
Accepted Manuscript

An improved robust heteroscedastic probabilistic neural network based
trust prediction approach for cloud service selection

Nivethitha Somu, Gauthama Raman M.R., Kalpana V., Kannan Kirthivasan,
Shankar Sriram V.S.

PII: S0893-6080(18)30225-9
DOI: https://doi.org/10.1016/j.neunet.2018.08.005
Reference: NN 4009

To appear in: Neural Networks

Received date : 21 December 2017
Revised date : 12 July 2018
Accepted date : 3 August 2018

Please cite this article as: Somu, N., Gauthama Raman M.R, Gauthama Raman M.R., Kalpana V,
Kalpana V., Kirthivasan, K., Shankar Sriram V.S., Shankar Sriram V.S.., An improved robust
heteroscedastic probabilistic neural network based trust prediction approach for cloud service
selection. Neural Networks (2018), https://doi.org/10.1016/j.neunet.2018.08.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.neunet.2018.08.005

Highlights

 An Improved Robust Heteroscedastic Probabilistic Neural Network (HC-

RHRPNN) is presented for trust prediction in cloud environments

 HC-RHRPNN employs hypergraph coarsening based dimensionality reduction

technique for the identification of informative samples

 HC-RHRPNN was evaluated using QWS dataset in terms of classification accuracy,

precision, recall, and F-Score

 One way ANOVA statistical test was performed to prove the dominance of HC-

RHRPNN

Highlights (for review)

Title Page

Authors:

Nivethitha Somu1, Gauthama Raman M R1, Kalpana V1, Kannan Krithivasan2, Shankar

Sriram V S1*

Email id:

nivethitha@sastra.ac.in1, gauthamaraman_mr@sastra.ac.in1, kalpana@cse.sastra.edu1,

kkannan@maths.sastra.edu2, sriram@it.sastra.edu1

Manuscript Title:

An Improved Robust Heteroscedastic Probabilistic Neural Network based Trust Prediction

Approach for Cloud Service Selection

Affiliation:

1 Centre for Information Super Highway (CISH), School of Computing, SASTRA Deemed

University, Thanjavur, Tamil Nadu, India

2 Discrete Mathematics Research Laboratory (DMRL), Department of Mathematics, SASTRA

Deemed University, Thanjavur, Tamil Nadu, India

Corresponding Author:

Prof. Shankar Sriram V S

Email id: sriram@it.sastra.edu

Telephone: +91 4362 264101 (Extn: 2323)

Fax: +91 4362 264120

Acknowledgements

This work was supported by The Department of Science and Technology, India; The

Council for Scientific and Industrial Research, India; TATA Realty - SASTRA Srinivasa

Ramanujan Research Cell , India (Grant No: DST/INSPIRE Fellowship/2013/963, CSIR-SRF

Fellowship/143404/2K15/1, MRT/2017/000155, SR/FST/MSI-107/2015 and

SR/FST/ETI-349/2013).

*Title Page (With all author details listed)

1

An Improved Robust Heteroscedastic Probabilistic Neural Network based Trust Prediction Approach

for Cloud Service Selection

Nivethitha Somu1, Gauthama Raman M R1, Kalpana V1, Kannan Kirthivasan2, Shankar Sriram V S1*

1 Centre for Information Super Highway (CISH), School of Computing,

2 Discrete Mathematics Research Laboratory (DMRL), Department of Mathematics,

SASTRA Deemed University, Thanjavur, Tamil Nadu, India

Email id: nivethitha@sastra.ac.in1, gauthamaraman_mr@sastra.ac.in1, kalpana@cse.sastra.edu1,

kkannan@maths.sastra.edu2, sriram@it.sastra.edu1*

Abstract

Trustworthiness is a comprehensive quality metric which is used to assess the quality of the services

in service-oriented environments. However, trust prediction of cloud services based on the multi-faceted

Quality of Service (QoS) attributes is a challenging task due to the complicated and non-linear relationships

between the QoS values and the corresponding trust result. Recent research works reveal the significance of

Artificial Neural Network (ANN) and its variants in providing a reasonable degree of success in trust prediction

problems. However, the challenges with respect to weight assignment, training time and kernel functions make

ANN and its variants under continuous advancements. Hence, this work presents a novel multi-level

Hypergraph Coarsening based Robust Heteroscedastic Probabilistic Neural Network (HC-RHRPNN) to predict

trustworthiness of cloud services to build high-quality service applications. HC-RHRPNN employs hypergraph

coarsening to identify the informative samples, which were then used to train HRPNN to improve its prediction

accuracy and minimize the runtime. The performance of HC-RHRPNN was evaluated using Quality of Web

Service (QWS) dataset, a public QoS dataset in terms of classifier accuracy, precision, recall, and F-Score.

Keywords: Cloud service selection; Quality of service; Trust prediction; Hypergraph; Heteroscedastic

probabilistic neural network.

1. Introduction

Cloud computing, an efficient, and economic business paradigm has attracted a wide range of

organizations as it enables the users to access on-demand resources as a service (‘XaaS'-Something as a Service)

over the internet in a ‘Pay-As-You-Use' fashion (Sosinsky, 2010). The increasing popularity of cloud computing

has resulted in the proliferation of many Cloud Service Providers (CSPs) and functionally equivalent cloud

services. On the other end, the Cloud Users (CU) lack appropriate information and benchmarks to evaluate

these services based on their preferences and CSPs provisions (Ali Sunyaev, 2013). In addition, the trade-off

between the functional and non-functional Quality of Service (QoS) requirements hardens the identification of

appropriate and trustworthy CSPs who can satisfy the users’ unique QoS requirements. Thereby, the presence

of a wide range of cloud-based entities (service providers, users, applications and unique demands) has

*Manuscript
Click here to view linked References

2

provoked the research communities towards the development of cloud service selection models based on

several approaches like multi-criteria decision making (multiple attributes and interrelations among them),

optimization, logic, description, and trust (Ma, Zhu, Hu, Li, & Tang, 2017; Qu, 2016; Sun, Dong, Hussain, Hussain,

& Chang, 2014).

Recent literature reveals the significance of trust based cloud service selection models for the cloud

service selection problem in service-oriented environments (Akshya Kaveri, Gireesha, Somu, Gauthama Raman,

& Shankar Sriram, 2017; Somu, M.R., Krithivasan, & V.S., 2018; Tang, Dai, Liu, & Chen, 2017). The

trustworthiness or quality of a cloud service is reflected by its non-functional (QoS monitoring) and functional

attributes (users’ feedbacks). Generally, trust assessments were carried out based on monitored QoS values,

due to the practical difficulty in obtaining reliable and complete users' feedbacks (Mao, Lin, Xu, & He, 2017).

However, the dynamic nature of the cloud environment (unpredictable nature of QoS) and the emergence of

new cloud services based on the unique requirements of the user (complex trust evaluation mechanisms)

complicates the cloud service selection problem. Trust prediction, a classification problem is a plausible

solution for the above challenges and solve issues related to data sparsity and ‘cold start problem’ in service

selection, composition and recommendation models (Chen, Shen, Li, & You, 2017). Specifically, trust prediction

techniques can be applied in a scenario where the trustworthiness of a new entity (service) needs to be

evaluated with minimal knowledge on the characteristics of the entity. Realization of the importance of trust-

based service evaluation has led to the development of several trust and QoS prediction models in web service

selection, cloud service selection, recommender systems, pervasive environments, and social networks (Table

1).

Table 1: Related Works

Author Technique Dataset Metric Applicatio
n

 (Fu, Hu, & Zhang,
2008)

Bayesian Network

Simulation – Market
model for 48 grid
service

-
Grid
services

(Nguyen, Hien,
Weiliang, & Jian,
2010)

Simulation – 3
customers and 5
web services

-
Web
services

(Mehdi, Bouguila, &
Bentahar, 2013)

 Bayesian Network
 Multinomial

generalized Dirichlet
distribution

Simulation – 4
service, 5 quality
metrics, and QWS
service classification

-
Web
services

(Mohanty, Ravi, &
Patra, 2010)

Back Propagation
Neural Network (BPNN),
Probabilistic Neural
Network (PNN), Group
Method of Data
Handling (GMDH),
Classification and

QWS dataset
Classifier
accuracy

Web
services

3

Regression Trees
(CART), TreeNet,
Support Vector Machine
(SVM), and ID3 decision
tree (J48)

(Mashinchi, Li,
Orgun, & Wang,
2011)

Fuzzy Linear Regression
Analysis (FLRA)

QWS dataset

Classifier
accuracy and
standard
deviation

Web
services

(Zolfaghar & Aghaie,
2012)

CRoss-Industry
Standard Process
(CRISP)

Epinions

Max Profit, overall
accuracy, area
under the ROC
curve, build time,
number of fields,
prediction
accuracy,
precision, recall,
and F-measure

Social web
applications

(Huang, Nie, Huang,
Lei, & Ding, 2013)

 Rank-k matrix
 Ancillary variables

and Augmented
Lagrangian Multiplier
(ALM)

Epinions, Wikipedia,
and Slashdot

Root mean square
error and mean
absolute error

Social
networks

(Raj & Babu, 2017)
Probabilistic reputation
feature model

Epinions, Wikipedia,
and Slashdot

Overall accuracy,
F1 score, and area
under the ROC

Social
networks

(Zhang, Wu, & Liu,
2016)

Cluster-level trust
prediction based on
multi-modal social
network (CTPMSN).

Epinions, Douban,
and Flixster

Average recall and
normalized
discounted
cumulative gain

Social
networks

(David Nuñez-
Gonzalez, Graña, &
Apolloni, 2015)

Trust prediction system
based on reputation
features

Epinions, and
Wikipedia

Average accuracy,
recall, and
precision

Social
networks

(Yu & Huang, 2016)

QoS prediction approach
based on time and
location-aware
collaborative filtering

WSDream QoS
dataset

Mean absolute
error, and
normalized mean
absolute error

Web
services

(Xu, Yin, Deng, N.
Xiong, & Huang,
2016)

An ensemble model for
context-aware QoS
prediction

Mean absolute
error, and root
mean squared
error

(Wu, Yue, Li, Zhang,
& Hsu, 2017)

QoS prediction using
context-sensitive matrix
factorization

Cloud
services

(Su, Xiao, Liu, Zhang,
& Zhang, 2017)

Trust-Aware QoS
Prediction approach
(TAP)

WSDream QoS
dataset

Mean absolute
error, and
normalized mean
absolute error

Web service
recommend
ation

(Hui Fang, Guo, &
Zhang, 2015)

Trust prediction
framework – logistic
regression

Epinions, FilmTrust,
and Flixster

Root mean square
error and mean
absolute error

Recommen
der systems

4

(Luo, Lv, Li, & Chen,
2015)

 Adaptive dynamic
programming

 Fuzzy neural
networks

WSDream QoS
dataset

Mean absolute
error and mean
absolute
percentage error

Cloud
services

(Mao et al., 2017) PSO driven neural
networks

QWS dataset
Prediction
precision

Cloud
services

Further, researchers have extensively studied various statistical and machine learning techniques

(Artificial Neural Networks (ANN), Bayesian networks, evidential reasoning, fuzzy, game theory, etc.) for trust

prediction (Fu et al., 2008; Mashinchi et al., 2011; Yahyaoui, 2012). Among these, ANN and its variants like Back

Propagation Neural Network (BPNN), Feedforward Neural Network (FNN), Convolutional Neural Network

(CNN) etc. have proven itself in trust value prediction due to its self-learning ability in modelling complex and

arbitrary relationships among the QoS attributes and their trust values in a cloud service selection model (Han

& Cho, 2005; Mohanty et al., 2010; M. R. G. Raman, Somu, Kirthivasan, & Sriram, 2017). However, the classical

neural network architectures suffer from few intrinsic issues such as (i) identification of optimal connection

weights and learning rate, (ii) network stability, (iii) overfitting, and (iv) training time when applied to massive,

online, and ill-conditioned dataset (Kuremoto, Kimura, Kobayashi, & Obayashi, 2014). In order to overcome

these issues, D.F.Specht proposed Probabilistic Neural Network (PNN), a feedforward neural network derived

from a statistical algorithm named Kernel Fischer discriminant analysis and Bayesian network (D. F. Specht,

1990). The independent nature of PNN with respect to the weighting factor and training time makes PNN, an

attractive model for various classification and pattern recognition problems in the field of bioinformatics,

network security, image processing, etc. In the basic version of PNN, the mixing coefficients and the common

variance of the kernel functions were computed from the entire set of training samples (Sivakumar & Kannan,

2009). However, in a real-world scenario, the data (QoS values) obtained from multiple heterogeneous data

sources which are massive and ill-conditioned in nature affect the performance of PNN in terms of training time

and prediction accuracy. This emphasizes the need to employ a set of kernel functions to process the real-time

data (QoS values) obtained from multiple sources without compromising the performance of PNN.

