Accepted Manuscript

An Exact Algorithm to Solve the Vehicle Routing Problem with
Stochastic Demands under an Optimal Restocking Policy

Majid Salavati-Khoshghalb, Michel Gendreau, Ola Jabali, Walter Rei

Pll:
DOI:
Reference:

To appear in:

Received date:

Revised date:

Accepted date:

S0377-2217(18)30661-1
10.1016/j.ejor.2018.07.039
EOR 15277

European Journal of Operational Research

19 September 2017
23 July 2018
23 July 2018

5 ¥ Valurne 239, lssue 3, 16 Decenber 2014
& A

UROPEAN ..OURNAL OF
PERATIONAL ~ESEARCH

ScienceDirect

www.elsevier.com/locate/ejor

Please cite this article as: Majid Salavati-Khoshghalb, Michel Gendreau, Ola Jabali, Walter Rei, An
Exact Algorithm to Solve the Vehicle Routing Problem with Stochastic Demands under an Optimal
Restocking Policy, European Journal of Operational Research (2018), doi: 10.1016/j.ejor.2018.07.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.



https://doi.org/10.1016/j.ejor.2018.07.039
https://doi.org/10.1016/j.ejor.2018.07.039

ACCEPTED MANUSCRIPT

Highlights

o We present an exact method to solve vehicle routing problem with stochas-
tic demands.

o We lower approximate the optimal restocking policy to bound recours
function.

o We enhance the Integer L-shaped method by redefining lower bo
functionals.

¢ We can solve problems with 100 customers having arbitrar e-

Q%
é\v



An Exact Algorithm to Solve the Vehicle Routing
Problem with Stochastic Demands under an Optimal
Restocking Policy

Majid Salavati—Khoshghalba'b'*, Michel Gendreau®<, Ola ]abalid, Walter Rei®€

?Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport
(CIRRELT), C.P. 6128, succ. Centre-ville, Montréal, Québec H3C 3]7, Canada
bDépartement d’informatique et de recherche operationnelle, Université de Montréal, C.P/6128, succ.
Centre-ville, Montréal, Québec H3C 3]7, Canada
¢Département de mathématiques et de génie industriel, Polytechnique de MontréalyC:P. 6079, succ.
Centre-ville, Montréal, Québec H3C 3]7, Canada
Dipartimento di elettronica, informazione e bioingegneria, Politecnico di Milano, Piazza Leonardo da
Vinci, 32, Milano 20133, Italy
¢Département de management et technologie, Ecole des sciences de la gestionyUniversité du Québec a
Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada

Abstract

This paper examines the Vehicle Routing, Problem with Stochastic Demands
(VRPSD), in which the actual demandiof customers can only be realized upon
arriving at the customer location., Under demand uncertainty, a planned route
may fail at a specific customer when the observed demand exceeds the resid-
ual capacity. There are two.ways to face such failure events, a vehicle can
either execute a return tfip to the depot at the failure location and refill the
capacity and complete.theisplit service, or in anticipation of potential failures
perform a preventive return to the depot whenever the residual capacity falls
below a threshold;.overall /these return trips are called recourse actions. In the
context of VRPSD, a recourse policy which schedules various recourse actions
based on theyvisitsiplanned beforehand on the route must be designed. An
optimal récourse policy prescribes the cost-effective returns based on a set of
optimal customer-specific thresholds. We propose an exact solution method
to solve the multi-VRPSD under an optimal restocking policy. The Integer L-
shaped algerithm is adapted to solve the VRPSD in a branch-and-cut frame-
work. JTo enhance the efficiency of the presented algorithm, several lower
bounding schemes are developed to approximate the expected recourse cost.
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1. Introduction

Following the seminal paper of Dantzig & Ramser (1959), the Vehicle Rout-
ing Problem (VRP) has been the subject of considerable research efforts over the
last decades, see Laporte (2009). The aim in VRP is to find a set of routes setv-
ing a given set of customers at a minimal cost (the least travel cost, minimum
number of vehicles, etc.). The routes should start and end at the depot,’and are
designed to be performed by a fleet of vehicles with homogeneous capacity. In
the deterministic version of VRP in which all problem parametersiare-known
precisely, each customer is only visited once by one vehicle.

In real-life problems, however, various parameters of the VRP can be un-
certain. Uncertainty is more likely to appear in demands, travel.ahd service
times, and customer presence. It is usually dealt with'by“using probability
distributions to describe the uncertain parameters, which are-then stochastic.
The VRPs in which some parameters are stochastic,are called Stochastic VRPs
(SVRPs). Although SVRPs have received muchless attention in comparison to
the deterministic VRP, several efforts have been:devoted to investigate various
versions of the SVRP; for a thorough exposition of the SVRP context, we refer
the reader to Gendreau et al. (2014), Oyolawet.al. (2016), and Oyola et al. (2017).
One way to deal with stochastic parameters in'stochastic routing models is to
use their deterministic approximated counterparts, in which the stochastic pa-
rameters are roughly replaced by. their forecasted equivalents. Such models
can sometimes lead to arbitrarily bad quality solutions at execution time when
stochasticity reveals itself, see Louveaux (1998). Thus, there is a need to model
SVRPs using specialized/optimization frameworks in which stochastic param-
eters are explicitly modeled, through random variables.

In this paper, we are-mainly interested in the Vehicle Routing Problem with
Stochastic Demands(VRPSD), where customer demands are only known through
probability distributions. In this context, it is common to assume that the actual
demand of.each customer can only be observed upon arriving at its location.
Because ofithat, a planned route may fail at a customer when the demand ex-
ceeds the residual capacity on the vehicle. This occurrence is called a route
failutey, To ptevent failures and complete the service after a route failure has
occurred,extra decisions, called recourse actions, must be taken and associated
travel costs, called recourse costs, need to be incurred. The objective in the
VRPSD is to minimize the total driven distance, which consists of routing (i.e.,
preliminary plans) costs and recourse costs.

It is important to note that the general context of the VRPSD can be tackled
in variety of ways. One thus usually refers to modeling paradigms to formal-
ize the problem and the way in which it is solved. Dror et al. (1989) describe
several of these paradigms for the VRPSD. One of them is the so-called a pri-
ori optimization approach, which was extensively discussed in Bertsimas et al.
(1990); another is the reoptimization approach; further details can be found in
Gendreau et al. (2014). These modeling paradigms either separate or unify the



process of making routing and recourse decisions, where information, here,
stochastic demands, are revealed at once or in a stepwise manner, respectively.
In the a priori optimization approach, one decomposes the overall decision
making process into two sets of mutually exclusive decisions as routing and
recourse decisions, thus modeling the VRPSD as a two-stage stochastic inte-
ger program with recourse (see, Birge & Louveaux (2006) for a comprehensive
coverage of stochastic programming). In this approach, the first stage consists
of finding a set of a priori routes while the demands are not known yet with
certainty. Once stochasticity reveals itself, the second stage consists of plan-
ning/obtaining a set of recourse decisions in the execution of each a priori
route. The a priori optimization approach is a particularly suitable,paradigm
to model the VRPSD when the aim is to execute a route repeatédly over.a long
horizon. In the reoptimization approach, after the demand of each customer
has been observed and served, the remaining portion of the vehicle route is
conceptually reoptimized-by choosing the first customero visit next and by
deciding if a visit to the depot to replenish vehicle capacity’should be per-
formed first; see Secomandi (2001) and Secomandi & Margot (2009) for appli-
cations in which route reoptimization is allowed.

