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Abstract

Seizure prediction has attracted growing attention as one of the most challenging

predictive data analysis efforts to improve the life of patients with drug-resistant

epilepsy and tonic seizures. Many outstanding studies have reported great

results in providing sensible indirect (warning systems) or direct (interactive

neural stimulation) control over refractory seizures, some of which achieved

high performance. However, to achieve high sensitivity and a low false prediction

rate, many of these studies relied on handcraft feature extraction and/or tailored

feature extraction, which is performed for each patient independently. This
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approach, however, is not generalizable, and requires significant modifications

for each new patient within a new dataset. In this article, we apply convolutional

neural networks to different intracranial and scalp electroencephalogram (EEG)

datasets and propose a generalized retrospective and patient-specific seizure

prediction method. We use the short-time Fourier transform on 30-s EEG

windows to extract information in both the frequency domain and the time

domain. The algorithm automatically generates optimized features for each

patient to best classify preictal and interictal segments. The method can be

applied to any other patient from any dataset without the need for manual

feature extraction. The proposed approach achieves sensitivity of 81.4%, 81.2%,

and 75% and a false prediction rate of 0.06/h, 0.16/h, and 0.21/h on the Freiburg

Hospital intracranial EEG dataset, the Boston Children’s Hospital–MIT scalp

EEG dataset, and the American Epilepsy Society Seizure Prediction Challenge

dataset, respectively. Our prediction method is also statistically better than an

unspecific random predictor for most of the patients in all three datasets.

Keywords: seizure prediction, convolutional neural network, machine

learning, intracranial EEG, scalp EEG

1. Introduction

Advances in data mining and machine learning in the past few decades have

attracted significantly more attention to the application of these techniques

in detective and predictive data analytics, especially in health care, medical

practices, and biomedical engineering (Kuhlmann et al., 2015; Freestone et al.,5

2015; Xiao et al., 2017; Bou Assi et al., 2017; Kuhlmann et al., 2017; Freestone

et al., 2017; Sinha et al., 2017). While the body of available proven knowledge

lacks a convincing and comprehensive understanding of the sources of epileptic

seizures, some early studies showed the possibility of predicting seemingly unpredictable

seizures (Rogowski et al., 1981; Salant et al., 1998). Along with continuous10

improvements in recording electroencephalogram (EEG) signals, there have

been an increasing number of EEG-based techniques for seizure prediction (Szostak
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et al., 2017). There have been some articles on seizure prediction using the

Freiburg Hospital dataset (University of Freiburg, 2003). For example, the

dynamical similarity index, effective correlation dimension, and increments of15

accumulated energy were used as features (Maiwald et al., 2004). The dynamical

similarity index yielded the highest performance, with sensitivity of 42% and

false prediction rate (FPR) less than 0.15/h. The mean phase coherence and

lag synchronization index of 32-s sliding EEG windows were used as features

for seizure prediction (Winterhalder et al., 2006). This approach achieved20

sensitivity of 60% and FPR of 0.15/h. The approach was further improved

by combined use of bivariate empirical mode decomposition and Hilbert-based

mean phase coherence as additional features (Zheng et al., 2014). As a result,

sensitivity was increased beyond 70%, while FPR dropped below 0.15/h. A

lightweight approach based on spike rate achieved 75.8% sensitivity and FPR25

of 0.09/h (Li et al., 2013). By use of the synchronization information, a method

based on phase-match error of two consecutive epochs and variation within each

epoch resulted in 95.4% sensitivity and FPR of 0.36/h (Parvez & Paul, 2017).

Another synchrony-based approach used the mean phase coherence between

each pair of channels calculated over multiple window lengths as an indicator30

of incoming seizure onset (Kuhlmann et al., 2010).

Frequency bands of the power spectrum of each channel were used as a

feature for seizure prediction (Park et al., 2011). These features were then fed

to a support vector machine (SVM) classifier to learn the differences between

preictal and interictal instances. This method was tested with the Freiburg35

Hospital dataset, and achieved sensitivity of 98.3% and FPR of 0.29/h. A similar

approach with additional features which are spectral power ratios between different

frequency bands achieved sensitivity exceeding 98% and FPR less than 0.05/h

(Zhang & Parhi, 2016). However, this approach relied on tailoring features for

each patient independently, hence offering reduced generalization as a result.40

Differently from the two approaches described, Aarabi & He (2014) applied

a Bayesian inversion of power spectral density and then applied a rule-based

decision to perform the seizure prediction task. This approach was tested with
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the Freiburg Hospital dataset, with sensitivity of 87.07% and FPR of 0.2/h.

