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Abstract 

Trustworthiness is a comprehensive quality metric which is used to assess the quality of the services 

in service-oriented environments. However, trust prediction of cloud services based on the multi-faceted 

Quality of Service (QoS) attributes is a challenging task due to the complicated and non-linear relationships 

between the QoS values and the corresponding trust result. Recent research works reveal the significance of 

Artificial Neural Network (ANN) and its variants in providing a reasonable degree of success in trust prediction 

problems. However, the challenges with respect to weight assignment, training time and kernel functions make 

ANN and its variants under continuous advancements. Hence, this work presents a novel multi-level 

Hypergraph Coarsening based Robust Heteroscedastic Probabilistic Neural Network (HC-RHRPNN) to predict 

trustworthiness of cloud services to build high-quality service applications. HC-RHRPNN employs hypergraph 

coarsening to identify the informative samples, which were then used to train HRPNN to improve its prediction 

accuracy and minimize the runtime. The performance of HC-RHRPNN was evaluated using Quality of Web 

Service (QWS) dataset, a public QoS dataset in terms of classifier accuracy, precision, recall, and F-Score. 

 

Keywords: Cloud service selection; Quality of service; Trust prediction; Hypergraph; Heteroscedastic 

probabilistic neural network. 

 

1. Introduction 

Cloud computing, an efficient, and economic business paradigm has attracted a wide range of 

organizations as it enables the users to access on-demand resources as a service (‘XaaS'-Something as a Service) 

over the internet in a ‘Pay-As-You-Use' fashion (Sosinsky, 2010). The increasing popularity of cloud computing 

has resulted in the proliferation of many Cloud Service Providers (CSPs) and functionally equivalent cloud 

services. On the other end, the Cloud Users (CU) lack appropriate information and benchmarks to evaluate 

these services based on their preferences and CSPs provisions (Ali Sunyaev, 2013). In addition, the trade-off 

between the functional and non-functional Quality of Service (QoS) requirements hardens the identification of 

appropriate and trustworthy CSPs who can satisfy the users’ unique QoS requirements. Thereby, the presence 

of a wide range of cloud-based entities (service providers, users, applications and unique demands) has 

*Manuscript
Click here to view linked References
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provoked the research communities towards the development of cloud service selection models based on 

several approaches like multi-criteria decision making (multiple attributes and interrelations among them), 

optimization, logic, description, and trust (Ma, Zhu, Hu, Li, & Tang, 2017; Qu, 2016; Sun, Dong, Hussain, Hussain, 

& Chang, 2014).  

 

Recent literature reveals the significance of trust based cloud service selection models for the cloud 

service selection problem in service-oriented environments (Akshya Kaveri, Gireesha, Somu, Gauthama Raman, 

& Shankar Sriram, 2017; Somu, M.R., Krithivasan, & V.S., 2018; Tang, Dai, Liu, & Chen, 2017). The 

trustworthiness or quality of a cloud service is reflected by its non-functional (QoS monitoring) and functional 

attributes (users’ feedbacks). Generally, trust assessments were carried out based on monitored QoS values, 

due to the practical difficulty in obtaining reliable and complete users' feedbacks (Mao, Lin, Xu, & He, 2017). 

However, the dynamic nature of the cloud environment (unpredictable nature of QoS) and the emergence of 

new cloud services based on the unique requirements of the user (complex trust evaluation mechanisms) 

complicates the cloud service selection problem. Trust prediction, a classification problem is a plausible 

solution for the above challenges and solve issues related to data sparsity and ‘cold start problem’ in service 

selection, composition and recommendation models (Chen, Shen, Li, & You, 2017). Specifically, trust prediction 

techniques can be applied in a scenario where the trustworthiness of a new entity (service) needs to be 

evaluated with minimal knowledge on the characteristics of the entity. Realization of the importance of trust-

based service evaluation has led to the development of several trust and QoS prediction models in web service 

selection, cloud service selection, recommender systems, pervasive environments, and social networks (Table 

1).  

 

Table 1: Related Works 

Author Technique Dataset Metric Applicatio
n 

 (Fu, Hu, & Zhang, 
2008) 

Bayesian Network 

Simulation – Market 
model for 48 grid 
service 

- 
Grid 
services 

(Nguyen, Hien, 
Weiliang, & Jian, 
2010) 

Simulation – 3 
customers and 5 
web services 

- 
Web 
services 

(Mehdi, Bouguila, & 
Bentahar, 2013) 

 Bayesian Network  
 Multinomial 

generalized Dirichlet 
distribution 

Simulation – 4 
service, 5 quality 
metrics, and QWS 
service classification 

- 
Web 
services  

(Mohanty, Ravi, & 
Patra, 2010) 

Back Propagation 
Neural Network (BPNN), 
Probabilistic Neural 
Network (PNN), Group 
Method of Data 
Handling (GMDH), 
Classification and 

QWS dataset 
Classifier 
accuracy 

Web 
services 
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Regression Trees 
(CART), TreeNet, 
Support Vector Machine 
(SVM), and ID3 decision 
tree (J48) 

(Mashinchi, Li, 
Orgun, & Wang, 
2011) 

Fuzzy Linear Regression 
Analysis (FLRA) 

QWS dataset 

Classifier 
accuracy and 
standard 
deviation 

Web 
services 

(Zolfaghar & Aghaie, 
2012) 

CRoss-Industry 
Standard Process 
(CRISP) 

Epinions 

Max Profit, overall 
accuracy, area 
under the ROC 
curve, build time, 
number of fields, 
prediction 
accuracy, 
precision, recall, 
and F-measure 

Social web 
applications 

(Huang, Nie, Huang, 
Lei, & Ding, 2013) 

 Rank-k matrix 
 Ancillary variables 

and Augmented 
Lagrangian Multiplier 
(ALM) 

Epinions, Wikipedia, 
and Slashdot 

Root mean square 
error and mean 
absolute error 

Social 
networks 

(Raj & Babu, 2017) 
Probabilistic reputation 
feature model 

Epinions, Wikipedia, 
and Slashdot 

Overall accuracy, 
F1 score, and area 
under the ROC 

Social 
networks 

(Zhang, Wu, & Liu, 
2016) 

Cluster-level trust 
prediction based on 
multi-modal social 
network (CTPMSN). 

Epinions, Douban, 
and Flixster 

Average recall and 
normalized 
discounted 
cumulative gain  

Social 
networks 

(David Nuñez-
Gonzalez, Graña, & 
Apolloni, 2015) 

Trust prediction system 
based on reputation 
features 

Epinions, and 
Wikipedia 

Average accuracy, 
recall, and 
precision 

Social 
networks 

(Yu & Huang, 2016) 

QoS prediction approach 
based on time and 
location-aware 
collaborative filtering  

WSDream QoS 
dataset 

Mean absolute 
error, and 
normalized mean 
absolute error 

Web 
services 

(Xu, Yin, Deng, N. 
Xiong, & Huang, 
2016) 

An ensemble model for 
context-aware QoS 
prediction  

Mean absolute 
error, and root 
mean squared 
error 

 

(Wu, Yue, Li, Zhang, 
& Hsu, 2017) 

QoS prediction using 
context-sensitive matrix 
factorization 

Cloud 
services 

(Su, Xiao, Liu, Zhang, 
& Zhang, 2017) 

Trust-Aware QoS 
Prediction approach 
(TAP) 

WSDream QoS 
dataset 

Mean absolute 
error, and 
normalized mean 
absolute error 

Web service 
recommend
ation 

(Hui Fang, Guo, & 
Zhang, 2015) 

Trust prediction 
framework – logistic 
regression 

Epinions, FilmTrust, 
and Flixster 

Root mean square 
error and mean 
absolute error 

Recommen
der systems 
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(Luo, Lv, Li, & Chen, 
2015) 

 Adaptive dynamic 
programming 

 Fuzzy neural 
networks 

WSDream QoS 
dataset 

Mean absolute 
error and mean 
absolute 
percentage error 

Cloud 
services 

(Mao et al., 2017) PSO driven neural 
networks 

QWS dataset 
Prediction 
precision 

Cloud 
services 

 

Further, researchers have extensively studied various statistical and machine learning techniques 

(Artificial Neural Networks (ANN), Bayesian networks, evidential reasoning, fuzzy, game theory, etc.) for trust 

prediction (Fu et al., 2008; Mashinchi et al., 2011; Yahyaoui, 2012). Among these, ANN and its variants like Back 

Propagation Neural Network (BPNN), Feedforward Neural Network (FNN), Convolutional Neural Network 

(CNN) etc. have proven itself in trust value prediction due to its self-learning ability in modelling complex and 

arbitrary relationships among the QoS attributes and their trust values in a cloud service selection model (Han 

