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a b s t r a c t 

Currently, the world is witnessing a mounting avalanche of data due to the increasing number of mobile 

network subscribers, Internet websites, and online services. This trend is continuing to develop in a quick 

and diverse manner in the form of big data. Big data analytics can process large amounts of raw data 

and extract useful, smaller-sized information, which can be used by different parties to make reliable 

decisions. 

In this paper, we conduct a survey on the role that big data analytics can play in the design of data 

communication networks. Integrating the latest advances that employ big data analytics with the net- 

works’ control/traffic layers might be the best way to build robust data communication networks with 

refined performance and intelligent features. First, the survey starts with the introduction of the big data 

basic concepts, framework, and characteristics. Second, we illustrate the main network design cycle em- 

ploying big data analytics. This cycle represents the umbrella concept that unifies the surveyed topics. 

Third, there is a detailed review of the current academic and industrial effort s toward network design 

using big data analytics. Forth, we identify the challenges confronting the utilization of big data analytics 

in network design. Finally, we highlight several future research directions. To the best of our knowledge, 

this is the first survey that addresses the use of big data analytics techniques for the design of a broad 

range of networks. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Networks generate traffic in rapid, large, and diverse ways,

which leads to an estimate of 2.5 exabytes created per day [1] .

There are many contributors to the increasing size of the data.

For instance, scientific experiments can generate lots of data, such

as CERN’s Large Hadron Collider (LHC) that generates over 40

petabyte each year [2] . Social media also has its share, with over

1 billion users, spending an average 2.5 h daily, liking, tweeting,

posting, and sharing their interests on Facebook and Twitter [3] .

It is without a doubt that using this activity-generated data can

affect many aspects, such as intelligence, e-commerce, biomedical,

and data communication network design. However, harnessing

the powers of this data is not an easy task. To accommodate the

data explosion, data centers are being built with massive storage

and processing capabilities, an example of which is the National

Security Agency (NSA) Utah data centre that can store up to 1 yot-

tabyte of data [4] , and with a processing power that exceeds 100

petaflops [5] . Due to the increased needs to scale-up databases to
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ata volumes that exceeded processing and/or storage capabilities,

ystems that ran on computer clusters started to emerge. Perhaps

he first milestone took place in June 1986 when Teradata [6] used

he first parallel database system (hardware and software), with

ne terabyte storage capacity, in Kmart data warehouse to have all

heir business data saved and available for relational queries and

usiness analysis [7,8] . Other examples include the Gamma system

f the University of Wisconsin [9] and the GRACE system of the

niversity of Tokyo [10] . 

In light of the above, the term “Big Data” emerged, and it can

e defined as high-volume, high-velocity, and high-variety data

hat provides substantial opportunities for cost-effective decision-

aking and enhanced insight through advanced processing which

xtracts information and knowledge from data [11] . Another way

o define big data is by saying it is the amount of data that is

eyond traditional technology capabilities to store, manage, and

rocess in an efficient and easy way [12] . Big data is already being

mployed by digital-born companies like Google and Amazon to

elp these companies with data-driven decisions [13] . It also helps

n the development of smart cities and campuses [14] , as well

s in other fields like agriculture, healthcare, finance [15] , and

ransportation [16] . Big data has the following characteristics: 

1- Volume : This is a representation of the data size [17] . 
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Table 1 

Various big data dimensions. 

No. 

of 

Vs 

References Dimensions (Characteristics) 

Volume Velocity Variety Veracity Value Variability Volatility Validity Complexity 

3Vs [25–31] 
√ √ √ 

4Vs [4,32–34] 
√ √ √ √ 

[35–39] 
√ √ √ √ 

5Vs [3,11,21,40,41] 
√ √ √ √ √ 

6Vs [20,22,24,42] 
√ √ √ √ √ √ √ 

7Vs [23,43] 
√ √ √ √ √ √ √ 
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Fig. 1. Hadoop V1.x architecture. 
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2- Variety : Generating data from a variety of sources results in a

range of data types. These data types can be structured (e.g. e-

mails), semi-structured (e.g. log files data from a webpage); and

unstructured (e.g. customer feedback), and hybrid data [18] . 

3- Velocity : Is an indication of the speed of the data when being

generated, streamed, and aggregated [19] . It can also refer to

the speed at which the data has to be analyzed to maintain

relevance [17] . 

