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Highlights

• We present an exact method to solve vehicle routing problem with stochas-
tic demands.

• We lower approximate the optimal restocking policy to bound recourse
function.

• We enhance the Integer L-shaped method by redefining lower bounding
functionals.

• We can solve problems with 100 customers having arbitrary discrete de-
mands.
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Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada

Abstract

This paper examines the Vehicle Routing Problem with Stochastic Demands
(VRPSD), in which the actual demand of customers can only be realized upon
arriving at the customer location. Under demand uncertainty, a planned route
may fail at a specific customer when the observed demand exceeds the resid-
ual capacity. There are two ways to face such failure events, a vehicle can
either execute a return trip to the depot at the failure location and refill the
capacity and complete the split service, or in anticipation of potential failures
perform a preventive return to the depot whenever the residual capacity falls
below a threshold; overall, these return trips are called recourse actions. In the
context of VRPSD, a recourse policy which schedules various recourse actions
based on the visits planned beforehand on the route must be designed. An
optimal recourse policy prescribes the cost-effective returns based on a set of
optimal customer-specific thresholds. We propose an exact solution method
to solve the multi-VRPSD under an optimal restocking policy. The Integer L-
shaped algorithm is adapted to solve the VRPSD in a branch-and-cut frame-
work. To enhance the efficiency of the presented algorithm, several lower
bounding schemes are developed to approximate the expected recourse cost.

Keywords: Routing, Stochastic demands, Optimal policy, Restocking, Partial
routes, Integer L-shaped algorithm, Lower bounding functionals

∗Corresponding author
Email addresses: majid.salavati@cirrelt.ca (Majid Salavati-Khoshghalb ),

michel.gendreau@cirrelt.net (Michel Gendreau), ola.jabali@polimi.it (Ola Jabali),
walter.rei@cirrelt.ca (Walter Rei)

Preprint submitted to European Journal of Operational Research July 27, 2018



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

Following the seminal paper of Dantzig & Ramser (1959), the Vehicle Rout-
ing Problem (VRP) has been the subject of considerable research efforts over the
last decades, see Laporte (2009). The aim in VRP is to find a set of routes serv-
ing a given set of customers at a minimal cost (the least travel cost, minimum
number of vehicles, etc.). The routes should start and end at the depot, and are
designed to be performed by a fleet of vehicles with homogeneous capacity. In
the deterministic version of VRP in which all problem parameters are known
precisely, each customer is only visited once by one vehicle.

In real-life problems, however, various parameters of the VRP can be un-
certain. Uncertainty is more likely to appear in demands, travel and service
times, and customer presence. It is usually dealt with by using probability
distributions to describe the uncertain parameters, which are then stochastic.
The VRPs in which some parameters are stochastic are called Stochastic VRPs
(SVRPs). Although SVRPs have received much less attention in comparison to
the deterministic VRP, several efforts have been devoted to investigate various
versions of the SVRP; for a thorough exposition of the SVRP context, we refer
the reader to Gendreau et al. (2014), Oyola et al. (2016), and Oyola et al. (2017).
One way to deal with stochastic parameters in stochastic routing models is to
use their deterministic approximated counterparts, in which the stochastic pa-
rameters are roughly replaced by their forecasted equivalents. Such models
can sometimes lead to arbitrarily bad quality solutions at execution time when
stochasticity reveals itself, see Louveaux (1998). Thus, there is a need to model
SVRPs using specialized optimization frameworks in which stochastic param-
eters are explicitly modeled through random variables.

In this paper, we are mainly interested in the Vehicle Routing Problem with
Stochastic Demands (VRPSD), where customer demands are only known through
probability distributions. In this context, it is common to assume that the actual
demand of each customer can only be observed upon arriving at its location.
Because of that, a planned route may fail at a customer when the demand ex-
ceeds the residual capacity on the vehicle. This occurrence is called a route
failure. To prevent failures and complete the service after a route failure has
occurred, extra decisions, called recourse actions, must be taken and associated
travel costs, called recourse costs, need to be incurred. The objective in the
VRPSD is to minimize the total driven distance, which consists of routing (i.e.,
preliminary plans) costs and recourse costs.

It is important to note that the general context of the VRPSD can be tackled
in variety of ways. One thus usually refers to modeling paradigms to formal-
ize the problem and the way in which it is solved. Dror et al. (1989) describe
several of these paradigms for the VRPSD. One of them is the so-called a pri-
ori optimization approach, which was extensively discussed in Bertsimas et al.
(1990); another is the reoptimization approach; further details can be found in
Gendreau et al. (2014). These modeling paradigms either separate or unify the
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process of making routing and recourse decisions, where information, here,
stochastic demands, are revealed at once or in a stepwise manner, respectively.
In the a priori optimization approach, one decomposes the overall decision
making process into two sets of mutually exclusive decisions as routing and
recourse decisions, thus modeling the VRPSD as a two-stage stochastic inte-
ger program with recourse (see, Birge & Louveaux (2006) for a comprehensive
coverage of stochastic programming). In this approach, the first stage consists
of finding a set of a priori routes while the demands are not known yet with
certainty. Once stochasticity reveals itself, the second stage consists of plan-
ning/obtaining a set of recourse decisions in the execution of each a priori
route. The a priori optimization approach is a particularly suitable paradigm
to model the VRPSD when the aim is to execute a route repeatedly over a long
horizon. In the reoptimization approach, after the demand of each customer
has been observed and served, the remaining portion of the vehicle route is
conceptually reoptimized-by choosing the first customer to visit next and by
deciding if a visit to the depot to replenish vehicle capacity should be per-
formed first; see Secomandi (2001) and Secomandi & Margot (2009) for appli-
cations in which route reoptimization is allowed.

As mentioned before, under the a priori optimization approach for the
VRPSD, a set of planned routes is determined in the first stage based on prob-
abilistic information. To tackle the second-stage, a recourse policy must be de-
signed. Such a policy corresponds to a set of predetermined rules to derive
recourse decisions based on the residual capacity of the vehicle as well as the
visits that are scheduled along the route. A recourse policy then provides the
driver with a full prescription to react to incoming situations. Several recourse
policies have been proposed. In the classical recourse policy, the driver follows
the planned route until the vehicle capacity is depleted. Whenever the demand
of a specific customer exceeds the residual capacity of the vehicle, the vehicle
must execute a back-forth (BF) trip to the depot to replenish the capacity in
order to complete the service. If the observed demand turns out to be equal to
the residual capacity, the vehicle performs a restocking trip to the depot and
then continues to the next customer. This classical policy was introduced by
Dror & Trudeau (1986) and implemented by Gendreau et al. (1995); Hjorring
& Holt (1999); Laporte et al. (2002); Rei et al. (2010) and Jabali et al. (2014). As
an alternative, one could apply an optimal restocking policy in which, the driver
also prescribes preventive return (PR) trips to the depot in anticipation of po-
tential failures whenever the residual capacity falls below a threshold value.
In the optimal restocking policy, the vehicle prescribes PR trips in addition to
BF trips such that the total expected cost is minimized, thus obtaining optimal
customer-specific thresholds. This policy was introduced by Yee & Golden
(1980) and implemented by Yang et al. (2000) and Bianchi et al. (2004).