Aarabi & He (2017) recently extracted six univariate and bivariate features,45

including correlation dimension, correlation entropy, noise level, Lempel-Ziv

complexity, largest Lyapunov exponent, and nonlinear interdependence, and

achieved a comparable sensitivity of 86.7% and lower FPR of 0.126/h. On the

basis of the assumption that future events depend on a number of previous

events, a multiresolution N -gram on amplitude patterns was used as features50

(Eftekhar et al., 2014). After optimization of the feature set per patient, this

method yielded a high sensitivity of 90.95% and a low FPR of 0.06/h on the

Freiburg Hospital dataset. Recently, the dynamics of EEG was captured by

use of 64 fuzzy rules to estimate the trajectory of each sliding EEG window

on a Poincaré plane (Sharif & Jafari, 2017). Principal component analysis was55

used to reduce interrelated features before classification by an SVM. This work

achieved sensitivity of more than 91% and FPR below 0.08/h on the Freiburg

Hospital dataset.

Patient-specific feature engineering techniques have been successful in seizure

prediction tasks by achieving perfect sensitivity (100%) and a very low false60

alarm rate: 0.05/h (Zhang & Parhi, 2016) or 0/h (Mirowski et al., 2008). Such

techniques, however, use numerous preengineered features, selected manually,

for each patient, and require lots of resources (e.g., subject domain experts) and

time. For example, Mirowski et al. (2008) used six different feature extraction

methods and three machine learning algorithms. Zhang & Parhi (2016) used65

44 features and a set of 91 cost-sensitive linear SVM classifiers to search for

the optimal single features or feature combinations that perform best for each

patient. For both of these approaches, not only is the best combination of

features and classifiers not known for each patient, but an optimal feature set

and classifier may be suboptimal in the future because of the dynamic changes70

in the brain.

Because of the drawbacks of feature engineering techniques, a generalized

approach for seizure prediction is highly beneficial. In this work, we use a

convolutional neural network (CNN) for seizure prediction. The main contributions
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of this work are as follows: (1) we propose an efficient method to preprocess75

raw EEG data into a form suitable for a CNN; (2) we propose a guideline to

help the CNN perform well with the seizure prediction task with minimum

feature engineering; and (3) we provide an algorithm that works well across

multiple datasets; namely, the Freiburg Hospital dataset (University of Freiburg,

2003), the Boston Children’s Hospital (CHB)-MIT dataset (Shoeb, 2009), and80

the American Epilepsy Society Seizure Prediction Challenge (Kaggle) dataset

(Kaggle, 2014). The third main contribution will also reveal factors that describe

(unrealistically) high performance of other seizure prediction methods. This

confounder is mitigated here by the consideration of numerous datasets.

2. Proposed Method85

2.1. Datasets

Three datasets were used in this work: the Freiburg Hospital dataset (University

of Freiburg, 2003), the CHB-MIT dataset (Shoeb, 2009), and the American

Epilepsy Society Seizure Prediction Challenge (Kaggle) dataset (Brinkmann

et al., 2016). Thee three datasets are summarized in Table 1. The Freiburg90

Hospital dataset consists of intracranial EEG (iEEG) recordings of 21 patients

with intractable epilepsy. Because of lack of availability of the dataset, we are

able to use data from only 13 patients. A sampling rate of 256 Hz was used

to record iEEG signals. In this dataset, there are six recording channels from

six selected contacts, where three of them are from epileptogenic regions and95

the other three are from the remote regions. For each patient, there is at least

50 min of preictal data and 24 h of interictal data. More details about the

Freiburg Hospital dataset can be found in Maiwald et al. (2004).

The CHB-MIT dataset contains scalp EEG (sEEG) data from 23 pediatric

patients with 844 h of continuous sEEG recording and 163 seizures. The sEEG100

signals were captured with use of 22 electrodes at a sampling rate of 256 Hz

(Shoeb, 2009). We define interictal periods as being between at least 4 h before

seizure onset and 4 h after seizure end. In this dataset, there are cases where
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multiple seizures occur close to each other. For the seizure prediction task, we

are interested in predicting the leading seizures. Therefore for seizures that are105

less than 30 min from the previous seizure, we consider them as only one seizure

and use the onset of the leading seizure as the onset of the combined seizure.

Besides, we consider only patients with fewer than 10 seizures per day for the

prediction task because it is not very critical to perform the task for patients

having a seizure every 2 h on average. With these definitions and considerations,110

there are 13 patients with sufficient data (at least three leading seizures and 3 h

of interictal recording).

