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a b s t r a c t

Modern data science uses topological methods to find the structural features of data sets before further
supervised or unsupervised analysis. Geometry and topology are very natural tools for analysing massive
amounts of data since geometry can be regarded as the study of distance functions. Mathematical
formalism, which has been developed for incorporating geometric and topological techniques, deals
with point cloud data sets, i.e. finite sets of points. It then adapts tools from the various branches
of geometry and topology for the study of point cloud data sets. The point clouds are finite samples
taken from a geometric object, perhaps with noise. Topology provides a formal language for qualitative
mathematics, whereas geometry is mainly quantitative. Thus, in topology, we study the relationships of
proximity or nearness, without using distances. A map between topological spaces is called continuous if
it preserves the nearness structures. Geometrical and topologicalmethods are tools allowing us to analyse
highly complex data. These methods create a summary or compressed representation of all of the data
features to help to rapidly uncover particular patterns and relationships in data. The idea of constructing
summaries of entire domains of attributes involves understanding the relationship between topological
and geometric objects constructed from data using various features.

A common thread in various approaches for noise removal,model reduction, feasibility reconstruction,
and blind source separation, is to replace the original data with a lower dimensional approximate
representation obtained via a matrix or multi-directional array factorization or decomposition. Besides
those transformations, a significant challenge of feature summarization or subset selection methods for
Big Data will be considered by focusing on scalable feature selection. Lower dimensional approximate
representation is used for Big Data visualization.

The cross-field between topology and Big Data will bring huge opportunities, as well as challenges,
to Big Data communities. This survey aims at bringing together state-of-the-art research results on
geometrical and topological methods for Big Data.
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1. Introduction

Big Data is everywhere as high volumes of varieties of valuable
precise and uncertain data can be easily collected or generated at
high velocity in various real-life applications. The explosive growth
in web-based storage, management, processing, and accessibility
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of social, medical, scientific and engineering data has been driven
by our need for fundamental understanding of the processeswhich
produce this data. It is predicted that volume of the produced
data could reach 44 zettabytes in 2020 [1]. The enormous volume
and complexity of this data propel technological advancements
realized as exponential increases in storage capability, processing
power, bandwidth capacity and transfer velocity. This is, partly,
because of new experimental methods, and in part because of the
increase in the availability of high-powered computing technology.
Massive amounts of data (Big Data) are too complex to bemanaged
by traditional processing applications. Nowadays, it includes the
huge, complex, and abundant structured and unstructured data
that is generated and gathered from several fields and resources.
The challenges of managing massive amounts of data include
extracting, analysing, visualizing, sharing, storing, transferring and
searching such data. Currently, traditional data processing tools
and their applications are not capable of managing Big Data.
Therefore, there is a critical need to develop effective and efficient
Big Data processing techniques. Big Data has five characteristics:
volume, velocity, variety, veracity and value [2]. Volume refers to
the size of the data for processing and analysis. Velocity relates
to the rate of data growth and usage. Variety means the different
types and formats of the data used for processing and analysis.
Veracity concerns the accuracy of results and analysis of the
data. Value is the added value and contribution offered by data
processing and analysis.

Modern data science uses so-called topological methods to find
the structural features of data sets before further supervised or
unsupervised analysis. Geometry and topology are very natural
tools for analysing massive amounts of data since geometry
can be regarded as the study of distance functions. Besides the
heterogeneity of distance functions, another issue is related to
distance functions on large finite sets of data. The mathematical
formalism which has been developed for incorporating geometric
and topological techniques deals with point clouds, i.e. finite
sets of points equipped with proximity or nearness or distance
functions [3,4]. It then adapts tools from the various branches of
geometry and topology for the study of point clouds [5]. The point
clouds are finite samples taken from a geometric object, perhaps
with noise.

Geometrical and Topological methods are tools for analysing
highly complex data [3]. These methods create a summary or
a compressed representation of all of the data features to help
rapidly uncover patterns and relationships in data. The idea of con-
structing summaries of entire domains of parameter values in-
volves understanding the relationship between geometric objects
constructed from data using various parameter values, e.g. [8].

One problemwith Big Data analysis, which is very actual, is that
the currently used methods based on model creation, simulation
of the created model and then assessment, whether the original
data corresponds to data obtained using the created model–model
verification cannot be applied. The described process is useful and
appropriate for solving classic problems such as physical problems,
because the theoretical background of these problems has been
researched and understood enough, so it could be reconstructed
to fit the model. For Big Data processing, the first problem is
that we are not able to define the concrete hypothesis of the
data feature which could be tested. Due to this, for the Big Data
problem, the same approach as with the classic physical problem
cannot be used. Therefore, the main aim of the research is not to
define amodel, but to be able tomine accurately and automatically
interesting features of Big Data sets. In many cases, the data to be
examined is often based on shapes that are not easy to capture
using traditional methods [9].