& Cho, 2005; Mohanty et al., 2010; M. R. G. Raman, Somu, Kirthivasan, & Sriram, 2017). However, the classical 

neural network architectures suffer from few intrinsic issues such as (i) identification of optimal connection 

weights and learning rate, (ii) network stability, (iii) overfitting, and (iv) training time when applied to massive, 

online, and ill-conditioned dataset (Kuremoto, Kimura, Kobayashi, & Obayashi, 2014). In order to overcome 

these issues, D.F.Specht proposed Probabilistic Neural Network (PNN), a feedforward neural network derived 

from a statistical algorithm named Kernel Fischer discriminant analysis and Bayesian network (D. F. Specht, 

1990). The independent nature of PNN with respect to the weighting factor and training time makes PNN, an 

attractive model for various classification and pattern recognition problems in the field of bioinformatics, 

network security, image processing, etc. In the basic version of PNN, the mixing coefficients and the common 

variance of the kernel functions were computed from the entire set of training samples (Sivakumar & Kannan, 

2009). However, in a real-world scenario, the data (QoS values) obtained from multiple heterogeneous data 

sources which are massive and ill-conditioned in nature affect the performance of PNN in terms of training time 

and prediction accuracy. This emphasizes the need to employ a set of kernel functions to process the real-time 

data (QoS values) obtained from multiple sources without compromising the performance of PNN. 

 

Hence, in this work, we present Hypergraph Coarsening based Robust Heteroscedastic PNN (HC-

RHRPNN), an enhanced version of HRPNN for trust prediction in cloud environments. The novelty of HC-

RHRPNN lies in two modules, namely (i) Pruning: Multi-level hypergraph coarsening by maximum edge 

matching was employed for the identification of informative samples to minimize the training time and 

enhance the performance of the learning model, and (ii) Training: The informative samples identified by the 

pruning module were used for training HRPNN to guarantee high prediction rate. The effectiveness of HC-

RHRPNN was evaluated with extensive experiments on the Quality of Web Service (QWS), a public real-time 

QoS dataset in terms of classifier accuracy, precision, recall and F-Score (Al-Masri & Mahmoud, 2007). 
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The rest of the paper is organized as follows. Section 2 provides an insight into basic terminologies of 

trust prediction, PNN, and hypergraph. Section 3 introduces HC-RHRPNN, a multilevel hypergraph coarsening 

based probabilistic neural network for trust prediction in cloud environments. Section 4 discusses the 

performance evaluation of HC-RHRPNN over the existing classifiers in terms of various quality metrics. Section 

5 concludes the paper. 

 

 

2. Materials and Methods 

2.1 Basic Definitions  

 

Definition 2.1.1 (QoS Attributes): Consider ′𝑚′ number of Cloud Service Providers (CSPs), 𝐶𝑆𝑃𝑖 =

(𝐶𝑆𝑃1, 𝐶𝑆𝑃2, … , 𝐶𝑆𝑃𝑚) that provides various cloud services to a diverse set of cloud users. The QoS attributes of 

the CSPs are represented by an 𝑛 tuple vector (CSMIC-SMI QoS attribute) 𝑄𝑖𝑗 = {𝑄𝑖1, 𝑄𝑖2, . . . , 𝑄𝑚𝑛}, ∀𝑗 =

{1,2, . . . , 𝑛}. 

Definition 2.1.2 (Trust Rate): Trust rate, a comprehensive metric to evaluate the trustworthiness of a CSP 

based on the performance of 𝑛 QoS attributes. The trust rate of the CSPs is represented by 𝑇𝑉𝑖 =

(𝑇𝑉1, 𝑇𝑉2, … , 𝑇𝑉𝑚). The complete set of QoS and trust record of each CSP is represented as two tuple vector 

𝑄𝑅𝑖 = < (𝑄𝑖𝑗), (𝑇𝑉𝑖) >=  {𝑄𝑖1, 𝑄𝑖2, . . . , 𝑄𝑚𝑛 , 𝑇𝑉𝑖}, ∀𝑗 = {1,2, . . . , 𝑛}. 

Definition 2.1.3 (Trust Rate Dataset): For a set of QoS records 𝑄 = 𝑄𝑅𝑖, each sample (CSPs) in the subset 

𝑄𝑇𝑟𝑎𝑖𝑛 ⊂ 𝑄 has a complete record i.e. the trust rate is evaluated for each CSP in 𝑄𝑇𝑟𝑎𝑖𝑛. The remaining samples 

(𝑄 − 𝑄𝑇𝑟𝑎𝑖𝑛) with the undetermined trust rate were represented as 𝑄𝑇𝑒𝑠𝑡. The trust rate dataset is represented 

as a matrix [TD]𝑚𝑋𝑛, where each CSP and corresponding QoS attributes along with its trust value is represented 

as rows and columns respectively.  

Definition 2.1.4 (Trust Rate Prediction Problem): Given a training dataset (𝑄𝑇𝑟𝑎𝑖𝑛) with the QoS values and 

trust rate for each sample, the prediction model should provide the trust rate for each CSP in the 𝑄𝑇𝑒𝑠𝑡 based 

on the experience gained from the QoS and trust values in 𝑄𝑇𝑟𝑎𝑖𝑛. 

 

2.2 Probabilistic Neural Network  

Probabilistic Neural Network (PNN) is a supervised, multi-layer neural network model which maps 

the input patterns to the output patterns in a single pass through the application of the principle of statistics 

(D. Specht, 1988). Unlike traditional neural network, PNN is relatively faster and has better generalization 

ability, since it based on both Parzen’s approach to estimate probability density function (PDF) of the random 

variables and Bayesian strategy for decision making (D. Specht, 1990; D. F. Specht, 1990). Let us consider a 
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multi-class classification problem with ′𝑐′ number of classes and a training dataset DT = {xi, yi}𝑖=1
𝑛 , where 𝑛 is 

the total number of training samples represented by a ′𝑚′ tuple vector (′𝑚′ dimensions). According to the 

Bayes’ decision rule, a sample (𝑥) belongs to the class 𝐶𝑖, if 𝑝(𝐶𝑖)𝑝(𝑋|𝐶𝑖) ≥ 𝑝(𝐶𝑗)𝑝(𝑋|𝐶𝑗), ∀𝑖 = {1,2, . . . , 𝑐} 

where, 𝑝(𝐶𝑖) is probability of the sample (𝑥) belongs to the class 𝐶𝑖, 𝑝(𝑋|𝐶𝑖) is the class conditional probability 

density function of 𝑥 in the class 𝐶𝑖. Then, 𝑓𝑖(𝑋) = 𝑝(𝐶𝑖)𝑝(𝑋|𝐶𝑖), 𝑓𝑖(𝑋) is the Baye’s decision function and 

𝑓𝑖(𝑋) > 𝑓𝑘(𝑋) 𝑓𝑜𝑟 𝑘 ≠ 𝑖, is the Baye’s decision rule. Further, the Baye’s decision rule can be rewritten for PNN 

as ℎ𝑖𝑔𝑖(𝑋) > ℎ𝑘𝑔𝑘(𝑋) for 𝑘 ≠ 𝑖, where ℎ𝑖𝑔𝑖(𝑋) = 𝑓𝑖(𝑋), ℎ𝑖 is the probability of priori occurrence, 𝑔𝑖 is the 

probability density function. 

As shown in Figure 1, PNN consists of four layers, namely (i) Input layer with ‘𝑚’ neurons for 

𝑚 −dimensional input feature vector, (ii) Pattern layer with ‘𝑛’ neurons for 𝑛 number of training samples, (iii) 

Summation layer with ‘c’ neurons that corresponds to the number of classes, and (iv) Output layer with one 

neuron for decision making. In this approach we have utilized the standardized Gaussian kernel function (Eqn. 

(1)) as PDF to compute the output of the pattern layer (D. F. Specht, 1990). 

𝜗𝑖𝑗(x) =
1

σ2∗(2π)d/2 [exp
[
(x−xij)∗(x−xij)

T

2σ2 ]
]    (1)  

Where,  

 𝑥 = [𝑥1, 𝑥2, … 𝑥𝑚] is the test sample with 𝑚  dimension.  

 𝑥𝑖𝑗 is the 𝑗𝑡ℎ training sample of the 𝑖𝑡ℎ class 

 𝜎=[0,1] is the smoothening factor 

 

Figure 1: Probabilistic Neural Network (PNN) 

Hence, the conditional probability of 𝑥 belonging to the 𝑖𝑡ℎ class, which is the output of the summation 

layer is computed using Eqn. (2). 