The American Epilepsy Society Seizure Prediction Challenge dataset has

iEEG data from five dogs and two patients with 48 seizures and 627.7 h of

interictal recording (Brinkmann et al., 2016). Intracranial EEG (iEEG) canine115

data were recorded from 16 implanted electrodes with a sampling rate of 400 Hz.

Recorded iEEG data from the two patients were from 15 depth electrodes

(patient 1) and 24 subdural electrodes (patient 2) at a sampling rate of 5 kHz.

Preictal and interictal 10-min segments were extracted by the organizers. Specifically,

for each lead seizure, six preictal segments were extracted from 66 min to 5 min120

before seizure onset with 10 s apart. Interictal segments were randomly selected

at least 1 week from any seizure.

Table 1: Summary of the three datasets used in this work.

Dataset
EEG

type

No. of

patients

No. of

channels

No. of

seizures

Interictal

hours

Freiburg Hospital Intracranial 13 patients 6 59 311.4

Boston Children’s Hospital–MIT Scalp 13 patients 22 64 209

American Epilepsy Society Seizure Prediction Challenge (Kaggle) Intracranial 5 dogs,

2 patients

16 48 627.7

2.2. Preprocessing

Since a two-dimensional CNN is used in this work, it is necessary to convert

raw EEG data into a matrix (i.e., image-like format). The conversion must be125

able to keep the most important information from the EEG signals. Wavelet
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and Fourier transforms are commonly used to convert time-series EEG signals

into image shape (Brinkmann et al., 2016; Khan et al., 2017). They are also used

as an effective feature extraction method for seizure detection and prediction.

In this work, we use the short-time Fourier transform (STFT) to translate raw130

EEG signals into a two-dimensional matrix composed of frequency and time

axes. We use an EEG window length of 30 s. Most of the EEG recordings were

contaminated by power line noise at 50 Hz (see Fig. 1a) for the Freiburg Hospital

dataset and 60 Hz for the CHB-MIT dataset. In the frequency domain, it is

convenient to effectively remove the power line noise by excluding components135

in the frequency ranges of 47–53 Hz and 97–103 Hz for a power line frequency

of 50 Hz and components in the frequency ranges of 57–63 Hz and 117–123 Hz

for a power line frequency of 60 Hz. The DC component (at 0 Hz) was also

removed. Fig. 1b shows the STFT of a 30-s window after removal of power line

noise.140

One challenge in many classification tasks is the imbalance of the dataset;

that is, more instances in one class than in others (Branco et al., 2016). Seizure

prediction also encounters this issue; for example, in the Freiburg Hospital

dataset, the interictal-to-preictal ratio per patient ranges from 9.5:1 to 15.9:1.

To overcome this, we generate more preictal segments by using an overlapped145

sampling technique during the training phase. In particular, we create extra

preictal samples for training by sliding a 30-s window along the time axis at

every step S over preictal time-series EEG signals (see Fig. 2). S is chosen

per subject so that we have a similar number of samples per class (preictal or

interictal) in the training set.150

2.3. Convolutional neural network

CNNs have been used extensively for computer vision and natural language

processing (Krizhevsky et al., 2012; Sainath et al., 2013). In this work, we use

a CNN with three convolution blocks as described in Fig. 3. Each convolution

block consists of a batch normalization, a convolution layer with a rectified linear155

unit activation function, and a max pooling layer. The batch normalization
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Figure 1: (a) Example short-time Fourier transform of a 30-s window. (b) Same window after

removal of line noise.

ensures the inputs to the convolution layer have zero mean and unit variance.

The first convolution layer has 16 n × 5 × 5 kernels, where n is the number

of EEG channels, with stride of 1 × 2 × 2. The next two convolution blocks

have 32 and 64 convolution kernels, respectively, and both have a kernel size160

of 3 × 3, stride of 1 × 1, and max pooling over a 2 × 2 region. Following the

three convolution blocks are two fully connected layers with sigmoid activation

and output sizes of 256 and 2, respectively. The former fully connected layer

uses a sigmoid activation function, while the latter uses a soft-max activation

8



...

≈
≈

S

2S

3S

...
1 sec

TimeIctal time-series EEG signal

1 sec

Figure 2: Generate extra preictal segments to balance the training dataset by sliding a 30-s

window along the time axis at every step S over preictal signals. S is chosen per subject so

that there are a similar number of samples per class (preictal or interictal) in the training set.

function. Both of the fully connected layers have a dropout rate of 0.5. Our165

model is implemented in Python 2.7 with use of Keras 2.0 with a Tensorflow

1.4.0 backend. The model was configured to run in parallel on four NVIDIA

K80 graphics cards.