As mentioned before, under the a priofioptimization approach for the
VRPSD, a set of planned routes is determined in the first stage based on prob-
abilistic information. To tackle the second=stage,’a recourse policy must be de-
signed. Such a policy corresponds to a set of predetermined rules to derive
recourse decisions based on the residual capacity of the vehicle as well as the
visits that are scheduled along the,route. A recourse policy then provides the
driver with a full prescription to react to incoming situations. Several recourse
policies have been proposed=in the classical recourse policy, the driver follows
the planned route until the vehicle capacity is depleted. Whenever the demand
of a specific customer‘exceeds the residual capacity of the vehicle, the vehicle
must execute a back-forth\(BF) trip to the depot to replenish the capacity in
order to complete theseryice. If the observed demand turns out to be equal to
the residual capacity, the vehicle performs a restocking trip to the depot and
then continties to the'next customer. This classical policy was introduced by
Dror & Trudeau (1986) and implemented by Gendreau et al. (1995); Hjorring
& Holt (1999);:Laporte et al. (2002); Rei et al. (2010) and Jabali et al. (2014). As
an altermative, one could apply an optimal restocking policy in which, the driver
also prescribes preventive return (PR) trips to the depot in anticipation of po-
tential failures whenever the residual capacity falls below a threshold value.
In‘the‘optimal restocking policy, the vehicle prescribes PR trips in addition to
BE trips such that the total expected cost is minimized, thus obtaining optimal
ctustomer-specific thresholds. This policy was introduced by Yee & Golden
(1980) and implemented by Yang et al. (2000) and Bianchi et al. (2004).

Employing the optimal restocking policy entails simultaneously optimiz-
ing the vehicle routes and the customer-specific thresholds. As these thresh-
olds are an outcome of the optimization, the optimal restocking policy does
not directly allow a company to systematically control the risk of encounter-
ing failures. Salavati-Khoshghalb et al. (2017) and Salavati-Khoshghalb et al.



(2018) proposed different recourse policies, which allow a company to deter-
mine its customer-specific thresholds according to a number of operational
rules. Salavati-Khoshghalb et al. (2017) proposed three volume based policies,
which use simplistic comparisons of the vehicle’s residual capacity in order to
decide when PR trips are performed, e.g., executing a PR trip once the avail-
able vehicle capacity is below a preset percentage of its total capacity. Salavati<
Khoshghalb et al. (2018) proposed a hybrid recourse policy which is a more
advanced form of a rule-based recourse policy. The hybrid recourse policy
combines risk-based and distance-based rules. For a given route, the authors
define a risk measure, which computes the risk of failure at the next customer:
This risk measure is then compared with two preset thresholds.” Namely,the
minimum restocking threshold and a maximum proceeding threshold: In the
case where the risk measure is greater than the minimum restocking threshold,
the vehicle executes a PR trip, whereas if the risk measure‘s less than the maxi-
mum proceeding threshold, the vehicle proceeds with.its planned route. In the
cases where the risk measure falls between the maximumproeceeding threshold
and the minimum restocking threshold, a distanceymeasure employed. This
measure compares the cost of performing a PR trip atsthe current customer
with the expected failure costs, resulting fromiBE-trips, performed at all subse-
quent customers in the planned route. If the cost.of the former is lower than the
latter a PR trip is performed, otherwise thewehicle proceeds with its planned
route.

We present a small example in order torillustrate the differences between
the different recourse policies (optimal restocking, classical, rule-based and
hybrid). In Figure 1 the pair of numbers below each vertex specifies the co-
ordinate of the vertex in [071000]>. The expected demand of each customer is
shown by a red integer on the right-hand-side of the vertex. The capacity of the
vehicle was set to 45/The support of the demand probability distributions of
customers vy, vy, vayand vyare {11,13,15,17,19}, {6,8,10,12,14}, {11,13,15,17,19}
and {1,3,5,7,9}, Aespectively. A probability of 0.2 was associated with each
of the five possible values for each customer. All four policies use the route
0 — v4 — v3*=w; — v’— 0. The rule-based policy is based on the second pol-
icy proposed Salavati-Khoshghalb et al. (2017), which outperformed the other
two. According to this policy, when leaving a customer on a planned route a
PR, trip,is petformed if the residual capacity of the vehicle is less than # times
the expected demand of the subsequent customer on the route. This policy
with #7 =1 was used in the example. As for the hybrid policy the minimum
restoeKing threshold was set to 0.65 and a maximum proceeding threshold was
set to 0.35.

In Table 1 we summarize the results of the example for the four policies.
For the optimal restocking policy and the rule-based policy we present the cus-
tomer thresholds. We note that while the routing cost (i.e., the first stage cost) is
the same for all four policies, the expected recourse costs (i.e., the second stage
cost) differ from one policy to another. In particular, the classical policy incurs
the highest expected recourse cost, and the rule based policy has a higher ex-
pected recourse cost than that of the optimal restocking policy. Finally, we note



that in this examples the hybrid policy, albeit employing a mixed policy struc-
ture, yields the same expected recourse cost as the optimal restocking policy.

Figure 1: Small example with four ctistomers randomly scattered in [0, 1000]2.

Table 1: Comparison of four recourse policies on the instance of Figure 1

Policy Total cost Routing cost Recourse cost 01 [} 03 Oy
Classical 2881.8 2584.0 297.8
Hybrid: 2700:6 2584.0 116.6
Optimal 2700.6 2584.0 116.6 12 0 17 15

Rule-based 2760.6 2584.0 176.6 10 0 15 15

To tackle the VRPSD modeled under the a priori paradigm, several exact,
heuristic,,and'metaheuristic algorithms have been proposed; see for more de-
tails"Gendreau et al. (2014). Two exact solution techniques have been used in
this context. The Integer L-shaped algorithm and the column generation ap-
proach./The Integer L-shaped algorithm was adapted for the VRPSD by Gen-
dreawet al. (1995), Hjorring & Holt (1999), Laporte et al. (2002), and Jabali et al.
(2014). The column generation approach was applied to the VRPSD by Chris-
tiansen & Lysgaard (2007), as well as by Gauvin et al. (2014). All of these papers
implemented the classical recourse policy. More recently, Salavati-Khoshghalb
et al. (2017) and Salavati-Khoshghalb et al. (2018) have extended the Integer L-
shaped algorithm to consider PR trips for rule-based policies. However, there
are few research studies devoted to present and examine the optimal restock-
ing policy. Yee & Golden (1980) defined the optimal restocking recourse strat-
egy, under which a set of optimal threshold-based recourse decisions includ-



ing BF and PR trips can be obtained for given planned routes. Such an optimal
restocking policy has been integrated in heuristic and metaheuristic solution
procedures to solve the VRPSD by Yang et al. (2000) and Bianchi et al. (2004).
Generally, these heuristic procedures result in overall sub-optimal pair of rout-
ing and recourse decisions.

Recently, Louveaux & Salazar-Gonzalez (2017) have integrated the optimal
restocking policy in the a priori optimization solution approach to model/the
VRPSD. They propose an implementation of the L-shaped method to solve ex#
actly the resulting problem. It should be noted that, while this paper provides
bounding procedures applicable to instances in which customer demand dis*
tributions are not identical, much of the work focuses on the case where all
customers have identical demand distributions and all their computational re-
sults cover only this case.