Employing the optimal restocking policy entails simultaneously optimiz-
ing the vehicle routes and the customer-specific thresholds. As these thresh-
olds are an outcome of the optimization, the optimal restocking policy does
not directly allow a company to systematically control the risk of encounter-
ing failures. Salavati-Khoshghalb et al. (2017) and Salavati-Khoshghalb et al.
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(2018) proposed different recourse policies, which allow a company to deter-
mine its customer-specific thresholds according to a number of operational
rules. Salavati-Khoshghalb et al. (2017) proposed three volume based policies,
which use simplistic comparisons of the vehicle’s residual capacity in order to
decide when PR trips are performed, e.g., executing a PR trip once the avail-
able vehicle capacity is below a preset percentage of its total capacity. Salavati-
Khoshghalb et al. (2018) proposed a hybrid recourse policy which is a more
advanced form of a rule-based recourse policy. The hybrid recourse policy
combines risk-based and distance-based rules. For a given route, the authors
define a risk measure, which computes the risk of failure at the next customer.
This risk measure is then compared with two preset thresholds. Namely, the
minimum restocking threshold and a maximum proceeding threshold. In the
case where the risk measure is greater than the minimum restocking threshold,
the vehicle executes a PR trip, whereas if the risk measure is less than the maxi-
mum proceeding threshold, the vehicle proceeds with its planned route. In the
cases where the risk measure falls between the maximum proceeding threshold
and the minimum restocking threshold, a distance measure employed. This
measure compares the cost of performing a PR trip at the current customer
with the expected failure costs, resulting from BF trips, performed at all subse-
quent customers in the planned route. If the cost of the former is lower than the
latter a PR trip is performed, otherwise the vehicle proceeds with its planned
route.

We present a small example in order to illustrate the differences between
the different recourse policies (optimal restocking, classical, rule-based and
hybrid). In Figure 1 the pair of numbers below each vertex specifies the co-
ordinate of the vertex in [0, 1000]2. The expected demand of each customer is
shown by a red integer on the right-hand-side of the vertex. The capacity of the
vehicle was set to 45. The support of the demand probability distributions of
customers v1, v2, v3, and v4 are {11,13,15,17,19}, {6,8,10,12,14}, {11,13,15,17,19}
and {1,3,5,7,9}, respectively. A probability of 0.2 was associated with each
of the five possible values for each customer. All four policies use the route
0− v4 − v3 − v1 − v2 − 0. The rule-based policy is based on the second pol-
icy proposed Salavati-Khoshghalb et al. (2017), which outperformed the other
two. According to this policy, when leaving a customer on a planned route a
PR trip is performed if the residual capacity of the vehicle is less than η times
the expected demand of the subsequent customer on the route. This policy
with η = 1 was used in the example. As for the hybrid policy the minimum
restocking threshold was set to 0.65 and a maximum proceeding threshold was
set to 0.35.

In Table 1 we summarize the results of the example for the four policies.
For the optimal restocking policy and the rule-based policy we present the cus-
tomer thresholds. We note that while the routing cost (i.e., the first stage cost) is
the same for all four policies, the expected recourse costs (i.e., the second stage
cost) differ from one policy to another. In particular, the classical policy incurs
the highest expected recourse cost, and the rule based policy has a higher ex-
pected recourse cost than that of the optimal restocking policy. Finally, we note
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that in this examples the hybrid policy, albeit employing a mixed policy struc-
ture, yields the same expected recourse cost as the optimal restocking policy.

DEPOT

15v1

10v2

15v3

5v4

354, 715

661, 112

576, 641

522, 272

528, 524

Figure 1: Small example with four customers scattered randomly scattered in
[0, 1000]2

The pair of numbers below each vertex in the Figure 1 specifies the coordi-
nate of the vertex in [0, 1000]2. Except the depot, the expected demand of each
customer is shown by a red integer in the right-hand-side of the vertex. The sup-
ports have been used are as follows: 1,3,5,7,9, 6,8,10,12,14, and 11,13,15,17,19
with probability of 0.2 for all realizations.

Table 1: Comparison of four policies on the instance of Figure 1
Policy D c1 c2 c3 c4 D Tot. Cost Route Recourse Hamm. Dist. ✓D ✓1 ✓2 ✓3 ✓4 ✓D Cap.

Class. 0 4 3 1 2 0 2881.816 2584.000 297.816 0 1 1 1 1 0 - 45

Hyb. 0 4 3 1 2 0 2700.632 2584.000 116.632 0 - - 45

Opt. 0 4 3 1 2 0 2700.632 2584.000 116.632 0 45 15 17 12 0 - 45

Rule. 0 4 3 1 2 0 2760.600 2584.000 176.600 0 5 15 15 10 0 - 45

1

Figure 1: Small example with four customers randomly scattered in [0, 1000]2.

Table 1: Comparison of four recourse policies on the instance of Figure 1

Policy Total cost Routing cost Recourse cost θ1 θ2 θ3 θ4

Classical 2881.8 2584.0 297.8

Hybrid 2700.6 2584.0 116.6

Optimal 2700.6 2584.0 116.6 12 0 17 15

Rule-based 2760.6 2584.0 176.6 10 0 15 15

To tackle the VRPSD modeled under the a priori paradigm, several exact,
heuristic, and metaheuristic algorithms have been proposed; see for more de-
tails Gendreau et al. (2014). Two exact solution techniques have been used in
this context. The Integer L-shaped algorithm and the column generation ap-
proach. The Integer L-shaped algorithm was adapted for the VRPSD by Gen-
dreau et al. (1995), Hjorring & Holt (1999), Laporte et al. (2002), and Jabali et al.
(2014). The column generation approach was applied to the VRPSD by Chris-
tiansen & Lysgaard (2007), as well as by Gauvin et al. (2014). All of these papers
implemented the classical recourse policy. More recently, Salavati-Khoshghalb
et al. (2017) and Salavati-Khoshghalb et al. (2018) have extended the Integer L-
shaped algorithm to consider PR trips for rule-based policies. However, there
are few research studies devoted to present and examine the optimal restock-
ing policy. Yee & Golden (1980) defined the optimal restocking recourse strat-
egy, under which a set of optimal threshold-based recourse decisions includ-
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ing BF and PR trips can be obtained for given planned routes. Such an optimal
restocking policy has been integrated in heuristic and metaheuristic solution
procedures to solve the VRPSD by Yang et al. (2000) and Bianchi et al. (2004).
Generally, these heuristic procedures result in overall sub-optimal pair of rout-
ing and recourse decisions.

Recently, Louveaux & Salazar-González (2017) have integrated the optimal
restocking policy in the a priori optimization solution approach to model the
VRPSD. They propose an implementation of the L-shaped method to solve ex-
actly the resulting problem. It should be noted that, while this paper provides
bounding procedures applicable to instances in which customer demand dis-
tributions are not identical, much of the work focuses on the case where all
customers have identical demand distributions and all their computational re-
sults cover only this case.

The purpose of this paper is to propose an exact algorithm to solve the
VRPSD under an optimal restocking recourse policy, thus yielding solutions
that are optimal both with respect to routing decisions and restocking ones.
The proposed algorithm is an adaptation of the L-shaped method that uses
various bound improvement procedures to achieve an effective performance.
Furthermore, our approach allows for the consideration of different demand
distributions for the customers in a computationally effective way, as long as
they are discrete and with finite support, as shown by the numerical results
that we report.

The remainder of this paper is organized as follows. Section §2 lays out the
VRPSD model under the a priori approach with an optimal restocking policy.
We devote Section §3 to propose an exact method, for solving the VRPSD under
an optimal restocking policy, enhanced by various lower bounding schemes.
Section §4 presents the results of a computational study to examine the perfor-
mance of the proposed exact method. Section §5 proposes some conclusions
and future research directions.

2. Optimal Restocking Recourse Policy Under the A Priori Approach

In Section §2.1, we first present the Vehicle Routing Problem with Stochas-
tic Demands (VRPSD) modeled under the a priori optimization approach. To
model the recourse problem, we recall the optimal restocking policy resulting
in a set of optimal recourse decisions in §2.2.

2.1. VRPSD Formulation Under an A Priori Approach

This section revisits the VRPSD formulation presented by Gendreau et al.
(1995) and Laporte et al. (2002). Let G = (V , E) be a complete undirected
graph, where V = {v1, v2, . . . , vn} is the set of vertices and E = {(vi, vj)|vi,
vj ∈ V , i < j} is the set of edges. Vertex v1 is the depot, where a fleet of
m vehicles each having capacity Q is initially located. Each vertex vi (i = 2,
. . . , n) represents a customer whose stochastic demand ξi follows a discrete
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probability distribution with a finite support, defined as the ordered set {ξ1
i , ξ2

i ,

. . . , ξ l
i , . . . , ξsi

i }, where ξsi

i ≤ Q. We denote by pl
i , the probability of observing

the lth demand level, i.e., P[ξi = ξ l
i ] = pl

i . The traveling cost along an arc (vi,
vj) ∈ E is denoted by cij, where the cost matrix C = (cij) is symmetric and
satisfies the triangle inequality.