A common thread in various approaches for noise removal,
model reduction, feasibility reconstruction, and blind source

separation, is to replace the original data with a lower dimensional
approximate representation obtained via a matrix or multi-
directional array factorization or decomposition. Besides those
transformations, a significant challenge of feature summarization
or subset selection methods for Big Data will be considered
by focusing on scalable feature selection. Lower dimensional
approximate representation is used for Big Data visualization to be
able to visualize data in the understandable form. This approach—
dimensionality reduction can be also understood as a method for
feature compression, see Fig. 6.

The whole paper is organized as follows: in Section 2, a brief in-
troduction to Big Data technologies is given. In the next Section 3,
a brief motivational example is presented. A short mathematical
background is introduced in Section 4. This part contains a brief re-
view of topology,metric space, homology and persistent homology
theory, manifolds and Morse theory. In the following Section 5, a
brief review of homology and persistent homology theory is intro-
duced. Various applications of geometrical and topological meth-
ods are presented in Section 6. Big Data visualization is discussed
in Section 7. In this section, we discuss methods to create a sum-
mary or compressed representation of all of the data features to
help visualize hidden relationships in data. This is followed by the
section described and introduced new, perspective Big Data chal-
lenges. This paper ends with conclusions in Section 9.

2. Big Data technologies during time

The manner in which data is stored, transmitted, analysed and
visualized has varied over time; the rise of all fields of human
activities is always connected with an increase in technological
possibilities, as with the political situation, development of the
socio-economical arrangement and industry. In 1936, Franklin
D. Roosevelt’s administration in the USA, after Social Security
became law, ordered from IBM the development of the punch card-
reading machine to be able to collect data from all Americans
and employers. This biggest accounting operation of all time, as
it was called at that time, can be considered as the first major
data project [10–13]. As already mentioned, the political situation
always has a big influence on the rise of technology and the
main mover of its development has always been war and money.
During World War II, the British invented, in 1943, a machine
Colossus to decipher German codes. The device, which searched
for patterns in encrypted messages at a rate of 5000 characters
per second, is known as the first data-processing machine [14,10].
Big Data as a term has been one of the biggest trends in recent
years, leading to an increase in research, as well as industry and
government applications [15–17]. The continued improvements
in high-performance computing and high resolution sensing
capabilities have resulted in data of unprecedented size and
complexity. Data is deemed a powerful raw material that can
impact multidisciplinary research.

2.1. Data storage

We face a wave of data; the amount of data is so big that a
lot of information is never looked at by anybody [18]. The next
problematic aspect of data is that a big part of it is redundant,
e.g. one video due to many existing video formats, its resolution
and subtitles in many languages [19] takes up lots of space,
which is necessary from an informational point of view but
generally it does not bring anything new. The manner in which
data is stored has changed: what was sufficient in 1965, when
the US Government decided to found the first data centre to
store 175 million sets of fingerprints and 742 million tax returns
and store data onto magnetic computer tape [20], is nowadays
unusable. Traditionally, persistent data is still stored using hard
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disk drives (HDD) [21] with all the disadvantages which they have,
such as boundaries on their access times, a lifetime limited by
mechanical (moving) parts, and DRAM (volatile memory) with
faster access. The trend is to replace HDDs with solid-state drives
(SSD) as a type of non-volatile memory (NVM) [22,23]. Other
types of NVM, which are now also on the rise, are phase-change
memory (PCM) and memristors. These will be integrated as
byte/addressable memory on a memory bus or stacked directly on
a chip (3D-stacking) [24]. All existing storage architectures, such as
storage area networks (SAN), network-attached storage (NAS) and
direct-attached storage (DAS), were ordinarily used before large-
scale distributed systems were required and the aforementioned
architectures met their limitations [22,23].

2.2. Data transmission

Cloud computing and cloud data storage are, nowadays, very
popular. Users do not have time and do not want to maintain
data storage and computing hardware, so the easiest way is to
send data to the cloud [25]. However, this modern technology also
has its limits—the volume of communication capacity and security
[26,23]. Cloud computing is still considered a hot trend.

2.3. Data processing/analysis

The next question is not where to store data, but how to store
it and what platform to use to analyse it. The classical approach to
managing structured data is divided into two parts: the first is to
store the data set, and the second is a related database for retrieval
of stored data. Large-scale structured data set management is
often based on data warehouse and data mart, which are both
Standard Query Language (SQL) based. SQL is more reliable, and
straightforward and analytic platforms such as Cloudera Impala
and SQLstream run on it [23]. Moreover, recently, the Not Only
SQL (NoSQL) database approach is often used in order to avoid
using the Relation Database Management System (RDBMS) [27].
The most popular management systems using NoSQL databases
are Hbase, Apache Cassandra, SimpleDB, Google BigTable, Apache
Hadoop, MapReduce, MemchaceDB and Voldemort [23].