Hence, in this work, we present Hypergraph Coarsening based Robust Heteroscedastic PNN (HC-

RHRPNN), an enhanced version of HRPNN for trust prediction in cloud environments. The novelty of HC-

RHRPNN lies in two modules, namely (i) Pruning: Multi-level hypergraph coarsening by maximum edge

matching was employed for the identification of informative samples to minimize the training time and

enhance the performance of the learning model, and (ii) Training: The informative samples identified by the

pruning module were used for training HRPNN to guarantee high prediction rate. The effectiveness of HC-

RHRPNN was evaluated with extensive experiments on the Quality of Web Service (QWS), a public real-time

QoS dataset in terms of classifier accuracy, precision, recall and F-Score (Al-Masri & Mahmoud, 2007).

5

The rest of the paper is organized as follows. Section 2 provides an insight into basic terminologies of

trust prediction, PNN, and hypergraph. Section 3 introduces HC-RHRPNN, a multilevel hypergraph coarsening

based probabilistic neural network for trust prediction in cloud environments. Section 4 discusses the

performance evaluation of HC-RHRPNN over the existing classifiers in terms of various quality metrics. Section

5 concludes the paper.

2. Materials and Methods

2.1 Basic Definitions

Definition 2.1.1 (QoS Attributes): Consider ′𝑚′ number of Cloud Service Providers (CSPs), 𝐶𝑆𝑃𝑖 =

(𝐶𝑆𝑃1, 𝐶𝑆𝑃2, … , 𝐶𝑆𝑃𝑚) that provides various cloud services to a diverse set of cloud users. The QoS attributes of

the CSPs are represented by an 𝑛 tuple vector (CSMIC-SMI QoS attribute) 𝑄𝑖𝑗 = {𝑄𝑖1, 𝑄𝑖2, . . . , 𝑄𝑚𝑛}, ∀𝑗 =

{1,2, . . . , 𝑛}.

Definition 2.1.2 (Trust Rate): Trust rate, a comprehensive metric to evaluate the trustworthiness of a CSP

based on the performance of 𝑛 QoS attributes. The trust rate of the CSPs is represented by 𝑇𝑉𝑖 =

(𝑇𝑉1, 𝑇𝑉2, … , 𝑇𝑉𝑚). The complete set of QoS and trust record of each CSP is represented as two tuple vector

𝑄𝑅𝑖 = < (𝑄𝑖𝑗), (𝑇𝑉𝑖) >= {𝑄𝑖1, 𝑄𝑖2, . . . , 𝑄𝑚𝑛 , 𝑇𝑉𝑖}, ∀𝑗 = {1,2, . . . , 𝑛}.

Definition 2.1.3 (Trust Rate Dataset): For a set of QoS records 𝑄 = 𝑄𝑅𝑖, each sample (CSPs) in the subset

𝑄𝑇𝑟𝑎𝑖𝑛 ⊂ 𝑄 has a complete record i.e. the trust rate is evaluated for each CSP in 𝑄𝑇𝑟𝑎𝑖𝑛. The remaining samples

(𝑄 − 𝑄𝑇𝑟𝑎𝑖𝑛) with the undetermined trust rate were represented as 𝑄𝑇𝑒𝑠𝑡. The trust rate dataset is represented

as a matrix [TD]𝑚𝑋𝑛, where each CSP and corresponding QoS attributes along with its trust value is represented

as rows and columns respectively.

Definition 2.1.4 (Trust Rate Prediction Problem): Given a training dataset (𝑄𝑇𝑟𝑎𝑖𝑛) with the QoS values and

trust rate for each sample, the prediction model should provide the trust rate for each CSP in the 𝑄𝑇𝑒𝑠𝑡 based

on the experience gained from the QoS and trust values in 𝑄𝑇𝑟𝑎𝑖𝑛.

2.2 Probabilistic Neural Network

Probabilistic Neural Network (PNN) is a supervised, multi-layer neural network model which maps

the input patterns to the output patterns in a single pass through the application of the principle of statistics

(D. Specht, 1988). Unlike traditional neural network, PNN is relatively faster and has better generalization

ability, since it based on both Parzen’s approach to estimate probability density function (PDF) of the random

variables and Bayesian strategy for decision making (D. Specht, 1990; D. F. Specht, 1990). Let us consider a

6

multi-class classification problem with ′𝑐′ number of classes and a training dataset DT = {xi, yi}𝑖=1
𝑛 , where 𝑛 is

the total number of training samples represented by a ′𝑚′ tuple vector (′𝑚′ dimensions). According to the

Bayes’ decision rule, a sample (𝑥) belongs to the class 𝐶𝑖, if 𝑝(𝐶𝑖)𝑝(𝑋|𝐶𝑖) ≥ 𝑝(𝐶𝑗)𝑝(𝑋|𝐶𝑗), ∀𝑖 = {1,2, . . . , 𝑐}

where, 𝑝(𝐶𝑖) is probability of the sample (𝑥) belongs to the class 𝐶𝑖, 𝑝(𝑋|𝐶𝑖) is the class conditional probability

density function of 𝑥 in the class 𝐶𝑖. Then, 𝑓𝑖(𝑋) = 𝑝(𝐶𝑖)𝑝(𝑋|𝐶𝑖), 𝑓𝑖(𝑋) is the Baye’s decision function and

𝑓𝑖(𝑋) > 𝑓𝑘(𝑋) 𝑓𝑜𝑟 𝑘 ≠ 𝑖, is the Baye’s decision rule. Further, the Baye’s decision rule can be rewritten for PNN

as ℎ𝑖𝑔𝑖(𝑋) > ℎ𝑘𝑔𝑘(𝑋) for 𝑘 ≠ 𝑖, where ℎ𝑖𝑔𝑖(𝑋) = 𝑓𝑖(𝑋), ℎ𝑖 is the probability of priori occurrence, 𝑔𝑖 is the

probability density function.

As shown in Figure 1, PNN consists of four layers, namely (i) Input layer with ‘𝑚’ neurons for

𝑚 −dimensional input feature vector, (ii) Pattern layer with ‘𝑛’ neurons for 𝑛 number of training samples, (iii)

Summation layer with ‘c’ neurons that corresponds to the number of classes, and (iv) Output layer with one

neuron for decision making. In this approach we have utilized the standardized Gaussian kernel function (Eqn.

(1)) as PDF to compute the output of the pattern layer (D. F. Specht, 1990).

𝜗𝑖𝑗(x) =
1

σ2∗(2π)d/2 [exp
[
(x−xij)∗(x−xij)

T

2σ2]
] (1)

Where,

 𝑥 = [𝑥1, 𝑥2, … 𝑥𝑚] is the test sample with 𝑚 dimension.

 𝑥𝑖𝑗 is the 𝑗𝑡ℎ training sample of the 𝑖𝑡ℎ class

 𝜎=[0,1] is the smoothening factor

Figure 1: Probabilistic Neural Network (PNN)

Hence, the conditional probability of 𝑥 belonging to the 𝑖𝑡ℎ class, which is the output of the summation

layer is computed using Eqn. (2).

𝑃𝑖(𝑥) =
1

𝑁𝑖
(∑ 𝜗𝑖𝑗(x)

𝑁
𝑗=1) (2)

Input Layer

Pattern Layer

Summation Layer

Output Layer

𝑥1

𝑥2

𝑥3

.

.
𝑥𝑚

7

where, 𝑁𝑖 is the number of samples in the 𝑖𝑡ℎ class.

Finally, the class of an unknown pattern 𝑥 is obtained in the output layer using Eqn. (3).

Class(x) =arg max
𝑖

(𝑃𝑖(𝑥)) (3)

2.3 Hypergraph

Over a decade, graphical representations have been widely used to model binary relationships among

the objects in various complex real-world problems. Formally, a graph 𝐺 = (𝑣, 𝑒) is an ordered pair of finite set

of vertices (𝑣) and the interrelationships among the objects (𝑒) (Gauthama Raman, Kirthivasan, & Shankar

Sriram, 2017). However, in a real-world scenario, it is difficult to model multiple relationships (n-ary) among

the objects using traditional graph theory. Hypergraph, a mathematical framework and a generalization of

conventional graph theory expresses higher order relations among the objects in a more elegant manner

(topology and geometric metrics) (Berge & Minieka, 1973). As a generic data representation framework,

hypergraph along with its exciting properties (Helly, Vertex Linearity, Minimal transversal, hyper clique etc.)

make the researchers in various domains to realize its benefits in terms of minimal time complexity (Gauthama

Raman, Kirthivasan, et al., 2017; Gauthama Raman, Somu, Kirthivasan, Liscano, & Shankar Sriram, 2017; M.

Raman, Kannan, & Pal, 2016; M. R. G. Raman et al., 2017; Somu, Kirthivasan, & Shankar, 2017; Somu,

Kirthivasan, & Sriram, 2017; Somu, Raman, Kirthivasan, & Sriram, 2016). This section discusses some basic

definitions of the hypergraph and its properties for dimensionality reduction.