𝑃𝑖(𝑥) =
1

𝑁𝑖
(∑ 𝜗𝑖𝑗(x)

𝑁
𝑗=1 )     (2) 

Input Layer 

Pattern Layer 

Summation Layer 

Output Layer 

𝑥1 

𝑥2 

𝑥3 

. 

. 
𝑥𝑚 
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where, 𝑁𝑖 is the number of samples in the 𝑖𝑡ℎ  class.  

Finally, the class of an unknown pattern 𝑥 is obtained in the output layer using Eqn. (3).  

Class(x) =arg max
𝑖

(𝑃𝑖(𝑥))    (3) 

 

2.3 Hypergraph 

Over a decade, graphical representations have been widely used to model binary relationships among 

the objects in various complex real-world problems. Formally, a graph 𝐺 = (𝑣, 𝑒) is an ordered pair of finite set 

of vertices (𝑣) and the interrelationships among the objects (𝑒) (Gauthama Raman, Kirthivasan, & Shankar 

Sriram, 2017). However, in a real-world scenario, it is difficult to model multiple relationships (n-ary) among 

the objects using traditional graph theory. Hypergraph, a mathematical framework and a generalization of 

conventional graph theory expresses higher order relations among the objects in a more elegant manner 

(topology and geometric metrics) (Berge & Minieka, 1973). As a generic data representation framework, 

hypergraph along with its exciting properties (Helly, Vertex Linearity, Minimal transversal, hyper clique etc.) 

make the researchers in various domains to realize its benefits in terms of minimal time complexity (Gauthama 

Raman, Kirthivasan, et al., 2017; Gauthama Raman, Somu, Kirthivasan, Liscano, & Shankar Sriram, 2017; M. 

Raman, Kannan, & Pal, 2016; M. R. G. Raman et al., 2017; Somu, Kirthivasan, & Shankar, 2017; Somu, 

Kirthivasan, & Sriram, 2017; Somu, Raman, Kirthivasan, & Sriram, 2016). This section discusses some basic 

definitions of the hypergraph and its properties for dimensionality reduction. 

Definition 2.3.1: (Hypergraph) A hypergraph is defined as ℋ = {𝒱, ℰ}, where 𝒱 = {𝓋1, 𝓋2, … , 𝓋𝑚} is the finite 

set of vertices and ℰ = {𝑒1, 𝑒2, . . . , 𝑒𝑛} represent the hyperedges such that 𝑒𝑖 ⊆ 𝒱, ∀𝑖 = {1,2, . . . , 𝑛} (Berge & 

Minieka, 1973). Figure 2 represents the hypergraph structure with 10 vertices (𝒱 = {𝓋1, 𝓋2, … , 𝓋10}) and 4 

hyperedges (ℰ = {𝑒1, 𝑒2, 𝑒3, 𝑒4}); 𝑒1 = {𝓋1, 𝓋6, 𝓋9, 𝓋10}; 𝑒2 = {𝓋6, 𝓋1, 𝓋3, 𝓋2}; 𝑒3 = {𝓋10, 𝓋5, 𝓋2, 𝓋6}; 𝑒4 =

{𝓋8, 𝓋4, 𝓋7, 𝓋5, 𝓋10} 

 

Figure 2: Hypergraph Structure 
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𝒆𝟒 
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Definition 2.3.2:  (Cardinality) Let  ℋ = {𝒱, ℰ}  be a hypergraph, for each vertex 𝑎 ∈ 𝒱, the star in ℋ denoted 

by  ℋ(𝑎), corresponds to the set of hyperedges that contains 𝑎. The degree of 𝑎 is the cardinality of ℋ(𝑎)   

(Berge & Minieka, 1973). Figure 3 depicts the hypergraph representation model with 7 vertices 

(𝒱 = {𝓋1, 𝓋2, … ,𝓋7}), and 5 hyperedges (ℰ = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}); the star centered on vertex 𝓋7 is ℋ(𝓋7) =

{𝑒3, 𝑒4} with the degree 2. 

Figure 3: Hypergraph representation model 

Definition 2.3.3: (Weighted Hypergraph) A weighted hypergraph is represented as  ℋ𝒘 = {𝒱, ℰ,𝒘} which 

consists of positive number 𝒘(𝑒) associated with each hyperedge 𝑒 ∈ ℰ known as weight of the hyperedge. A 

hyperedge 𝑒 is said to be incident with vertex 𝓋, when 𝓋 belongs to 𝑒. In general, any hypergraph (ℋ) (Figure 

4(a)) can be represented as an incident matrix 𝐼ℋ = |𝒱| 𝑥|ℰ| using Eqn. (4) (Figure 4(b)) (Berge & Minieka, 

1973). 

ℋ(𝓋, 𝑒) = {
1, 𝑖𝑓 𝓋 ∈ 𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (4) 

The degree of each vertex is computed based on 𝐼ℋ  (Eqn. (5)). 

𝐷𝓋 = ∑ 𝒘(𝑒)ℋ(𝓋, 𝑒){𝑒∈ℰ}     (5)  

Figure 4: (a) Hypergraph; (b) Corresponding Incident matrix  (ℐℋ) 
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3. Proposed Hypergraph based Robust Heteroscedastic PNN for Trust prediction 

In this section, we discuss the proposed Hypergraph-based Robust Heteroscedastic PNN (HC-

RHRPNN) for trust prediction in cloud environments. Initially, we discuss the overall working of HC-RHRPNN 

followed by the description of two major modules, namely (i) Pruning and (ii) Prediction.  

3.1 HC-RHRPNN: Hypergraph based Robust Heteroscedastic PNN  

As in Figure 5, HC-RHRPNN comprises of three modules, namely (i) Preprocessing, (ii) Pruning, and 

(iii) Prediction.  

    

QWS Dataset 

Normalization 

Training Dataset 

(𝑫𝑻𝒓𝒂𝒊𝒏)  
Testing Dataset 

(𝑫𝑻𝒆𝒔𝒕) 

Representation of 𝑫𝑻𝒓𝒂𝒊𝒏 as a 

Complete Weighted Graph (𝑪𝑮𝒓𝒂𝒑𝒉) 

Construction of a Directed 

Graph (𝑫𝑮𝒓𝒂𝒑𝒉)  

Hypergraph Representation 

of 𝑫𝑮𝒓𝒂𝒑𝒉 

Application of Multilevel 

Hypergraph Coarsening Technique 
Prediction of Unknown 

Class using Eqn. (9) 

 Classification Accuracy Recall F - Score Precision 

Validation Measures 
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Compute weights (𝑾), centre (𝑪), 

variance (𝝈), Mixing coefficient 

(𝜷) using Eqn. (10) – (13) 

Estimate the Probability Density 

Function using Eqn. (7) 

Compute Class Conditional 

Probability Density Function 

using Eqn. (8) 

Informative Samples 

Robust Heteroscedastic Probabilistic  

Neural Network (RHRPNN) 

 

Prediction Phase 
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Figure 5: Hypergraph Coarsening based Heteroscedastic Probabilistic Neural Network (HC-

RHRPNN) 

In the first module (preprocessing), various preprocessing techniques like (i) data normalization, (ii) 

analysis of input and its corresponding output vectors, and (iii) designing the topological structure of HRPNN 

i.e. identification of number of units (neurons) in input, pattern, and summation layers, etc. were carried out. 

The detailed explanation of each preprocessing technique is given in section 4. Further, the given input dataset 

(InputData) with Sn samples is divided into training (DTrain) and testing dataset (DTest) in the ratio of 80:20 

using random sampling without replacement technique.  The second module (pruning) is to minimize the size 

of the training dataset (DTrain) through the identification of informative samples thereby the computational 

overload of the subsequent prediction module is minimized. 

Hence, we attempt to construct a Hypergraph structure through inducing 𝑛 −ary relationship among 

the samples, for the identification of minimal set of informative samples through the recursive application of 

hypergraph coarsening technique. Finally, in the prediction module we train the RHRPNN, using the training 

patterns identified from the pruning module to compute the optimal values of kernel parameters and weights 

for the effective prediction of trust values of cloud service providers.  