To formulate the VRPSD, we first recall the a priori optimization approach
by Bertsimas et al. (1990). As previously mentioned, the first stage consists of
making classical VRP routing decisions with probabilistic information about
the stochastic demands. The decision variable xij (i < j) denotes the number
of times edge (vi, vj) is traversed in the first-stage.

Given the notation devised previously in Gendreau et al. (1995) and Laporte
et al. (2002), the a priori model for the VRPSD is formulated as follows:

minimize
x ∑

i<j
cijxij +Q(x) (1)

subject to
n

∑
j=2

x1j = 2m, (2)

∑
i<k

xik + ∑
k<j

xkj = 2, k = 2, . . . , n (3)

∑
vi ,vj∈S

xij ≤ |S| −
⌈∑vi∈S E(ξi)

Q

⌉
, (S ⊂ V \ {v1}; 2 ≤ |S| ≤ n− 2)

(4)

0 ≤ xij ≤ 1, 2 ≤ i < j < n (5)

0 ≤ x1j ≤ 2, j = 2, . . . , n (6)

x = (xij), integer (7)

In this formulation, constraints (2) ensure that exactly m vehicle routes that
start and end at the depot are established; constraints (3) ensure that each
customer is connected to two other vertices; constraints (4) stand simultane-
ously as subtour elimination constraints and capacity constraints, which re-
move both subtours, and infeasible routes with an excessive expected demand.
Then, the first-stage traveling costs are incurred in the objective function (1) as
∑i<j cijxij.

Let us now suppose that an a priori routing solution x in model (1)-(7) is
given. In the presence of demand stochasticity, however, an a priori route may
fail at a specific customer at which the observed demand exceeds the residual
capacity of the vehicle. Then, a recourse or corrective decision must be taken to
either regain (i.e., in a reactive fashion) or preserve (i.e., in a proactive fashion)
routing feasibility. In the context of the VRPSD, the recourse decisions are in
the form of return trips to depot, but these trips entail extra costs. Then, the
expected cost of the recourse actions that are taken given the routing solution
x under a given policy is represented by Q(x) in the objective function (1).

Dror & Trudeau (1986) have shown that, for route-based recourse policies,
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Q(x) can be decomposed by route. They also showed that the expected cost of
recourse actions for a route depends on its orientation, i.e., in which direction
it is executed. Thus, the expected recourse cost for routing solution x can be
computed as (8), where Qr,δ denotes the expected recourse cost of the rth a
priori route in the orientation δ = 1, 2.

Q(x) =
m

∑
r=1

min{Qr,1,Qr,2}. (8)

ComputingQr,δ for δ = 1, 2 under an optimal restocking policy, thus obtaining
a set of optimal recourse decisions for the rth a priori route, is the subject of the
next subsection.

2.2. The Optimal Restocking Policy

In this section we recall the optimal restocking policy, devised by Yee &
Golden (1980) for the VRPSD. Let us first consider an a priori route expressed
as vector ~v = (v1 = vi1 , vi2 , . . . , vit , vit+1 = v1). An optimal restocking policy
is a sequential decision rule that determines whether the vehicle after serving
a specific customer with an arbitrary residual capacity onboard proceeds ac-
cording to the planned route or performs a PR trip first. More precisely, let us
assume that after serving the ij

th customer of the route, the residual capacity of
the vehicle is equal to q units. If the vehicle proceeds to the following customer
(i.e., ij+1), then it must attempt to satisfy the stochastic demand ξij+1 . When
q ≥ ξij+1 service is completed with a nonnegative residual capacity of q− ξij+1 ,
and one must again decide whether the vehicle should proceed or replenish
the vehicle capacity first. If q < ξij+1 , then a route failure occurs and the vehi-
cle must perform a BF trip (at the cost of 2c1,ij+1 ) before completing the service
of customer ij+1 with a residual capacity equal to Q + q − ξij+1 . It should be
noted that we also consider a fixed cost b for each route failure as Yang et al.
(2000); this penalizes the disruption at a customer location caused by the sec-
ond vehicle visit. On the other hand, the vehicle can replenish its capacity by
performing a PR trip in order to avoid potential route failures, before starting
the service at the ij+1

th customer. After replenishing the vehicle capacity at the
cost of c1,ij

+ c1,ij+1 − cij ,ij+1 , the vehicle can fulfill all demand observations of
customer ij+1 since Q ≥ ξij+1 , and then will decide whether to serve the fol-
lowing customer ij+2 with a residual capacity equal to Q− ξij+1 , or perform a
PR trip.

Let Fij
(q) be the optimal onward recourse cost-to-go after serving the ij

th,
and remaining with a residual capacity of q. Then, the optimal expected re-
course cost of the a priori route ~v can be expressed by using the following
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Bellman equation,

Fij
(q) = min





Hij ,ij+1(q) : ∑
k:ξk

ij+1
≤q

Fij+1(q− ξk
ij+1

)pk
ij+1

+

∑
k:ξk

ij+1
>q

[b + 2c1,ij+1 + Fij+1(Q + q− ξk
ij+1

)]pk
ij+1

,

H′ij ,ij+1
(q) : c1,ij

+ c1,ij+1 − cij ,ij+1 +
si

∑
k=1

Fij+1(Q− ξk
ij+1

)pk
ij+1

(9)
where, Hij ,ij+1(q) and H′ij ,ij+1

(q) express the total costs associated to the pro-

ceeding and restocking decisions after serving the ij
th customer, respectively.

This computation differs from the formula given by Yang et al. (2000), since
it only considers the recourse cost and not the total cost of the route. Us-
ing equation (9), we have Fit+1(.) = 0 since after serving the last customer
the expected recourse cost is equal to zero. We note that Fij

(q) is an opti-
mal policy only if Fij+1(.), Fij+2(.), . . . , Fit(.) are already optimally given. Fur-

thermore, let ~θ∗ = (θ∗i1 , θ∗i2 , . . . , θ∗ij
, . . . , θ∗it) be the optimal restocking policy

threshold vector. Since Fij
(q) is monotonically non-increasing with respect to q,

θ∗ij
= min{q|Hij ,ij+1(q) ≤ H′ij ,ij+1

(q)} (for further details see, e.g., Yee & Golden
(1980) and Yang et al. (2000)). Based on θ∗ij

computed by the latter equation, the

optimal decision at the ij
th customer is either replenishing the vehicle capacity

for q < θ∗ij
or proceeding to the next customer whenever q ≥ θ∗ij

.

Given equation (9) and assuming that the rth vehicle performs the a priori
route, its expected recourse cost can then be computed for the first orientation
(i.e., δ = 1) as follows,

Qr,1 = Fi1(Q). (10)

To compute the expected recourse cost of the route for the second orientation
(i.e., Qr,2), we reapply function (10) to the reverse of the a priori route ~v.

3. An Integer L-shaped Algorithm to Solve the VRPSD under an Optimal
Restocking Policy

In this section, we adapt the Integer L-shaped algorithm to exactly solve the
VRPSD under an optimal restocking recourse policy. The Integer L-shaped al-
gorithm is proposed by Laporte & Louveaux (1993) to tackle two-stage stochas-
tic integer program with recourse. It stands as a general branch-and-cut (B&C)
procedure in which, feasibility cuts and branching are employed to obtain inte-
ger first-stage solutions. A feasible integer solution with an excessive expected
recourse cost is removed by adding optimality cuts. The optimality cuts which
are originally developed by Laporte & Louveaux (1993), adjust a lower bound
for Q(x) at each feasible integer solution using its combinatorial structure lo-
cally. However, the Integer L-shaped algorithm solely relying on optimality
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cuts may turn to an implicit enumeration procedure of feasible integer solu-
tions. Therefore, there is a need to provide lower bounding procedures en-
hancing the B&C procedure.