The purpose of this paper is to propose an exact algotrithmsto solve the
VRPSD under an optimal restocking recourse policy,(thus yielding solutions
that are optimal both with respect to routing decisions.and.restocking ones.
The proposed algorithm is an adaptation of the“I=shaped method that uses
various bound improvement procedures to achieve anveffective performance.
Furthermore, our approach allows for the consideration of different demand
distributions for the customers in a computationally effective way, as long as
they are discrete and with finite support,‘as,shown by the numerical results
that we report.

The remainder of this paper is organized-as follows. Section §2 lays out the
VRPSD model under the a priofirapproach with an optimal restocking policy.
We devote Section §3 to propose antexact method, for solving the VRPSD under
an optimal restocking polieypenhanced by various lower bounding schemes.
Section §4 presents the résults of a computational study to examine the perfor-
mance of the proposed exact method. Section §5 proposes some conclusions
and future researchidirections.

2. Optimal Restocking Recourse Policy Under the A Priori Approach

In Section/§2.1, we first present the Vehicle Routing Problem with Stochas-
tic Demands (VRPSD) modeled under the a priori optimization approach. To
model the recourse problem, we recall the optimal restocking policy resulting
in a set of optimal recourse decisions in §2.2.

2.1""VRPSD Formulation Under an A Priori Approach

This section revisits the VRPSD formulation presented by Gendreau et al.
(1995) and Laporte et al. (2002). Let G = (V,€) be a complete undirected
graph, where V = {vy,v,,...,0,} is the set of vertices and & = {(v;, v]-)|vi,
vj € V,i < j} is the set of edges. Vertex v; is the depot, where a fleet of
m vehicles each having capacity Q is initially located. Each vertex v; (i = 2,
..., n) represents a customer whose stochastic demand ¢; follows a discrete



probability distribution with a finite support, defined as the ordered set {Z}, £2,
el (jll-, el é’f' }, where é(fl < Q. We denote by pf, the probability of observing
the I'" demand level, i.e., P[¢; = 55] = pg. The traveling cost along an arc (v;,
vj) € & is denoted by c;j, where the cost matrix C = (c;;) is symmetric and
satisfies the triangle inequality.

To formulate the VRPSD, we first recall the a priori optimization approach
by Bertsimas et al. (1990). As previously mentioned, the first stage consists of
making classical VRP routing decisions with probabilistic information’about
the stochastic demands. The decision variable x;; (i < j) denotes the number
of times edge (v;, v;) is traversed in the first-stage.

Given the notation devised previously in Gendreau et al. (1995).and Laporte
et al. (2002), the a priori model for the VRPSD is formulated as follows:

minimize Zc,-jxij + Q(x) (1)
x i<j
n
subjectto ) x3; = 2m, )
j=2
ink+2xkj:2, k=2 ,n (3)
i<k k<j
s E(¢;
meswz”‘%@l, (Scyv\{m}2<Is|<n—-2)
'U,',‘U]'ES
(4)
ng,-jgl, 2§i<j<l’l (5)
0<x; <2 i=2,...n ©)
x = (x;), integer (7)

In this formulation, constraints (2) ensure that exactly m vehicle routes that
start and end(at'the depot are established; constraints (3) ensure that each
customer is“connected to two other vertices; constraints (4) stand simultane-
ously as‘subtour elimination constraints and capacity constraints, which re-
moveboth subtours, and infeasible routes with an excessive expected demand.
Then, the first-stage traveling costs are incurred in the objective function (1) as
Yi<; CijXifs

Let t1s now suppose that an a priori routing solution x in model (1)-(7) is
given<In the presence of demand stochasticity, however, an a priori route may
fail at a specific customer at which the observed demand exceeds the residual
cdpacity of the vehicle. Then, a recourse or corrective decision must be taken to
either regain (i.e., in a reactive fashion) or preserve (i.e., in a proactive fashion)
routing feasibility. In the context of the VRPSD, the recourse decisions are in
the form of return trips to depot, but these trips entail extra costs. Then, the
expected cost of the recourse actions that are taken given the routing solution
x under a given policy is represented by Q(x) in the objective function (1).

Dror & Trudeau (1986) have shown that, for route-based recourse policies,



Q(x) can be decomposed by route. They also showed that the expected cost of
recourse actions for a route depends on its orientation, i.e., in which direction
it is executed. Thus, the expected recourse cost for routing solution x can be
computed as (8), where Q" denotes the expected recourse cost of the rth a
priori route in the orientation 6 = 1,2.

Q(x) = f min{Q"!, 9"?}. (8)

r=1

Computing Q" for § = 1,2 under an optimal restocking policy, thus obtaining
a set of optimal recourse decisions for the il a priori route, is the subjectof the
next subsection.

2.2. The Optimal Restocking Policy

In this section we recall the optimal restocking policy, devised by Yee &
Golden (1980) for the VRPSD. Let us first consideran a priofi route expressed
as vector ¥ = (v1 = v;,0iy, ..., 0j, Vi, = 01).4An optimal restocking policy
is a sequential decision rule that determines whether the vehicle after serving
a specific customer with an arbitrary residtal capacity onboard proceeds ac-
cording to the planned route or performs a PR trip first. More precisely, let us
assume that after serving the i]-th customer,of the'route, the residual capacity of
the vehicle is equal to g units. If the vehicle proceeds to the following customer
(e, 7j41), then it must attempt to satisfy the stochastic demand (;‘i,. .1~ When
q = Gi,, service is completed with anonnegative residual capacity of g — &;, .,
and one must again decide.whethetrthe vehicle should proceed or replenish
the vehicle capacity first/If g <.¢;,.,, then a route failure occurs and the vehi-
cle must perform a BFtripi(at the cost of 261,1‘].“) before completing the service
of customer i;;1 with a'residual capacity equal to Q + g — &;,,. It should be
noted that we also consider a fixed cost b for each route failure as Yang et al.
(2000); this penalizes the disruption at a customer location caused by the sec-
ond vehicle'visit. On'the other hand, the vehicle can replenish its capacity by
performingia/PR trip in order to avoid potential route failures, before starting
the sefvice at the ij+1th customer. After replenishing the vehicle capacity at the
cost.of €1i; FCLijyy — Cijipas the vehicle can fulfill all demand observations of
¢ustomer i; 1 since Q > Ci]- .1» and then will decide whether to serve the fol-
lowing/customer i, , with a residual capacity equal to Q — Gi; 4, or perform a
PR trip.