Definition 2.3.1: (Hypergraph) A hypergraph is defined as ℋ = {𝒱, ℰ}, where 𝒱 = {𝓋1, 𝓋2, … , 𝓋𝑚} is the finite

set of vertices and ℰ = {𝑒1, 𝑒2, . . . , 𝑒𝑛} represent the hyperedges such that 𝑒𝑖 ⊆ 𝒱, ∀𝑖 = {1,2, . . . , 𝑛} (Berge &

Minieka, 1973). Figure 2 represents the hypergraph structure with 10 vertices (𝒱 = {𝓋1, 𝓋2, … , 𝓋10}) and 4

hyperedges (ℰ = {𝑒1, 𝑒2, 𝑒3, 𝑒4}); 𝑒1 = {𝓋1, 𝓋6, 𝓋9, 𝓋10}; 𝑒2 = {𝓋6, 𝓋1, 𝓋3, 𝓋2}; 𝑒3 = {𝓋10, 𝓋5, 𝓋2, 𝓋6}; 𝑒4 =

{𝓋8, 𝓋4, 𝓋7, 𝓋5, 𝓋10}

Figure 2: Hypergraph Structure

𝓋7

𝓋4

𝓋8

𝓋5

𝓋10

𝓋6

𝓋2 𝓋3

𝓋1

𝓋9

𝒆𝟒

𝒆𝟑
𝒆𝟐

𝒆𝟏

8

Definition 2.3.2: (Cardinality) Let ℋ = {𝒱, ℰ} be a hypergraph, for each vertex 𝑎 ∈ 𝒱, the star in ℋ denoted

by ℋ(𝑎), corresponds to the set of hyperedges that contains 𝑎. The degree of 𝑎 is the cardinality of ℋ(𝑎)

(Berge & Minieka, 1973). Figure 3 depicts the hypergraph representation model with 7 vertices

(𝒱 = {𝓋1, 𝓋2, … ,𝓋7}), and 5 hyperedges (ℰ = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}); the star centered on vertex 𝓋7 is ℋ(𝓋7) =

{𝑒3, 𝑒4} with the degree 2.

Figure 3: Hypergraph representation model

Definition 2.3.3: (Weighted Hypergraph) A weighted hypergraph is represented as ℋ𝒘 = {𝒱, ℰ,𝒘} which

consists of positive number 𝒘(𝑒) associated with each hyperedge 𝑒 ∈ ℰ known as weight of the hyperedge. A

hyperedge 𝑒 is said to be incident with vertex 𝓋, when 𝓋 belongs to 𝑒. In general, any hypergraph (ℋ) (Figure

4(a)) can be represented as an incident matrix 𝐼ℋ = |𝒱| 𝑥|ℰ| using Eqn. (4) (Figure 4(b)) (Berge & Minieka,

1973).

ℋ(𝓋, 𝑒) = {
1, 𝑖𝑓 𝓋 ∈ 𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

The degree of each vertex is computed based on 𝐼ℋ (Eqn. (5)).

𝐷𝓋 = ∑ 𝒘(𝑒)ℋ(𝓋, 𝑒){𝑒∈ℰ} (5)

Figure 4: (a) Hypergraph; (b) Corresponding Incident matrix (ℐℋ)

𝓋1

𝓋2

𝓋5

𝓋4

𝓋6

𝓋7

𝓋3

𝒆𝟏

𝒆𝟐

𝒆𝟑

𝒆𝟒 𝒆𝟓

𝓋5

𝓋2

𝓋3 𝓋4
𝓋1

𝒆𝟏

𝒆𝟐

𝒆𝟑 ℐℋ =
1 1 0 0 0
0 1 1 0 0
0 0 1 1 1

9

3. Proposed Hypergraph based Robust Heteroscedastic PNN for Trust prediction

In this section, we discuss the proposed Hypergraph-based Robust Heteroscedastic PNN (HC-

RHRPNN) for trust prediction in cloud environments. Initially, we discuss the overall working of HC-RHRPNN

followed by the description of two major modules, namely (i) Pruning and (ii) Prediction.

3.1 HC-RHRPNN: Hypergraph based Robust Heteroscedastic PNN

As in Figure 5, HC-RHRPNN comprises of three modules, namely (i) Preprocessing, (ii) Pruning, and

(iii) Prediction.

QWS Dataset

Normalization

Training Dataset

(𝑫𝑻𝒓𝒂𝒊𝒏)
Testing Dataset

(𝑫𝑻𝒆𝒔𝒕)

Representation of 𝑫𝑻𝒓𝒂𝒊𝒏 as a

Complete Weighted Graph (𝑪𝑮𝒓𝒂𝒑𝒉)

Construction of a Directed

Graph (𝑫𝑮𝒓𝒂𝒑𝒉)

Hypergraph Representation

of 𝑫𝑮𝒓𝒂𝒑𝒉

Application of Multilevel

Hypergraph Coarsening Technique
Prediction of Unknown

Class using Eqn. (9)

 Classification Accuracy Recall F - Score Precision

Validation Measures

Testing Samples

Pruning Phase
Compute weights (𝑾), centre (𝑪),

variance (𝝈), Mixing coefficient

(𝜷) using Eqn. (10) – (13)

Estimate the Probability Density

Function using Eqn. (7)

Compute Class Conditional

Probability Density Function

using Eqn. (8)

Informative Samples

Robust Heteroscedastic Probabilistic

Neural Network (RHRPNN)

Prediction Phase

10

Figure 5: Hypergraph Coarsening based Heteroscedastic Probabilistic Neural Network (HC-

RHRPNN)

In the first module (preprocessing), various preprocessing techniques like (i) data normalization, (ii)

analysis of input and its corresponding output vectors, and (iii) designing the topological structure of HRPNN

i.e. identification of number of units (neurons) in input, pattern, and summation layers, etc. were carried out.

The detailed explanation of each preprocessing technique is given in section 4. Further, the given input dataset

(InputData) with Sn samples is divided into training (DTrain) and testing dataset (DTest) in the ratio of 80:20

using random sampling without replacement technique. The second module (pruning) is to minimize the size

of the training dataset (DTrain) through the identification of informative samples thereby the computational

overload of the subsequent prediction module is minimized.

Hence, we attempt to construct a Hypergraph structure through inducing 𝑛 −ary relationship among

the samples, for the identification of minimal set of informative samples through the recursive application of

hypergraph coarsening technique. Finally, in the prediction module we train the RHRPNN, using the training

patterns identified from the pruning module to compute the optimal values of kernel parameters and weights

for the effective prediction of trust values of cloud service providers.

3.1.1 Pruning module

 The aim of the pruning module (dimensionality reduction) is to identify the most significant i.e.

informative samples in the training data, thereby improving the performance of the learning model by ensuring

reliability and correctness of the input dataset. Mathematically, if training dataset 𝐷𝑇𝑟𝑎𝑖𝑛 = {𝑥1, 𝑥2. . 𝑥𝑛} ∈

ℝ𝑛 𝑥 𝑓𝑛 consist 𝑛 number of samples represented by 𝑓𝑛 feature vector, the dimensionality reduction process will

identify a smaller dataset (𝐷𝑃𝑟𝑢𝑛𝑒 ∈ ℝ𝑟 𝑥 𝑓𝑛) which is a subset of 𝐷𝑇𝑟𝑎𝑖𝑛 such that 𝑟 ≪ 𝑛 with minimal

information loss. This module consists of two major phases, namely (i) Construction of hypergraph using 𝐷𝑇𝑟𝑎𝑖𝑛

(ii) Application of hypergraph coarsening. In the initial phase, we construct a complete weighted graph (𝐶𝐺𝑟𝑎𝑝ℎ)

from the given 𝐷𝑇𝑟𝑎𝑖𝑛 where its vertices corresponds to the samples and the edges between the samples

(vertices) are weighted using Euclidean distance metric. The Euclidean distance (𝐸𝑑) metric for given sample

(𝑥, 𝑦), represented by a 𝑚 tuple feature vector is computed using Eqn. (6).

𝐸𝑑(𝑥, 𝑦) = ((𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 + ⋯+ (𝑥𝑚 − 𝑦𝑚)2)1/2 (6)

 For example, as illustrated in Table 2, we have considered training dataset (𝐷𝑇𝑟𝑎𝑖𝑛) with 10 samples

(𝐷𝑇𝑟𝑎𝑖𝑛 = {𝑥1, 𝑥2, … , 𝑥10}) which is represented by 10 tuple feature vector. Table 3 presents the normalized

form of 𝐷𝑇𝑟𝑎𝑖𝑛. A weighted matrix [𝐖] is computed using the normalized form of 𝐷𝑇𝑟𝑎𝑖𝑛 (Table 4) through the

11

application of Euclidean distance metric among the samples. A complete weighted graph (𝐶𝐺𝑟𝑎𝑝ℎ)

representation of [𝐖] is reported in Figure 6. From definition 2.2.1, it is evident that hypergraph exhibits 𝑛-

ary relations among the variables. Hence, it is necessary to induce multiple relationships among the samples

for the formulation of hypergraph. Therefore, a directed graph (𝐷𝐺𝑟𝑎𝑝ℎ) is obtained from 𝐶𝐺𝑟𝑎𝑝ℎ by considering

the 𝑘 −nearest neighbour of each vertex (Figure 7) (Kang, 2011). For every vertex 𝑥𝑖, 𝑖 = (1,2, . . . , 𝑛) we select

a similar vertex or a nearest vertex based on the weighted edges. For example, the nearest neighbors of vertex

𝑥1 in 𝐶𝐺𝑟𝑎𝑝ℎ (Figure 6) are 𝑥2 and 𝑥3 which is evident from Table 4 (𝒅(𝒙𝟏,𝒙𝟐) = 𝟎. 𝟎𝟗 < 𝒅(𝒙𝟏,𝒙𝟑) = 𝟎. 𝟏𝟒 <

 𝑑(𝑥1,𝑥4) = 0.15,≪ 𝑑(𝑥1,𝑥5) = 0.28 = 𝑑(𝑥1,𝑥7) = 0.28 < 𝑑(𝑥1,𝑥6) = 0.33 < 𝑑(𝑥1,𝑥8) = 0.39 ≪ 𝑑(𝑥1,𝑥9) = 0.58 <

𝑑(𝑥1,𝑥10) = 0.64). Each vertex (samples) in 𝐷𝐺𝑟𝑎𝑝ℎ (Figure 7(a)) consists of multiple directed edges from other

vertices implying an 𝑛 −ary relationship among the vertices, therefore 𝐷𝐺𝑟𝑎𝑝ℎ can be effectively represented

as a hypergraph (ℋ = {𝒱, ℰ}) as shown in Figure 8. In simpler terms, the construction of hypergraph (Figure

8) from the 𝐷𝐺𝑟𝑎𝑝ℎ (Figure 7(a)) and its corresponding vertex-edge representation (Figure 7(b)) is based on

the multiple directed edges i.e., multiple relations among the vertices

((𝑥1, 𝑥3, 𝑥4, 𝑥2), (𝑥9, 𝑥10, 𝑥8), (𝑥7, 𝑥6, 𝑥5), (𝑥8, 𝑥7, 𝑥6)).