Such lower bound improving procedures were first proposed by Hjorring
& Holt (1999) (for the VRPSD with classical recourse) via the concept of par-
tial routes, which are feasible fractional solutions with certain structures. These
new valid inequalities called lower bounding functional (LBF) cuts improve
lower bounds for several integer feasible solutions. However, some restrictive
assumptions are made: 1) all customers demands are discrete, independent
and uniformly distributed and 2) a maximum of one failure can occur within
the fractional structure. The concept of partial routes was then developed by
Laporte et al. (2002) for multi-VRPSD, where customer demands follow contin-
uous distributions. Jabali et al. (2014) generalize the concept of partial routes
proposed by Hjorring & Holt (1999) through defining various structures, thus
improving global lower bound for many fractional feasible solutions.

In this section we apply LBF cuts of Jabali et al. (2014) to the case of opti-
mal restocking policy when customers demand are defined through arbitrary
discrete distributions. The LBF cuts of Jabali et al. (2014) are only applied to
the case where customer demands are Normal distributions. To do so, we pro-
vide several approximation schemes to compute valid lower bounds for the
expected recourse cost of partial routes under an optimal restocking policy. In
subsection §3.1, we first revisit the Integer L-shaped algorithm. Then, in sub-
section §3.2 we present a lower bounding scheme to approximate Q(x), where
x contains partial routes of Jabali et al. (2014). In subsection §3.3, we provide a
general lower bound L where L ≤ Q(x) and x satisfies (2)-(7).

3.1. The Integer L-Shaped Algorithm
In this section we describe the Integer L-shaped employed to optimally

solve the VRPSD in a general B&C procedure. In this B&C procedure a mas-
ter problem, called current problem (CP) is established by relaxing capacity and
subtour elimination constraints as well as the integrality requirements. The ex-
pected recourse function Q(x) is replaced by the continuous variable Θ and is
initially bounded from below by a general lower bound L using (14). The first
current problem CP0 can be presented by (11), (2), (3),(5), (6), and (14). At an
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arbitrary iteration ν, CPν is shown in the following model,

CPν : min
x,Θ

∑
i<j

cijxij + Θ (11)

subject to (2), (3), (5), (6),

∑
vi ,vj∈Sk

xij ≤ |Sk| −
⌈∑vi∈Sk E(ξi)

Q

⌉
∀k ∈ STν−1, Sk ⊂ V \ {v1}, 2 ≤ |Sk| ≤ n− 2,

(12)

L + (Θq
p − L)

(
∑

h∈PRq
Wh

p (x)− |PRq|+ 1

)
≤ Θ ∀q ∈ PSν−1, p ∈ {α, β, γ},

(13)

L ≤ Θ (14)

∑
1≤i≤j
x f

ij=1

xij ≤ ∑
1≤i≤j

x f
ij − 1 ∀ f ∈ OCν−1, (15)

where, constraints (12), (13), and (15) respectively are subtour elimination and
capacity constraints, LBF cuts, and optimality cuts. At each iteration ν, an
optimal solution (xν, Θν) is obtained by solving CPν. Violated capacity and
subtour elimination constraints (12) are added to CPν until no more violated
cuts are detected. We denote by {k′} the index set associated to the subsets
of vertices violating (12) at iteration ν. We also denote by STν−1 the set of
index sets of the vertices violating (12) in the first ν − 1 iterations. Then, at
iteration ν we set STν = STν−1 ∪ {k′}. The separation procedure is performed
by the CVRP package of Lysgaard et al. (2004). When no violated constraint
(12) is detected, the lower bounding cuts (13) are added to strength the overall
bounding scheme. An exact separation procedure developed by Jabali et al.
(2014) detects partial solutions within xν. We denote by {q′} the index set as-
sociated to partial solutions identified in iteration ν. We also denote by PSν−1

the set of index sets of the partial solutions detected to add (13) in the first ν− 1
iterations. Then, at iteration ν we set PSν = PSν−1 ∪ {q′}. Each partial solu-
tion contains a set of partial routes, here at iteration ν denoted by h′ including
various structures α, β, and γ proposed by Jabali et al. (2014) (see subsection
§3.2 for further details). For each partial route h the functional Wh

p (x) ensures
that the constraint is active on relevant portions of the solution space and, is
redundant otherwise (see subsection §3.2 for further details). The expected re-

course cost associated to each structure p ∈ {α, β, γ} is computed as Θq′
p using

the procedure presented in subsection §3.2. We also denote by PRν−1 the set of
partial routes detected in the first ν− 1 iterations. Then, at iteration ν we set
PRν = PRν−1 ∪ {h′}. The branching scheme obtains integrality requirements
whenever needed. At integer feasible solutions, Q(xν) is computed to update
the upper bound,. In the case of Θν < Q(xν), an optimality cut (15) is added
to CPν. We denote by { f ′} the index set of xν when an optimality cut is added.
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We also denote by OCν−1 the set of index sets of vertices associated to the op-
timality cuts detected in the first ν − 1 iterations. Then, at iteration ν we set
OCν = OCν−1 ∪ { f ′}.

3.2. Approximating an Optimal Restocking Policy
Here, we present the bounding procedures to approximate the expected

recourse cost of partial solutions. At an arbitrary iteration ν, we assume that
partial solutions within xν are detected, here denoted by q, using the exact
procedure proposed by Jabali et al. (2014). We note that Θq

p in (13) is set as the
sum of the lower bounds of the various partial routes (or routes) included in q
and can be computed by Θq

p = ∑
h∈PRq

Θqh
p . We then drop the index q in Θqh

p and

present it by Θh
p.

Generally, a partial route stems from a fractional solution and consists of
an alternation of chains and unstructured components. The vertices of a chain are
connected in the support graph at iteration ν (denoted by Ḡν); where there is an
edge (vi, vj) in Ḡν if xν

ij = 1. The vertex set of a chain is called chain vertex set
(CVS). The vertex set of each unstructured components is called unstructured
vertex set (UVS). Each UVS lies between two chains and is connected to them
at unique articulation vertices. Figure 2 shows an example of three possible
partial routes.

In the α-route topology the first and last chains are viewed as CVSs, while
the intermediate component (containing potentially multiple chains and UVSs)
is considered as a single-UVS. This topology corresponds to the one proposed
by Hjorring & Holt (1999). In the β-route topology the actual alternation of
CVSs and UVSs is captured. In the γ-route topology each chain is viewed
as a UVS and articulation vertices are viewed as single-CVSs. The separation
procedure proposed by Jabali et al. (2014) detects all chains and CVSs, which
implicitly implies that a β-route topology is detected. Once this topology is
detected an appropriate α-route and an appropriate γ-route may be derived.

Formally let κ denote the number of chains and κ − 1 be the number of
UVSs in partial route. Let St

h = {vt
h1

, . . . , vt
hl
} be the tth chain in partial route

h ∈ PRν, where vt
hz

is the zth vertex in St
h, and hl is the number of vertices in

St
h. Therefore,

∑
(vi ,vj)∈St

h

xν
ij = |St

h| − 1, ∀t = 1, . . . , κ. (16)

Let Ut
h be the tth UVS in partial route h. Then,

∑
vi ,vj∈Ut

h

xν
ij = |Ut

h| − 1, ∀t = 1, . . . , κ − 1. (17)

A UVS is preceded by a chain and proceeded by another. Therefore,

∑
vj∈Ut

h

xν
ht

l ,j
= 1, ∀t ≤ κ − 1, (18)
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and
∑

vj∈Ut−1
h

xν
ht

1,j = 1, ∀t ≥ 2 (19)

For completeness we recall the definition of the functional Wh
p (x), as intro-

duced by Jabali et al. (2014):

Wh
p (x) =

κ

∑
t=1

∑
(vi ,vj)∈St

h
vi 6=v1

3xij + ∑
(v1,vj)∈S1

h

x1j + ∑
(v1,vj)∈Sκ

h

x1j +
κ−1

∑
t=1

∑
vi ,vj∈Ut

h

3xij (20)

+
κ−1

∑
t=1

∑
vj∈Ut

h
vt

hl
6=v1

3xht
l j +

κ

∑
t=2

∑
vj∈Ut−1

h
vt

h1
6=v1

3xht
1 j + ∑

vj∈U1
h

v1
hl
=v1

xh1
l j + ∑

vj∈Ub−1
h

vκ
h1
=v1

vκ−1
h1
6=v1

xhκ
1 j

− (3|Rh| − 5).