 

3.1.1 Pruning module 

 The aim of the pruning module (dimensionality reduction) is to identify the most significant i.e. 

informative samples in the training data, thereby improving the performance of the learning model by ensuring 

reliability and correctness of the input dataset. Mathematically, if training dataset 𝐷𝑇𝑟𝑎𝑖𝑛 = {𝑥1, 𝑥2. . 𝑥𝑛} ∈

ℝ𝑛 𝑥 𝑓𝑛 consist 𝑛 number of samples represented by 𝑓𝑛 feature vector, the dimensionality reduction process will 

identify a smaller dataset (𝐷𝑃𝑟𝑢𝑛𝑒 ∈ ℝ𝑟 𝑥 𝑓𝑛) which is a subset of 𝐷𝑇𝑟𝑎𝑖𝑛 such that 𝑟 ≪ 𝑛 with minimal 

information loss. This module consists of two major phases, namely (i) Construction of hypergraph using 𝐷𝑇𝑟𝑎𝑖𝑛 

(ii) Application of hypergraph coarsening. In the initial phase, we construct a complete weighted graph (𝐶𝐺𝑟𝑎𝑝ℎ) 

from the given 𝐷𝑇𝑟𝑎𝑖𝑛 where its vertices corresponds to the samples and the edges between the samples 

(vertices) are weighted using Euclidean distance metric. The Euclidean distance (𝐸𝑑) metric for given sample 

(𝑥, 𝑦), represented by a 𝑚 tuple feature vector is computed using Eqn. (6).  

𝐸𝑑(𝑥, 𝑦) = ((𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 + ⋯+ (𝑥𝑚 − 𝑦𝑚)2)1/2   (6) 

 For example, as illustrated in Table 2, we have considered training dataset (𝐷𝑇𝑟𝑎𝑖𝑛) with 10 samples 

(𝐷𝑇𝑟𝑎𝑖𝑛 = {𝑥1, 𝑥2, … , 𝑥10}) which is represented by 10 tuple feature vector. Table 3 presents the normalized 

form of 𝐷𝑇𝑟𝑎𝑖𝑛. A weighted matrix [𝐖] is computed using the normalized form of 𝐷𝑇𝑟𝑎𝑖𝑛 (Table 4) through the 



11 
 

application of Euclidean distance metric among the samples. A complete weighted graph (𝐶𝐺𝑟𝑎𝑝ℎ) 

representation of  [𝐖] is reported in Figure 6. From definition 2.2.1, it is evident that hypergraph exhibits 𝑛-

ary relations among the variables. Hence, it is necessary to induce multiple relationships among the samples 

for the formulation of hypergraph. Therefore, a directed graph (𝐷𝐺𝑟𝑎𝑝ℎ) is obtained from 𝐶𝐺𝑟𝑎𝑝ℎ by considering 

the 𝑘 −nearest neighbour of each vertex (Figure 7) (Kang, 2011). For every vertex 𝑥𝑖, 𝑖 = (1,2, . . . , 𝑛) we select 

a similar vertex or a nearest vertex based on the weighted edges. For example, the nearest neighbors of vertex 

𝑥1 in 𝐶𝐺𝑟𝑎𝑝ℎ (Figure 6) are 𝑥2 and 𝑥3 which is evident from Table 4 (𝒅(𝒙𝟏,𝒙𝟐) = 𝟎. 𝟎𝟗 < 𝒅(𝒙𝟏,𝒙𝟑) = 𝟎. 𝟏𝟒 <

 𝑑(𝑥1,𝑥4) = 0.15,≪ 𝑑(𝑥1,𝑥5) = 0.28 = 𝑑(𝑥1,𝑥7) = 0.28 < 𝑑(𝑥1,𝑥6) = 0.33 < 𝑑(𝑥1,𝑥8) = 0.39 ≪ 𝑑(𝑥1,𝑥9) = 0.58 <

𝑑(𝑥1,𝑥10) = 0.64). Each vertex (samples) in 𝐷𝐺𝑟𝑎𝑝ℎ (Figure 7(a)) consists of multiple directed edges from other 

vertices implying an 𝑛 −ary relationship among the vertices, therefore 𝐷𝐺𝑟𝑎𝑝ℎ can be effectively represented 

as a hypergraph (ℋ = {𝒱, ℰ}) as shown in Figure 8. In simpler terms, the construction of hypergraph (Figure 

8) from the 𝐷𝐺𝑟𝑎𝑝ℎ (Figure 7(a)) and its corresponding vertex-edge representation (Figure 7(b))  is based on 

the multiple directed edges i.e., multiple relations among the vertices 

((𝑥1, 𝑥3, 𝑥4, 𝑥2), (𝑥9, 𝑥10, 𝑥8), (𝑥7, 𝑥6, 𝑥5), (𝑥8, 𝑥7, 𝑥6)). 

 

Table 2: Sample Dataset 

Samples 𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕 𝑭𝟖 𝑭𝟗 𝑭𝟏𝟎 

𝒙𝟏 45 83 27.2 50 97.4 89 91 43 58 100 
𝒙𝟐 71.75 100 14.6 88 85.5 78 80 64.42 86 93 
𝒙𝟑 125.5 100 16.4 80 89.2 78 84 125 93 88 
𝒙𝟒 126.77 100 3.2 86 81.8 78 80 119.44 95 81 
𝒙𝟓 261 100 1.8 71 58.1 78 80 229.5 94 71 
𝒙𝟔 307.5 100 0.7 71 58.4 78 77 301 94 69 
𝒙𝟕 176 56 8 33 56.7 89 91 172 7 55 
𝒙𝟖 370.71 60 4.2 51 64.1 78 77 221.98 7 52 
𝒙𝟗 1126.25 67 3.5 33 59.4 78 72 1107 1 45 
𝒙𝟏𝟎 1680.16 16 2 7 12.5 89 72 1667.22 11 30 

 

Table 3: Normalized Sample Dataset 

Samples 𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕 𝑭𝟖 𝑭𝟗 𝑭𝟏𝟎 

𝒙𝟏 0.07 0.12 0.04 0.07 0.14 0.13 0.13 0.06 0.08 0.15 
𝒙𝟐 0.09 0.13 0.02 0.12 0.11 0.10 0.11 0.08 0.11 0.12 
𝒙𝟑 0.14 0.11 0.02 0.09 0.10 0.09 0.10 0.14 0.11 0.10 
𝒙𝟒 0.15 0.12 0.00 0.10 0.10 0.09 0.09 0.14 0.11 0.10 
𝒙𝟓 0.25 0.10 0.00 0.07 0.06 0.07 0.08 0.22 0.09 0.07 
𝒙𝟔 0.27 0.09 0.00 0.06 0.05 0.07 0.07 0.26 0.08 0.06 
𝒙𝟕 0.24 0.08 0.01 0.04 0.08 0.12 0.12 0.23 0.01 0.07 
𝒙𝟖 0.38 0.06 0.00 0.05 0.07 0.08 0.08 0.23 0.01 0.05 
𝒙𝟗 0.43 0.03 0.00 0.01 0.02 0.03 0.03 0.43 0.00 0.02 
𝒙𝟏𝟎 0.47 0.00 0.00 0.00 0.00 0.02 0.02 0.46 0.00 0.01 
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[
 
 
 
 
 
 
 
 
 

0 0.09 0.14 0.15 0.28 0.33 0.28 0.39 0.58 0.64
0.09 0 0.09 0.09 0.23 0.28 0.25 0.36 0.55 0.60
0.14 0.09 0 0.02 0.15 0.19 0.18 0.28 0.46 0.52
0.15 0.09 0.02 0.00 0.15 0.19 0.18 0.28 0.46 0.52
0.28 0.23 0.15 0.15 0.00 0.05 0.11 0.16 0.32 0.37
0.33 0.28 0.19 0.19 0.05 0.00 0.12 0.14 0.27 0.33
0.28 0.25 0.18 0.18 0.11 0.12 0.00 0.15 0.32 0.38
0.39 0.36 0.28 0.28 0.16 0.14 0.15 0.00 0.23 0.29
0.58 0.55 0.46 0.46 0.32 0.27 0.32 0.23 0.00 0.06
0.64 0.60 0.52 0.52 0.37 0.33 0.38 0.29 0.06 0.00]

 
 
 
 
 
 
 
 
 

 

Table 4: Weighted Matrix  

 

Figure 6: Complete Graph (𝐶𝐺𝑟𝑎𝑝ℎ) 

 

 

 

 

 

 

Figure 7: Directed Graph (𝐷𝐺𝑟𝑎𝑝ℎ) and its Vertex-Edge Representation 
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To further enhance the understandability on the construction of hypergraph let us consider the 

vertices 𝑥1, 𝑥3, 𝑥4, and 𝑥2 in Figure 7(a). Among these vertices, since 𝑥3, 𝑥4, and 𝑥2 have multiple directed edges 

i.e., in degree and out degree of the vertices (𝑥2
𝐼𝐷 = 3; 𝑥3

𝐼𝐷 = 3; 𝑥2
𝐼𝐷 = 2; 𝑥2

𝑂𝐷 = 3; 𝑥3
𝑂𝐷 = 2; 𝑥4

𝑂𝐷 = 2) are greater 

than or equal to 2, they constitute to the hyperedge (𝑒3) in the hypergraph (ℋ) (Table 5). The vertex 𝑥1 does 

not constitute the hyperedge (𝑒3) since its in degree is 1 (𝑥1
𝐼𝐷 = 1) and out degree is 2 (𝑥1

𝑂𝐷 = 2). In a more 

similar way, the entire hypergraph structure given in Figure 8 was constructed based on the multiple directed 

edges among the vertices in the 𝐷𝐺𝑟𝑎𝑝ℎ . 