Table 2: Sample Dataset

Samples 𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕 𝑭𝟖 𝑭𝟗 𝑭𝟏𝟎

𝒙𝟏 45 83 27.2 50 97.4 89 91 43 58 100
𝒙𝟐 71.75 100 14.6 88 85.5 78 80 64.42 86 93
𝒙𝟑 125.5 100 16.4 80 89.2 78 84 125 93 88
𝒙𝟒 126.77 100 3.2 86 81.8 78 80 119.44 95 81
𝒙𝟓 261 100 1.8 71 58.1 78 80 229.5 94 71
𝒙𝟔 307.5 100 0.7 71 58.4 78 77 301 94 69
𝒙𝟕 176 56 8 33 56.7 89 91 172 7 55
𝒙𝟖 370.71 60 4.2 51 64.1 78 77 221.98 7 52
𝒙𝟗 1126.25 67 3.5 33 59.4 78 72 1107 1 45
𝒙𝟏𝟎 1680.16 16 2 7 12.5 89 72 1667.22 11 30

Table 3: Normalized Sample Dataset

Samples 𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕 𝑭𝟖 𝑭𝟗 𝑭𝟏𝟎

𝒙𝟏 0.07 0.12 0.04 0.07 0.14 0.13 0.13 0.06 0.08 0.15
𝒙𝟐 0.09 0.13 0.02 0.12 0.11 0.10 0.11 0.08 0.11 0.12
𝒙𝟑 0.14 0.11 0.02 0.09 0.10 0.09 0.10 0.14 0.11 0.10
𝒙𝟒 0.15 0.12 0.00 0.10 0.10 0.09 0.09 0.14 0.11 0.10
𝒙𝟓 0.25 0.10 0.00 0.07 0.06 0.07 0.08 0.22 0.09 0.07
𝒙𝟔 0.27 0.09 0.00 0.06 0.05 0.07 0.07 0.26 0.08 0.06
𝒙𝟕 0.24 0.08 0.01 0.04 0.08 0.12 0.12 0.23 0.01 0.07
𝒙𝟖 0.38 0.06 0.00 0.05 0.07 0.08 0.08 0.23 0.01 0.05
𝒙𝟗 0.43 0.03 0.00 0.01 0.02 0.03 0.03 0.43 0.00 0.02
𝒙𝟏𝟎 0.47 0.00 0.00 0.00 0.00 0.02 0.02 0.46 0.00 0.01

12

[

0 0.09 0.14 0.15 0.28 0.33 0.28 0.39 0.58 0.64
0.09 0 0.09 0.09 0.23 0.28 0.25 0.36 0.55 0.60
0.14 0.09 0 0.02 0.15 0.19 0.18 0.28 0.46 0.52
0.15 0.09 0.02 0.00 0.15 0.19 0.18 0.28 0.46 0.52
0.28 0.23 0.15 0.15 0.00 0.05 0.11 0.16 0.32 0.37
0.33 0.28 0.19 0.19 0.05 0.00 0.12 0.14 0.27 0.33
0.28 0.25 0.18 0.18 0.11 0.12 0.00 0.15 0.32 0.38
0.39 0.36 0.28 0.28 0.16 0.14 0.15 0.00 0.23 0.29
0.58 0.55 0.46 0.46 0.32 0.27 0.32 0.23 0.00 0.06
0.64 0.60 0.52 0.52 0.37 0.33 0.38 0.29 0.06 0.00]

Table 4: Weighted Matrix

Figure 6: Complete Graph (𝐶𝐺𝑟𝑎𝑝ℎ)

Figure 7: Directed Graph (𝐷𝐺𝑟𝑎𝑝ℎ) and its Vertex-Edge Representation

𝒙𝟏
𝒙𝟐
𝒙𝟑
𝒙𝟒
𝒙𝟓
𝒙𝟔
𝒙𝟕
𝒙𝟖
𝒙𝟗

𝒙𝟏𝟎

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝒙𝟗 𝒙𝟏𝟎

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟏𝟎

𝒙𝟖
𝒙𝟕

𝒙𝟓

𝒙𝟗

𝒙𝟔

𝒙𝟏

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

𝒙𝟔 𝒙𝟕

𝒙𝟖

𝒙𝟗 𝒙𝟏𝟎

13

To further enhance the understandability on the construction of hypergraph let us consider the

vertices 𝑥1, 𝑥3, 𝑥4, and 𝑥2 in Figure 7(a). Among these vertices, since 𝑥3, 𝑥4, and 𝑥2 have multiple directed edges

i.e., in degree and out degree of the vertices (𝑥2
𝐼𝐷 = 3; 𝑥3

𝐼𝐷 = 3; 𝑥2
𝐼𝐷 = 2; 𝑥2

𝑂𝐷 = 3; 𝑥3
𝑂𝐷 = 2; 𝑥4

𝑂𝐷 = 2) are greater

than or equal to 2, they constitute to the hyperedge (𝑒3) in the hypergraph (ℋ) (Table 5). The vertex 𝑥1 does

not constitute the hyperedge (𝑒3) since its in degree is 1 (𝑥1
𝐼𝐷 = 1) and out degree is 2 (𝑥1

𝑂𝐷 = 2). In a more

similar way, the entire hypergraph structure given in Figure 8 was constructed based on the multiple directed

edges among the vertices in the 𝐷𝐺𝑟𝑎𝑝ℎ .

Table 5: In Degree and Out Degree of 𝐷𝐺𝑟𝑎𝑝ℎ

Vertex Indegree (𝑥𝑖
𝐼𝐷) Outdegree (𝑥𝑖

𝑂𝐷)

𝑥1 1 2

𝑥2 3 3

𝑥3 3 2

𝑥4 2 2

𝑥5 2 2

𝑥6 3 2

𝑥7 3 2

𝑥8 2 2

𝑥9 1 2

𝑥10 1 2

Figure 8: Hypergraph Representation of 𝐷𝐺𝑟𝑎𝑝ℎ

On to the subsequent phase, the recursive application of hypergraph coarsening was carried out to

remove redundancies from the training dataset. During this process, we merge the pair of vertices in a recursive

manner which results in a smaller hypergraph (ℋ̇ = {�̇�, ℰ̇}) such that |𝒱|̇ ≪ |𝒱| and |ℰ|̇ ≪ |ℰ|. The vertices of

𝒙𝟔

𝒙𝟏

𝒙𝟐

𝒙𝟑
𝒙𝟒

𝒙𝟓

𝒙𝟕

𝒙𝟖
𝒙𝟏𝟎

𝒙𝟗

𝒆𝟏
𝒆𝟐

𝒆𝟑
𝒆𝟒

𝒆𝟓

𝒆𝟔 𝒆𝟕

𝒆𝟖

𝒆𝟗
𝒆𝟏𝟎

14

the hypergraph (ℋ) were merged using the maximum weight matching problem, which identifies the perfect

match for each vertex (𝒱) that maximizes the sum of the edge weight of the vertex pairs (Çatalyürek & Aykanat,

1999). For example, consider an incident matrix (𝐼ℋ) representation of hypergraph (ℋ) according to the

Definition 2.2.3 in Subsection 2.2 (Figure 4). The weight of the vertices 𝑥1 and 𝑥10 is zero, since they do not have

any common hyperedges. Similarly, for 𝑥5 and 𝑥6 edge weight is two, since they are contained in hyperedges 𝑒5

and 𝑒7. Throughout this process, greedy search algorithm was used to explore the vertices in a random manner

and the vertices with maximum weight were merged with its unmatched neighbors. This process is repeated

until all the vertices in the hypergraph were matched (Haw-ren Fang & Yousef Saad, 2011). From the given

illustration, it is clear that the samples 𝑥1 and 𝑥9 cannot be merged with other vertices, since they have least

interaction with other vertices which proves that they are redundant. Finally, the coarse vertex set consists of

matched vertex pairs that correspond to the optimal number of informative samples (𝒱𝐶𝑜𝑎𝑟𝑠𝑒 =

{𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑥7, 𝑥10}).

Algorithm 1: Hypergraph based Robust Heteroscedastic Probabilistic Neural Network (HG-
RHRPNN)

Input
 𝐼𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎 , 𝑆𝑛 , 𝑓𝑛 , 𝑐
Output
 𝐶𝑇𝑒𝑠𝑡

𝑯𝑮 − 𝑹𝑯𝑷𝑵𝑵()
1 Begin

*** Preprocessing Phase ***
2 Generate Training (𝐷𝑇𝑟𝑎𝑖𝑛), Testing (𝐷𝑇𝑒𝑠𝑡) dataset using 𝐼𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎

*** Pruning Phase ***
3 Construct a complete weighted graph (𝐶𝐺𝑟𝑎𝑝ℎ) using 𝐷𝑇𝑟𝑎𝑖𝑛 where samples as vertices and edges

weighted using Eqn. (9)
4 Generate a Directed graph (𝐷𝐺𝑟𝑎𝑝ℎ) by considering the closest neighbours of each vertex in 𝐶𝐺𝑟𝑎𝑝ℎ

5 Represent the 𝐷𝐺𝑟𝑎𝑝ℎ as hypergraph (ℋ = {𝒱, ℰ}) and compute the incident matrix (𝐼ℋ) using definition

for ℋ

// Multilevel hypergraph coarsening based Dimensionality reduction //

6 𝐷𝑃𝑟𝑢𝑛𝑒 ← {}
7 While (𝑆 ≠ {}) begin
8 Randomly select a vertex 𝑗 ∈ 𝑆
9 𝑆 ← 𝑆 − {𝑗}
10 for each 𝑔 ← 1 to n begin
11 𝑄[𝑔] ← 0
12 end
13 for each 𝑖 such that 𝐼ℋ[𝑖, 𝑗] ≠ 0 begin
14 for each g such that 𝐼ℋ[𝑖, 𝑔] ≠ 0 begin
15 𝑄[𝑔] ← 𝑄[𝑔] + 1
16 end for
17 end for
18 𝑖 ← argmax{𝑄[𝑔]} : 𝑔 ∈ 𝑆
19 if (𝑄[𝑔] ≠ 0) begin

15

20 Add 𝑖𝑡ℎ vertex with its unmatched nearest neighbour 𝑗𝑡ℎ vertex in 𝐷𝑃𝑟𝑢𝑛𝑒
21 𝑆 ← 𝑆 − {𝑖}
22 end
23 end while
24 return 𝐷𝑃𝑟𝑢𝑛𝑒

*** Prediction Phase ***
25 for each class c begin
26 for each sample in c begin
27 Estimate the weights (𝑊), centre (𝐶), variance (𝜎), Mixing coefficient (𝛽) using Eqn. (10-18)
28 end
29 end

// Probability Density Estimation //
30 for each 𝑖 ← 1 to c begin
31 for each 𝑗 ← 1 to n begin

32 𝜗𝑖𝑗(x) =
1

(2𝜋𝜎𝑖,𝑗)
𝑑/2 exp (

−||𝑥−𝐶𝑖,𝑗||
2

2𝜎𝑖,𝑗
2)

33 end
34 end

// Class Conditional Probability Density Estimation //

35 for each 𝑖 ← 1 to c begin
36 for each 𝑗 ← 1 to n begin

37 𝑃𝑗(𝑥) = ∑ 𝛽𝑖𝑗 𝜗𝑖𝑗(x)
𝑅𝑗

𝑖=1

38 end
39 end

// Class prediction //
40 for each 𝑗 ← 1 to c begin
41 𝐶𝑇𝑒𝑠𝑡 ← argmax

𝑗
(𝛼𝑗𝑃𝑗(𝑥))

42 end

The computational complexity of the proposed hypergraph-based dimensionality reduction technique

was found to be 𝑂(𝑛), since the main loop (Line 7-23) in the Algorithm 1 runs for 𝑛 times (worst case). Since,

the complexity incurred during the construction of hypergraph is negligible when compared to the complexity

of the hypergraph coarsening, we have not considered while deriving the overall complexity of the hypergraph-

based dimensionality reduction technique. Recently in 2017, (Bostani & Sheikhan, 2017) proposed a similar

work where they have utilized social network concept for the identification of informative samples from a

directed graph with the complexity of 𝑂(𝑛𝑚 + 𝑛3 𝑙𝑜𝑔𝑛) where 𝑛 and 𝑚 are the number of samples and edges

respectively. It is obvious that hypergraph based pruning module has least complexity (𝑂(𝑛) ⋘

𝑂(𝑛𝑚 + 𝑛3 𝑙𝑜𝑔𝑛)) than the existing one. In addition to that, since the coarsening process operates over the

sparse matrix (maximum elements are zero) the computational complexity of hypergraph based

dimensionality reduction technique will be minimum compared with existing traditional dimensional

reduction technique like principle component analysis (PCA), Independent component analysis (ICA)

(Çatalyürek & Aykanat, 1999) etc.