We now describe an approximation technique to compute Θh
p in order to

add LBF cuts (13). In (13), Θh
p presents a valid lower bound for the expected

recourse cost of partial route h with an arbitrary structure p ∈ {α, β, γ}. In
what follows, we only derive Θν

α. The approximating technique can then be
applied to compute Θh

β and Θh
γ because β and γ topologies can be viewed as

successions of the α topology.
Let h ∈ PRν be a partial route with the α topology. Partial route h with α

topology consists of two chains S1
h = {v1

h1
, . . . , v1

|S1
h |
} and S2

h = {v2
h1

, . . . , v2
|S2

h |
}

and one unstructured set U1
h as h = (v1 = v1

h1
, . . . , v1

|S1
h |

, U1
h , v2

h1
, . . . , v2

|S2
h |
= v1),

where U1
h = {vu1 , vu2 , . . . , vul}; v1

|S1
h |

and v2
h1

are articulation vertices which

connect chains S1
h and S2

h to U1
h , respectively.

For the sake of simplicity, we redefine the partial route h, in similar terms
as a route, as follows

h = (v1 = vi1 , . . . , vij−l
, {vu1 , vu2 , . . . , vul}, vij+1 , . . . , vit+1 = v1),

where the articulation vertices v1
|S1

h |
and v2

h1
are denoted by vij−l

and vij+1 , re-

spectively. We define an artificial route h̃ associated to the partial route h as
follows,

h̃ = (v1 = vi1 , . . . , vij−l
, ij−l+1

, ij−l+2
, . . . , ij

, vij+1 , . . . , vit+1 = v1), (21)

where each ordering of l unsequenced customers in U1
h can be assigned to the

positions ij−l+1
, . . . , ij

. In what follows, we refer to ij
as the ij

th position in
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v1
h1

v1
hl

v2
h1

v2
hl

(a) a-routes

v1
h1

v1
hl

v2
h1

v2
hl

(b) b-routes

(c) g-routes
Figure 3 Partial route topologies.

4.3. Bounding the Recourse Cost

Considering a specific partial solution q that includes a partial route h 2 PRq, in the present sec-

tion, we describe the computation of Qqh
p , which is the lower bound associated to h when topology

p 2 {a, b, g} is applied to generate an LBF cut (13). Moreover, the bound Qq
p, which is included in

(13), is fixed to the sum of the lower bounds associated with the different partial routes associated

with q, i.e., Qq
p = Â

h2PRq
Qqh

p . In the following, to alleviate the notation, we will drop the index q

and simply refer to the lower bound Qh
p (i.e., a partial route is always associated with a partial

solution). Furthermore, we focus on deriving value Qh
a (i.e., the specific topology p = a). This is

motivated by the fact that the computation of Qh
a can be easily generalized to evaluate both Qh

b

and Qh
g, considering that topologies b and g can be viewed as containing successive a-route struc-

tures. We next present the strategy to compute Qh
a under the first two policies (i.e., p1 and p2),

which can be done in a unified way. We then conclude the present subsection by detailing the

specificities of evaluating Qh
a when the third policy is applied (i.e., p3).

Figure 2: Three partial route topologies (adapted from Salavati-Khoshghalb et al. (2017) )

the artificial route h̃. Then, we develop a bounding procedure for the artificial
route h̃.

Approximation:
To compute a valid lower bound for the expected recourse cost, we need to
provide some additional notations. Let s = (ia, q) denote the state of the
system (i.e., the vehicle) after serving the ia

th customer of the a priori route
~v = (v1 = vi1 , vi2 , . . . , vij−l

, . . . , via , via+1 , . . . , vij+1 , . . . , vit , vit+1 = v1) with q
units of the residual capacity onboard, as in the Bellman equation (9). When
performing the a priori route~v (or more generally for two successive customers
in a chain), the system will make a transition from state s = (ia, q) to some state
s′ = (ia+1, q′). Furthermore, one can easily determine all possible values of q′

and use them to compute Fia(q). When dealing with artificial route h̃, things are
not as easy, since the customers between vij−l

and vij+1 are not known exactly.
In that portion of the artificial route, we must associate pseudo states which are
associated not with specific customers, but rather to positions in the route. Thus,

we let s = ( ia , q) represent the state of the system after serving the (still un-
known) customer in the ia

th position of the artificial route.
In the following, we present a successive approximation scheme that com-
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putes a valid lower bound for the optimal cost-to-go value function for pseudo

state s, denoted by F̃ia(s = ( ia , q)). Based on the Bellman’s principle of opti-
mality, we also suppose that the optimal (or, a valid lower bound) cost-to-go

value function F̃ia+1(s
′ = ( ia+1 , q′)) has been determined beforehand, for all

s′ = ( ia+1 , q′). Let us now define the auxiliary value F̂ia(s = ( ia , q), s′ = (vu1 ,
q′)), which corresponds to a conditional lower bound on the optimal cost-to-go
value function, if we assume that customer vu1 ∈ U1

h occupies the ia+1
th posi-

tion (i.e., ia+1 := vu1 in s′). We can then write

F̂ia(s = ( ia , q), s′ = (vu1 , q′)) =

= min





∑
k:ξk

u1≤q

F̃ia+1(s
′ = (vu1 , q′ := q− ξk

u1
))pk

u1
+

∑
k:ξk

u1>q

[b + 2c1,u1 + F̃ia+1(s
′ = (vu1 , q′ := Q + q− ξk

u1
))]pk

u1
,

c1,ia + c1,u1 − cik ,u1 +

su1

∑
k=1

F̃ia+1(s
′ = (vu1 , q′ := Q− ξk

u1
))pk

u1
.

(22)

To compute F̂ia(s = ( ik , q), s′ = (vu1 , q′)) in (22), the PR trip travel cost is
replaced by a lower bound minimum

vue∈U1
h :vue 6=vu1

{c1,ue + c1,u1 − cue ,u1}. To determine

an unconditional lower bound on F̃ia(s = ( ia , q)), we simply take the minimum
of the conditional lower bounds, i.e., we set

F̃ia(s = ( ia , q)) = min
vue∈U1

h

F̂ia(s = ( ia , q), s′ = (vue , q′)). (23)

There are two boundary cases which differ from the situation presented
above. The first case arises when we start the approximation scheme, where

s = ( ij
, q) and s′ = (vij+1 , q′). In this case, we can compute directly the uncon-

ditional lower bound on the optimal cost-to-go value function. The PR trip cost
can be obtained by minimum

vue∈U1
h

{c1,ue + c1,ij+1 − cue ,ij+1}. The second case arises in

the last step of overall scheme, where s = (vij−l
, q) and s′ = ( ij−l+1

, q′). In this

case, the PR trip costs for each vu1 in F̂ij−l
(s = (vij−l

, q), s′ = ( ij−l+1
:= vu1 , q′))

can be computed as c1,u1 + c1,ij−l
− cij−l ,u1 . The latter boundary case will result

in an unconditional bound F̃ij−l
(s = (ij−l , q)).