The analyticmethods of BigData are still under investigation. To
help deal with Big Data, cloud computing, and then granular com-
puting, biological computing systems, and quantumcomputing are
under consideration [23].

3. Motivation examples

The general problem with statistical physics is the following:
given a large collection of atoms ormolecules, given the interaction
laws among the constituents of this collection of particles, and
given the laws of dynamic evolution, how can we predict the
macroscopic physical properties of matter composed of these
atoms or molecules?

The typical feature-based model [28,29] looks for the most
extreme examples of a phenomenon and represents the data by
these examples, but to describe a large system, this model is not
appropriate. A solution to this problem in statistical physics is
based on feature summarization or subset selection methods.

This consists of the fact that, for a very large n, the volume of an
n-dimensional figure is concentrated near its surface [30,31].

It is not hard to see that the volume of an n-dimensional ball of
diameter d should be expressed by the formula Vndn, where Vn is
constant and does not depend on d. For example, the volume of a
spherical ring between spheres of radius 1 and 1 − ϵ equals

Vn

1 − (1 − e)n


, (1)

Fig. 1. Big Data source with depicted data uncertainty [6,7].

which, for a fixed and arbitrarily small ϵ, but increasing n, it
approaches bn. A 20-dimensional watermelon with a radius of
20 cm and skin with a thickness of 1 cm is nearly two-thirds skin
1 −


1 −

1
ϵ

n
= 1 − e−1. (2)

This circumstance plays a significant role in statistical mechanics.
Consider, for example, the simplest model of gas in a reservoir
consisting of n atoms, which we shall assume are material points
with mass 2 (in an appropriate system of units). We represent
the instantaneous state of the gas by n three-dimensional vectors
(v1, . . . , vn) of the velocities of all molecules in the physical
Euclidean space; that is, by a point in the three n-dimensional
coordinate space R3n. The square of the lengths of the vectors in
R3n has a direct physical interpretation as the energy of the system
(the sum of the kinetic energies of the atoms)

E =

n
i=1

|vi|
2 . (3)

For a macroscopic volume of gas under normal conditions, n is
of the order of 1023 (Avogadro’s number), so that the state of the
gas can be described only on a sphere of an enormous dimension,
whose radius is the square root of its energy.

We may conclude that a model of a large system (Big Data)
must be based on feature summarization or compression or
subset selection methods.

The increasing amount of VoIP, social media, and sensors
data [6,7] emphasizes the need for methods to deal with the
uncertainty inherent in these data sources. Currently about 80% of
data is uncertain see Fig. 1.We can face the problemof uncertainty
via application of topologicalmethods. The number of components
or holes is not something that changes with small changes. This is
vital to an application in cases where data is very uncertain.

4. Mathematical background

In this section, we summarize the theoretical concepts which
are necessary for Big Data processing as presented in the rest of
the paper.

4.1. Topology

A topological space [32–34] is a set of points along with a
topology; that is, a collection of subsets that are referred to as open
sets. Intuitively, a set U is open if, starting from any point in U and
going in any direction, it is possible to move a little and still stay
inside the set. It turns out that the notion of an open set provides
a fundamental way of how to speak about the nearness of points,
althoughwithout explicitly having a concept of distance defined in
the considered topological space. Thus, once a topology has been
defined, we are allowed to introduce properties such as continuity,
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(a) Space. (b) Topological space. (c) Metric space.

Fig. 2. Spaces [37] (depicted on Hercules constellation).

connectedness, and closeness, which are all based on some notion
of nearness.

A topological space is a setX and a set τ of subsets ofX satisfying
the following axioms:

• ∅ and X are in τ ,
• if U1,U2, . . . ,Un are in τ , then so is

n
i=1 Ui,

• if Ui, i ∈ I are in τ , then so is


i∈I Ui.

A map f between topological spaces is said to be continuous if
the inverse image of every open set is an open set. A homeomor-
phism is a continuous bijection whose inverse is also continuous.
Two topological spaces (X, τX ), (Y , τY ) are said to be homeomor-
phic if there exists a homeomorphism f : X → Y . From the view-
point of topology, homeomorphic spaces are essentially identical.
Properties of topological space which are preserved up to homeo-
morphisms are said to be topological invariants.

The notion of metric is a straightforward generalization of
Euclidean distance through its three properties listed there. Given
a nonempty set X , we say that amapping d : X×X → R is ametric
if it satisfies the following properties:

• for all points x and y, d(x, y) ≥ 0 and d(x, y) = 0 if and only if
x = y,

• for all points x and y, d(x, y) = d(y, x),
• for all points x, y and z d(x, y) + d(y, z) ≤ d(x, z).

The pair (X, d) is called a metric space. If the metric d is
understood from the context we will often refer to X as being a
metric space. A systematic description of metric has been given by
Deza [35,36].