16

3.1.2 Prediction module

The performance of any learning model can be assessed based on its degree of accuracy in identifying

similar data from a collection of unknown input patterns. As a learning model, Artificial Neural Network (ANN)

plays a vital role in many classification and prediction problems, since it has the ability to learn from the

training dataset and a better generalization ability (M. R. G. Raman et al., 2017). In order to enhance its

prediction accuracy, stability etc. various research works were carried out towards the design of its variants

like Radial Basis Neural Network (RBNN), Adaptive Resonance Theory Network (ARTN), etc. One such variant

is Probabilistic Neural Network (PNN), which is based on the concept of competitive learning i.e., “winner takes

all attitude” (D. F. Specht, 1990). It combines the estimated conditional probabilities using the non – parametric

estimator (Parzen window) to obtain the probability distribution function (PDF) for predicting the class of the

unknown sample. Generally, PNN does not possess any feedback path like other traditional neural network

architectures, rather it integrates kernel based estimator and radial basis function network for faster learning.

Figure 9: Variable Center and Variance in RHRPNN

The basic version of PNN utilizes all the samples in the dataset for the estimation of center or mean

vector of the Gaussian kernel function which resulted in the notable increase in its classification ability.

However, the detrimental effect of large number of training samples resulted in “Over training”, therefore it is

𝛍𝟏,𝛝𝟏

𝝁𝟐,𝝑𝟐

𝝁𝟑,𝝑𝟑

𝛍𝟒,𝛝𝟒

𝝁𝟓,𝝑𝟓

𝛍𝟔,𝛝𝟔

𝛍𝟖,𝛝𝟖

𝛍𝟕,𝛝𝟕

Class A
C
Class B
C
Class C
C
Class D
C

17

desirable to utilize minimal number of kernel functions without comprising the classification accuracy. In the

year 1994, Streit et al. employed Expectation Maximization (EM) algorithm to estimate the mixture of kernel

functions i.e., training the two variants of PNN, namely (i) Homoscedastic PNN - Different centres with common

variance and (ii) Heteroscedastic PNN (HRPNN) - Difference centres with difference variance (Figure 9).

Figure 10: HRPNN Architecture

Fundamentally, the architecture of HRPNN is similar to the basic version of PNN however, the major

differences can be observed in the exemplar layer and the output layer. The four-layered feed forward HRPNN

is given in Figure 10. The first layer (Input layer) distributes the received input patterns to the second layer

(Pattern layer) which consists of ‘n’ number of neurons divided into ‘c’ groups (number of classes). The

Gaussian kernel function of the 𝑖𝑡ℎ node of the 𝑗𝑡ℎ class is defined in Eqn. (7) (Venkatesh & Gopal, 2011).

𝜗𝑖𝑗(x) =
1

(2𝜋𝜎𝑖,𝑗)
𝑑/2 exp (

−||𝑥−𝑐𝑖,𝑗||
2

2𝜎𝑖,𝑗
2

) (7)

where, 𝐶 and 𝜎 are the mean vector and variance respectively.

Similarly, the third layer consists of ‘𝑐’ nodes to estimate the class conditional probability density

function (Eqn. (8)).

Input Layer Exemplar Layer Summation Layer Output Layer

𝒙𝟏

𝒙𝒓−𝒌

𝒙𝒓

.

.

.

.

.

.

𝜷𝒊
𝒋

𝑷𝒋(𝒙)

𝜶𝒋

𝒂𝒓𝒈𝒎𝒂𝒙(𝜶𝒋𝑷𝒋(𝒙))

18

𝑃𝑗(𝑥) = ∑ 𝛽𝑖𝑗 𝜗𝑖𝑗(x)
𝑛𝑗

𝑖=1
, 1 ≤ 𝑗 ≤ 𝑐 (8)

such that ∑ 𝛽𝑖𝑗

𝑐𝑗

𝑖=1
= 1,1 ≤ 𝑗 ≤ 𝑐 where, 𝑐𝑗 is the number of nodes in 𝑗𝑡ℎ class.

Finally, the decision layer (Output layer) predicts the class of the unknown input pattern using Eqn.

(9).

Class(x) = arg (max
1≤𝑗≤𝑐

(𝛼𝑗𝑃𝑗(𝑥))) (9)

where, 𝛼𝑗 is the class priori probability. Chattfield et al. presented robust heteroscedastic PNN

(RHRPNN) which utilizes the jack knife procedure (Statistical tool) for the estimation of model parameters like

center (𝐶𝑖,𝑗), variance (𝜎𝑖,𝑗), and weights (𝛽𝑖𝑗) and to overcome the numerical difficulties in traditional EM

algorithm during the estimation process while handling sparse dataset. During the estimation process, entire

training patterns were divided into ‘𝑐’ subsets, such that 𝐷𝑇𝑟𝑎𝑖𝑛 = {{𝑥𝑖,𝑗}𝑖=1

𝑅𝑗
}𝑗=1
𝑐 , where 𝑅𝑗 is the number of

samples in the 𝑗𝑡ℎ class and the impact of model parameters on each subset was observed. The two major steps

involved in the training process of RHRPNN are highlighted as follows (Yang et al., 2000), where �̂�𝑚,𝑖
(𝑡+1)

 and

�̂�𝑚,𝑖
2

|𝑡+1 are the jacknife estimates obtained from the 𝑐𝑚,𝑖 and 𝜎𝑚,𝑖 at the 𝑡𝑡ℎ step respectively.

(i) Weights computation at step 𝑡 is for 1 ≤ 𝑚 ≤ 𝑀𝑖, 1 ≤ 𝑛 ≤ 𝑅𝑖 , 1 ≤ 𝑖 ≤ 𝑐 (Eqn. (10) and Eqn.

(11))

𝑊𝑚,𝑖
(𝑡)

(𝑥𝑛,𝑖) =
𝛽𝑚,𝑖(𝜗𝑚,𝑖

(𝑡)
(𝑥𝑛,𝑖))

∑ 𝛽𝑖
𝑠𝑀𝑖

𝑠=1 𝑝𝑠
𝑖
(𝑡)

(𝑥𝑛
𝑖)

 (10)

where, 𝜗𝑚,𝑖
(𝑡)

(𝑥𝑛,𝑖) is computed using Eqn. (7).

(ii) Parameter updation for 1 ≤ 𝑚 ≤ 𝑀𝑖, 1 ≤ 𝑖 ≤ 𝑐 (Eqn. (11) – Eqn. (13))

�̂�𝑚,𝑖
(𝑡+1)

= 𝑅𝑖𝑐𝑚,𝑖
(𝑡+1)

−
𝑅𝑖−1

𝑅𝑖
∑ 𝑐𝑚,𝑖

(𝑡+1)
|−𝑗

𝑅𝑖
𝑗=1 (11)

where, 𝑐𝑚,𝑖
(𝑡+1)

=
∑ 𝑊𝑚,𝑖

𝑡𝑅𝑖
𝑛=1 (𝑥𝑛,𝑖)𝑥𝑛,𝑖

∑ 𝑊𝑚,𝑖
𝑡 (𝑥𝑛,𝑖)

𝑅𝑖
𝑛=1

; 𝑐𝑚.𝑖
(𝑡+1)

|−𝑗 =
∑ 𝑊𝑚,𝑖

𝑡𝑅𝑖
𝑛=1;𝑛≠𝑗

(𝑥𝑛,𝑖)𝑥𝑛,𝑖

∑ 𝑊𝑚,𝑖
𝑡 (𝑥𝑛,𝑖)

𝑅𝑖
𝑛=1

 ∀1 ≤ 𝑗 ≤ 𝑅𝑖

 Similarly,

�̂�𝑚,𝑖
2 |𝑡+1 = 𝑅𝑖𝜎𝑚,𝑖

2 |𝑡+1 −
𝑅𝑖−1

𝑅𝑖
∑ 𝜎𝑚,𝑖

2 |−𝑗
𝑡+1𝑅𝑖

𝑗=1 (12)

19

 Where, 𝜎𝑚,𝑖
2 |𝑡+1 =

∑ 𝑊𝑚,𝑖
𝑡𝑅𝑖

𝑛=1 (𝑥𝑛,𝑖)||𝑥𝑛,𝑖−𝑐�̂�,𝑖
(𝑡)

||
2

𝑑∑ 𝑊𝑚,𝑖
𝑡 (𝑥𝑛,𝑖)

𝑅𝑖
𝑛=1

; 𝜎𝑚,𝑖
2 |−𝑗

𝑡+1 =
∑ 𝑊𝑚,𝑖

𝑡𝑅𝑖
𝑛=1,𝑛≠𝑗 (𝑥𝑛,𝑖)||𝑥𝑛,𝑖−𝑐�̂�,𝑖

(𝑡)
||
2

𝑑∑ 𝑊𝑚,𝑖
𝑡 (𝑥𝑛,𝑖)

𝑅𝑖
𝑛=1

 ∀1 ≤ 𝑗 ≤ 𝑅𝑖

𝛽𝑚,𝑖
𝑡+1 =

1

𝑅𝑖
∑ 𝑊𝑚,𝑖

𝑡
(𝑥𝑛,𝑖)

𝑅𝑖
𝑛=1 (13)

4. Experimental Results and Analysis

4.1 Dataset Description

QWS, a public QoS dataset created and maintained by E. Al-Masri, and Q.H Mahmooud, University of

Guelph, Canada (Al-Masri & Mahmoud, 2007). This dataset has been extensively used in various research works

on QoS in service-oriented environments (web service, cloud computing, etc.). It consists of QoS records of 365

real web services collected using Web Service Crawler Engine (WSCE). Each QoS record consists of nine QWS

attributes like response time, availability, throughput, and so on (Table 6). Each service was tested over a

period of ten minutes for three successive days. The trust rate was evaluated using Web Service Relevancy

Function (WsRF) based on quality metrics (response time, availability, throughput, successability, reliability,

compliance, best practices, and latency). Each web service was classified into four levels, namely platinum (high

quality), gold, silver, and bronze (low quality) based on the overall rating provided by WsRF. The four levels of

service offering qualities were represented by numbers 1 to 4, respectively. The service classification (𝑇𝑀𝑃11)

is measured based on the overall ranking given by WsRF.