It should be noted that the the optimal cost-to-go functions Fij+1(.), Fij+2(.),
. . . , Fit(.) can be exactly computed by the Bellman equation (9). Then, the
bounding procedure described above provides an unconditional lower bound
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on F̃ij−l
(s = (ij−l , q)) ∀q. Next, the unconditional lower bound F̃ij−l

(s = (ij−l , q))
can be applied in (9) to successively compute unconditional lower bounds
F̃ij−l−1

(.), F̃ij−l−2
(.), . . . , F̃i1(.). We set F̃i1(Q) as the valid lower bound for the

expected recourse cost of artificial route h̃ in the first direction and denote it by
F̃1

i1
(Q). By reversing h̃ and applying the bounding procedure we will obtain a

valid lower bound for the second direction, denoted by F̃2
i1
(Q). We then set

Θh
α = min{F̃1

i1(Q), F̃2
i1(Q)} (24)

where, Θh
α is a valid lower bound for the expected recourse cost of partial route

h, detected in the partial solutions q within optimal first-stage solution xν at it-
eration ν. Moreover, we note that partial routes with β and γ topologies consist
of several partial routes with α topology and we can apply the same procedure
to compute Θh

β and Θh
γ. Finally, we set Θq

p = ∑
h∈PRq

Θh
p for p ∈ {α, β, γ} to be

used in LBF cuts (13).

3.3. General Lower Bound

In this subsection, we propose a procedure to obtain a general lower bound
L to be used in constraints (13) and (14). As defined by Laporte & Louveaux
(1993), the expected recourse cost associated to the feasible solution xL with
minimum expected recourse cost corresponds to a general lower bound. La-
porte & Louveaux (1998) were the first authors to present a general lower
bound for the VRPSD under the classical recourse. The quality of the gen-
eral lower bound presented in Laporte & Louveaux (1998) is further improved
by Laporte et al. (2002). Suppose that ~v1, ~v2, . . . , ~vm are the vehicle routes con-
tained in xL. Using the notation of Laporte & Louveaux (1993),

L = Q(xL) ≤ min
x
{Q(x)|(2)− (6)} =

m

∑
k=1

min{Qk,1(~vk),Qk,2(~vk)}. (25)

For computing L in (25), we assume that: the vehicle route denoted by ~v12 is
obtained by concatenating ~v2 after ~v1; vl1 and v f 2 present the last customer

in ~v1, and the first customer in ~v2, respectively; F~v
1

v1
(Q) and F~v

2
v1
(Q) are the

expected recourse costs associated to~v1 and~v2, respectively; F̄~v
12

vl1
(.) and F~v

12
vl1

(.)
are the expected recourse costs from the depot to vl1 and expected cost-to-go
from vl1 to the depot going through ~v2, respectively; and pq

vl1
is the probability

of having q units of residual capacity after serving customer vl1 .
The expected recourse cost of ~v12 in the first direction can be computed as

follows,
F~v

12

v1
(Q) = ∑

q

{
F̄~v

12

vl1
(q) + F~v

12

vl1
(q)
}

pq
vl1

. (26)
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By definition, we have

F~v
12

vl1
(q) = min





∑
k:ξk

v
f 2≤q

F~v
12

v f 2
(q− ξk

v f 2
)pk

v f 2
+

∑
k:ξk

v
f 2 >q

[b + 2c1,v f 2 + F~v
12

v f 2
(Q + q− ξk

v f 2
)]pk

v f 2
,

c1,vl1
+ c1,v f 2 − cvl1 ,v f 2 +

sv
f 2

∑
k=1

F~v
12

v f 2
(Q− ξk

v f 2
)pk

v f 2
.

(27)

We also have F~v
12

vl1
(q) ≤ c1,vl1

+ c1,v f 2 − cvl1 ,v f 2 +

sv
f 2

∑
k=1

F~v
12

v f 2
(Q− ξk

v f 2
)pk

v f 2
which

coupled with (26) results in

F~v
12

v1
(Q) ≤∑

q

{
F̄~v

12

vl1
(q) + c1,vl1

+ c1,v f 2 − cvl1 ,v f 2 +

sv
f 2

∑
k=1

F~v
12

v f 2
(Q− ξk

v f 2
)pk

v f 2

}
pq

vl1
.

(28)
Assuming that ~v12 is equivalent to the concatenation of ~v1 and ~v2, the relation
(28) can further yield

F~v
12

v1
(Q) ≤ c1,vl1

+ c1,v f 2 − cvl1
+ F~v

1

v1
(Q) + F~v

2

v1
(Q),

where, the first term in (28) is equivalent to F~v
1

v1
(Q) in the backward fashion

and the last term in (28) is equivalent to F~v
2

v1
(Q) in the forward fashion.

We perform the same procedure to concatenate the remaining routes ~v3,. . . ,
~vm to ~v12 and conclude that:

F~v
1...m

v1
(Q) ≤

m−1

∑
k=1

ck
PR +

m

∑
k=1

F~v
k

v1
(Q) (29)

where ~v1...m is obtained by the successive concatenation of all routes and ck
PR

denotes the kth least PR trip cost.
The desired L can be obtained by bounding ∑m

k=1 F~v
k

v1
(Q). However, the

vehicle routes ~v1, ~v2, . . . , ~vm, as well as ~v1...m are not known, but we can use the
fact that the route ~v1...m in the left-hand-side of (29) consists of all customers.
To calculate a general lower bound L∗ ≤ L, we can approximate the left-hand-
side of (29) by constructing a large unstructured set UL = V \ {v1}. Then, one
can reduce the problem of finding a valid lower bound for UL to computing

the minimum expected recourse cost F̃ l̃z
v1(Q) of artificial routes l̃z for z = 2, . . . ,

n, which are obtained by only fixing the last customer before returning to the
depot vz, i.e.,

l̃z = (v1 = vi1 , i2 , i3 , . . . , it−1 , vz, vit+1 = v1). (30)
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This is done exactly as in §3.2. Finally, a general lower bound L∗ can be com-
puted as

L∗ = min
z:2,...,n

F̃ l̃z
v1
(Q)−

m−1

∑
k=1

ck
PR. (31)

4. Numerical Results

In this section, we evaluate the quality of the proposed Integer L-shaped
algorithm by conducting computational experiments of instances. Overall, we
present the numerical result for three sets of instances.
Symmetric Instances: In the first set of instances (which is made up of the in-
stances of Salavati-Khoshghalb et al. (2017)), customer locations and demands
are randomly generated. We generated instances consisting of a set of n ver-
tices as {v1, . . . , vn}, in which v1 represents the depot and n− 1 customers and
all vertices are randomly scattered in [0, 100]2 according to a continuous uni-
form distribution. In the first set, each customer is randomly (i.e., with equal
probability) assigned to one of the three demand ranges [1, 5], [6, 10], [11, 15]
and then five realizations in each range are observed accordingly to the proba-
bilities {0.1, 0.2, 0.4, 0.2, 0.1}.
Asymmetric Instances: In the second set of instances, customer locations are
the same as symmetric instances. Each customer is randomly (i.e., with equal
probability) assigned to one of the five demand ranges [1, 5], [6, 10], [11, 15], [4,
7], and [9, 12]. Each of the first three demand ranges has five possible demand
values, the occurrence of each which (in ascending order) is expressed with
the following probabilities {0.1, 0.2, 0.4, 0.2, 0.1}. Each of the last two demand
ranges has four possible demand values, the occurrence of each which (in as-
cending order) is expressed with the following probabilities {0.4, 0.3, 0.2, 0.1}.

In what follows, all settings are considered in both symmetric and asym-
metric instances. The traveling cost cij is set as the Euclidean distance between
each pair vi and vj and rounded to the nearest integer. The filling coefficient

f̄ is equal to ∑n
i=2 E(ξi)

mQ . Four filling coefficients f̄ = 0.90, 0.92, 0.94, and 0.96
are considered. The capacity of each vehicle is directly inferred from f̄ . We
consider 11 combinations of (n, m) for each of the four filling coefficients, as
detailed in Table 2. We generated 10 instances for each entry of the table. Thus,
our generated test bed contains 440 instances, overall 880 runs for symmetric
and asymmetric instances.