Table 5: In Degree and Out Degree of 𝐷𝐺𝑟𝑎𝑝ℎ 

Vertex Indegree (𝑥𝑖
𝐼𝐷) Outdegree (𝑥𝑖

𝑂𝐷) 

𝑥1 1 2 

𝑥2 3 3 

𝑥3 3 2 

𝑥4 2 2 

𝑥5 2 2 

𝑥6 3 2 

𝑥7 3 2 

𝑥8 2 2 

𝑥9 1 2 

𝑥10 1 2 

 

 

 

Figure 8: Hypergraph Representation of 𝐷𝐺𝑟𝑎𝑝ℎ 
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remove redundancies from the training dataset. During this process, we merge the pair of vertices in a recursive 
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the hypergraph (ℋ) were merged using the maximum weight matching problem, which identifies the perfect 

match for each vertex (𝒱) that maximizes the sum of the edge weight of the vertex pairs (Çatalyürek & Aykanat, 

1999). For example, consider an incident matrix (𝐼ℋ) representation of hypergraph (ℋ) according to the 

Definition 2.2.3 in Subsection 2.2 (Figure 4). The weight of the vertices 𝑥1 and 𝑥10 is zero, since they do not have 

any common hyperedges. Similarly, for 𝑥5 and 𝑥6 edge weight is two, since they are contained in hyperedges 𝑒5 

and 𝑒7. Throughout this process, greedy search algorithm was used to explore the vertices in a random manner 

and the vertices with maximum weight were merged with its unmatched neighbors. This process is repeated 

until all the vertices in the hypergraph were matched (Haw-ren Fang & Yousef Saad, 2011). From the given 

illustration, it is clear that the samples 𝑥1 and 𝑥9 cannot be merged with other vertices, since they have least 

interaction with other vertices which proves that they are redundant. Finally, the coarse vertex set consists of 

matched vertex pairs that correspond to the optimal number of informative samples (𝒱𝐶𝑜𝑎𝑟𝑠𝑒 =

{𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑥7, 𝑥10}).  

Algorithm 1: Hypergraph based Robust Heteroscedastic Probabilistic Neural Network (HG-
RHRPNN) 

Input  
     𝐼𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎 , 𝑆𝑛 , 𝑓𝑛 , 𝑐 
Output 
    𝐶𝑇𝑒𝑠𝑡 
 
𝑯𝑮 − 𝑹𝑯𝑷𝑵𝑵() 
1 Begin 

*** Preprocessing Phase *** 
2 Generate Training (𝐷𝑇𝑟𝑎𝑖𝑛), Testing (𝐷𝑇𝑒𝑠𝑡) dataset using 𝐼𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎  
 

*** Pruning Phase *** 
3 Construct a complete weighted graph (𝐶𝐺𝑟𝑎𝑝ℎ) using 𝐷𝑇𝑟𝑎𝑖𝑛 where samples as vertices and edges 

weighted using Eqn. (9)  
4 Generate a Directed graph (𝐷𝐺𝑟𝑎𝑝ℎ) by considering the closest neighbours of each vertex in 𝐶𝐺𝑟𝑎𝑝ℎ 

5 Represent the 𝐷𝐺𝑟𝑎𝑝ℎ as hypergraph (ℋ = {𝒱, ℰ}) and compute the incident matrix (𝐼ℋ) using definition 

for ℋ 
 

// Multilevel hypergraph coarsening based Dimensionality reduction // 
 
6 𝐷𝑃𝑟𝑢𝑛𝑒 ← {} 
7 While (𝑆 ≠ {}) begin 
8      Randomly select a vertex 𝑗 ∈ 𝑆 
9      𝑆 ← 𝑆 − {𝑗} 
10      for each 𝑔 ← 1 to n begin  
11         𝑄[𝑔] ← 0 
12     end 
13     for each 𝑖 such that 𝐼ℋ[𝑖, 𝑗] ≠ 0 begin 
14          for each g such that 𝐼ℋ[𝑖, 𝑔] ≠ 0 begin 
15                𝑄[𝑔] ← 𝑄[𝑔] + 1 
16          end for 
17     end for 
18     𝑖 ← argmax{𝑄[𝑔]} : 𝑔 ∈ 𝑆  
19     if (𝑄[𝑔] ≠ 0) begin 
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20          Add  𝑖𝑡ℎ vertex with its unmatched nearest neighbour 𝑗𝑡ℎ vertex  in 𝐷𝑃𝑟𝑢𝑛𝑒 
21          𝑆 ← 𝑆 − {𝑖} 
22     end 
23 end while  
24 return 𝐷𝑃𝑟𝑢𝑛𝑒  
 

*** Prediction Phase *** 
25 for each class c begin 
26      for each sample in c begin 
27           Estimate the weights (𝑊), centre (𝐶), variance (𝜎), Mixing coefficient (𝛽) using Eqn. (10-18) 
28      end 
29 end 

// Probability Density Estimation // 
30 for each 𝑖 ← 1 to c begin 
31      for each 𝑗 ← 1 to n begin 

32           𝜗𝑖𝑗(x) =
1

(2𝜋𝜎𝑖,𝑗)
𝑑/2 exp (

−||𝑥−𝐶𝑖,𝑗||
2

2𝜎𝑖,𝑗
2 ) 

33      end 
34 end 

// Class Conditional Probability Density Estimation // 
 
35 for each 𝑖 ← 1 to c begin 
36      for each 𝑗 ← 1 to n begin 

37           𝑃𝑗(𝑥) = ∑ 𝛽𝑖𝑗  𝜗𝑖𝑗(x)
𝑅𝑗

𝑖=1
 

38       end 
39 end 

// Class prediction // 
40 for each 𝑗 ← 1 to c begin 
41     𝐶𝑇𝑒𝑠𝑡 ← argmax

𝑗
(𝛼𝑗𝑃𝑗(𝑥)) 

42 end          

The computational complexity of the proposed hypergraph-based dimensionality reduction technique 

was found to be 𝑂(𝑛), since the main loop (Line 7-23) in the Algorithm 1 runs for 𝑛 times (worst case). Since, 

the complexity incurred during the construction of hypergraph is negligible when compared to the complexity 

of the hypergraph coarsening, we have not considered while deriving the overall complexity of the hypergraph-

based dimensionality reduction technique. Recently in 2017, (Bostani & Sheikhan, 2017) proposed a similar 

work where they have utilized social network concept for the identification of informative samples from a 

directed graph with the complexity of 𝑂(𝑛𝑚 + 𝑛3 𝑙𝑜𝑔𝑛) where 𝑛 and 𝑚 are the number of samples and edges 

respectively. It is obvious that hypergraph based pruning module has least complexity (𝑂(𝑛) ⋘

𝑂(𝑛𝑚 + 𝑛3 𝑙𝑜𝑔𝑛)) than the existing one. In addition to that, since the coarsening process operates over the 

sparse matrix (maximum elements are zero) the computational complexity of hypergraph based 

dimensionality reduction technique will be minimum compared with existing traditional dimensional 

reduction technique like principle component analysis (PCA), Independent component analysis (ICA) 

(Çatalyürek & Aykanat, 1999) etc.  

 



16 
 

3.1.2 Prediction module 

The performance of any learning model can be assessed based on its degree of accuracy in identifying 

similar data from a collection of unknown input patterns. As a learning model, Artificial Neural Network (ANN) 

plays a vital role in many classification and prediction problems, since it has the ability to learn from the 

training dataset and a better generalization ability (M. R. G. Raman et al., 2017). In order to enhance its 

prediction accuracy, stability etc. various research works were carried out towards the design of its variants 

like Radial Basis Neural Network (RBNN), Adaptive Resonance Theory Network (ARTN), etc. One such variant 

is Probabilistic Neural Network (PNN), which is based on the concept of competitive learning i.e., “winner takes 

all attitude” (D. F. Specht, 1990). It combines the estimated conditional probabilities using the non – parametric 

estimator (Parzen window) to obtain the probability distribution function (PDF) for predicting the class of the 

unknown sample. Generally, PNN does not possess any feedback path like other traditional neural network 

architectures, rather it integrates kernel based estimator and radial basis function network for faster learning. 