Let F; (q) be the optimal onward recourse cost-to-go after serving the ijth,
and remaining with a residual capacity of 4. Then, the optimal expected re-
course cost of the a priori route 7 can be expressed by using the following



Bellman equation,

Hl']',l']'+1 (‘1) : kz F1]+1 (q §Z/+1 )p1]+1 +
§]+l
Fl./(q) — min Z [b—l—ZCl i1 +Pz]+1(Q+q gl]+1):|plj+l

k
k&, +1

5
k
(q) : Cl,i]' + Clrin — Cij'iHl + kzl Fij+1 Q- €]+1>

"
1]',1]'+1

©)

where, H; ;, ,(q) and HZ’ i (q) express the total costs associated to/the pro-

ceeding and restocking decisions after serving the ijth customer, respectively.
This computation differs from the formula given by Yang-et'al. (2000), since
it only considers the recourse cost and not the total costsofithe route. Us-
ing equation (9), we have F;  (.) = 0 since after serving the last customer
the expected recourse cost is equal to zero. Wedmote that Fij(q) is an opti-

mal policy only if F; | (')’Fii+2(')’ ..., F

i, (.) are-already, optimally given. Fur-

thermore, let §* = (9;,9;‘2,...,92,...,9; )“be“the optimal restocking policy
threshold vector. Since F;, (q) is monotonigcally non-increasing with respect to g,
91-’;_ = mm{q|H i (q) < H’ (9)} (for furtherdetails see, e.g., Yee & Golden

] ]+1

(1980) and Yang et al. (2000)). Based on 9;‘}, computed by the latter equation, the

optimal decision at the i jth customenis either replenishing the vehicle capacity
for g < 6 or proceeding to the next.customer whenever q > 6; .
j j

Given equation (9) and assuming that the ! vehicle performs the a priori
route, its expected recourse cost can then be computed for the first orientation
(i.e., d = 1) as follows,

Q" = F,(Q). (10)
To compute the expected recourse cost of the route for the second orientation
(i.e., Q) wereapply function (10) to the reverse of the a priori route 7.

3. An Integer L-shaped Algorithm to Solve the VRPSD under an Optimal
Restocking Policy

In this section, we adapt the Integer L-shaped algorithm to exactly solve the
VRPSD under an optimal restocking recourse policy. The Integer L-shaped al-
gorithm is proposed by Laporte & Louveaux (1993) to tackle two-stage stochas-
tic integer program with recourse. It stands as a general branch-and-cut (B&C)
procedure in which, feasibility cuts and branching are employed to obtain inte-
ger first-stage solutions. A feasible integer solution with an excessive expected
recourse cost is removed by adding optimality cuts. The optimality cuts which
are originally developed by Laporte & Louveaux (1993), adjust a lower bound
for Q(x) at each feasible integer solution using its combinatorial structure lo-
cally. However, the Integer L-shaped algorithm solely relying on optimality

10



cuts may turn to an implicit enumeration procedure of feasible integer solu-
tions. Therefore, there is a need to provide lower bounding procedures en-
hancing the B&C procedure.

Such lower bound improving procedures were first proposed by Hjorring
& Holt (1999) (for the VRPSD with classical recourse) via the concept of par-
tial routes, which are feasible fractional solutions with certain structures. These
new valid inequalities called lower bounding functional (LBF) cuts improve
lower bounds for several integer feasible solutions. However, some restrictive
assumptions are made: 1) all customers demands are discrete, independent
and uniformly distributed and 2) a maximum of one failure can oecur within
the fractional structure. The concept of partial routes was then developed by
Laporte et al. (2002) for multi-VRPSD, where customer demands follow:contin-
uous distributions. Jabali et al. (2014) generalize the concept of partial routes
proposed by Hjorring & Holt (1999) through defining various structures, thus
improving global lower bound for many fractional feasible’solutions.

In this section we apply LBF cuts of Jabali et al. (2014) to-the case of opti-
mal restocking policy when customers demand afeidefined through arbitrary
discrete distributions. The LBF cuts of Jabali et al. (2014) are only applied to
the case where customer demands are Normal'distributions. To do so, we pro-
vide several approximation schemes to compute valid lower bounds for the
expected recourse cost of partial routes under.an/optimal restocking policy. In
subsection §3.1, we first revisit the Integer-shaped algorithm. Then, in sub-
section §3.2 we present a lower bounding scheme to approximate Q(x), where
x contains partial routes of Jabalitet al', (2014). In subsection §3.3, we provide a
general lower bound L where L <\Q(x) and x satisfies (2)-(7).

3.1. The Integer L-Shaped Algorithm

In this section wé desctibe the Integer L-shaped employed to optimally
solve the VRPSD inja general B&C procedure. In this B&C procedure a mas-
ter problem, called current/problem (CP) is established by relaxing capacity and
subtour elimination constraints as well as the integrality requirements. The ex-
pected recourse funetion Q(x) is replaced by the continuous variable ® and is
initially bounded from below by a general lower bound L using (14). The first

current problem CP° can be presented by (11), (2), (3),(5), (6), and (14). At an

11



arbitrary iteration v, CP¥ is shown in the following model,

CP':min ) c¢;x;j+© (1)
x0 i<j
subjectto  (2), (3), (5), (6),
IE .
Ly < 18- [Fet B e sr st c v o) 2 1541 <0
v,,v,eS"
(12)

+(®Z—L)( E W/’;(x)—|PR‘7+1) S@quPS"_l,pe{a,ﬁ,v},

hePRY
(13)
L<® 14)
Y oxi< Y xifj 1 Vf.e@C' 1, 15)
1<i<j 1<i<j
x{j—l

where, constraints (12), (13), and (15) respectively are stubtour elimination and
capacity constraints, LBF cuts, and optimality ctits» At each iteration v, an
optimal solution (x¥,®") is obtained by solving CP". Violated capacity and
subtour elimination constraints (12) are added.to CP" until no more violated
cuts are detected. We denote by {k} the\index set associated to the subsets
of vertices violating (12) at iteration\v:, We also denote by ST the set of
index sets of the vertices violating»(12) in the first v — 1 iterations. Then, at
iteration v we set ST' = ST~ U {k}. The separation procedure is performed
by the CVRP package ofLysgaard et al. (2004). When no violated constraint
(12) is detected, the lower,bounding cuts (13) are added to strength the overall
bounding scheme. An exact separation procedure developed by Jabali et al.
(2014) detects partialsolutions within x”. We denote by {4’} the index set as-
sociated to partial solutiohs identified in iteration v. We also denote by PS"~!
the set of index sets)of the partial solutions detected to add (13) in the first v — 1
iterations« Then, at iteration v we set PS” = PS'~1 U {4’}. Each partial solu-
tion containsia set of partial routes, here at iteration v denoted by /' including
varieus structures &, 8, and y proposed by Jabali et al. (2014) (see subsection
§32for further details). For each partial route / the functional W’; (x) ensures
that the, constraint is active on relevant portions of the solution space and, is
redundant otherwise (see subsection §3.2 for further details). The expected re-
course cost associated to each structure p € {«, 8,7} is computed as @Z/ using
the procedure presented in subsection §3.2. We also denote by PR"~! the set of
partial routes detected in the first v — 1 iterations. Then, at iteration v we set
PRY = PR~ U {}}. The branching scheme obtains integrality requirements
whenever needed. At integer feasible solutions, Q(x") is computed to update
the upper bound,. In the case of ©V < Q(x"), an optimality cut (15) is added
to CP". We denote by { '} the index set of xV when an optimality cut is added.
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We also denote by OC"~! the set of index sets of vertices associated to the op-
timality cuts detected in the first v — 1 iterations. Then, at iteration v we set

oC’ =ocC'" tu{f}.

3.2. Approximating an Optimal Restocking Policy

Here, we present the bounding procedures to approximate the expected
recourse cost of partial solutions. At an arbitrary iteration v, we assume hat
partial solutions within x" are detected, here denoted by ¢, using the  exact
procedure proposed by Jabali et al. (2014). We note that @Z in (13) is set asjthe
sum of the lower bounds of the various partial routes (or routes) included in'q
and can be computed by @Z = ) @'Z,h. We then drop the index-g in @Zh and

hePRY
present it by @Z.