Table 2: Combinations of parameters to generate instances.

n m f̄

20 2 0.90, 0.92, 0.94, 0.96
30 2 0.90, 0.92, 0.94, 0.96
40 2, 3, 4 0.90, 0.92, 0.94, 0.96
50 2, 3, 4 0.90, 0.92, 0.94, 0.96
60 2, 3, 4 0.90, 0.92, 0.94, 0.96
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In our computational result, a fixed cost denoted by b = ∑
i=2,...,n

ci1/(n− 1) is

incurred when experiencing route failures. We recall that b primarily penalizes
disruption at a customer location caused by the second vehicle visit.
The Instances Generated by Louveaux & Salazar-González (2017): The in-
stances of Louveaux & Salazar-González (2017) are selected from benchmark
instances E031-09h, E051-05e, E076-07s, and E101-08e, see http://neo.lcc.

uma.es/vrp/vrp-instances/. However, the expected demand of all customers
is set to µ = 5. Parameter K denotes the number of possible demand realiza-
tions for each customer, for each instance a single value of K is applied to all
customers. Namely, K = 3 or K = 9. Then, for all j ∈ V \ {v1} and k = 1,
. . . , K, stochastic demands are generated by ξk

j = µ− bK/2c+ k− 1. The prob-

ability of each demand realization ξk
j is then computed by pk

j = k/dK/2e2
for k < dK/2e2 and pk

j = (K− k + 1)/dK/2e2 otherwise. The number of
vehicles denoted by m is set to 2 and 3. The vehicle capacity is obtained by
Q = max{d(nµ)/(m f̄ )e; dn/meµ} in which the filling rates f̄ = 0.90, 0.95 are
considered for m = 2 and in the case of m = 3 the filling rates f̄ = 0.85, 0.90.
Also, Louveaux & Salazar-González (2017) considered a fixed cost of ∆ = 0, 10,
100 for the loading/unloading cost is considered for both BF and PR trips. In
our recourse function, we denote by b a fixed cost as the customer dissatisfac-
tion in the failure events.

The Integer L-shaped algorithm and the bounding scheme are coded in C++
using ILOG CPLEX 12.6. The subtour elimination and capacity constraints
(4) are identified using the CVRPSEP package of Lysgaard et al. (2004). The
general branch-and-cut framework as the Integer L-shaped algorithm is imple-
mented using the OOBB package developed by Gendron et al. (2005). Compu-
tational experiments were conducted on a cluster of 27 machines, each having
two Intel(R) Xeon(R) X5675 3.07 GHz processors with 12 cores and 96 GB of
RAM running Linux. An integer feasible solution with a relative optimality
gap less than 0.01% is assumed optimal. Also, a maximum CPU run time of 10
hours is imposed on all runs. If the maximum allotted time is reached, we then
report the best integer solution obtained.

In subsection 4.1, the performance of the Integer L-shaped algorithm as an
exact solution method is evaluated in terms of various quality measures. We
further compare the results of our optimal restocking policy by pricing the opti-
mal solutions under the classical policy. In subsection 4.2, we report the results
obtained by the proposed algorithm on the specialized instances generated by
Louveaux & Salazar-González (2017), in which all customer demands follow
identical distributions.

4.1. Quality of the Integer L-Shaped Algorithm

We now present the computational result, expressing the performance of
the proposed exact algorithm in Tables 3 and 5 for symmetric and asymmetric
instances. The conducted experiments are aggregated according to the pair (n,
m) and the filling coefficient f̄ . Tables 3 and 5 report the following information:
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1) the “Solved” columns present the number of instances (out of ten for each
aggregated category) that were solved to optimality by the algorithm; 2) the “≤
1%” columns present the number of instances (out of ten for each aggregated
category) that were solved with an optimality gap ≤ 1%; 3) the “Run(sec)”
columns refer to the average running times in seconds that were needed by the
algorithm to solve those instances to optimality; 4) the “Gap” columns present
the average optimality gap obtained by the algorithm over all instances solved
(i.e., both those solve optimally and those for which only a feasible solution
was obtained).

By analyzing the computational results in Tables 3 and 5, we observe similar
trends that were reported by Gendreau et al. (1995), Laporte et al. (2002), and
Jabali et al. (2014) for the classical recourse policy. These trends indicate that an
increase in the filling rate and/or the number of vehicles results in a reduction
of the optimally solved instances, an increase in the running time to solve in-
stances optimally, and an increase in the optimality gap, which shows overall
an increase in the overall complexity of the VRPSD instances. Moreover, when
compared to the filling rate, the number of vehicles seems to have a more sub-
stantial impact on the complexity of the instances. As reported in Tables 3 and
5, the Integer L-shaped algorithm implemented in this paper optimally solves
227 out 440 symmetric instances and 242 out of the 440 asymmetric instances;
which correspond to 51.6% and 55.0% of the generated instances. The overall
average optimality gaps are 0.83% and 0.80%, respectively. Moreover, the pro-
posed algorithm solves 285 and 297 instances with an optimality gap ≤ 1% of
the symmetric and asymmetric instances, respectively.

In order to qualify the magnitude of savings obtained by performing the
optimal restocking policy, we execute the optimal solutions under the classical
recourse policy. Tables 4 and 6 illustrate the comparisons of two recourse poli-

cies with respect to the total cost denoted by “Sav1”=
Qclass.(x∗opt)−Qopt(x∗opt)

cx∗opt+Qclass.(x∗opt)
× 100

and the expected recourse cost as “Sav2”=
Qclass.(x∗opt)−Qopt(x∗opt)

Qclass.(x∗opt)
× 100, in which

x∗opt is obtained by optimally solving a VRPSD instance under optimal restock-
ing policy. The solution x∗opt has a first stage cost of cx∗opt and an expected

recourse cost of Qopt(x∗opt). Furthermore, Qclass.(x∗opt) is the expected recourse
cost of optimal routing decision x∗opt. It should be noted that the classical re-
course policy consists of following the planned route and performing BF and
restocking trips at failures and exact stockouts, respectively. The weighted av-
erage savings in terms of “Sav1” are 0.65% and 0.61% for the symmetric and
asymmetric instances, respectively. In terms of “Sav2”, the weighted average
savings are 49.46% and 48.70%, respectively.

Also, in order to qualify the magnitude of savings obtained by performing
the optimal restocking policy we compare it with two other policies from the
literature. The first is the rule-based policy proposed by Salavati-Khoshghalb
et al. (2017), which entails that a PR trip is performed if the residual capacity of
the vehicle is less than ηξ̄, where ξ̄ is the expected demand of the subsequent
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Table 7: Average savings vs rule-based recourse policy with ηξ̄ for η = 1

n m f̄ Sav3 f̄ Sav3 f̄ Sav3 f̄ Sav3

20 2 0.90 0.056% 0.92 0.034% 0.94 0.083% 0.96 0.153%
30 2 0.90 0.015% 0.92 0.007% 0.94 0.042% 0.96 0.100%
40 2 0.90 0.004% 0.92 0.005% 0.94 0.033% 0.96 0.088%
40 3 0.90 0.016% 0.92 0.009% 0.94 0.018% 0.96 0.068%
40 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
50 2 0.90 0.006% 0.92 0.011% 0.94 0.019% 0.96 0.075%
50 3 0.90 0.010% 0.92 0.011% 0.94 0.015% 0.96 0.089%
50 4 0.90 0.000% 0.92 0.006% 0.94 0.000% 0.96 0.000%
60 2 0.90 0.007% 0.92 0.011% 0.94 0.015% 0.96 0.057%
60 3 0.90 0.001% 0.92 0.028% 0.94 0.001% 0.96 0.033%
60 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%