Because of the limited available datasets, it is important to prevent the

CNN from overfitting the data. First, we keep the CNN architecture simple170

and shallow as described above (Ba & Caruana, 2014). Second, we propose

an approach to prevent overfitting during training of the neural network. A

common practice is to randomly split 20% of the training set for use as a

validation set. After each training epoch, a loss and/or accuracy is calculated

with respect to the validation set to check if the network starts to overfit the175

training set. This approach works well with datasets where time information is

not involved (e.g., images for the classification task). For seizure prediction, we

need to use samples from a period different from that of those during training

to monitor if the model starts to overfit the data. In this work, we select 25%

of later samples from preictal and interictal recordings in the training set for180

monitoring and the rest for training (see Fig. 4).
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Figure 3: Convolutional neural network architecture. This illustration is applied to the

Freiburg Hospital and Boston Children’s Hospital–MIT datasets. For the American Epilepsy

Society Seizure Prediction Challenge dataset, the feature sizes are different because of the

different recording sampling rate. Short-time Fourier transforms of 30-s windows of raw EEG

signals are input. There are three convolution blocks, named C1, C2, and C3. Each block

consists of a batch normalization, a convolution layer with a rectified linear unit (ReLU)

activation function, and a max pooling layer. For simplicity, max pooling layers are not

shown and are noted as MP . For C1, there are 16 n× 5 × 5 kernels, where n is the number

of EEG channels, with stride of 1 × 2 × 2. ReLU activation is applied on convolution results

before they are subsampled by a max pooling over a 1 × 2 × 2 region. The same steps are

applied in C2 and C3 except the convolution kernel size is 3 × 3, stride is 1 × 1, and max

pooling size is 2 × 2. Blocks C2 and C3 have 32 and 64 convolution kernels, respectively.

Features extracted by the three convolution blocks are flattened and connected to two fully

connected layers with output sizes of 256 and 2, respectively. The former fully connected layer

uses a sigmoid activation function, while the latter uses a soft-max activation function. Both

of the fully connected layers have a dropout rate of 0.5.

2.4. Postprocessing

It is common to have isolated false positives during interictal periods. These

isolated false predictions can be effectively reduced by use of a discrete-time

Kalman filter (Park et al., 2011). In this work, we propose a simple method,185

called k-of-n, in which an alarm is set only if at least k predictions among

the last n predictions were positive. Our experiments showed that k = 8 and

n = 10 are good choices for the purpose of efficient prediction. This means that

if during the last 300 s at least 240 s led to a positive prediction, then the alarm

is set.190
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Figure 4: Practice to prevent the convolutional neural network from overfitting the data during

training. Twenty-five percent of later samples (diagonal lines) from preictal and interictal

recordings in the training dataset are used for monitoring and the rest are used for training.

2.5. System evaluation

The seizure prediction horizon (SPH) and seizure occurrence period (SOP)

need to be defined before performance metrics such as sensitivity and FPR are

estimated. In this work, we follow the definitions of the SOP and SPH proposed

by Maiwald et al. (2004) (see Fig. 5). The SOP is the interval where the seizure195

is expected to occur. The period between the alarm and the beginning of the

SOP is the SPH. For a correct prediction, a seizure onset must be after the

SPH and within the SOP. Likewise, a false alarm occurs when the prediction

system returns a positive result but no seizure occurs during the SOP. When

an alarm occurs, it will last until the end of the SOP. Sensitivity is defined as200

the percentage of seizures correctly predicted divided by the total number of

seizures. The FPR is defined as the number of false alarms per hour.

Regarding clinical use, the SPH must be long enough to allow sufficient

intervention or precautions (SPH is also called intervention time; Bou Assi

et al., 2017). In contrast, the SOP should be not too long to reduce the patient’s205

anxiety. Inconsistency in defining the SPH and SOP make the benchmarking

among methods difficult and confusing. Park et al. (2011) reported using an

SPH of 30 min, but from their explanation what they were implicitly using was

an SPH of 0 min and an SOP of 30 min (i.e., if an alarm occurs at any point
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within 30 min before seizure onset, it is considered a successful prediction).210

Similarly, Zhang & Parhi (2016) provided a different definition of the SPH: the

interval between the alarm and seizure onset.

Alarm

SPH SOP

!