 

Figure 9: Variable Center and Variance in RHRPNN 

 

The basic version of PNN utilizes all the samples in the dataset for the estimation of center or mean 

vector of the Gaussian kernel function which resulted in the notable increase in its classification ability.  
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desirable to utilize minimal number of kernel functions without comprising the classification accuracy. In the 

year 1994, Streit et al. employed Expectation Maximization (EM) algorithm to estimate the mixture of kernel 

functions i.e., training the two variants of PNN, namely (i) Homoscedastic PNN - Different centres with common 

variance and (ii) Heteroscedastic PNN (HRPNN) - Difference centres with difference variance (Figure 9). 

Figure 10: HRPNN Architecture 

Fundamentally, the architecture of HRPNN is similar to the basic version of PNN however, the major 

differences can be observed in the exemplar layer and the output layer. The four-layered feed forward HRPNN 

is given in Figure 10. The first layer (Input layer) distributes the received input patterns to the second layer 

(Pattern layer) which consists of ‘n’ number of neurons divided into ‘c’ groups (number of classes). The 

Gaussian kernel function of the 𝑖𝑡ℎ node of the 𝑗𝑡ℎ  class is defined in Eqn. (7) (Venkatesh & Gopal, 2011). 

𝜗𝑖𝑗(x) =
1

(2𝜋𝜎𝑖,𝑗)
𝑑/2 exp (

−||𝑥−𝑐𝑖,𝑗||
2

2𝜎𝑖,𝑗
2

)     (7) 

where, 𝐶 and 𝜎 are the mean vector and variance respectively.  

Similarly, the third layer consists of ‘𝑐’ nodes to estimate the class conditional probability density 

function (Eqn. (8)).  

Input Layer Exemplar Layer Summation Layer Output Layer 

𝒙𝟏 

𝒙𝒓−𝒌 

𝒙𝒓 

. 

. 

. 

. 

. 

. 

𝜷𝒊
𝒋
 

𝑷𝒋(𝒙) 

𝜶𝒋 

𝒂𝒓𝒈𝒎𝒂𝒙(𝜶𝒋𝑷𝒋(𝒙)) 
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𝑃𝑗(𝑥) = ∑ 𝛽𝑖𝑗  𝜗𝑖𝑗(x)
𝑛𝑗

𝑖=1
, 1 ≤ 𝑗 ≤ 𝑐    (8) 

such that ∑ 𝛽𝑖𝑗

𝑐𝑗

𝑖=1
= 1,1 ≤ 𝑗 ≤ 𝑐 where, 𝑐𝑗 is the number of nodes in 𝑗𝑡ℎ class.  

Finally, the decision layer (Output layer) predicts the class of the unknown input pattern using Eqn. 

(9). 

Class(x) =   arg (max
1≤𝑗≤𝑐

(𝛼𝑗𝑃𝑗(𝑥)))    (9) 

where, 𝛼𝑗 is the class priori probability. Chattfield et al. presented robust heteroscedastic PNN 

(RHRPNN) which utilizes the jack knife procedure (Statistical tool) for the estimation of model parameters like 

center (𝐶𝑖,𝑗), variance (𝜎𝑖,𝑗), and weights (𝛽𝑖𝑗) and to overcome the numerical difficulties in traditional EM 

algorithm during the estimation process while handling sparse dataset. During the estimation process, entire 

training patterns were divided into ‘𝑐’ subsets, such that 𝐷𝑇𝑟𝑎𝑖𝑛 = {{𝑥𝑖,𝑗}𝑖=1

𝑅𝑗
}𝑗=1
𝑐 , where 𝑅𝑗 is the number of 

samples in the 𝑗𝑡ℎ class  and the impact of model parameters on each subset was observed. The two major steps 

involved in the training process of RHRPNN are highlighted as follows (Yang et al., 2000), where �̂�𝑚,𝑖
(𝑡+1)

 and 

�̂�𝑚,𝑖
2

|𝑡+1 are the jacknife estimates obtained from the 𝑐𝑚,𝑖 and 𝜎𝑚,𝑖 at the 𝑡𝑡ℎ step respectively. 

(i) Weights computation at step 𝑡 is for 1 ≤ 𝑚 ≤ 𝑀𝑖, 1 ≤ 𝑛 ≤ 𝑅𝑖 , 1 ≤ 𝑖 ≤ 𝑐 (Eqn. (10) and Eqn. 

(11)) 

𝑊𝑚,𝑖
(𝑡)

(𝑥𝑛,𝑖) =
𝛽𝑚,𝑖( 𝜗𝑚,𝑖

(𝑡)
(𝑥𝑛,𝑖))

∑ 𝛽𝑖
𝑠𝑀𝑖

𝑠=1 𝑝𝑠
𝑖
(𝑡)

(𝑥𝑛
𝑖 )

    (10) 

where, 𝜗𝑚,𝑖
(𝑡)

(𝑥𝑛,𝑖) is computed using Eqn. (7). 

(ii) Parameter updation for 1 ≤ 𝑚 ≤ 𝑀𝑖, 1 ≤ 𝑖 ≤ 𝑐 (Eqn. (11) – Eqn. (13)) 

�̂�𝑚,𝑖
(𝑡+1)

= 𝑅𝑖𝑐𝑚,𝑖
(𝑡+1)

−
𝑅𝑖−1

𝑅𝑖
∑ 𝑐𝑚,𝑖

(𝑡+1)
|−𝑗

𝑅𝑖
𝑗=1    (11) 

where, 𝑐𝑚,𝑖
(𝑡+1)

=
∑ 𝑊𝑚,𝑖

𝑡𝑅𝑖
𝑛=1 (𝑥𝑛,𝑖)𝑥𝑛,𝑖

∑ 𝑊𝑚,𝑖
𝑡 (𝑥𝑛,𝑖)

𝑅𝑖
𝑛=1

; 𝑐𝑚.𝑖
(𝑡+1)

|−𝑗 =
∑ 𝑊𝑚,𝑖

𝑡𝑅𝑖
𝑛=1;𝑛≠𝑗

(𝑥𝑛,𝑖)𝑥𝑛,𝑖

∑ 𝑊𝑚,𝑖
𝑡 (𝑥𝑛,𝑖)

𝑅𝑖
𝑛=1

 ∀1 ≤ 𝑗 ≤ 𝑅𝑖   

  Similarly,  

�̂�𝑚,𝑖
2 |𝑡+1 = 𝑅𝑖𝜎𝑚,𝑖

2 |𝑡+1 −
𝑅𝑖−1

𝑅𝑖
∑ 𝜎𝑚,𝑖

2 |−𝑗
𝑡+1𝑅𝑖

𝑗=1    (12) 
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  Where, 𝜎𝑚,𝑖
2 |𝑡+1 =

∑ 𝑊𝑚,𝑖
𝑡𝑅𝑖

𝑛=1 (𝑥𝑛,𝑖)||𝑥𝑛,𝑖−𝑐�̂�,𝑖
(𝑡)

||
2

𝑑∑ 𝑊𝑚,𝑖
𝑡 (𝑥𝑛,𝑖)

𝑅𝑖
𝑛=1

; 𝜎𝑚,𝑖
2 |−𝑗

𝑡+1 =
∑ 𝑊𝑚,𝑖

𝑡𝑅𝑖
𝑛=1,𝑛≠𝑗 (𝑥𝑛,𝑖)||𝑥𝑛,𝑖−𝑐�̂�,𝑖

(𝑡)
||
2

𝑑∑ 𝑊𝑚,𝑖
𝑡 (𝑥𝑛,𝑖)

𝑅𝑖
𝑛=1

 ∀1 ≤ 𝑗 ≤ 𝑅𝑖 

𝛽𝑚,𝑖
𝑡+1 =

1

𝑅𝑖
∑ 𝑊𝑚,𝑖

𝑡  
(𝑥𝑛,𝑖)

𝑅𝑖
𝑛=1      (13) 

 

4. Experimental Results and Analysis 

4.1 Dataset Description 

 

QWS, a public QoS dataset created and maintained by E. Al-Masri, and Q.H Mahmooud, University of 

Guelph, Canada (Al-Masri & Mahmoud, 2007). This dataset has been extensively used in various research works 

on QoS in service-oriented environments (web service, cloud computing, etc.). It consists of QoS records of 365 

real web services collected using Web Service Crawler Engine (WSCE). Each QoS record consists of nine QWS 

attributes like response time, availability, throughput, and so on (Table 6). Each service was tested over a 

period of ten minutes for three successive days. The trust rate was evaluated using Web Service Relevancy 

Function (WsRF) based on quality metrics (response time, availability, throughput, successability, reliability, 

compliance, best practices, and latency). Each web service was classified into four levels, namely platinum (high 

quality), gold, silver, and bronze (low quality) based on the overall rating provided by WsRF. The four levels of 

service offering qualities were represented by numbers 1 to 4, respectively. The service classification (𝑇𝑀𝑃11) 

is measured based on the overall ranking given by WsRF.  