Average 0.015% 0.013% 0.034% 0.096%

Table 8: Average savings vs hybrid recourse policy for θ-θ̄ : 0.35− 0.65

n m f̄ Sav4 f̄ Sav4 f̄ Sav4 f̄ Sav4

20 2 0.90 0.119% 0.92 0.165% 0.94 0.809% 0.96 1.259%
30 2 0.90 0.041% 0.92 0.007% 0.94 0.153% 0.96 3.076%
40 2 0.90 0.004% 0.92 0.141% 0.94 0.499% 0.96 0.397%
40 3 0.90 0.016% 0.92 0.076% 0.94 0.501% 0.96 0.954%
40 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
50 2 0.90 0.032% 0.92 0.074% 0.94 0.296% 0.96 0.854%
50 3 0.90 0.010% 0.92 0.011% 0.94 0.734% 0.96 0.741%
50 4 0.90 0.052% 0.92 0.006% 0.94 0.000% 0.96 0.000%
60 2 0.90 0.027% 0.92 0.057% 0.94 0.030% 0.96 0.679%
60 3 0.90 0.001% 0.92 0.028% 0.94 0.001% 0.96 0.000%
60 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%

Average 0.039% 0.086% 0.378% 1.296%

customer on the route. Salavati-Khoshghalb et al. (2017) achieved the best re-
sults by setting η to one. We therefore compare the optimal policy with these re-
sults. The second policy is the hybrid policy proposed by Salavati-Khoshghalb
et al. (2018), where the best results were obtained by setting the maximum pro-
ceeding threshold, denoted by θ, to 0.35, and the minimum restocking thresh-
old, denoted by θ̄ to 0.65. We therefore compare the optimal policy with these
results. Tables 7 and 8 express the comparisons with respect to the total cost as

“Sav3”=
Qrule(x∗rule)−Qopt(x∗opt)

cx∗rule+Qrule(x∗rule)
× 100 and “Sav4”=

Qhybrid(x∗hybrid)−Qopt(x∗opt)

cx∗hybrid+Qhybrid(x∗hybrid)
× 100,

respectively. In Sav3 and Sav4, x∗opt, x∗rule, and x∗hybrid are the optimal routing
decisions obtained by solving the VRPSD instances under the optimal restock-
ing policy, the best rule-based and the hybrid recourse policies, respectively. As
presented in Tables 7 and 8, the best rule-based policy displays less deviation
from the optimal restocking policy. The latter observation provides insights
in the structure of the optimal restocking policy, which further imply that this
policy can be approximated more efficiently in terms of the quality (here the
total costs) of the optimal routing solution by rule-based policies designed by
Salavati-Khoshghalb et al. (2017).

In order to compare the solution structures between the various policies,
we used the Hamming distance. We recall that the Hamming distance with
respect to a reference solution x̄ is computed as follows:

∆(x, x̄) = ∑
(vi ,vj)∈T̄

(1− xij) + ∑
(vi ,vj)∈E\T̄

xij (32)
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Table 9: Average Hamming distance between the optimal recourse solutions and the rule-based
recourse policy with ηξ̄ for η = 1

n m f̄ solved
Hamm.

Dist. f̄ solved
Hamm.

Dist. f̄ solved
Hamm.

Dist. f̄ solved
Hamm.

Dist.

20 2 0.90 10 42 0.92 10 42 0.94 10 41 0.96 10 41
30 2 0.90 10 29 0.92 8 30 0.94 10 29 0.96 7 25
40 2 0.90 10 22 0.92 10 22 0.94 10 22 0.96 6 21
40 3 0.90 5 50 0.92 7 49 0.94 4 47 0.96 2 49
40 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0
50 2 0.90 10 18 0.92 8 18 0.94 10 16 0.96 4 17
50 3 0.90 4 41 0.92 4 36 0.94 3 41 0.96 1 42
50 4 0.90 2 70 0.92 1 70 0.94 0 0 0.96 0 0
60 2 0.90 10 12 0.92 9 15 0.94 7 15 0.96 6 14
60 3 0.90 3 30 0.92 1 30 0.94 1 31 0.96 0 0
60 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0

Table 10: Average Hamming distance between the optimal recourse solutions and the hybrid pol-
icy with θ-θ̄ : 0.35− 0.65)

n m f̄ solved
Hamm.

Dist. f̄ solved
Hamm.

Dist. f̄ solved
Hamm.

Dist. f̄ solved
Hamm.

Dist.

20 2 0.90 10 41 0.92 10 39 0.94 10 40 0.96 10 39
30 2 0.90 10 29 0.92 8 29 0.94 10 26 0.96 7 26
40 2 0.90 10 22 0.92 10 20 0.94 10 18 0.96 6 17
40 3 0.90 5 50 0.92 7 49 0.94 4 47 0.96 2 29
40 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0
50 2 0.90 10 18 0.92 8 19 0.94 10 15 0.96 4 16
50 3 0.90 4 41 0.92 4 38 0.94 3 34 0.96 1 40
50 4 0.90 2 66 0.92 1 70 0.94 0 0 0.96 0 0
60 2 0.90 10 12 0.92 9 16 0.94 7 16 0.96 6 12
60 3 0.90 3 29 0.92 1 31 0.94 1 31 0.96 0 0
60 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0

where, T̄ = {(vi, vj) ∈ E|x̄ij = 1}.
In Table 9 we report the average Hamming distance where x̄ = x∗opt and

x = x∗rule. In Table 10 we report the average Hamming distance where x̄ = x∗opt
and x = x∗hybrid. In both these tables we only consider instances that were
solved to optimality by all three policies. Furthermore, since the stochastic
solution is effectively a directed solution, all computations in tables 9 and 10
are based on the directed solutions. As observed in Tables 7 and 8 the cost
differences between solutions of the three policy were relatively low. However,
Tables 9 and 10 show that indeed on average the solution structures of the rule
based policy and the hybrid policy may be substantially different from those
of the optimal policy.

4.2. The instances Generated by Louveaux & Salazar-González (2017)
We have compared the solutions that we obtain with those of Louveaux &

Salazar-González (2017) for the instances that both methods are able to solve.
This comparison confirmed that our method provides valid results. Regard-
ing computational times, Louveaux and Salazar-González’s implementation
seems to be more effective than ours: if one accounts for differences between
the machine that they have used and ours, their code runs faster and it is
able to solve to optimality more instances than our algorithm for a given CPU
time allowance. This result is not surprising given the fact that their approach
uses specialized procedures for instances with identical demand distributions,
which is not the case of our method.

Furthermore, it is observed from Tables 11-13 that the LBF cuts developed
in this paper can significantly reduce the number of branch-and-cut nodes ex-
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plored by the Integer L-shaped algorithm. The number of B&C nodes explored
in the proposed method in this paper is much smaller than in Louveaux and
Salazar-González’s implementation.

5. Conclusions

In this paper, we developed an exact solution methodology to solve the
VRPSD under an optimal restocking policy. To do so, the Integer L-shaped
algorithm was adapted. To enhance the efficiency of the Integer L-shaped al-
gorithm, various lower bounding schemes were developed. The key element
for successfully employing such bounding procedures is to provide effective
lower approximation of the expected recourse cost of partial routes. In ad-
dition, a general lower bound enhancing the Integer L-shaped algorithm was
also developed.

Using the exact method proposed in this paper, we were able to optimally
solve problems with up to 60 customers and a fleet of four vehicles. It should
be noted that the proposed exact method is the first to solve the VRPSD under
an optimal restocking policy when considering instances where customer de-
mands follow arbitrary discrete distributions. The numerical results presented
in this paper show that the resulting routes from the optimal restocking policy
yield a appreciable amount of savings when compared to executing the classi-
cal policy on the same routes.

Further research in this area could focus on the exploration of the poten-
tial of applying column generation and branch and price to the considered
problem. It would also be interesting to investigate how more collaborative
recourse policies (where several vehicles coordinate to react to high demand
situations) could be applied to the VRPSD.
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zá
le

z
(2

01
7)

w
it

h
∆
=

0.

In
st

an
ce

O
ur

re
su

lt
L

ou
ve

au
x

&
Sa

la
za

r-
G

on
zá
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