Fig. 2 shows how we can transform cloud points to nearness
structure (topology space) and distance structure (metrics space).

4.2. Manifolds

The natural, higher-dimensional analogue of a surface is
an n-dimensional manifold, which is a topological space with
the same local properties as Euclidean n-space. Because they
frequently occur and have applications in many other branches of
mathematics, manifolds are certainly one of the most important
classes of topological spaces.

A topological manifold is a space M locally homeomorphic to
Rn. That is, there is a cover A = {Uα} of M by open sets along
withmaps φα : Uα → Rn that φα are homeomorphisms. The cover
A = {Uα} is called an atlas. This tuple (Uα, φα) is called a chart.
Such local homomorphism is called a coordinate system on Uα and
enables the identification of any point u ∈ Uα with an n-tuple of
Rn.M is an n-dimensional manifold with a boundary if every point
has a neighbourhood homeomorphic to an open set of either Rn or
the half-space {u = (u1, . . . , un) ∈ R | un ≥ 0}.

Suppose that (Uα, φα) and (Uβ , φβ) are two charts for a
manifoldM such that Uα ∩ Uβ is non-empty.

Fig. 3. Charts on a manifold.

The transition map

τα,β : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ), (4)

is the map defined by

τα,β = φβ ◦ φ−1
α . (5)

Note that since φα and φβ are both homeomorphisms, the
transitionmap τα,β is also a homeomorphism, see Fig. 3. Depending
on the type of the transition functions (e.g., smooth, analytic,
piecewise smooth, Lipschitz), the manifold is consequently named
(e.g. smoothmanifold, analyticmanifold, etc.). A compactmanifold
is a manifold that is compact as a topological space. A closed
manifold is a compact manifold without a boundary. An important
property of a manifold concerns orientability. Then, a manifold M
is called orientable if there exists an atlas A = {(Ui, φi)} on it such
that the Jacobian of all transition functions φi,j from one chart to
another is positive for all intersecting pairs of regions. Manifolds
that do not satisfy this property are called non-orientable. We
prefer here to skip the technicalities needed to formally define such
a notion, referring the reader to [38,39] for further details.

4.3. Algebraic topology

The approach adopted by algebraic topology is the transla-
tion of topological problems into an algebraic language, to solve
themmore easily. There are classics resources of algebraic topology
[40–43]. These resources are written without high-level formal-
ism.

In persistent homology, we ultimately want to compare
topological spaces based on the characteristic holes that they
encompass. Because we usually operate with finite point clouds in
data analysis, we first need to discretize the space to add the notion
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Fig. 4. Čech (lower left) and Rips (lower right) complex built on the fixed set of points (upper left) with the depiction of the formation of the both complexes.

of connectivity. That is done through the creation of simplicial
complexes. A p-simplex σ is the convex hull of p + 1 linearly
independent points x0; x1, . . . , xp ∈ Rd [44]. More intuitively, a
0-simplex is a vertex, an 1-simplex is an edge, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron, and so forth. A simplicial
complex K is a finite set of simplices such that, for σ ∈ K , all of
its faces are also in K .

The core idea of persistent homology is to analyse how holes
appear and disappear, as simplicial complexes are created. To do
this, a filtration is constructed. An increasing sequence of ϵ values,
i.e., distance values, produces a filtration, such that a simplex
enters the sequence no earlier than all its faces.

The Vietoris–Rips complex, Fig. 4, is one of the most popular
complexes in persistent homology. For a non-negative real number
ϵ, the Vietoris–Rips complex V (K , ϵ) at scale ϵ is defined as
follows:

V (K , ϵ) = {σ ⊂ K | d (x, y) ≤ ϵ} for all x, y ∈ σ . (6)

For ϵ ≤ ϵ′, we have V (K , ϵ) ⊆ V (K , ϵ′), so considering the
different values of the scale ϵ yields a filtered simplicial complex.
The dimension of theVietoris–Rips complex is bounded only by the
size of K , therefore, in practice, it is necessary to put a limit on the
dimension of the simplices that one allows in the construction of
the Vietoris–Rips complex.

The Čech complex, Fig. 4, is defined as a set of simplices
such that ϵ/2-ball neighbourhoods have a point of common
intersection.

A typical case is the construction of algebraic structures to
describe topological properties, which is the core of homology
theory, one of the main tools of algebraic topology. In [45],
persistent homology is presented as a new approach to the
topological simplification of Big Data via measuring the lifetime
of internal topological features during a filtration process. This
approach was assessed as being exploitable in many scientific
and engineering applications. In [46], a broad view is given of
the theory of persistence, including its topological and algorithmic
aspects, and an elaboration on its context to quiver theory on the
one hand and to data analysis on the other. This book also contains
many open problems in topological data analysis.