Generally, a partial route stems from a fractional solution and consists of
an alternation of chains and unstructured components. The vertices of a chain are
connected in the support graph at iteration v (denoted by'G")iWwhere there is an
edge (v;,v;) in G if x}; = 1. The vertex set of a ghaifyis called chain vertex set
(CVS). The vertex set of each unstructured components is called unstructured
vertex set (UVS). Each UVS lies between two chains and is connected to them
at unique articulation vertices. Figure 2,shows'an example of three possible
partial routes.

In the a-route topology the first and last chains are viewed as CVSs, while
the intermediate component (containing potentially multiple chains and UVSs)
is considered as a single-UVS. Thistopology corresponds to the one proposed
by Hjorring & Holt (1999). In the“B-route topology the actual alternation of
CVSs and UVSs is captufed. In the <-route topology each chain is viewed
as a UVS and articulationyvertices are viewed as single-CVSs. The separation
procedure proposed’by,Jabaliset al. (2014) detects all chains and CVSs, which
implicitly implies that’a Brroute topology is detected. Once this topology is
detected an appropriate@-route and an appropriate y-route may be derived.

Formally let x'denote the number of chains and « — 1 be the number of
UVSs in pértial route. Let S! = {v),,--- v}, } be the th chain in partial route

h € PRY, where vflz is the zth vertex in S,Z, and #; is the number of vertices in
S . Therefore,
Y, xi=IS-1vi=1..x (16)

(‘U,‘,Uj) 65}[1
Let U! be the t" UVS in partial route . Then,

Y, di=Ul -1, vt=1,.. k-1 (17)

Ui,Ujeu}{’
A UVS s preceded by a chain and proceeded by another. Therefore,
Z xZ; =1, Vt<x-—1, (18)

; ]
vjellh
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and
Yo Xy =1vE=2 (19)
vjelll!

For completeness we recall the definition of the functional W’l} (x), as intro-
duced by Jabali et al. (2014):

K xk—1
= Z Z 3xl-]'+ le]’-F le]'-l- Z Z 3xl-]- (20)

t=1 (v;,0))€S}, (v1,0/) €S} (v1,0)€S), t=1 v;,v;eUf
‘0175?)1
3D SE RS S SETIES SIS oo
t= 1veLI} =2ycul! vel} GU’ !
U/II 701 Uh] #vl U;l’ ! Uhl <
vhll#v]
— (3|Ry| = 5).

We now describe an approximation technique to compute @2 in order to
add LBF cuts (13). In (13), @g presents a\validslower bound for the expected

recourse cost of partial route h with'an arbitrary structure p € {«,8,7}. In
what follows, we only derive @;. The approximating technique can then be

applied to compute @’é and @lfy becauise ‘5 and <y topologies can be viewed as

successions of the « topology.
Let i € PRY be a partial route with the « topology Partial route h with «
topology consists of two chains S, = {v} ... v Sl } and S; = {v] ... ,v|252|}
h

1 _ _ 1 2 _
and one unstructured set U, ‘as h = (v; = vhl, .. u ,vhl . ,U‘S%‘ =101),

\51\'
where U,l = Aoy, vu,, 00} 0‘151‘ and 0%1 are articulation vertices which
h

connect chdins 5}1 and S% to U%, respectively.

For the sake of simplicity, we redefine the partial route , in similar terms
as a route;.as follows

h - (7)1 = vil/' . '/Ul'];]/{vul/vuz/' . ~/Uu,}lvi]-+1/' . "Uit+1 = Ul),

where‘the articulation vertices 0‘151‘
spectively. We define an artificial route /1 associated to the partial route h as
follows,

and vh are denoted by vi and Uiy y, TE-

h= (Ul = Uiys-- Uzj T TV TR ""ij’vijﬂ""’viwrl :’01), (21)

where each ordering of | unsequenced customers in U} can be assigned to the

" [ [ (] . th age .
positions i, ;.\, .. ;. In what follows, we refer to . i; as the i;™" position in
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Figure 2: Three partial route topologies (adapted from Salavati-Khoshghalb et al. (2017) )

the artificial route h. Then, we develop a bounding procedure for the artificial
route h.

Approximation:

To compute a yalid lower bound for the expected recourse cost, we need to
provide somé additional notations. Let s = (i;,q) denote the state of the
system (i.€., the vehicle) after serving the iath customer of the a priori route
7 = (o1 =i, iy, - - 2 0iiyre e s Vigs Vi qre e Vi qse oo Vi iy = v1) with g
units{of the residual capacity onboard, as in the Bellman equation (9). When
performing the a priori route @ (or more generally for two successive customers
in a chain), the system will make a transition from state s = (is, 4) to some state
shv= (id+1,q'). Furthermore, one can easily determine all possible values of ¢’
and use them to compute F; (7). When dealing with artificial route &, things are
not as easy, since the customers between v;, | and v;,, are not known exactly.
In that portion of the artificial route, we must associate pseudo states which are
associated not with specific customers, but rather to positions in the route. Thus,

we lets = (Ly ,q) represent the state of the system after serving the (still un-

known) customer in the i, position of the artificial route.
In the following, we present a successive approximation scheme that com-
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putes a valid lower bound for the optimal cost-to-go value function for pseudo

state s, denoted by F; (s = (_y,,q)). Based on the Bellman’s principle of opti-
mality, we also suppose that the optimal (or, a valid lower bound) cost-to-go

value function F;_ (s" = (v4,,,,9")) has been determined beforehand, for all

s = (L 1,-[1“, q'). Let us now define the auxiliary value £; (s = (L1 ,9),5 = (Vug

q')), which corresponds to a conditional lower bound on the optimal cost-t0-go
value function, if we assume that customer v,, € U,% occupies the i, 7 posi=

. . [ . .
tion (i.e., cy,,, := vy, ins’). We can then write

ﬁia (S = (L Jiu’q)’s/ = (v“l’ql)) =
Y. Fin (= (vu,q =g =) P+
k:gk, <q
Z [b + 2C1:”] + FizH»l (S/ - (Uull q/ = Q + q - gﬁl))]plﬁ]’

= min
k:gh >q

S“l

C1,i, + Cluy — Cipuy + Z Ea+l (S, N (vul’q/ =0~ gﬁl))pﬁl
k=1

(22)

To compute F;, (s = (Ly,,9),5" = (0, q")) in (22), the PR trip travel cost is
replaced by a lower bound  mininum “{c1,, + c1,u; — Cuou, }- To determine
[ GU}Z O 0y
an unconditional lower boupd'on F; (s'= (_; ,q)), we simply take the minimum
of the conditional lower®bounds, i.e., we set
E,(s =y, 7)) = min E (s=(,q),5 = (vu,q)) (23)

Vyo € U,ll

There arestwo boundary cases which differ from the situation presented
above. The first case arises when we start the approximation scheme, where
s= (L Ji]., g).ands’ = (v;,,,q'). In this case, we can compute directly the uncon-
ditionaldower bound on the optimal cost-to-go value function. The PR trip cost

¢an be obtained by m;mgbtfm{cl,ue €Ly = Cugijys }. The second case arises in
Ue h

the last step of overall scheme, where s = (vij—l’ g)ands’ = (o Jijfl /q')- In this
case, the PR trip costs for each v, in ﬁi]-,l (s = (vi_,,9),8 = (L Jij—1+1 =04y, q'))
can be computed as cy,, + CLiiy = Cij - The latter boundary case will result
in an unconditional bound EH (s = (ij-1,9))-

It should be noted that the the optimal cost-to-go functions F;, , (), Fi;,, (-),