 

Table 6: QWS Trust Measure Parameters and Units 

ID 
Trust 

Measure 
Parameter 

Description Units 
Conditional/ 

Decisional  
Attribute 

𝑇𝑀𝑃1 
Response 
Time 

Time taken to send a request and receive a 
response 

ms 
Conditional 

𝑇𝑀𝑃2 Availability 
Number of successful invocations/total 
invocations 

% Conditional 

𝑇𝑀𝑃3 Throughput 
Total number of invocations for a given period of 
time 

Invokes/
s 

Conditional 

𝑇𝑀𝑃4 Successability 
Number of response/number of request 
messages 

% Conditional 

𝑇𝑀𝑃5 Reliability 
Ratio of the number of error messages to total 
messages 

% Conditional 

𝑇𝑀𝑃6 Compliance 
The extent to which a WSDL document follows 
WSDL documentation 

% Conditional 

𝑇𝑀𝑃7 Best Practices The extent to which a web service follows % Conditional 

𝑇𝑀𝑃8 Latency 
Time taken for the server to process a given 
request 

ms Conditional 

𝑇𝑀𝑃9 
Documentatio
n 

Measure a documentation (i.e. description tags) 
in WSDL 

% Conditional 
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𝑇𝑀𝑃10 WSRF 
Web service relevance function: a rank for web 
service quality 

% Conditional 

𝑇𝑀𝑃11 
Service 
classification 

Levels representing service offering qualities (1 
through 4) 

Classifie
r 

Decisional 

𝑇𝑀𝑃12 Service name Name of the web services None 
Ignored 

𝑇𝑀𝑃13 WSDL address 
Location of the web service definition language 
(WSDL) file on web 

None 

 

 

 

4.2 Experimental Setup 

 

The proposed technique (HC-RHRPNN) was implemented using Python 3.6 on an INTEL® Core™ i5 

processor @ 2.40 GHz system with 8 GB RAM running Windows 7 operating system. In addition, WEKA tool 

and Matlab R2016b were used for validation purposes (Witten, Ian H., Eibe Frank, Mark A. Hall, 2016). The 

entire set of experiments were divided into three phases, namely (i) Data pre-processing, (ii) Generation of 

training and testing datasets, and (iii) Performance validation using various quality metrics.  

 

4.2.1 Data Preprocessing  

 

During the initial phase of the experiment, data pre-processing was used to transform the QWS public 

dataset into a compatible format supported by the classifiers. In this phase, data normalization was carried out 

to reduce the impact of the features with high value. Each feature in the sample is normalized such that all the 

values lie in the range of [0,1]. In this study, we have applied Min-Max normalization technique on each sample 

in the considered dataset (Eqn. 14).  

 

   𝑓𝑎𝑏 =
𝑓𝑎𝑏−(𝑓𝑎𝑏)𝑀𝑖𝑛

(𝑓𝑎𝑏)𝑀𝑎𝑥−(𝑓𝑎𝑏)𝑀𝑖𝑛
;  ∀ 𝑎 = (1,2, . . . , 𝑆); 𝑏 = (1,2, . . . , 𝑛)   (14) 

  

where, 

𝑆 and 𝑛 - total number of samples and features in the dataset respectively 

𝑓𝑀𝑖𝑛  and 𝑓𝑀𝑎𝑥  - minimum and maximum value of the feature in a sample.   

 

4.2.2 Generation of Training and Testing Datasets 

 

On to the subsequent phase, the training (𝐷𝑇𝑟𝑎𝑖𝑛) and testing (𝐷𝑇𝑒𝑠𝑡) dataset were generated using 

random sampling without replacement technique. Finally, to show the predominance of HC-RHRPNN, it was 

compared with the traditional classifiers like BayesNet, CART, Random Forest, and SVM & few versions of 

neural network like PNN, BPNN, and MLPNN. The available packages in Weka tool and MatLab neural network 
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toolbox were used for the implementation of the existing classifiers. Further, the performance and effectiveness 

of HC-RHRPNN over the existing classifiers were assessed using 10 fold cross validation based on the following 

metrics. 

(i) Classification Accuracy (𝑨𝒄𝒄): It represents the degree of correct predictions among all the 

classes. The mathematical formulation of classification accuracy is given in Eqn. (15). 

Accuracy (𝑨𝒄𝒄): 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (15) 

(ii) Precision (𝑷𝒓𝒆𝒄): Precision or Positive Predictive Value (PPV) is the measure of the exactness of 

the learning model (Eqn. (16)). 

Precision (𝑷𝒓𝒆𝒄) : 
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (16) 

(iii) Recall (𝑹𝑪): Recall or True Positive Rate (TPR) is the measure of the completeness of the learning 

model (Eqn. (17)). 

Recall (𝑹𝑪): 
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (17) 

(iv) F-Score (𝑭𝑺): F-Score or F-Measure is the harmonic mean or the balance between the precision 

(𝑃𝑟𝑒𝑐) and recall (𝑅𝐶) metric (Eqn. (18)).  

F-Score (𝑭𝑺)=
2∗𝑃𝑟𝑒𝑐∗𝑅𝐶

𝑃𝑟𝑒𝑐+𝑅𝐶
     (18) 

where, 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, and 𝐹𝑁 are true positive, false positive, true negative and false negative 

respectively. To gain better understanding, for a binary classification problem (Class A and Class B), 

𝑇𝑃, 𝐹𝑃, 𝑇𝑁, and 𝐹𝑁 can be defined as follows, 

True Positive (𝑻𝑷):  Measure of samples correctly classified class A as class A  

True Negative (𝑻𝑵): Measure of samples correctly classified class B as class B 

False Positive (𝑭𝑷): Measure of samples misclassified class A as class B 

False Negative (𝑭𝑵): Measure of samples misclassified class B as class A 

 

4.3 Results and Discussions 

  

In this section, we briefly discuss various experimental and comparative analysis carried out to 

demonstrate the performance of HC-RHRPNN over the classical classification algorithms and neural network 

variants in terms of various quality metrics discussed in Section 4. The major motive behind the design of an 

efficient trust prediction model is to achieve high prediction accuracy with minimal time complexity. The major 

objective of this work is to improve the performance of HRPNN over the several neural network variants for 

trust prediction problem. Initially, we prove the significance of pruning model by carrying out the experiments 

under two scenarios, namely (i) Without pruning: classifiers trained with all samples and (ii) With pruning: 

classifiers trained with the informative samples obtained from the pruning module (hypergraph coarsening), 

in terms of classification accuracy for different ratio of training dataset. As reported in Table 7, it is clear that 

HRPNN outperforms the existing classifiers in terms of classification accuracy under both the scenarios. 
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Further, except few exceptions, the performance of the existing classifiers and HRPNN increases with the 

increase in the ratio of the training dataset. An important point to note is that the performance of the classifiers 

increases when trained with the informative samples obtained from the proposed hypergraph coarsening 

based pruning module. For example, the classification accuracy of SVM, a well-known classifier increases from 

65.73%, 72.42%, 70.91%, and 70.87% (without pruning) to 72.17%, 75.33%, 74.21%, and 83.63% (with 

pruning) respectively for different ratios of 𝐷𝑇𝑟𝑎𝑖𝑛. Another interesting fact is that the overwhelming 

performance of HRPNN under both scenarios for all ratios of 𝐷𝑇𝑟𝑎𝑖𝑛 was due to the use of multiple Gaussian 

kernel functions and their variance based on the characteristics of the dataset. 