Another concept of the persistence is the Survival Signa-
ture [47]. This concept has became a popular tool for analysis and
assessment of system reliability. Samaniego introduced this topic

in [48]. However, signatures are applicable only in systems with a
single type of component, as all its components have to be charac-
terized as exchangeable random quantities. This work is from the
theoretical part of research, so its practical usage for real systems
is limited, because real systems tend to have components of mul-
tiple types. Signatures cannot be used for analysing the reliability
of networks, it is caused by the existence, at least, of two different
kinds of components—links and nodes.

4.4. Morse theory

In this section, we report some classical results in Morse
theory [49], which constitutes the essential mathematical root for
Reeb graphs.

Morse theory can be seen as the investigation of the relation
between functions defined on a manifold and the shape of the
manifold itself. The key feature of Morse theory is that information
on the topology of the manifold is derived from the information
about the critical points of real functions defined on the manifold.

Morse theory is ameans of relating the global features of (in the
classical setting) a Riemannian manifold M with the local features
of critical points of smooth R-valued functions on M . Recall that
h : M → R is Morse if all critical points of h are non-degenerate,
in the sense of having a non-degenerate Hessian matrix of second
partial derivatives. Denote by Cr(h) the set of critical points of
h. For each p ∈ Cr(h), the Morse index of p, µ(p), is defined
as the number of negative eigenvalues of the Hessian at p. The
theory identifies points which level sets of the function undergo
topological changes, and it relates these points via a complex. In
particular, Morse theory provides the mathematical background
underlying several descriptors, such as Reeb graphs, size functions,
persistence diagrams and Morse shape descriptors. For a detailed
overview of Morse theory, see [50,51].

Let h : M → R be a continuous function defined on a domain
M . For each scalar value a ∈ R, the level set h−1(a) = {x ∈ M |

h(x) = a} may have multiple connected components. The Reeb
graph Fig. 5 of h, denoted by Rbh(M), is obtained by continuously
identifying every connected component in a level set to a single
point. In otherwords, Rh(M) is the image of a continuous surjective
map Φ : X → Rbh(X), where Φ(x) = Φ(y) if, and only if, x and y
come from the same connected component of a level set of h. For a
detailed overview of a Reeb graph, see [39].
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Fig. 5. Morse function and Reeb graph on the 2-sphere.

5. Topological data analysis

Geometry is understood and used mainly as quantitative
mathematics, while topology, on the other hand, provides a
formal language for a qualitative approach. In topology, the
relationships of nearness or proximity are studied, but without
using distances. A map between topological spaces is called
continuous if the nearness structures are retained. Nowadays,
in algebra, we study maps that preserve product structures; for
example, group homomorphisms between groups, and one of the
largest areas of growth in pure mathematics this century has been
the solution of topological problems by casting them into a simpler
formusing groups. This theory is called algebraic topology and, like
analytical geometry and differential geometry before it, there is
considerable interplay with some of the most fundamental ideas
in computer science.

Topological data analysis aims to provide additional tools for
analysing data sets that appear in engineering and science. The goal
is not to replace current techniques because these techniques still
supply an additional and powerful approach for mining intuitive
features (as well as not-so-intuitive) in data collections. Proposed
approaches focus on the data shape, and can be implemented to
data sets of high dimensions.

As computational topology has undergone progress, now we
are able to deduce topological invariants from data. The input of
these procedures is often in the form of a point cloud, regarded as
possibly noisy observations from an unknown lower-dimensional
set whose topological features, which could have information
potential, were lost during a sampling procedure. Sampling data
is a way to get sublinear algorithms. Sublinear algorithms are a
recent development in theoretical computer science, statistics, and
discrete mathematics, which address the mathematical problem
of understanding global features of a data set using limited
resources. Often enough, to determine important input features,
one does not need to actually look at the entire input. The field
of sublinear algorithms [16] makes precise the circumstances
when this is possible and combines discrete mathematics and
algorithmic techniques with a comprehensive set of statistical
tools to quantify errors and give trade-offs with sample sizes. The
output is a collection of data summaries that are used to estimate
the topological features of data collection. There are software
packages for computing topological invariants from data [52–56].

By using homology, the features of a topological space such as
an annulus, sphere, torus, complicated surface or manifold can be
measured. Homology is so helpful that, thanks to it, it is possible
to differentiate spaces from one another using the quantified
connected components, trapped volumes, topological circles, etc.
On a finite set of data points, a (noisy) sampling from an underlying
topological space can be seen. The homology of the data can be
measured using the connections’ proximate data points; changing
the scale of which these connections are made and finding the

features of the data is persistent regardless of changing the scale.
This approach is called persistent homology, and it is considered to
be the most useful and helpful method for finding the topological
structure of a discrete data set. Persistent homology has found its
place in various application areas for its ability to discover the
topological structure of data.

Persistent homology for data analysis has been studied by
many researchers in mathematics and computer science, e.g.
Carlsson [3], Edelsbrunner and Harer [39], Ghrist [57], Oudot [46]
and Zomorodian [58,37].