..., F;,(.) can be exactly computed by the Bellman equation (9). Then, the
bounding procedure described above provides an unconditional lower bound
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on EH (s = (ij—1,9)) Vq. Next, the unconditional lower bound E}.f, (s = (ij—1,9))
can be applied in (9) to successively compute unconditional lower bounds
F (.),F,«/,_l_z(.), oo, Fy(.). We set F (~Q) as the valid lower bound for the
expected recourse cost of artificial route / in the first direction and denote it by
1—"1-11 (Q). By reversing 1 and applying the bounding procedure we will obtain a

valid lower bound for the second direction, denoted by Ezl (Q). We then set

@, = min{F}(Q), F}(Q)} (24)

where, @/ is a valid lower bound for the expected recourse cost of partialroute
h, detected in the partial solutions g within optimal first-stage/solution »” at it-
eration v. Moreover, we note that partial routes with  and y topologies consist
of several partial routes with a topology and we can apply the same procedure
to compute @g and ©!. Finally, we set ©®) = ¥ @g forp € {«,B,v} tobe

hePRY
used in LBF cuts (13).

3.3. General Lower Bound

In this subsection, we propose a procedure to,obtain a general lower bound
L to be used in constraints (13) and (14).| As\defined by Laporte & Louveaux
(1993), the expected recourse cost associatéd to the feasible solution xL with
minimum expected recourse cost cotresponds to a general lower bound. La-
porte & Louveaux (1998) were'the first authors to present a general lower
bound for the VRPSD under the‘classical recourse. The quality of the gen-
eral lower bound presentedsin Laporte & Louveaux (1998) is further improved
by Laporte et al. (2002),-Suppose that 7', 77, ..., 7" are the vehicle routes con-
tained in x'. Using thé notation of Laporte & Louveaux (1993),

L= 0(x")& min{@(x)[(2) - (6)} = Y. min{Q¥ (), ()}, (25
k=1

For computing L in (25), we assume that: the vehicle route denoted by 7'? is
obtained by concatenating 7 after 7'; vp and v 2 present the last customer
in-#l, and the first customer in 7, respectively; Fgf (Q) and Fflz (Q) are the
. —1 ) . . =12 =12
expected recourse costs associated to " and 7, respectively; F;’l . (-)and F{fl L)
arenthe expected recourse costs from the depot to vj1 and expected cost-to-go
frgm v;1 to the depot going through 72, respectively; and p?,ll is the probability
of having g units of residual capacity after serving customer v;;.

The expected recourse cost of 7'? in the first direction can be computed as
follows,

FIP(Q) = Y ARL () + 2y (9) bl - (26)
q
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By definition, we have

Y. F qéy)v

kg S <q
gf

=12 k k
Z [b+2c1,vf2 +FZZJ]J‘2 (Q+q_§vf2>]pvf2/ (27)

an (4) = min k:g’:’,gfz >q

=12 k k
Cl,‘l)l] + Cl,Uf2 - CU,l,Ufz =+ Z Fgfz (Q - gvfz)p'l}fz
k=1

. g
We also have F;’lllz(q) < C1py + Cloy ~ Copop + Z F” (Q—+ CU ) 25 2 which

coupled with (26) results in

f2
=12 =12
F’l?l (Q) S Z{Fgll ( + Clvl +C1 Ufz Cvll ’Ufz + 2 Q (:v pvfz}pvl]
q

(28)
Assuming that 72 is equivalent to the concatenation of 7! and @7, the relation
(28) can further yield

= =1 =2
F‘;ijl (Q) S Cl,‘l)l] + Cl,vfz ) C'UI] A+ FZ?ljl (Q) + FZ?ljl (Q)/

where, the first term in (28) is equivalent to Ffll (Q) in the backward fashion
and the last term in (28) is'equivalent to Fgf (Q) in the forward fashion.

We perform the samie procedure to concatenate the remaining routes @°,.. .,
7" to 72 and conclude that:

@ Q) < Z chp + Z (29)

where 3! is obtained by the successive concatenation of all routes and c’f)R

denotés the k™least PR trip cost.

The desired L can be obtained by bounding Y ' ; Fflk (Q). However, the

vehicle routes 71, 72, ..., 7", as well as 71" are not known, but we can use the

fact that the route 7 in the left-hand-side of (29) consists of all customers.
To,calculate a general lower bound L* < L, we can approximate the left-hand-
side of (29) by constructing a large unstructured set Uy, = V \ {v1}. Then, one
can reduce the problem of finding a valid lower bound for Uy to computing

the minimum expected recourse cost Elf] (Q) of artificial routes Lforz=2,...,
n, which are obtained by only fixing the last customer before returning to the
depot v, ie.,

lZ - (Ul - 0111L1121L113r sl ‘it,yUZ/ Uit+1 = Ul). (30)

18



This is done exactly as in §3.2. Finally, a general lower bound L* can be com-
puted as

. m—1
L* — nzmn F:(Q) - k; chr- (31)

4. Numerical Results

In this section, we evaluate the quality of the proposed Integer L-shaped
algorithm by conducting computational experiments of instances. Overall,we
present the numerical result for three sets of instances.

Symmetric Instances: In the first set of instances (which is made up;of the in-
stances of Salavati-Khoshghalb et al. (2017)), customer locations and demands
are randomly generated. We generated instances consisting 'of a set of n ver-
tices as {v1, ..., vy }, in which v represents the depot and n — 1 ctistomers and
all vertices are randomly scattered in [0,100]? according to a continuous uni-
form distribution. In the first set, each customer is' randemly (i.e., with equal
probability) assigned to one of the three demand ramges [1,5], [6,10], [11,15]
and then five realizations in each range are observed accordingly to the proba-
bilities {0.1,0.2,0.4,0.2,0.1}.

Asymmetric Instances: In the second set of instances, customer locations are
the same as symmetric instances. Each customer'is randomly (i.e., with equal
probability) assigned to one of the five demand ranges [1, 5], [6,10], [11,15], [4,
7], and [9,12]. Each of the first three demand ranges has five possible demand
values, the occurrence of each’which\(in ascending order) is expressed with
the following probabilities {0.1,0.2;0.4,0.2,0.1}. Each of the last two demand
ranges has four possible demand values, the occurrence of each which (in as-
cending order) is expressed with the following probabilities {0.4,0.3,0.2,0.1}.

In what follows,all settings are considered in both symmetric and asym-
metric instances. The traveling cost c;; is set as the Euclidean distance between
each pair v; and v; and,rounded to the nearest integer. The filling coefficient

f is equal to ):L%‘]g(g’) Four filling coefficients f = 0.90,0.92,0.94, and 0.96

are considered. The capacity of each vehicle is directly inferred from f. We
considér 11 combinations of (1, m) for each of the four filling coefficients, as
detailedin Table 2. We generated 10 instances for each entry of the table. Thus,
odr generated test bed contains 440 instances, overall 880 runs for symmetric
and asymmetric instances.

Table 2: Combinations of parameters to generate instances.

n m f
20 2 0.90,0.92,0.94,0.96
30 2 0.90,0.92,0.94,0.96

40 2,3,4 0.90,0.92,0.94,0.96
50 2,3,4 0.90,092,094,0.96
60 2,3,4 0.90,092,094,096
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In our computational result, a fixed costdenotedbyb = Y, ¢;1/(n—1)is
i=2,..1n

incurred when experiencing route failures. We recall that b primarily penalizes
disruption at a customer location caused by the second vehicle visit.