Table 6: QWS Trust Measure Parameters and Units

ID
Trust

Measure
Parameter

Description Units
Conditional/

Decisional
Attribute

𝑇𝑀𝑃1
Response
Time

Time taken to send a request and receive a
response

ms
Conditional

𝑇𝑀𝑃2 Availability
Number of successful invocations/total
invocations

% Conditional

𝑇𝑀𝑃3 Throughput
Total number of invocations for a given period of
time

Invokes/
s

Conditional

𝑇𝑀𝑃4 Successability
Number of response/number of request
messages

% Conditional

𝑇𝑀𝑃5 Reliability
Ratio of the number of error messages to total
messages

% Conditional

𝑇𝑀𝑃6 Compliance
The extent to which a WSDL document follows
WSDL documentation

% Conditional

𝑇𝑀𝑃7 Best Practices The extent to which a web service follows % Conditional

𝑇𝑀𝑃8 Latency
Time taken for the server to process a given
request

ms Conditional

𝑇𝑀𝑃9
Documentatio
n

Measure a documentation (i.e. description tags)
in WSDL

% Conditional

20

𝑇𝑀𝑃10 WSRF
Web service relevance function: a rank for web
service quality

% Conditional

𝑇𝑀𝑃11
Service
classification

Levels representing service offering qualities (1
through 4)

Classifie
r

Decisional

𝑇𝑀𝑃12 Service name Name of the web services None
Ignored

𝑇𝑀𝑃13 WSDL address
Location of the web service definition language
(WSDL) file on web

None

4.2 Experimental Setup

The proposed technique (HC-RHRPNN) was implemented using Python 3.6 on an INTEL® Core™ i5

processor @ 2.40 GHz system with 8 GB RAM running Windows 7 operating system. In addition, WEKA tool

and Matlab R2016b were used for validation purposes (Witten, Ian H., Eibe Frank, Mark A. Hall, 2016). The

entire set of experiments were divided into three phases, namely (i) Data pre-processing, (ii) Generation of

training and testing datasets, and (iii) Performance validation using various quality metrics.

4.2.1 Data Preprocessing

During the initial phase of the experiment, data pre-processing was used to transform the QWS public

dataset into a compatible format supported by the classifiers. In this phase, data normalization was carried out

to reduce the impact of the features with high value. Each feature in the sample is normalized such that all the

values lie in the range of [0,1]. In this study, we have applied Min-Max normalization technique on each sample

in the considered dataset (Eqn. 14).

 𝑓𝑎𝑏 =
𝑓𝑎𝑏−(𝑓𝑎𝑏)𝑀𝑖𝑛

(𝑓𝑎𝑏)𝑀𝑎𝑥−(𝑓𝑎𝑏)𝑀𝑖𝑛
; ∀ 𝑎 = (1,2, . . . , 𝑆); 𝑏 = (1,2, . . . , 𝑛) (14)

where,

𝑆 and 𝑛 - total number of samples and features in the dataset respectively

𝑓𝑀𝑖𝑛 and 𝑓𝑀𝑎𝑥 - minimum and maximum value of the feature in a sample.

4.2.2 Generation of Training and Testing Datasets

On to the subsequent phase, the training (𝐷𝑇𝑟𝑎𝑖𝑛) and testing (𝐷𝑇𝑒𝑠𝑡) dataset were generated using

random sampling without replacement technique. Finally, to show the predominance of HC-RHRPNN, it was

compared with the traditional classifiers like BayesNet, CART, Random Forest, and SVM & few versions of

neural network like PNN, BPNN, and MLPNN. The available packages in Weka tool and MatLab neural network

21

toolbox were used for the implementation of the existing classifiers. Further, the performance and effectiveness

of HC-RHRPNN over the existing classifiers were assessed using 10 fold cross validation based on the following

metrics.

(i) Classification Accuracy (𝑨𝒄𝒄): It represents the degree of correct predictions among all the

classes. The mathematical formulation of classification accuracy is given in Eqn. (15).

Accuracy (𝑨𝒄𝒄):
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (15)

(ii) Precision (𝑷𝒓𝒆𝒄): Precision or Positive Predictive Value (PPV) is the measure of the exactness of

the learning model (Eqn. (16)).

Precision (𝑷𝒓𝒆𝒄) :
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (16)

(iii) Recall (𝑹𝑪): Recall or True Positive Rate (TPR) is the measure of the completeness of the learning

model (Eqn. (17)).

Recall (𝑹𝑪):
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (17)

(iv) F-Score (𝑭𝑺): F-Score or F-Measure is the harmonic mean or the balance between the precision

(𝑃𝑟𝑒𝑐) and recall (𝑅𝐶) metric (Eqn. (18)).

F-Score (𝑭𝑺)=
2∗𝑃𝑟𝑒𝑐∗𝑅𝐶

𝑃𝑟𝑒𝑐+𝑅𝐶
 (18)

where, 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, and 𝐹𝑁 are true positive, false positive, true negative and false negative

respectively. To gain better understanding, for a binary classification problem (Class A and Class B),

𝑇𝑃, 𝐹𝑃, 𝑇𝑁, and 𝐹𝑁 can be defined as follows,

True Positive (𝑻𝑷): Measure of samples correctly classified class A as class A

True Negative (𝑻𝑵): Measure of samples correctly classified class B as class B

False Positive (𝑭𝑷): Measure of samples misclassified class A as class B

False Negative (𝑭𝑵): Measure of samples misclassified class B as class A

4.3 Results and Discussions

In this section, we briefly discuss various experimental and comparative analysis carried out to

demonstrate the performance of HC-RHRPNN over the classical classification algorithms and neural network

variants in terms of various quality metrics discussed in Section 4. The major motive behind the design of an

efficient trust prediction model is to achieve high prediction accuracy with minimal time complexity. The major

objective of this work is to improve the performance of HRPNN over the several neural network variants for

trust prediction problem. Initially, we prove the significance of pruning model by carrying out the experiments

under two scenarios, namely (i) Without pruning: classifiers trained with all samples and (ii) With pruning:

classifiers trained with the informative samples obtained from the pruning module (hypergraph coarsening),

in terms of classification accuracy for different ratio of training dataset. As reported in Table 7, it is clear that

HRPNN outperforms the existing classifiers in terms of classification accuracy under both the scenarios.

22

Further, except few exceptions, the performance of the existing classifiers and HRPNN increases with the

increase in the ratio of the training dataset. An important point to note is that the performance of the classifiers

increases when trained with the informative samples obtained from the proposed hypergraph coarsening

based pruning module. For example, the classification accuracy of SVM, a well-known classifier increases from

65.73%, 72.42%, 70.91%, and 70.87% (without pruning) to 72.17%, 75.33%, 74.21%, and 83.63% (with

pruning) respectively for different ratios of 𝐷𝑇𝑟𝑎𝑖𝑛. Another interesting fact is that the overwhelming

performance of HRPNN under both scenarios for all ratios of 𝐷𝑇𝑟𝑎𝑖𝑛 was due to the use of multiple Gaussian

kernel functions and their variance based on the characteristics of the dataset.

Table 7: Performance Validation - Classification Accuracy for Different Ratio of Training Dataset

S.No Classifiers

Without Pruning With Pruning

𝑫𝑻𝒓𝒂𝒊𝒏Ratio 𝑫𝑻𝒓𝒂𝒊𝒏Ratio

50% 60% 70% 80% 50% 60% 70% 80%

1 Bayes Net 55.30 55.07 54.28 61.02 57.83 58.62 58.72 72.53
2 SVM 65.73 72.42 70.91 70.87 72.17 75.33 74.21 83.63
3 CART 57.86 57.03 67.27 46.31 62.93 68.14 70.14 64.15
4 J48 40.89 47.13 50.02 57.82 43.87 51.86 52.50 68.49
5 C4.5 65.96 71.59 71.35 62.94 74.61 75.22 74.86 73.82
6 Random Forest 73.47 76.12 80.10 58.62 81.75 83.17 82.77 61.87
7 BPNN 76.10 81.60 82.07 72.18 83.83 84.62 85.60 81.76
8 MLPNN 78.33 82.23 81.02 78.92 86.11 85.91 86.71 85.62
9 PNN 75.40 82.07 82.97 62.87 84.82 85.61 85.10 86.11

10 RHRPNN 78.83 83.05 84.12 80.21 88.76 87.12 87.62 94.63

 The significant improvement in the classification accuracy of the learning models reveals the impact

of pruning module on the performance of the classifiers. Thereby, for further experimentations, we have

trained the classifiers with the informative samples identified by our proposed hypergraph-based pruning

module. In order to minimize the complexity of the construction of a complete graph (initial phase of the

pruning module), we have identified the significant features using Rough Set – Hypergraph based feature

selection Technique (RSHT), our previous research work on feature selection for the identification of optimal

trust measure parameters (Somu, Kirthivasan, & Sriram, 2017).

23

Figure 11: Performance Validation – Precision

On to the subsequent phase, the performance of HC-RHRPNN was further analyzed in terms of

precision, recall, and F-Score for different ratios of 𝐷𝑇𝑟𝑎𝑖𝑛. As shown in Figure 11-13, the performance of HC-

RHRPNN was found to be predominantly higher than the traditional classification algorithms like Bayes Net,

SVM, CART, J48, C4.5, and Random Forest. For example, under different ratio of 𝐷𝑇𝑟𝑎𝑖𝑛, the precision value of

Bayes Net, SVM, CART, J48, C4.5, and Random Forest is less than 80%, whereas the precision value of HC-

RHRPNN lies in the range of 82%-90% (approx.). Similarly, in the case of recall and F-Score, the overall

performance of the traditional classification algorithms did not exceed 80%, however HC-RHRPNN achieves a

maximum of 92.33% (recall) and 91.29 (F-Score).

Figure 12: Performance Validation – Recall

30

40

50

60

70

80

90

100

Bayes Net SVM CART J48 C4.5 Random

Forest

BPNN MLPNN PNN HC-RHRPNN

F
-S

co
re

 (
%

)

Classifiers

50% 60% 70% 80%

30

40

50

60

70

80

90

100

Bayes Net SVM CART J48 C4.5 Random

Forest

BPNN MLPNN PNN HC-RHRPNN

P
re

ci
si

o
n

 (
%

)

Classifiers

50% 60% 70% 80%

24

Figure 13: Performance Validation – F-Score

 In addition, from Table 7 and Figure (11-13), it is evident that the difference in the performance of

HRPNN and existing classifiers (Bayes Net, SVM, CART, J48, C4.5, Random Forest; Classification accuracy:

+45%, Precision, recall and F-Score: +51%) was found to be larger than PNN, BPNN, and MLPNN

(Classification accuracy: +2%, Precision, recall and F-Score: +6%) i.e. HRPNN has similar performance to NN

variants. Hence, we have performed a detailed analysis by plotting distributions of various quality metrics for

different ratio of training datasets to prove the effectiveness of HC-RHRPNN over the variants of neural

networks.

Figure 14: Classification Accuracy Distribution in Different Ratio of Training Datasets (a) Training dataset

ratio=50%; (b) Training dataset ratio=60%; (c) Training dataset ratio=70%; (d) Training dataset ratio=80%

80

82

84

86

88

90

92

BPNN MLPNN PNN HC-RHRPNN

C
la

ss
if

ic
a
ti

o
n

 A
cc

u
ra

cy
 (

%
)

Classifiers

83

84

85

86

87

88

89

BPNN MLPNN PNN HC-RHRPNN

C
la

ss
if

ic
a
ti

o
n

 A
cc

u
ra

cy
 (

%
)

Classifiers

83

84

85

86

87

88

89

90

BPNN MLPNN PNN HC-RHRPNN

C
la

ss
if

ic
a
ti

o
n

 A
cc

u
ra

cy
 (

%
)

Classifiers

78

80

82

84

86

88

90

92

94

96

98

BPNN MLPNN PNN HC-RHRPNN

C
la

ss
if

ic
a
ti

o
n

 A
cc

u
ra

cy
 (

%
)

Classifiers

30

40

50

60

70

80

90

100

Bayes Net SVM CART J48 C4.5 Random

Forest

BPNN MLPNN PNN HC-RHRPNN

R
ec

a
ll

 (
%

)

Classifiers

50% 60% 70% 80%

25

Figure 15: Precision Distribution in Different Ratio of Training Datasets (a) Training dataset ratio=50%; (b)

Training dataset ratio=60%; (c) Training dataset ratio=70%; (d) Training dataset ratio=80%

Figure 16: Recall Distribution in Different Ratio of Training Datasets (a) Training dataset ratio=50%; (b)

Training dataset ratio=60%; (c) Training dataset ratio=70%; (d) Training dataset ratio=80%

As reported in Figure 14-17 (a-c), HC-RHRPNN outperforms PNN, BPNN, and MLPNN in terms of

performance (accuracy, precision, recall, and F-Score) and stability for 50%, 60%, 70% of the training dataset

ratio. Further, while considering 80% of 𝐷𝑇𝑟𝑎𝑖𝑛, the stability of HC-RHRPNN was found to be similar to the

neural network variants, however HC-RHRPNN shows its predominance in terms of performance (Figure 14-

17 (d)).