To drive the reader through the bunch of approaches and
frameworks revised here, wemust first introduce the basic notions
of mathematical concepts such as topological space, manifold,
map, metric and transformation. We also provide a brief overview
of algebraic topology.

How do we find the topological structure of the data sets?
A technology called persistent homology analysis was proposed
to solve this problem [3,5,57]. The topological structure of the
data sets is now one of the major areas where mathematicians
and computer scientists have focused considerable attention. The
geometric structure ofmassive amounts of data, or Big Data,will be
critical in data analysis. We predict that there will be many more
new findings in theory and practice.

Historically, geometrical and topological techniques have
been deployed as independent alternatives in the analysis of
a variety of data types. However, the continuing increases in
size, dimensionality, number of variables, and uncertainty create
new challenges that traditional approaches cannot address. New
methods based on geometrical and topological techniques are
needed to support the management, analysis and visualization of
Big Data [59,3,39,57,58,37].

An essential part of Big Data processing is the need for different
types of users to apply visualizations [59–61] to understand a
result of Big Data processing. Recently, it became apparent that
a large number of the most interesting structures and world
phenomena could be described by networks. Developing a theory
for very large networks is a significant challenge in Big Data
research [62]. Big Data is one of the main science and technology
challenges of today.

In mathematical science, homology is a general procedure to
associate a sequence of abelian groups or modules to a given
topological space and/or manifold [39,63]. The idea of homology
dates back to Euler and Riemann, although the homology class was
first rigorously defined byHenri Poincaré,who built the foundation
of modern algebraic topology. The topological structure of a given
manifold can be studied by defining the different dimensional
homology groups on the manifold such that the bases of the
homology groups are isomorphic to the bases of the corresponding
topological spaces. In a computational point of view, we can
approximate the given manifold using a triangulated simplicial
complex, on which homology groups can be further defined.
There exist some methods, such as Delaunay triangulation, which
can be used for the triangulation of a manifold or topological
spaces. And, there are many triangulation software packages,
such as TetGenand CGAL. The Cartesian representation is one of
the most important approaches to scientific computing. Due to
this homology analysis being based on a cubical complex, it has
been a popular field for researchers in recent years. Kaczynski
et al. described homology analysis in the cubical complex very
systematically in [64].

6. Application of computational geometry and topology

Persistent homology creates a multiscale representation of
topological structures via a scale parameter relevant to topolog-
ical events [65–68]. In the past decade, persistent homology has
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been developed as an efficient computational tool for the char-
acterization and analysis of topological features in large data sets
[65,68,69]. Persistent homology can be maintained continuously,
despite the filtration process, over a range of spatial scales in
persistent homology analysis. Persistent homology, by its nature,
when compared to traditional computational topology [70–72]
and/or computational homology (which results in truly metric-
free or coordinate-free representations), exhibits one additional
dimension—the filtration parameter. This additional parameter
finds its use in building some crucial geometry or quantitative
information into the topological invariants, so that the birth and
death of isolated components, cavities, circles, loops, pockets, rings
or voids at all geometric scales can be defined by topological mea-
surements. For the visualization of topological persistence [73], a
Barcode representation has been proposed, in which various hor-
izontal line segments or bars are used to interpret the persistence
of the topological features.

Efficient computational algorithms, such as the pairing algo-
rithm [74,75], Smith normal form [39,68] and Morse reduction
[65,76,77], have been proposed to track topological variations
during the filtration process [78,72]. Some of these persistent
homology algorithms have been implemented in many software
packages, namely Perseus [53], JavaPlex [55] and Dionysus [56].
In [79], guidelines are provided for the computation of persistent
homology with a good introduction on how to make our imple-
mentations.

In the past few years, persistent homology has been applied to
image analysis [80], image retrieval [81], chaotic dynamics veri-
fication [64], sensor networks [82], complex networks [83], data
analysis [3,84–86], computer vision [87,88], shape recognition [89]
and computational biology [90].

Advances in medicine, particularly in genetic engineering, have
increased the amount of genome-wide gene expression data, but
the number of pattern recognition methods, which could be useful
in this area, is still not huge enough. To be able to find interesting
and adequate enough fact patterns in such huge amounts of data
connected with some level of noise is still a big challenge. In [91],
a new approach to Pattern detection in gene expression data is
presented.

Recovering or inferring a hidden structure from discrete sam-
ples is a basic problem in data analysis, omnipresent in a wide
range of applications. Data often shows a considerable high-
dimension; for the understanding and finding of interesting infor-
mation, which are hidden in data, it is necessary to approximate
it with a low-dimensional or even with one-dimensional space,
because many important aspects of data are often internally low-
dimensional.Morse theory and Reeb graphs are a simple but signif-
icant scenario, where the hidden space has a graph-like geometric
structure, such as the branching filamentary structures formed by
blood vessels.