The Instances Generated by Louveaux & Salazar-Gonzailez (2017): The in-
stances of Louveaux & Salazar-Gonzalez (2017) are selected from benchmark
instances E031-09h, E051-05¢, E076-07s, and E101-08e, see http://neo.lcex
uma.es/vrp/vrp-instances/. However, the expected demand of all customers
is set to y = 5. Parameter K denotes the number of possible demand tealiza=
tions for each customer, for each instance a single value of K is applied toiall
customers. Namely, K = 3 or K = 9. Then, for allj € V\ {v1}land k =1,
..., K, stochastic demands are generated by (f;‘ =y — |K/2] + }=1. The prob-
ability of each demand realization g;‘ is then computed by p;‘ = k/[K/2]?
for k < [K/2]? and p;.‘ = (K—k+1)/[K/2]? otherwise, The number of
vehicles denoted by m is set to 2 and 3. The vehicle‘capacity is obtained by
Q = max{[(nu)/(mf)]; [n/m]u} in which the filling rates'f = 0.90,0.95 are
considered for m = 2 and in the case of m = 3 the filling/rates f = 0.85,0.90.
Also, Louveaux & Salazar-Gonzélez (2017) considered a fixed cost of A = 0, 10,
100 for the loading/unloading cost is considered for both BF and PR trips. In
our recourse function, we denote by b a fixed cost.as the customer dissatisfac-
tion in the failure events.

The Integer L-shaped algorithm and thebounding scheme are coded in C++
using ILOG CPLEX 12.6. The subtourielimination and capacity constraints
(4) are identified using the CVRPSEP package of Lysgaard et al. (2004). The
general branch-and-cut framework'as the Integer L-shaped algorithm is imple-
mented using the OOBB package developed by Gendron et al. (2005). Compu-
tational experiments were conducted on a cluster of 27 machines, each having
two Intel(R) Xeon(R) X5675:3.07 GHz processors with 12 cores and 96 GB of
RAM running Linux: /An integer feasible solution with a relative optimality
gap less than 0.01% is assimed optimal. Also, a maximum CPU run time of 10
hours is imposed on all runs. If the maximum allotted time is reached, we then
report thebest integer solution obtained.

In subsection 4.1, the performance of the Integer L-shaped algorithm as an
exact/solution method is evaluated in terms of various quality measures. We
further compare the results of our optimal restocking policy by pricing the opti-
mal solutions under the classical policy. In subsection 4.2, we report the results
obtained by the proposed algorithm on the specialized instances generated by
Louveaux & Salazar-Gonzélez (2017), in which all customer demands follow
identical distributions.

4.1. Quality of the Integer L-Shaped Algorithm

We now present the computational result, expressing the performance of
the proposed exact algorithm in Tables 3 and 5 for symmetric and asymmetric
instances. The conducted experiments are aggregated according to the pair (1,
m) and the filling coefficient f. Tables 3 and 5 report the following information:
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1) the “Solved” columns present the number of instances (out of ten for each
aggregated category) that were solved to optimality by the algorithm; 2) the “<
1%” columns present the number of instances (out of ten for each aggregated
category) that were solved with an optimality gap < 1%; 3) the “Run(sec)”
columns refer to the average running times in seconds that were needed by the
algorithm to solve those instances to optimality; 4) the “Gap” columns present
the average optimality gap obtained by the algorithm over all instances solved
(i.e., both those solve optimally and those for which only a feasible solution
was obtained).

By analyzing the computational results in Tables 3 and 5, we obsetve similar
trends that were reported by Gendreau et al. (1995), Laporte et al. (2002);-and
Jabali et al. (2014) for the classical recourse policy. These trends'indicate that an
increase in the filling rate and /or the number of vehicles results in a reduction
of the optimally solved instances, an increase in the running time-to solve in-
stances optimally, and an increase in the optimality gap, Which shows overall
an increase in the overall complexity of the VRPSD instances.-Moreover, when
compared to the filling rate, the number of vehiclés'seemsto have a more sub-
stantial impact on the complexity of the instances: As teported in Tables 3 and
5, the Integer L-shaped algorithm implementedrinsthis paper optimally solves
227 out 440 symmetric instances and 242 out of\the 440 asymmetric instances;
which correspond to 51.6% and 55.0% of the,generated instances. The overall
average optimality gaps are 0.83% and 0.80%, respectively. Moreover, the pro-
posed algorithm solves 285 and 297 instances with an optimality gap < 1% of
the symmetric and asymmetricinstances, respectively.

In order to qualify the magnitude of savings obtained by performing the
optimal restocking policy, weiexecute the optimal solutions under the classical
recourse policy. Tables 4and 6 illustrate the comparisons of two recourse poli-
QI () — Q" (x5

g, 10
class. (% opt (¥

O ape) Q7 150) 100, in which

Q (xnpt)

; is obtained by optimally solving a VRPSD instance under optimal restock-

opt has a first stage cost of cxj,, and an expected

cies with respect to the total cost denoted by “Sav1”=

and the expected recoursé cost as “Sav2”=

Xop
ing policy. 3 The solution Xopt
recoufse ¢ost of Q"Vt(x;pt). Furthermore, Q°/ss: (x5,¢) is the expected recourse
cost.of optimal routing decision x,,. It should be noted that the classical re-
¢ourse policy consists of following the planned route and performing BF and
restocking trips at failures and exact stockouts, respectively. The weighted av-
erage savings in terms of “Sav1” are 0.65% and 0.61% for the symmetric and
asymmetric instances, respectively. In terms of “Sav2”, the weighted average
savings are 49.46% and 48.70%, respectively.

Also, in order to qualify the magnitude of savings obtained by performing
the optimal restocking policy we compare it with two other policies from the
literature. The first is the rule-based policy proposed by Salavati-Khoshghalb
et al. (2017), which entails that a PR trip is performed if the residual capacity of
the vehicle is less than 77¢, where ¢ is the expected demand of the subsequent
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Table 7: Average savings vs rule-based recourse policy with ¢ for 7 = 1

n m f Sav3 f Sav3 f Sav3 f Sav3
20 2 0.90 0.056% 0.92 0.034% 0.94 0.083% 0.96 0.153%
30 2 0.90 0.015% 0.92 0.007% 0.94 0.042% 0.96 0.100%
40 2 0.90 0.004% 0.92 0.005% 0.94 0.033% 0.96 0.088%
40 3} 0.90 0.016% 0.92 0.009% 0.94 0.018% 0.96 0.068%
40 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
50 2 0.90 0.006% 0.92 0.011% 0.94 0.019% 0.96 0.075%
50 3 0.90 0.010% 0.92 0.011% 0.94 0.015% 0.96 0.089%
50 4 0.90 0.000% 0.92 0.006% 0.94 0.000% 0.96 0.000%
60 2 0.90 0.007% 0.92 0.011% 0.94 0.015% 0.96 0.057%
60 3 0.90 0.001% 0.92 0.028% 0.94 0.001% 0.96 0.033%
60 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
Average 0.015% 0.013% 0.034% 0.096%