75

77

79

81

83

85

87

BPNN MLPNN PNN HC-RHRPNN

P
re

ci
si

o
n

 (
%

)

Classifiers

78

79

80

81

82

83

84

85

BPNN MLPNN PNN HC-RHRPNN

P
re

ci
si

o
n

 (
%

)

Classifier

80

81

82

83

84

85

86

87

88

89

90

BPNN MLPNN PNN HC-RHRPNN

R
ec

a
ll

 (
%

)

Classifiers

75

77

79

81

83

85

87

BPNN MLPNN PNN HC-RHRPNN

R
ec

a
ll

 (
%

)

Classifiers

78

79

80

81

82

83

84

85

86

87

BPNN MLPNN PNN HC-RHRPNN

P
re

ci
si

o
n

 (
%

)

Classifiers

75

77

79

81

83

85

87

89

BPNN MLPNN PNN HC-RHRPNN

R
ec

a
ll

 (
%

)

Classifiers

75

80

85

90

95

100

BPNN MLPNN PNN HC-RHRPNN

P
re

ci
si

o
n

 (
%

)

Classifiers

76
78
80
82
84
86
88
90
92
94
96
98

100

BPNN MLPNN PNN HC-RHRPNN

R
ec

a
ll

 (
%

)

Classifiers

26

Figure 17: F-Score Distribution in Different Ratio of Training Datasets (a) Training dataset ratio=50%; (b)

Training dataset ratio=60%; (c) Training dataset ratio=70%; (d) Training dataset ratio=80%

 Further, we employ one-way ANalysis Of Variance (ANOVA) test with a significance value of 0.05 to

evaluate the difference between HC-RHRPNN and variants of the neural network in terms of classification

accuracy, precision, recall, and F-Score. From Table 8-10, it is clear that the 𝑝-value of ANOVA on HC-RHRPNN,

PNN, BPNN, and MLPNN for all the ratio of 𝐷𝑇𝑟𝑎𝑖𝑛 is less than 0.01. Hence, we can state the significance of HC-

RHRPNN over the other neural network variants for solving trust prediction problem in cloud service selection

environments.

Table 8: One Way ANalysis Of VAriance (ANOVA) test: Accuracy, Precision, Recall, and F-Score - HG-RHRPNN
Vs BPNN

T
ra

in
in

g

D
a

ta
se

t
R

a
ti

o

Accuracy Precision Recall F-Score

H
G

-
R

P
H

N
N

B
P

N
N

P
-V

a
lu

e

H
G

-
R

P
H

N
N

B
P

N
N

P
-V

a
lu

e

H
G

-
R

P
H

N
N

B
P

N
N

P
-V

a
lu

e

H
G

-
R

P
H

N
N

B
P

N
N

P
-V

a
lu

e

50 % 88.76 83.83
1.41901E-

10
85.43 79.62 6.12E-10 87.61 81.62

7.25765E-
10

86.51 80.61
3.75015E-

14

60 % 87.12 84.62
1.15036E-

06
82.89 80.21

1.44241E-
07

84.87 82.05
2.13891E-

06
83.87 81.12

1.33136E-
09

70 % 87.62 85.60
0.00119845

2
84.94 81.63

3.26298E-
07

85.86 83.36
9.26033E-

05
85.40 82.49 1.9989E-08

80 % 94.63 81.76
1.43974E-

18
90.28 77.82

3.03979E-
14

92.33 79.24
6.04823E-

19
91.29 78.52

2.54998E-
21

72

74

76

78

80

82

84

86

88

90

BPNN MLPNN PNN HC-RHRPNN

F
-S

co
re

 (
%

)

Classifiers

76

78

80

82

84

86

BPNN MLPNN PNN HC-RHRPNN

F
-S

c
o

r
e
 (

%
)

Classifiers

77

78

79

80

81

82

83

84

85

86

87

BPNN MLPNN PNN HC-RHRPNN

F
-S

co
re

 (
%

)

Classifiers

75

77

79

81

83

85

87

89

91

93

95

97

BPNN MLPNN PNN HC-RHRPNN

F
-S

co
re

 (
%

)

Classifiers

27

Table 9: One Way ANalysis Of VAriance (ANOVA) test: Accuracy, Precision, Recall, and F-Score - HG-RHRPNN
Vs MLPNN

T
ra

in
in

g

D
a

ta
se

t
R

a
ti

o

Accuracy Precision Recall F-Score

H
G

-
R

P
H

N
N

M
L

P
N

N

P
-V

a
lu

e

H
G

-
R

P
H

N
N

M
L

P
N

N

P
-V

a
lu

e

H
G

-
R

P
H

N
N

M
L

P
N

N

P
-V

a
lu

e

H
G

-
R

P
H

N
N

M
L

P
N

N

P
-V

a
lu

e

50 % 88.76 86.11 7.2E-06 85.43 81.95 2.59E-07 87.61 84.51
7.41372E-

06
86.51 83.21

2.50023E-
09

60 % 87.12 85.91
0.00262119

7
82.89 80.36

1.53529E-
07

84.87 82.3
2.11717E-

07
83.87 81.32

3.77482E-
11

70 % 87.62 86.71 0.06630604 84.94 82.01
1.52581E-

06
85.86 84.95

0.01273946
8

85.40 83.45
1.75162E-

07

80 % 94.63 85.62
9.55482E-

16
90.28 81.61

5.08673E-
12

92.33 83.87
4.96835E-

15
91.29 82.72

5.79537E-
17

Table 10: One Way ANalysis Of VAriance (ANOVA) test: Accuracy, Precision, Recall, and F-Score - HG-
RHRPNN Vs PNN

T
ra

in
in

g

D
a

ta
se

t
R

a
ti

o

Accuracy Precision Recall F-Score

H
G

-
R

P
H

N
N

P
N

N

P
-V

a
lu

e

H
G

-
R

P
H

N
N

P
N

N

P
-V

a
lu

e

H
G

-
R

P
H

N
N

P
N

N

P
-V

a
lu

e

H
G

-
R

P
H

N
N

P
N

N

P
-V

a
lu

e

50 % 88.76 84.82 1.32E-09 85.43 79.22 6.5E-07 87.61 82.53
5.44843E-

08
86.51 80.84

2.20754E-
09

60 % 87.12 85.61
0.00017996

1
82.89 81.24

2.13891E-
06

84.87 83.48
0.00239735

3
83.87 82.34

2.34778E-
05

70 % 87.62 85.10
2.18346E-

05
84.94 82.72

5.47512E-
05

85.86 84.03
0.00025597

8
85.40 83.37

1.65699E-
09

80 % 94.63 86.11
2.53449E-

15
90.28 83.17

1.25575E-
10

92.33 82.66
2.34665E-

15
91.29 82.91

2.51326E-
17

Finally, we have compared the performance of HC-RHRPNN with the recent research contributions in

trust prediction models with respect to accuracy and precision. From Table 11, it can be noted that HC-RHRPNN

ranks third and first position in terms of accuracy and precision. Nevertheless, it cannot be claimed that HC-

RHRPNN outpaces the state-of-the-art techniques in all aspects due to the lack of information on various

experimental factors such as sampling method, number of samples, etc. To summarize, the devastating

performance of HC-RHRPNN was due to the use of hypergraph coarsening technique for the identification of

the informative samples.

Table 11: Comparison with Recent Trust Prediction Models

S.No Authors Technique Proposed
Feature

Selection
Classification
Accuracy (%)

Precision
(%)

1. (Mashinchi et al., 2011)
Fuzzy Linear
Regression Analysis
(FLRA)

x n/a 79.46***

2. (Mao et al., 2017)
Particle Swarm
Optimization driven

x n/a 88.28**

28

Neural Network (PSO-
NN)

3. (Mohanty et al., 2010)

Group Method of Data
Handling (GMDH)

100* n/a

TreeNet 99.72** n/a

4. Proposed Approach HC-RHRPNN 94.63*** 90.28*

5. Conclusions

Trustworthiness plays a significant role in determining the quality of the candidate services for the

design of efficient and resilient service-based systems. Recent research trends in cloud service selection

signifies the impact and popularity of trust based cloud service selection models due to fact that

trustworthiness of a service is well-reflected by several functional and non-functional QoS attributes. However,

the dynamic nature of service-oriented environments in terms of variable QoS values and emergence of new

cloud services affects the performance of trust-based cloud service selection models. Trust prediction, a

classification problem can be modeled as a suitable solution for the trust based cloud service selection problem

through predicting the trustworthiness of the cloud services based on their relevant historical QoS information.

Therefore, several researchers focused towards the development of numerous trust and QoS prediction models

based on machine learning and statistical techniques. Artificial Neural Networks (ANN) and its variants have

proven their significance in solving service selection problems with high prediction accuracy. However, several

challenges related to weights, training time, and kernel functions makes the development of an efficient and

stable neural network architecture, an open research challenge.

Hence, this work presents a multi-level Hypergraph Coarsening based Robust Heteroscedastic

Probabilistic Neural Network (HC-RHRPNN) to predict the trustworthiness of services in cloud environments.

HC-RHRPNN uses hypergraph coarsening for the identification of informative samples, which were then used

to train HRPNN to achieve high prediction accuracy and to minimize the runtime. The predominance of HC-

RHRPNN was proved with a set of extensive experiments on Quality of Web Service (QWS), a public QoS dataset

in terms of classifier accuracy, precision, recall, and F-Score. Further, HC-RHRPNN was found to be adaptive,

efficient, scalable, and applicable for classification and prediction problems in intrusion detection systems,

energy prediction, stock market analysis, medical diagnosis, and metadata quality analysis.

Acknowledgements

This work was supported by The Department of Science and Technology, India; The Council for

Scientific and Industrial Research, India; TATA Realty - SASTRA Srinivasa Ramanujan Research Cell, India

(Grant No: DST/INSPIRE Fellowship/2013/963, CSIR-SRF Fellowship/143404/2K15/1, MRT/2017/000155,

SR/FST/MSI-107/2015 and SR/FST/ETI-349/2013).

29

References

Akshya Kaveri, B., Gireesha, O., Somu, N., Gauthama Raman, M. R., & Shankar Sriram, V. S. (2017). E-

FPROMETHEE: An Entropy Based Fuzzy Multi Criteria Decision Making Service Ranking Approach for

Cloud Service Selection. In S. N. S. Venkataramani G., Sankaranarayanan K., Mukherjee S., Arputharaj K.