In [92], a straightforward and efficient algorithm is presented
to approximate the Reeb graph Rbf (M) of a map f : M → R from
point data sampled from a smooth and compact manifoldM .

In [93], an overview of the mathematical properties of Reeb
graphs is given. In [94], the authors introduced a framework to
extract, as well as to simplify, a one-dimensional skeleton from
unorganized data using the Reeb graph. They apply a proposed
algorithm for molecular simulation. The input is molecular
simulation data using the replica-exchange molecular dynamics
method [95]. It contains 250K protein conformations, generated
by 20 simulation runs, each of which produces a trajectory in the
protein conformational space. Simulations at low energy should
provide a good sampling of the protein conformational space
around the native structure of this protein.

7. Big Data visualization

The emergence of Big Data has brought about a paradigm shift
through computer science, such as the fields of computer vision,
machine learning, and multimedia analysis. Visual Big Data, which
is specifically about visual information such as images and videos,
accounts for a large and important part of Big Data. Many the-
ories and algorithms have been developed for visual Big Data in
recent years, among which the dimensionality reduction tech-
nique [96–98] plays an increasingly important role in the analy-
sis of visual Big Data. Unfortunately, conventional statistical and
computational tools are often severely inadequate for process-
ing and analysing large-scale, multi-source and high-dimensional
visual Big Data. The combination dimensionality reduction and
visual Big Data will bring about huge opportunities as well as
challenges to these communities. In recent years, this area has
gained much attention, thanks to the development of nonlinear
spectral dimensionality reduction methods, often referred to as
manifold learning algorithms, see [99].

The authors of [100] presented a tool for extracting a feature
of data using selected dimension reduction techniques. From the
verified methods were chosen non-negative matrix factorization,
singular value decomposition, semi-discrete decomposition, a
novel neural network-based algorithm for Boolean factor analysis,
and two cluster analysismethods aswell. As the benchmark, the so
called bars problemwas applied. The authors proposed generating
sets of artificial signals as a Boolean sum of the given number
of bars and then analysing it using selected dimension reduction
techniques. From the results, it was deduced that Boolean factor
analysis is the most suitable method for this kind of data.

Data or information visualization is used to synthesize infor-
mation and knowledge from massive, dynamic, ambiguous, un-
certain, noisy and often conflicting data. Information visualization
is a broad research area that aims to aid users in exploring, un-
derstanding, and analysing data through progressive, iterative vi-
sual exploration [101]. The rise of the field of Big Data caused
the need for development of areas closely connected with it, such
as machine learning, computer vision and multimedia analysis.
With the boom in Big Data and deep data analytics, visualiza-
tion is being widely used in a variety of data analysis applications
[102,103]. Big Data visualization is one of the most needed fields
for Big Data processing. Many theories and algorithms were de-
veloped, and are still being developed, to help visualize Big Data,
because the well known and used already-developed tools and
statistical methods are very often appropriate for the nature of
large-scale, multi-source and high-dimensional visual Big Data. To
understand the knowledge and relationships, which are ‘‘hidden
in pure data’’, it is necessary to be able to understand the rela-
tionship between geometric objects constructed from data using
various parameter values. To be able to visualize data in a more
understandable form based on the same principle, the aggrega-
tion of original attributes is used, using various techniques, among
which the dimensionality reduction technique [96,97] plays an in-
creasingly important role. The connection between dimensionality
reduction techniques and visual Big Data will introduce huge op-
portunities as well as challenges to the community interested in
this area [17].

Dimensionality reduction techniques are based on assign-
ment of high-dimensionality space to lower and, ideally, to low-
dimensional space (3D, 2D) to be better able to visualize data
(Fig. 6) and to solve a fundamental problem in a variety of data
analysis tasks—to find an appropriate representation for the given
data, see [104]. Dimensionality reduction methods can be divided
into two groups, linear and non-linear methods. The linear meth-
ods transform original variables into a new variable using the
linear combination of the original variables. From linear di-
mensionality reduction techniques this can be named Principal
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Fig. 6. Principle of dimensionality reduction.

Component Analysis (PCA), Linear Discriminant Analysis (LDA),
Multi-Dimensional Scaling (MDS), Linear Discriminant Analysis
(LDA), Canonical Correlations Analysis (CCA), Maximum Autocor-
relation Factors (MAF), Slow Feature Analysis (SFA), Sufficient Di-
mensionality Reduction (SDR), Locality Preserving Projection (LPP),
Under complete Independent Component Analysis (UICA), Proba-
bilistic PCA (PPCA), Factor Analysis (FA), Linear Regression (LR), or
Distance Metric Learning (DML) [105–108].