Seizure onset

Time

Figure 5: Definition of the seizure occurrence period (SOP) and the seizure prediction horizon

(SPH). For a correct prediction, a seizure onset must be after the SPH and within the SOP.

The metrics used to test the proposed approach are sensitivity and FPR

with an SPH of 5 min and an SOP of 30 min. To have a robust evaluation, we

follow a leave-one-out cross-validation approach for each subject. If a subject215

has N seizures, (N − 1) seizures will be used for training, and the remaining

seizure will be used for validation. This round is done N times, so all seizures

will be used for validation exactly once. Interictal segments are randomly split

into N parts. (N −1) parts are used for training and the remaining part is used

for validation. The (N − 1) parts are further split into monitoring and training220

sets to prevent overfitting as depicted in Fig. 4.

We also compare the prediction performance of our approach with that of an

unspecific random predictor. Given an FPR, the probability to raise an alarm

in an SOP can be approximated by (Schelter et al., 2006)

P ≈ 1 − e−FPR·SOP . (1)

Therefore the probability of predicting at least m of M independent seizures225

by chance is given by

p =
∑

i≥m

(
M

i

)
P i(1 − P )M−i . (2)

We calculated p for each patient by using the FPR of that patient and the

number of seizures (m) predicted by our method. If p is less than 0.05, we
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can conclude that our prediction method is significantly better than a random

predictor at a significance level of 0.05.230

3. Results

In this section, we test our approach with three datasets: (1) the Freiburg

Hospital iEEG dataset, (2) the CHB-MIT sEEG dataset, and (3) the American

Epilepsy Society Seizure Prediction Challenge iEEG dataset. An SOP of 30 min

and an SPH of 5 min were used in our calculating all metrics in this work.235

Each fold of the leave-one-out cross-validation was executed twice, and average

results with standard deviations were reported. Table 2 summarizes the seizure

prediction results for the Freiburg Hospital iEEG dataset. Prediction sensitivity

is 81.4% (i.e., 48 of 59 seizures are successfully predicted). The FPR is very low

at 0.06/h. Our method achieves a similar sensitivity of 81.2% on the CHB-MIT240

sEEG dataset but with a higher FPR of 0.16/h (see Table 3). This is reasonable

since sEEG recordings tend to be noisier than sEEG onse. For the American

Epilepsy Society Seizure Prediction Challenge dataset, the overall sensitivity is

75% and FPR is 0.21/h (see Table 4). It is important to note that our approach

works comparably with both iEEG and sEEG recordings without any denoising245

techniques except power line noise removal.

Table 5 demonstrates a benchmark of recent seizure prediction approaches

and this work. It is complicated to tell which approach is the best because each

approach was tested with one dataset that is limited in the amount of data.

In other words, one approach may perform well on one dataset and poorly on250

another. Therefore we added an extra indicator on whether the same feature

engineering or feature set is applied across all patients to evaluate generalization

of each method. From a clinical perspective, it is desirable to have a long

enough SPH to allow effective therapeutic intervention and/or precautions.

The SOP, however, should be short to minimize the patient’s anxiety (Maiwald255

et al., 2004). Some studies that implicitly used zero SPH disregarded clinical

considerations, and hence could have overestimated the prediction accuracy.
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Table 2: Seizure prediction results obtained with the Freiburg Hospital interictal EEG dataset.

The model was executed twice, and average results with standard deviations were reported.

The seizure occurrence period (SOP) was 30 min and the seizure prediction horizon (SPH) was

5 min. The p value was calculated for the worst case for each patient; that is, with minimum

sensitivity and maximum false prediction rate (FPR). Our seizure prediction approach achieves

significantly better performance than an unspecific random predictor for all patients except

Pat14, where the convolutional neural network results are only marginally better than the

random predictor’s.