Table 8: Average savings vs hybrid recourse policy for 6-6 : 0.35 — 0.65

n m f Sav4 f Savd f Sav4 f Savd
20 2 0.90 0.119% 0.92 0.165% 0.94 0.809% 0.96 1.259%
30 2 0.90 0.041% 0.92 0.007% 0.94 0.153% 0.96 3.076%
40 2 0.90 0.92 0.141% 0.94 0.499% 0.96 0.397%
40 3 0.90 0.92 0.076% 0.94 0.501% 0.96 0.954%
40 4 0.90 0.92 0.000% 0.94 0.000% 0.96 0.000%
50 2 0.90 0.92 0.074% 0.94 0296% 0.96 0.854%
50 3 0.90 0.92 0.011% 0.94 0.734% 0.96 0.741%
50 4 0.90 0.052% 0.92 0.006% 0.94 0.000% 0.96 0.000%
60 2 0.90 0.027% 0.92 0.057% 0.94 0.030% 0.96 0.679%
60 3 0.90 0.001% 0.92 0.028% 0.94 0.001% 0.96 0.000%
60 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
Average 0.039% 0.086% 0.378% 1.296%

customer on the route. Salavati-Khoshghalb et al. (2017) achieved the best re-
sults by setting 1 to one. We therefore compare the optimal policy with these re-
sults. The second policy is the hybridipolicy proposed by Salavati-Khoshghalb
et al. (2018), where the best results were obtained by setting the maximum pro-
ceeding threshold, denoted by:g, to 0.35, and the minimum restocking thresh-
old, denoted by 8 to 0.65:3We therefore compare the optimal policy with these
results. Tables 7 and/8 express.the comparisons with respect to the total cost as
wgaoar Ll QY (3G wgayare L Ciyoria) = Q" (5p0)
Sav3"= = M o x 100 and “Savd’= o~ ;fgh‘;md(x;yw’; % 100,

respectively. In Say3 and Sav4, x;,, x;,,, and nybrid are the optimal routing

decisions.@btained by solving the VRPSD instances under the optimal restock-
ing policy, the best rule-based and the hybrid recourse policies, respectively. As
presented'in\Tables 7 and 8, the best rule-based policy displays less deviation
from the optimal restocking policy. The latter observation provides insights
in the structure of the optimal restocking policy, which further imply that this
policy can be approximated more efficiently in terms of the quality (here the
total costs) of the optimal routing solution by rule-based policies designed by
Salavati-Khoshghalb et al. (2017).

In order to compare the solution structures between the various policies,
we used the Hamming distance. We recall that the Hamming distance with
respect to a reference solution X is computed as follows:

Ax, %) = Z (1- x,-]-) + Z Xjj (32)

(‘(),’,‘()]')ET (Ui,v]‘)EE\T
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Table 9: Average Hamming distance between the optimal recourse solutions and the rule-based
recourse policy with 7§ fory =1

Hamm Hamm. Hamm.

n om f  solved o 7 solved o 7 solved o 7 solved RN
20 2 0.90 10 42 0.92 10 42 0.94 10 41 0.96 10 41
30 2 0.90 10 29 0.92 8 30 0.94 10 29 0.96 7 25
40 2 0.90 10 22 0.92 10 22 0.94 10 22 0.96 6 21
40 3 0.90 5 50 0.92 7 49 0.94 4 47 0.96 2 49
40 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0
50 2 0.90 10 18 0.92 8 18 0.94 10 16 0.96 4 17
50 3 0.90 4 41 0.92 4 36 0.94 3 41 0.96 1 42
50 4 0.90 2 70 0.92 1 70 0.94 0 0 0.96 0 0
60 2 0.90 10 12 0.92 9 15 0.94 7 15 0.96 6 14
60 3 0.90 3 30 0.92 1 30 0.94 1 31 0.96 0 0
60 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0

Table 10: Average Hamming distance between the optimal recourse solutions and"the hybrid,pol-
icy with 6-0 : 0.35 — 0.65)

Hamm. Hamm. Hamm

n om f  solved o 7 solved - 7 solved o 7 solved AN
20 2 0.90 10 41 0.92 10 39 0.94 10 40 0.96 10 39
30 2 0.90 10 29 0.92 8 29 0.94 10 26 0.96 7 26
40 2 0.90 10 22 0.92 10 20 0.94 10 18 0.96 6 17
40 3 0.90 5 50 0.92 7 49 0.94 4 47 0.96 2 29
40 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0
50 2 0.90 10 18 0.92 8 19 0.94 10 15 0.96 4 16
50 3 0.90 4 41 0.92 4 38 0.94 3 34 0.96 1 40
50 4 0.90 2 66 0.92 1 70 0.94 0 0 0.96 0 0
60 2 0.90 10 12 0.92 9 16 0.94 A 16 0.96 6 12
60 3 0.90 3 29 0.92 1 31 0.94 1 31 0.96 0 0
60 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0

where, T = {(vi,vj) € E|xj =1}
In Table 9 we report the average Hamming distance where X = x,,, and
*

x = x,;,- In Table 10 we report the average Hamming distance where & = x;,,,

and x = x;ybri ;- In both these tables.we only consider instances that were
solved to optimality by allsthree policies. Furthermore, since the stochastic
solution is effectively adirected solution, all computations in tables 9 and 10
are based on the diretted solutions. As observed in Tables 7 and 8 the cost
differences between solittions of the three policy were relatively low. However,
Tables 9 and 10 show thatindeed on average the solution structures of the rule
based policy andithe hybrid policy may be substantially different from those
of the optimal policy:

4.2. The instances Generated by Louveaux & Salazar-Gonzilez (2017)

Wehave compared the solutions that we obtain with those of Louveaux &
Salazar-Genzalez (2017) for the instances that both methods are able to solve.
This comparison confirmed that our method provides valid results. Regard-
ingseomputational times, Louveaux and Salazar-Gonzalez’s implementation
seems to be more effective than ours: if one accounts for differences between
the machine that they have used and ours, their code runs faster and it is
able to solve to optimality more instances than our algorithm for a given CPU
time allowance. This result is not surprising given the fact that their approach
uses specialized procedures for instances with identical demand distributions,
which is not the case of our method.

Furthermore, it is observed from Tables 11-13 that the LBF cuts developed
in this paper can significantly reduce the number of branch-and-cut nodes ex-

24



plored by the Integer L-shaped algorithm. The number of B&C nodes explored
in the proposed method in this paper is much smaller than in Louveaux and
Salazar-Gonzélez’s implementation.

5. Conclusions

In this paper, we developed an exact solution methodology to solve the
VRPSD under an optimal restocking policy. To do so, the Integer L-shaped
algorithm was adapted. To enhance the efficiency of the Integer L-shaped al-
gorithm, various lower bounding schemes were developed. The kéy element
for successfully employing such bounding procedures is to provide effective
lower approximation of the expected recourse cost of partial routes., In ad-
dition, a general lower bound enhancing the Integer L-shaped algorithm was
also developed.

Using the exact method proposed in this paper, we wete able to optimally
solve problems with up to 60 customers and a fleet of four wvehicles. It should
be noted that the proposed exact method is the firstito solve the VRPSD under
an optimal restocking policy when considering instances'where customer de-
mands follow arbitrary discrete distributions:"Themumerical results presented
in this paper show that the resulting routes from the optimal restocking policy
yield a appreciable amount of savings when.,compared to executing the classi-
cal policy on the same routes.

Further research in this area couldifocus on the exploration of the poten-
tial of applying column generation and branch and price to the considered
problem. It would also be interesting to investigate how more collaborative
recourse policies (where several vehicles coordinate to react to high demand
situations) could be applied to the VRPSD.
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