Non-linear methods include, e.g. Non-linear Manifold Learn-
ing Methods (Laplacian Eigenmaps (LE), Locally Linear Embedding
(LLE), Isomap, Hessian Eigenmap, Semi-Definite Programming
(SDE), Manifold Based Charting, Local Tangent Space Alignment
(LTSA), Diffusion maps, Parallel vector Field Embedding (PFE),
Geodesic Distance Function Learning (GDL) and Parallel Field
Alignment for cross media Retrieval (PFAR)), Discriminative lo-
cality alignment (DLA), or Generalized Eigenvectors for Multiclass
(GEM) [109,105–107,110].

The latest research in the area of decomposition methods has
introduced some new approaches, which enable the restrictions
and limits of conventional methods to be dealt with. Wang
et al. [111] proposed the generalized Discriminative Generalized
Eigendecomposition (DGE) method based on the idea that better
separation of a multi-dimensional feature could be helpful in
finding better discriminant vectors. DGE can deal with Gaussian
and non-Gaussian distribution. In [112], the combination of LDA
and LPP as the RElevant Local Discriminant Analysis RELDA
algorithm is presented,which has an analytical formof the globally
optimal solution, and it is based on eigendecomposition, too. Some
new interesting variants of LPP are introduced in [113].

8. Big Data challenges

One of the biggest challenges for Big Data research, we face to-
day, is digitization. Digitization is the main part of cyber–physical
systems (CPS) which introduces the fourth stage of industrializa-
tion, commonly known as Industry 4.0. A strategic initiative called
Industrie 4.0 (Industry 4.0) has been proposed and adopted by the
German government as a part of the High-Tech Strategy 2020 Ac-
tion Plan [114]. Industry 4.0 or the fourth industrial revolution, is
a collective term embracing some contemporary automation, data
exchange, andmanufacturing technologies. Similar strategies have
also been proposed by other main industrial countries, e.g., Indus-
trial Internet [115] by the USA and Internet+ [116] by China. Indus-
try 4.0 is also referred as Smart Factory, Cyber–Physical Production
Systems or Advanced Manufacturing, but the meaning is mostly
the same. It is defined as a collective term for technologies and con-
cepts of value chain organizations which draw together CPS, the
Internet of Things and the Internet of Services. Smart factory mod-
elling based on virtual design and simulation has emerged as a part
of the mainstream activities geared towards reducing product de-
sign cycle. The smart factory is characterized by a self-organized

multi-agent system [117] supported with Big Data based feedback
and coordination.

The Industry 4.0 describes a CPS oriented production sys-
tem [118–121] that integrates production facilities, warehousing
systems, logistics, and even social requirements to establish the
global value creation networks [122]. Big data and cloud com-
puting for Industry 4.0 are viewed as data services that utilize
the data generated in Industry 4.0 implementations but are not
independent as Industry 4.0 components [123,124]. For Industry
4.0 and Smart Manufacturing processes dealing with large data
storage, sharing data, processing and analysing have become key
challenges to computer science research. Some examples of these
include efficient data management, additional complexity arising
from analysis of semi-structured or unstructured data and quick
time critical processing requirements. To resolve these issues, un-
derstanding of thismassive amount of data, advanced visualization
and data exploration techniques are critical [125].

Analytics based on Big Data has emerged only recently in the
manufacturingworld, where it optimizes production quality, saves
energy, and improves equipment service [126,127]. In an Industry
4.0 context, the collection and complete evaluation of data from
many heterogeneous sources will become standard to support
real-time decision-making.

Example of Big Data collection is, in research area, well known
DataBase systems and Logic Programming (DBLP) Computer
Science Bibliography, which provides bibliographic information
on major computer science journals and proceedings. Nowadays,
more than 3.35 million records, which contain titles of articles,
their authors, years of publication is indexed in DBLP and since
2011, more than 300 thousands records have been added every
year. DBLP is database with open access and due to its content and
its size, it is a very interesting resource for evolution analysis of co-
author networks and could be considered as one of the example of
Big Data data set in nonindustrial world [128,129].

9. Conclusion

The last few years have seen a great increase in the amount
of data available to scientists, engineers, and researchers from
many disciplines. Modern data science uses topological methods
to find the structural features of data sets before further supervised
or unsupervised analysis. The size of data at present is huge
and continues to increase every day. Data sets with millions of
objects and hundreds, if not thousands, of measurements, are
now commonplace in areas such as image analysis, computational
finance, bio-informatics, and astrophysics. The variety of data
being generated is also expanding. The velocity of data generation
and its growth is increasing because of the proliferation of IoT,
sensors connected to the Internet. This data provides opportunities
that allow businesses across all industries to gain real-time
business insights. We present motivational examples to show
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that, for large amounts of data, we need a new model for data
processing. This model must be based on feature summarization
instead of classical methods based on feature selection. We also
face, with uncertainty, Big Data. The geometrical and topological
method helps us to solve this problem.

In this study, we presented a review of the rise of geometrical
and topological methods which can be used for Big Data
processing.We proposed a geometrical and topological view of the
Big Data model.
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