Patient
No. of

seizures

Interictal

hours

Sensitivity

(%)
FPR (/h) p

Pat1 4 23.9 100 ± 0.0 0.00 ± 0.00 < 0.001

Pat3 5 23.9 100 ± 0.0 0.00 ± 0.00 < 0.001

Pat4 5 23.9 100 ± 0.0 0.00 ± 0.00 < 0.001

Pat5 5 23.9 40 ± 0.0 0.13 ± 0.00 0.032

Pat6 3 23.8 100 ± 0.0 0.00 ± 0.00 < 0.001

Pat14 4 22.6 50 ± 0.0 0.27 ± 0.00 0.078

Pat15 4 23.7 100 ± 0.0 0.02 ± 0.02 < 0.001

Pat16 5 23.9 80 ± 0.0 0.17 ± 0.13 0.001

Pat17 5 24 80 ± 0.0 0.00 ± 0.00 < 0.001

Pat18 5 24.8 100 ± 0.0 0.00 ± 0.00 < 0.001

Pat19 4 24.3 50 ± 0.0 0.16 ± 0.00 0.033

Pat20 5 24.8 60 ± 0.0 0.04 ± 0.00 < 0.001

Pat21 5 23.9 100 ± 0.0 0.00 ± 0.00 < 0.001

Total 59 311.4 81.4 ± 0.0 0.06 ± 0.00
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Table 3: Seizure prediction results obtained with the Boston Children’s Hospital–MIT scalp

EEG dataset. The model was executed twice, and average results with standard deviations

were reported. The seizure occurrence period (SOP) was 30 min and the seizure prediction

horizon (SPH) was 5 min. The p value was calculated for the worst case for each patient; that

is, with minimum sensitivity and maximum false prediction rate (FPR). Our seizure prediction

approach achieves significantly better performance than an unspecific random predictor for

all patients except Pat9, where the convolutional neural network results are only marginally

better than the random predictor’s.

Patient
No. of

seizures

Interictal

hours

Sensitivity

(%)
FPR (/h) p

Pat1 7 17 85.7 ± 0.0 0.24 ± 0.00 < 0.001

Pat2 3 22.9 33.3 ± 0.0 0.00 ± 0.00 < 0.001

Pat3 6 21.9 100 ± 0.0 0.18 ± 0.00 < 0.001

Pat5 5 13 80 ± 20 0.19 ± 0.03 0.010

Pat9 4 12.3 50 ± 0.0 0.12 ± 0.12 0.067

Pat10 6 11.1 33.3 ± 0.0 0.00 ± 0.00 0.025

Pat13 5 14 80 ± 0.0 0.14 ± 0.00 < 0.001

Pat14 5 5 80 ± 0.0 0.40 ± 0.00 0.004

Pat18 6 23 100 ± 0.0 0.28 ± 0.02 < 0.001

Pat19 3 24.9 100 ± 0.0 0.00 ± 0.00 < 0.001

Pat20 5 20 100 ± 0.0 0.25 ± 0.05 < 0.001

Pat21 4 20.9 100 ± 0.0 0.23 ± 0.09 < 0.001

Pat23 5 3 100 ± 0.0 0.33 ± 0.00 < 0.001

Total 64 209 81.2 ± 1.5 0.16 ± 0.00
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Table 4: Seizure prediction results obtained with the American Epilepsy Society Seizure

Prediction Challenge dataset. The model was executed twice, and average results with

standard deviations were reported. The seizure occurrence period (SOP) was 30 min and

the seizure prediction horizon (SPH) was 5 min. The p value was calculated for the worst

case for each participant; that is, with minimum sensitivity and maximum false prediction

rate (FPR). Our seizure prediction approach achieves significantly better performance than

an unspecific random predictor for four of five dogs and for Pat1.

Participant
No. of

seizures

Interictal

hours

Sensitivity

(%)
FPR (/h) p

Dog1 4 80 50 ± 0.0 0.19 ± 0.02 0.053

Dog2 7 83.3 100 ± 0.0 0.04 ± 0.03 < 0.001

Dog3 12 240 58.3 ± 0.0 0.14 ± 0.09 < 0.001

Dog4 14 134 78.6 ± 0.0 0.48 ± 0.07 < 0.001

Dog5 5 75 80 ± 0.0 0.08 ± 0.01 < 0.001

Pat1 3 8.3 100 ± 0.0 0.42 ± 0.06 0.009

Pat2 3 7 66.7 ± 0.0 0.86 ± 0.00 0.693

Total 48 627.7 75 ± 0.0 0.21 ± 0.04
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The approach proposed by Park et al. (2011) achieved a very high sensitivity of

98.3% and FPR of 0.29/h in testing with 18 patients from the Freiburg Hospital

dataset. Our method yields a lower sensitivity of 81.4% but a much better FPR260

of 0.06/h. It is nontrivial to note that the SPH was implicitly set to zero, which

means prediction at a time close to or at seizure onset can be counted as a

successful prediction. Likewise, research conducted by Zhang & Parhi (2016)

and Parvez & Paul (2017) also implied the use of zero SPH, which will not

be compared directly with our results. Among the rest of the studies listed in265

Table 5, Eftekhar et al. (2014) had a very good prediction sensitivity of 90.95%

and a low FPR of 0.06/h for an SOP of 20 min and an SPH of 10 min. They

fine-tuned the feature set for each patient to achieve the maximum performance.

