ynð Þ

=
1

Dnj j
X

i, j2Dn

ln i, jð Þ

=
1

Dnj j
X

i, j2Dn

log 1+exp �Yn i, jð ÞRatt
n i, jð Þ

� �� �
ð9Þ

where (Zs, Zn,Xn) is the n0th combination of the seman-
tics, the exemplar, and the instance; Ratt

n represents the
similarity response of SAS-Net after adding the visual
attention mechanism. us and uatt represent the para-
meters of similarity bilinear network and visual atten-
tion mechanism, respectively.

In the second training stage, we use the RMSprop
method to optimize the network parameters us and uatt

jointly. This is a very effective optimizer for improving
the adaptive learning rate. It will no longer sum up all
the squares of the gradient during training, but reduce
it by an attenuation rate. It uses a moving average
method, by which the influence of the gradient of previ-
ous training samples on the adaptive learning rate is
smaller. It can avoid the problem in other optimizers
that the learning rate has been reduced too much and
can converge faster. The whole process can be written
as an optimized function

argmin
us, uatt,

E L g Zs, Zn,Xn; us, uattð Þ, Ynð Þ½ � ð10Þ

The entire network uses different initial learning
rates for us and uatt during training (0.0001 and 0.001,
respectively). Because the parameter us has been pre-
trained on the ILSVRC dataset, we only need a small
learning rate for us and a normal learning rate for uatt.

There is no difference between the forward propaga-
tion of the network in the test tracking stage and the
training stage. The sample feature u(Z) and the seman-
tic feature u(Zs) can be obtained at the initialization
stage. The weight value Channel_weight of the multi-
channel features is calculated by the attention mechan-
ism with the semantic features as the input. In tracking
process of each subsequent frame, only the multi-scale
instance X needs to be repeatedly extracted to compute
the branch of u(X ) and Search_attended feature map.

Experiments

The experimental environment for this article is as fol-
lows: CPU Intel core i7-4790 3.6 GHz; memory 16 GB,
GPU NVIDIA Quadro K2200, which contains 640
Compute Unified Device Architecture computing core
units and 4 GB graphics memory. The simulation

software is MATLAB R2017a, and the program is
written mainly based on the deep learning framework
Matconvnet for MATLAB. The evaluation video data
are provided by the intelligent traffic big data project
of our laboratory. Forty video sequences are truncated,
and the lengths of the truncated videos are not equal.
The frame rate of these videos is 25 FPS, and the reso-
lution is 1920 3 1080. It includes the traffic scene like
bus stations, intersections, crosswalks, and other people
intensive areas. The conditions of the road are
extremely complex. The performance comparison
between SAS-Net, Siamese network, and KCF, DSST
methods based on correlation filters on our traffic data-
set in this article is shown in Figure 11.

Figure 11 shows overlap ratio curve of each frame in
sequence 1, sequence 4, sequence 5, sequence 7, and
sequence 8 in our traffic dataset. In sequence 1, the
Siamese network completely loses tracking of the target
vehicle at about 20 frames because of occlusion or
background interference, while SAS-Net performs well.
The overall overlap ratio curve has been higher than
the curves of the other three methods. In sequence 4,
SAS-Net and DSST have a fairly high overlap ratio.
Both the overlap ratio curves show that the overall
overlap ratio between the predicted rectangular box
and the real vehicle rectangular box is higher than
Siamese when the SAS-Net is tracking. Only the over-
lap ratio of several frames is lower than the Siamese
network. In sequence 5, before the 150 frames, the over-
lap ratio of SAS-Net is only inferior to that of KCF.
After 150 frames, the overlap ratio of SAS-Net is higher
than them of the other three methods. In sequence 7,
the overlap ratio of SAS-Net is higher than KCF and
DSST; it is also higher than Siamese after 80 frames.
The overlap ratio of SAS-Net in sequence 8 is higher
than that of other three methods.

Figure 12 shows the success rate and the thresholds
of overlap ratio in 20 sequences of SAS-Net, Siamese,
KCF, and DSST. The success rate is defined as the
ratio of the success number to the total number of
frames in all videos. The success number is the sum of
success frames where the overlap ratio between the pre-
dicted box and the ground-truth box is higher than a
certain threshold. Overlap ratio is the ratio of the over-
lapping area to the merging area between two rectangu-
lar boxes. It can be seen from the figure that the success
rate of SAS-Net tracking is higher than that of other
three methods under most overlap ratio thresholds.