(Ed.), Smart Secure Systems – IoT and Analytics Perspective. ICIIT 2017. Communications in Computer and

Information Science (pp. 224–238). Springer, Singapore. https://doi.org/10.1007/978-981-10-7635-

0_17

Al-Masri, E., & Mahmoud, Q. H. (2007). QoS-based discovery and ranking of Web services. In Proceedings -

International Conference on Computer Communications and Networks, ICCCN (pp. 529–534).

https://doi.org/10.1109/ICCCN.2007.4317873

Ali Sunyaev, S. S. (2013). Cloud Services Certification. ACM Communications, 56(2), 33–36.

https://doi.org/10.1145/2408776.2408789

Berge, C., & Minieka, E. (1973). Graphs and hypergraphs.

Bostani, H., & Sheikhan, M. (2017). Modification of supervised OPF-based intrusion detection systems using

unsupervised learning and social network concept. Pattern Recognition, 62, 56–72.

https://doi.org/10.1016/j.patcog.2016.08.027

Çatalyürek, Ü. V., & Aykanat, C. (1999). Hypergraph-partitioning-based decomposition for parallel sparse-

matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems, 10(7), 673–693.

https://doi.org/10.1109/71.780863

Chen, Z., Shen, L., Li, F., & You, D. (2017). Your neighbors alleviate cold-start: On geographical neighborhood

influence to collaborative web service QoS prediction. Knowledge-Based Systems, 138, 188–201.

https://doi.org/10.1016/j.knosys.2017.10.001

David Nuñez-Gonzalez, J., Graña, M., & Apolloni, B. (2015). Reputation features for trust prediction in social

networks. Neurocomputing, 166, 1–7. https://doi.org/10.1016/j.neucom.2014.10.099

Fang, H., Guo, G., & Zhang, J. (2015). Multi-faceted trust and distrust prediction for recommender systems.

Decision Support Systems, 71, 37–47. https://doi.org/10.1016/j.dss.2015.01.005

Fang, H., & Yousef Saad. (2011). Multilevel Linear Dimensionality Reduction using Hypergraphs for Data Analysis.

Minnesota Supercomputer Institute,University of Minnesota. Minneapolis, MN.

Fu, Y., Hu, Z., & Zhang, Q. (2008). Bayesian Network based QoS Trustworthiness Evaluation Method in Service

Oriented Grid. 2008 The 9th International Conference for Young Computer Scientists, 293–298.

https://doi.org/10.1109/ICYCS.2008.390

Gauthama Raman, M. R., Kirthivasan, K., & Shankar Sriram, V. S. (2017). Development of Rough Set –

Hypergraph Technique for Key Feature Identification in Intrusion Detection Systems. Computers &

Electrical Engineering, 59, 189–200. https://doi.org/10.1016/j.compeleceng.2017.01.006

Gauthama Raman, M. R., Somu, N., Kirthivasan, K., Liscano, R., & Shankar Sriram, V. S. (2017). An efficient

intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and

30

feature selection in support vector machine. Knowledge-Based Systems, 134, 1–12.

https://doi.org/10.1016/j.knosys.2017.07.005

Han, S., & Cho, S. (2005). Evolutionary neural networks for anomaly detection based on the behavior of a

program. IEEE Transactions on Systems, Man, and Cybernetics, PART B: Cybernetics, 36(3), 559–570.

Retrieved from http://ieeexplore.ieee.org/abstract/document/1634649/

Huang, J., Nie, F., Huang, H., Lei, Y., & Ding, C. (2013). Social trust prediction using rank-k matrix recovery.

Proceedings of the Twenty-Thrid International Joint Conference on Artificial Intelligence, 2647–2653.

https://doi.org/10.1145/2541268.2541270

Kang, U. (2011). Centralities in Large Networks : Algorithms and Observations. SIAM International Conference

on Data, 119–130. https://doi.org/10.1137/1.9781611972818.11

Kuremoto, T., Kimura, S., Kobayashi, K., & Obayashi, M. (2014). Time series forecasting using a deep belief

network with restricted Boltzmann machines. Neurocomputing, 137, 47–56.

https://doi.org/10.1016/j.neucom.2013.03.047

Luo, X., Lv, Y., Li, R., & Chen, Y. (2015). Web Service QoS Prediction Based on Adaptive Dynamic Programming

Using Fuzzy Neural Networks for Cloud Services. IEEE Access, 3, 2260–2269.

https://doi.org/10.1109/ACCESS.2015.2498191

Ma, H., Zhu, H., Hu, Z., Li, K., & Tang, W. (2017). Time-aware trustworthiness ranking prediction for cloud

services using interval neutrosophic set and ELECTRE. Knowledge-Based Systems, 138, 27–45.

https://doi.org/10.1016/j.knosys.2017.09.027

Mao, C., Lin, R., Xu, C., & He, Q. (2017). Towards a Trust Prediction Framework for Cloud Services Based on PSO-

Driven Neural Network. IEEE Access, 5, 2187–2199. https://doi.org/10.1109/ACCESS.2017.2654378

Mashinchi, M. H., Li, L., Orgun, M. A., & Wang, Y. (2011). The Prediction of Trust Rating Based on the Quality of

Services Using Fuzzy Linear Regression. In IEEE International Conference on Fuzzy Systems (FUZZ), (pp.

1953–1959).

Mehdi, M., Bouguila, N., & Bentahar, J. (2013). A QoS-based trust approach for service selection and composition

via Bayesian networks. Proceedings - IEEE 20th International Conference on Web Services, ICWS 2013, 211–

218. https://doi.org/10.1109/ICWS.2013.37

Mohanty, R., Ravi, V., & Patra, M. R. (2010). Web-services classification using intelligent techniques. Expert

Systems with Applications, 37(7), 5484–5490. https://doi.org/10.1016/j.eswa.2010.02.063

Nguyen, Hien, T., Weiliang, Z., & Jian, Y. (2010). A Trust and Reputation Model Based on Bayesian Network for

Web Services. IEEE International Conference on Web Services (ICWS), 251–258.

https://doi.org/10.1109/ICWS.2010.36

Qu, L. (2016). Credible Service Selection in Cloud Environments. Macquarie University.

Raj, E. D., & Babu, L. D. D. (2017). Probabilistic Reputation Features. Neurocomputing, 219, 412–421.

https://doi.org/10.1016/j.neucom.2016.09.036

Raman, M., Kannan, K., & Pal, S. (2016). Rough Set-hypergraph-based Feature Selection Approach for Intrusion

Detection Systems. Defence Science, 66(6), 612.

31

Raman, M. R. G., Somu, N., Kirthivasan, K., & Sriram, V. S. S. (2017). A Hypergraph and Arithmetic Residue-based

Probabilistic Neural Network for classification in Intrusion Detection Systems. Neural Networks, 92, 89–

97. https://doi.org/10.1016/j.neunet.2017.01.012

Sivakumar, A., & Kannan, K. (2009). A novel feature selection technique for number classification problem using

PNN — A plausible scheme for boiler flue gas analysis. Sensors and Actuators B : Chemical, 139, 280–286.

https://doi.org/10.1016/j.snb.2009.02.015

Somu, N., Kirthivasan, K., & Shankar, S. S. (2017). A computational model for ranking cloud service providers

using hypergraph based techniques. Future Generation Computer Systems, 68, 14–30.

https://doi.org/10.1016/j.future.2016.08.014

Somu, N., Kirthivasan, K., & Sriram, V. S. S. (2017). A rough set-based hypergraph trust measure parameter

selection technique for cloud service selection. The Journal of Supercomputing, 73(10), 4535–4559.

https://doi.org/10.1007/s11227-017-2032-8

Somu, N., M.R., G. R., Krithivasan, K., & V.S., S. S. (2018). A trust centric optimal service ranking approach for

cloud service selection. Future Generation Computer Systems, 86, 234–252.

https://doi.org/10.1016/j.future.2018.04.033

Somu, N., Raman, M. R. G., Kirthivasan, K., & Sriram, V. S. S. (2016). Hypergraph Based Feature Selection

Technique for Medical Diagnosis. Journal of Medical Systems, 40(11), 239.

https://doi.org/10.1007/s10916-016-0600-8

Sosinsky, B. (2010). Cloud Computing Bible. John Wiley & Sons.

Specht, D. (1988). Probabilistic neural networks for classification, mapping, or associative memory. IEEE

International Conference on Neural Networks, 1(24), 525–532.

Specht, D. (1990). Probabilistic neural networks and the polynomial adaline as complementary techniques for

classification. IEEE Transactions on Neural Networks, 1(1), 111–121.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109–118.

https://doi.org/10.1016/0893-6080(90)90049-Q

Su, K., Xiao, B., Liu, B., Zhang, H., & Zhang, Z. (2017). TAP: A personalized trust-aware QoS prediction approach

for web service recommendation. Knowledge-Based Systems, 115, 55–65.

https://doi.org/10.1016/j.knosys.2016.09.033

Sun, L., Dong, H., Hussain, F. K., Hussain, O. K., & Chang, E. (2014). Cloud service selection: State-of-the-art and

future research directions. Journal of Network and Computer Applications, 45, 134–150.

https://doi.org/10.1016/j.jnca.2014.07.019

Tang, M., Dai, X., Liu, J., & Chen, J. (2017). Towards a trust evaluation middleware for cloud service selection.

Future Generation Computer Systems, 74, 302–312. https://doi.org/10.1016/j.future.2016.01.009

Venkatesh, S., & Gopal, S. (2011). Robust Heteroscedastic Probabilistic Neural Network for multiple source

partial discharge pattern recognition–Significance of outliers on classification capability. Expert Systems

with Applications, 38(9), 11501–11514.

Witten, Ian H., Eibe Frank, Mark A. Hall, C. J. P. (2016). Data Mining: Practical Machine Learning Tools and

32

Techniques, Second Edition. Morgan Kaufmann.

Wu, H., Yue, K., Li, B., Zhang, B., & Hsu, C. H. (2017). Collaborative QoS prediction with context-sensitive matrix

factorization. Future Generation Computer Systems, 82, 669–678.

https://doi.org/10.1016/j.future.2017.06.020

Xu, Y., Yin, J., Deng, S., N. Xiong, N., & Huang, J. (2016). Context-aware QoS prediction for web service

recommendation and selection. Expert Systems with Applications, 53, 75–86.

https://doi.org/10.1016/j.eswa.2016.01.010

Yahyaoui, H. (2012). A trust-based game theoretical model for Web services collaboration. Knowledge-Based

Systems, 27, 162–169. https://doi.org/10.1016/j.knosys.2011.10.014

Yang, Z., & Chen, S. (1998). Robust maximum likelihood training of heteroscedastic probabilistic neural

networks. Neural Networks, 11(4), 739–747.

Yang, Z., Zwolinski, M., & Chalk, C. (2000). Applying a robust heteroscedastic probabilistic neural network to

analog fault detection and classification. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 19(1), 142–151.

Yu, C., & Huang, L. (2016). A Web service QoS prediction approach based on time- and location-aware

collaborative filtering. Service Oriented Computing and Applications, 10(2), 135–149.

https://doi.org/10.1007/s11761-014-0168-4

Zhang, W., Wu, B., & Liu, Y. (2016). Cluster-level trust prediction based on multi-modal social networks.

Neurocomputing, 210, 206–216. https://doi.org/10.1016/j.neucom.2016.01.108

Zolfaghar, K., & Aghaie, A. (2012). A syntactical approach for interpersonal trust prediction in social web

applications: Combining contextual and structural data. Knowledge-Based Systems, 26, 93–102.

shttps://doi.org/10.1016/j.knosys.2010.10.007