This, however, leads to the need for adequate expertise and time to perform the

feature engineering for a new dataset. Sharif & Jafari (2017) applied the same270

set of features to all patients and performed classification using an SVM. This

approach achieved a high sensitivity of 91.8–96.6% and a low FPR of 0.05–0.08

in testing with the Freiburg Hospital iEEG dataset. However, no studies have

reported successful use of a similar approach on sEEG signals.

4. Discussion275

Information extracted from EEG signals in frequency and time (synchronization)

domains has been used widely to predict seizures. We proposed a novel way to

exploit both frequency and time aspects of EEG signals without handcrafted

feature engineering. The STFT of an EEG window has two dimensions; namely,

the frequency and the time. A two-dimensional convolution filter was slid280

throughout the STFT to collect the changes in both the frequency and the

time of EEG signals. The filter weights are automatically adjusted during

the training phase and the CNN acts like a feature extraction method in an

automatic fashion.

Khan et al. (2017) used the continuous wavelet transform (CWT) as a285

preprocessing step and used the wavelet transform of raw EEG signals as input
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Table 5: Benchmarking of recent seizure prediction approaches and this work

Year Authors Dataset Feature Classifier
Same

FEa

No. of

seizures

Sensitivity

(%)

FPR

(/h)
SOP SPH

2004 Maiwald

et al. (2004)

FB, 21 patients Dynamical

similarity index

Threshold

crossing

Yes 88 42 < 0.15 30 min 2 min

2006 Winterhalder

et al. (2006)

FB, 21 patients Phase coherence,

lag synchronization

Threshold

crossing

No 88 60 0.15 30 min 10 min

2011 Park et al.

(2011)

FB, 18 patients Univariate

spectral power

SVM Yes 80 98.3 0.29 30 min 0b

2013 Li et al.

(2013)

FB, 21 patients Spike rate Threshold

crossing

Yes 87 72.7 0.11 50 min 10 s

2014 Zheng et al.

(2014)

FB, 10 patients
Mean phase coherence

Threshold

crossing

No 50 > 70 < 0.15 30 min 10 min

2014 Eftekhar

et al. (2014)

FB, 21 patients
Multiresolution N -gram

Threshold

crossing

No 87 90.95 0.06 20 min 10 min

2014 Aarabi & He

(2014)

FB, 21 patients Bayesian inversion of

power spectral density

Rule-based

decision

Yes 87 87.07 0.20 30 min 10 s

2016 Zhang &

Parhi (2016)

FB, 18 patients Power spectral density

ratio

SVM No 80 100 0.03 50 min 0b

2016 Zhang &

Parhi (2016)

MIT, 17 patients Power spectral density

ratio

SVM No 76 98.68 0.05 50 min 0b

2017 Parvez &

Paul (2017)

FB, 21 patients Phase-match error,

deviation, fluctuation

LS-SVM Yes 87 95.4 0.36 30 min 0b

2017 Sharif &

Jafari (2017)

FB, 19 patients Fuzzy rules on Poincaré

plane

SVM Yes 83 91.8–96.6 0.05–0.08 15min 2–42 min

2017 Aarabi & He

(2017)

FB, 10 patients Univariate and bivariate

features

Rule-based

decision

Yes 28 86.7 0.126 30 min 10 s

2017 Khan et al.

(2017)

MIT, MSSM Wavelet transform CNN Yes 131 87.8 0.14 10 min 0b

2017 This work FB, 13 patients Short-time

Fourier transform

CNN Yes 59 81.4 0.06 30 min 5 min

2017 This work MIT, 13 patients Short-time

Fourier transform

CNN Yes 64 81.2 0.16 30 min 5 min

2017 This work Kagglec,

5 dogs, 2 patients

Short-time

Fourier transform

CNN Yes 48 75 0.21 30 min 5 min

CNN, convolutional neural network, FB, Freiburg Hospital intracranial EEG dataset; FE, feature

engineering; FPR, false prediction rate; LS, least squares; MIT, Massachusetts Institute of

Technology scalp EEG dataset; MSSM, Mount Sinai Hospital dataset (intracranial EEG); SPH,

seizure prediction horizon; SOP, seizure occurrence period; SVM, support vector machine.

aSame FE across all patients. “No” means feature engineering is tailored for each patient.

bThe authors implicitly used zero SPH and disregarded clinical considerations, and hence the

results could be overestimated.

cAmerican Epilepsy Society Seizure Prediction Challenge dataset (intracranial EEG).
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to a CNN. In this section, we implement the same CWT and compare it with

the STFT in terms of seizure prediction performance. Following Khan et al.