Figure 13 shows the precisions with distance thresh-
old curves of SAS-Net, Siamese, and correlation filters
methods of KCF and DSST in the 20 sequences. The
meaning of the points on the curve is the ratio of the
number of accurate frame number to the number of all
testing video frames. The accurate frame is a frame
where the distance between a predicted rectangular box
and a ground-truth box is lower than a certain distance
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threshold on the abscissa axis. The distance is calcu-
lated by the Euclidean distance between the two central
points of two rectangular boxes. As can be seen from
the figure, the precision of SAS-Net is much higher

than the other three methods when the distance thresh-
old is below 30. When the distance threshold is higher
than 30, the precision of SAS-Net is not the same as
that of the DSST method and is still much higher than

Figure 11. Overlap ratio curves of several video sequences. Overlap ratio is the ratio of the overlapping area to the merging area
between predicted box and ground-truth box: (a) overlap ratio curves of sequence 1, (b) overlap ratio curves of sequence 4, (c)
overlap ratio curves of sequence 5, (d) overlap ratio curves of sequence 7, and (e) overlap ratio curves of sequence 8.
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the KCF and Siamese methods by 10%. Compared
with the Siamese network, the SAS-Net has greatly
improved its performance.

Figure 14 shows the tracking results of SAS-Net,
Siamese, KCF, and DSST in several key frames of our
traffic video sequences. It can be seen from the figure
that when the target vehicle is far away from the cam-
era, the sensor cannot capture the features of the vehicle
better. This will lead to the drift of the model so that
the KCF fails to follow the target vehicle. Compared
with several other methods, the Siamese method has a
poor tracking result when the target vehicle is in a com-
plex background area. The main reason is that the deep
features of the surrounding vehicles are too similar to
the deep features of the target vehicles, but the influence
of surrounding background information to the model is
not considered when the sample template is extracted.
In this article, the SAS-Net method effectively filters
the deep features at different channels through the
attention mechanism. It multiplies each channel by dif-
ferent coefficients according to the importance of differ-
ent channels. The vehicles are no longer disturbed by
the background area and the occluded vehicles. Our
model has achieved good results compared with other
methods.

Table 2 shows a contrast between SAS-Net and
Siamese networks, KCF, and DSST. Evidently, the
average processing speed of the Siamese network on 20
video sequences is 22.98 FPS, while the average pro-
cessing speed of the SAS-Net on the 20 video sequences
is 28.51 FPS, slightly faster than the Siamese network.

This is mainly due to the variable scale sample template
adopted in this article. The number of convolution fea-
tures calculated by similarity measurement is greatly
reduced, so the speed is improved when the last two
features are convoluted. The speed of the SAS-Net is
also faster than DSST by over 10 FPS. This is because
the DSST method also trains a scale filter online while
updating the location filter and extracts the target fea-
tures of about 30 times when testing and updating.
Without the support of the GPU lab environment, this
process is time-consuming. However, SAS-Net only
needs to extract the features of three times in the calcu-
lation and can achieve the desired speed with the sup-
port of Matconvnet framework. So the two methods
also apply to different scenarios. Table 3 exactly shows
the comparison on time for the convolution of sample
template feature u(Z) and search area features u(X ).
SAS-Net saves an average of 0.004 s time in the final
convolution process compared with the Siamese net-
work. As u(X ) is convoluted by u(Z), the feature size is
reduced, so the number of multiplication operations
made by convolution is also greatly reduced.

Conclusion and future work

In this article, we focus on the vehicle tracking task for
IOV and propose the SAS-Net model which combines
the bilinear network with a visual attention mechanism,
making the model select the features from different
channels according to different impacts of features from
semantic areas. The model makes the vehicle no longer

Figure 13. Precisions with the distance threshold curve. The
points on the curve are the ratio of the number of accurate
frame number to the number of all testing video frames. The
accurate frame is a frame where the distance between a
predicted rectangular box and a ground-truth box is lower than
a certain distance threshold on the abscissa axis.

Figure 12. Success rate with the overlap ratio threshold curve.
The success rate is defined as the ratio of the success number
to the total number of frames in all videos. The success number
is the sum of success frames where the overlap ratio between
the predicted box and the ground-truth box is higher than a
certain threshold.
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Figure 14. Tracking results on key frames in part of video sequences. When the target vehicle is far away from the camera, the
KCF method cannot capture the features of the vehicle better. The Siamese method has a poor tracking result when the target
vehicle is in a complex background area. Our SAS-Net has achieved good results compared with other methods.
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disturbed by the background area and the occluded
vehicles and has obtained good results compared with
other methods. The success rate of SAS-Net tracking is
higher than that of KCF, DSST, and Siamese-FC under
most overlapping rate thresholds. The precision of
SAS-Net is much higher than the other three methods
when the distance threshold is below 30. Our SAS-Net
achieves a real-time tracking speed. If there is more
hardware support, this model can be applied to large-
scale intelligent IOV system to assist all the connected
vehicles to make a good travel plan.

In the future research work, the joint vehicle track-
ing method based on the multi-image sensor will be
brilliant. In the IOV system, interaction and fusion of
information generated by different sensors among dif-
ferent vehicles are inevitable. In the combination of
multi-sensors, how to fuse the multimodal data from
various kinds of sensors, such as image sensors and
wireless sensors, will be a long-term research goal.
Deep neural networks still have great potential in these
fields. Designing different kinds of neural networks for

these multimodal data can achieve the fusion of differ-
ent sensor information.
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