 

Table 7: Performance Validation - Classification Accuracy for Different Ratio of Training Dataset 

S.No Classifiers 

Without Pruning With Pruning 

𝑫𝑻𝒓𝒂𝒊𝒏Ratio 𝑫𝑻𝒓𝒂𝒊𝒏Ratio 

50% 60% 70% 80% 50% 60% 70% 80% 

1 Bayes Net 55.30 55.07 54.28 61.02 57.83 58.62 58.72 72.53 
2 SVM 65.73 72.42 70.91 70.87 72.17 75.33 74.21 83.63 
3 CART 57.86 57.03 67.27 46.31 62.93 68.14 70.14 64.15 
4 J48 40.89 47.13 50.02 57.82 43.87 51.86 52.50 68.49 
5 C4.5 65.96 71.59 71.35 62.94 74.61 75.22 74.86 73.82 
6 Random Forest 73.47 76.12 80.10 58.62 81.75 83.17 82.77 61.87 
7 BPNN 76.10 81.60 82.07 72.18 83.83 84.62 85.60 81.76 
8 MLPNN 78.33 82.23 81.02 78.92 86.11 85.91 86.71 85.62 
9 PNN 75.40 82.07 82.97 62.87 84.82 85.61 85.10 86.11 

10 RHRPNN 78.83 83.05 84.12 80.21 88.76 87.12 87.62 94.63 

 

 The significant improvement in the classification accuracy of the learning models reveals the impact 

of pruning module on the performance of the classifiers. Thereby, for further experimentations, we have 

trained the classifiers with the informative samples identified by our proposed hypergraph-based pruning 

module. In order to minimize the complexity of the construction of a complete graph (initial phase of the 

pruning module), we have identified the significant features using Rough Set – Hypergraph based feature 

selection Technique (RSHT), our previous research work on feature selection for the identification of optimal 

trust measure parameters (Somu, Kirthivasan, & Sriram, 2017).   
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Figure 11: Performance Validation – Precision 

 

On to the subsequent phase, the performance of HC-RHRPNN was further analyzed in terms of 

precision, recall, and F-Score for different ratios of 𝐷𝑇𝑟𝑎𝑖𝑛. As shown in Figure 11-13, the performance of HC-

RHRPNN was found to be predominantly higher than the traditional classification algorithms like Bayes Net, 

SVM, CART, J48, C4.5, and Random Forest. For example, under different ratio of 𝐷𝑇𝑟𝑎𝑖𝑛, the precision value of 

Bayes Net, SVM, CART, J48, C4.5, and Random Forest is less than 80%, whereas the precision value of HC-

RHRPNN lies in the range of 82%-90% (approx.). Similarly, in the case of recall and F-Score, the overall 

performance of the traditional classification algorithms did not exceed 80%, however HC-RHRPNN achieves a 

maximum of 92.33% (recall) and 91.29 (F-Score). 

 

Figure 12: Performance Validation – Recall 

30

40

50

60

70

80

90

100

Bayes Net SVM CART J48 C4.5 Random

Forest

BPNN MLPNN PNN HC-RHRPNN

F
-S

co
re

 (
%

)

Classifiers

50% 60% 70% 80%

30

40

50

60

70

80

90

100

Bayes Net SVM CART J48 C4.5 Random

Forest

BPNN MLPNN PNN HC-RHRPNN

P
re

ci
si

o
n

 (
%

)

Classifiers

50% 60% 70% 80%



24 
 

 

 

Figure 13: Performance Validation – F-Score 

 

 In addition, from Table 7 and Figure (11-13), it is evident that the difference in the performance of 

HRPNN and existing classifiers (Bayes Net, SVM, CART, J48, C4.5, Random Forest; Classification accuracy: 

+45%, Precision, recall and F-Score: +51%) was found to be larger than PNN, BPNN, and MLPNN 

(Classification accuracy: +2%, Precision, recall and F-Score: +6%) i.e. HRPNN has similar performance to NN 

variants. Hence, we have performed a detailed analysis by plotting distributions of various quality metrics for 

different ratio of training datasets to prove the effectiveness of HC-RHRPNN over the variants of neural 

networks.  

 

 

Figure 14: Classification Accuracy Distribution in Different Ratio of Training Datasets (a) Training dataset 

ratio=50%; (b) Training dataset ratio=60%; (c) Training dataset ratio=70%; (d) Training dataset ratio=80% 
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Figure 15: Precision Distribution in Different Ratio of Training Datasets (a) Training dataset ratio=50%; (b) 

Training dataset ratio=60%; (c) Training dataset ratio=70%; (d) Training dataset ratio=80% 
 

 

Figure 16: Recall Distribution in Different Ratio of Training Datasets (a) Training dataset ratio=50%; (b) 

Training dataset ratio=60%; (c) Training dataset ratio=70%; (d) Training dataset ratio=80% 
 

As reported in Figure 14-17 (a-c), HC-RHRPNN outperforms PNN, BPNN, and MLPNN in terms of 

performance (accuracy, precision, recall, and F-Score) and stability for 50%, 60%, 70% of the training dataset 

ratio. Further, while considering 80% of 𝐷𝑇𝑟𝑎𝑖𝑛, the stability of HC-RHRPNN was found to be similar to the 

neural network variants, however HC-RHRPNN shows its predominance in terms of performance (Figure 14-

17 (d)). 
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Figure 17: F-Score Distribution in Different Ratio of Training Datasets (a) Training dataset ratio=50%; (b) 

Training dataset ratio=60%; (c) Training dataset ratio=70%; (d) Training dataset ratio=80% 
 

 Further, we employ one-way ANalysis Of Variance (ANOVA) test with a significance value of 0.05 to 

evaluate the difference between HC-RHRPNN and variants of the neural network in terms of classification 

accuracy, precision, recall, and F-Score. From Table 8-10, it is clear that the 𝑝-value of ANOVA on HC-RHRPNN, 

PNN, BPNN, and MLPNN for all the ratio of 𝐷𝑇𝑟𝑎𝑖𝑛 is less than 0.01. Hence, we can state the significance of HC-

RHRPNN over the other neural network variants for solving trust prediction problem in cloud service selection 

environments. 

 

Table 8: One Way ANalysis Of VAriance (ANOVA) test: Accuracy, Precision, Recall, and F-Score - HG-RHRPNN 
Vs BPNN 
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Table 9: One Way ANalysis Of VAriance (ANOVA) test: Accuracy, Precision, Recall, and F-Score - HG-RHRPNN 
Vs MLPNN 
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Table 10: One Way ANalysis Of VAriance (ANOVA) test: Accuracy, Precision, Recall, and F-Score - HG-
RHRPNN Vs PNN 
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Finally, we have compared the performance of HC-RHRPNN with the recent research contributions in 

trust prediction models with respect to accuracy and precision. From Table 11, it can be noted that HC-RHRPNN 

ranks third and first position in terms of accuracy and precision. Nevertheless, it cannot be claimed that HC-

RHRPNN outpaces the state-of-the-art techniques in all aspects due to the lack of information on various 

experimental factors such as sampling method, number of samples, etc. To summarize, the devastating 

performance of HC-RHRPNN was due to the use of hypergraph coarsening technique for the identification of 

the informative samples. 

 

Table 11: Comparison with Recent Trust Prediction Models 

S.No Authors Technique Proposed 
Feature 

Selection 
Classification 
Accuracy (%) 

Precision 
(%) 

1. (Mashinchi et al., 2011) 
Fuzzy Linear 
Regression Analysis 
(FLRA) 

x n/a 79.46*** 

2. (Mao et al., 2017) 
Particle Swarm 
Optimization driven 

x n/a 88.28** 
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Neural Network (PSO-
NN) 

3. (Mohanty et al., 2010) 

Group Method of Data 
Handling (GMDH)   

100* n/a 

TreeNet 99.72** n/a 

4. Proposed Approach HC-RHRPNN   94.63*** 90.28* 

 

 

5. Conclusions 

 

Trustworthiness plays a significant role in determining the quality of the candidate services for the 

design of efficient and resilient service-based systems. Recent research trends in cloud service selection 

signifies the impact and popularity of trust based cloud service selection models due to fact that 

trustworthiness of a service is well-reflected by several functional and non-functional QoS attributes. However, 

the dynamic nature of service-oriented environments in terms of variable QoS values and emergence of new 

cloud services affects the performance of trust-based cloud service selection models. Trust prediction, a 

classification problem can be modeled as a suitable solution for the trust based cloud service selection problem 

through predicting the trustworthiness of the cloud services based on their relevant historical QoS information. 

Therefore, several researchers focused towards the development of numerous trust and QoS prediction models 

based on machine learning and statistical techniques. Artificial Neural Networks (ANN) and its variants have 

proven their significance in solving service selection problems with high prediction accuracy. However, several 

challenges related to weights, training time, and kernel functions makes the development of an efficient and 

stable neural network architecture, an open research challenge.  

 

Hence, this work presents a multi-level Hypergraph Coarsening based Robust Heteroscedastic 

Probabilistic Neural Network (HC-RHRPNN) to predict the trustworthiness of services in cloud environments. 

HC-RHRPNN uses hypergraph coarsening for the identification of informative samples, which were then used 

to train HRPNN to achieve high prediction accuracy and to minimize the runtime. The predominance of HC-

RHRPNN was proved with a set of extensive experiments on Quality of Web Service (QWS), a public QoS dataset 

in terms of classifier accuracy, precision, recall, and F-Score. Further, HC-RHRPNN was found to be adaptive, 

efficient, scalable, and applicable for classification and prediction problems in intrusion detection systems, 

energy prediction, stock market analysis, medical diagnosis, and metadata quality analysis. 
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