(2017), we apply a set of ten scales from 20 to 29 and the Mexican-hat mother

wavelet, then downsample the time axis of the wavelet transform so that the290

final dimension is n×10×128. Here we use the area under the receiver operating

characteristic curve (AUC) as a comparison criterion instead of sensitivity and

FPR. The AUC is a threshold-free metric, so it can be used to directly compare

the performance of different methods. The results are illustrated in Fig. 6. With

use of the Wilcoxon signed-rank test on the three datasets with a significance295

level of 0.05, the STFT is significantly better than the CWT, with p = 0.0135.

We used the oversampling technique to overcome the imbalance of the datasets.

Cost-sensitive learning has been used widely in the literature for the same

purpose (Branco et al., 2016). We applied cost-sensitive learning by changing

the cost function in a way that the misclassification cost of preictal samples is300

multiplied by the ratio of interictal samples to preictal samples for each patient.

We used STFT as the preprocessing step for cost-sensitive learning. The results

are illustrated in Fig. 6. Although our oversampling technique does not result

in a significant improvement as compared with cost-sensitive learning when

applied on the three datasets, we argue that our oversampling technique is a305

more intuitive way to address the overfitting problem caused by the imbalance

of time-series datasets.

Tables 2 and 3 show that our prediction method is significantly superior to

an unspecific random predictor for all patients except Pat14 in the Freiburg

Hospital dataset and Pat9 in the CHB-MIT dataset. It is worth remembering310

that the Freiburg Hospital dataset consists of iEEG recordings and the CHB-MIT

dataset consists of sEEG recordings. In other words, our method works well

with both types of EEG signals. Regarding the American Epilepsy Society

Seizure Prediction Challenge dataset, our method results in significantly better

performance than a random predictor for four of five dogs (see Table 4) and for315

Pat1.

As seizure characteristics may change over time, calibration of the seizure
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Figure 6: Comparison among our method, the preprocessing step using the continuous wavelet

transform (CWT) (Khan et al., 2017), and cost-sensitive learning. AUC, area under the

receiver operating characteristic curve; CHB, Boston Children’s Hospital.

prediction algorithm is necessary. Minimum feature engineering has a great

advantage in that it does not require an expert to carefully extract and select

the optimum features for the prediction task. Hence it allows faster and more320

frequent updates so that patients are able to benefit the most from the seizure

prediction algorithm. Also, minimum feature engineering allows seizure prediction

to be available to more patients. Since the feature extraction task is undertaken

by the CNN, neurophysiologists and clinical staff can spend more time in monitoring

and recording EEG signals for diagnostic purposes and/or training data collection.325

Our method can be further improved by non-EEG data such as information

on the time when seizures occur. Epileptic seizures have been shown to have

biases in distribution over time at various intervals that can be as long as

1 year or as short as 1 h (Griffiths & Fox, 1938). Importantly, Griffiths & Fox

(1938) showed that there were more incidences of seizure around sunrise, noon,330

and midnight in their dataset of 101 patients with 39, 929 seizures. However,

this pattern is patient specific. Adopting the same observation, Karoly et al.

(2017) leveraged this pattern to significantly improve their seizure forecasting

system. Unfortunately, the three datasets investigated in this article are not

large enough to assess if the time of day information is useful because the335
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Figure 7: Number of seizures versus time of day across patients for the Boston Children’s

Hospital-MIT dataset. Most seizures occur in the early morning. Two lower peaks occur

around 4 p.m. and 2 a.m.

maximum recording period per patient was 3 days. Nevertheless, it is still worth

seeing how incidences of seizure are distributed over the day across patients in

the CHB-MIT dataset, the only dataset from which we can access the time of

seizure occurrence. On the basis of the CHB-MIT data, the greatest incidence

occurs in the early morning, and there two lower peaks around 4 p.m. and340

2 a.m. (see Fig. 7).

5. Conclusion

Seizure prediction capability has been studied and improved over the last

four decades. A perfect prediction is not yet available, but with current prediction

performance it appears possible to provide patients with a warning so they can345

take some precautions for their safety. We proposed a novel approach of using

CNNs with minimum feature engineering. The proposed approach showed its

good generalization in working well with both iEEG and sEEG data. This gives
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more patients the opportunity to possess a seizure prediction device that can

help them have a more manageable life.350
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