Depending on the research area and the problem space, other

erms or Vs can be added. For example, is this data of any value?

ow long can we consider this an accurate and valid data? Since

e are conducting a survey, we find it compelling to briefly

ntroduce other Vs as well. Typically, the number of analyzed Vs

s 3 to 7 in a single paper (e.g. 6V + C [20] ), where C represents

omplexity , however, different papers analyze different sets of Vs

nd the union (sum) of all the analyzed Vs among all surveyed

apers is 8V and a C, as shown in Table 1 . 

4- Value : Is a measure of data usefulness when it comes to de-

cision making [19] , or how much added-value is brought by

the collected data to the intended process, activity, or predic-

tive analysis/hypothesis [21] . 

5- Veracity : Refers to the authenticity and trustworthiness of the

collected data against unauthorized access and manipulation

[21,22] . 

6- Volatility : An indication of the period in which the data can still

be regarded as valid and for how long that data should be kept

and stored [23] . 

7- Validity : This might appear similar to veracity; however, the dif-

ference is that validity deals with data accuracy and correctness

regarding the intended usage. Thus, certain data might be valid

for an application but invalid for another. 

8- Variability : This refers to the inconsistency of the data. This is

due to the high number of distributed autonomous data sources

[24] . Other researchers refer to the variability as the consis-

tency of the data over time [22] . 

9- Complexity : A measure of the degree of interdependence and

inter-connectedness in big data [20] . Such that, a system may

witness a (substantial, low, or no) effect due to a very small

change(s) that ripples across the system [19] . Also, complexity

can be considered in terms of relationship, correlation and con-

nectivity of data. It can further manifest in terms of multiple

data linkages, and hierarchies. Complexity and its mentioned

attributes can however help better organize big data. It should

be noted that complexity was included among the big data at-

tributes (Vs) in [20] where big data was characterized as having

6V + complexity. This is how we will arrange it in Table 1 . 

The process of extracting hidden, valuable patterns, and useful

nformation from big data is called big data analytics [44] . This

s done through applying advanced analytics techniques on large

ata sets [28] . Before commencing the analytics process, data

ets may comprise certain consistency and redundancy problems

ffecting their quality. These problems arise due to the diverse
ources from which the data originated. Data pre-processing tech-

iques are used to address these problems. The techniques include

ntegration, cleansing (or cleaning), and redundancy elimination,

nd they were discussed by the authors in [39] . 

Big data analytics can be carried out using a number of frame-

orks (shown below) that usually require an upgradeable cluster

edicated solely for that purpose [17] . Even if the cluster can be

ormed using a number of commodity servers [45] , however, this

till forms an impediment for limited-budget users who want to

nalyze their data. The solution is presented through the democra-

ization of computing. This made it possible for any-sized company

nd business owners to analyze their data using cloud computing

latforms for big data analytics. Consequently, the use of big data

nalytics is not limited to enterprise-level companies. Furthermore,

usiness owners do not have to heavily invest in an expensive

ardware dedicated to analyzing their data [1] . Amazon is one of

he companies that provide ‘cloud-computed’ big data analytics for

ts customers. The service is called Amazon EMR (Elastic MapRe-

uce), and it enables users to process their data in the cloud with

 considerably lower cost in a pay-as-you-use fashion. The user

s able to shrink or expand the size of the computing clusters to

ontrol the data volume handled and response time [1,46] 

Dealing with big amounts of data is not an easy task, especially

f there is a certain goal in mind since data arrives in a fast man-

er, it is vital to provide fast collection, sorting, and processing

peeds. Apache Hadoop was created by Doug Cutting [47] for this

urpose. It was later adopted, developed, and released by Yahoo

48] . Apache Hadoop can be defined as a top-level, java-written,

pen source framework. It utilizes clusters of commodity hardware

49] . 
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Fig. 2. Hadoop V2.x architecture. 
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Hadoop V1.x (shown in Fig. 1 ) consists of two parts: the Hadoop

Distributed File System (HDFS) that consists of a storage part, and

a data processing and management (MapReduce) part. The master

node has two processes, a Job Tracker that manages the processing

tasks and a Name Node that manages the storage tasks [50] . 

When a Job Tracker takes job requests, it splits the accepted

job into tasks and pushes them to the Task Trackers located in

the slave nodes [51] . The Name Node resembles the master part,

while the Data Nodes represent the slave part [12] . There is more

explanation in the HDFS part below. 

Many projects were developed in a quest to either complement

or replace the above parts, and not all projects are hosted by

the Apache Software Foundation, which is the reason for the

emergence of the term Hadoop ecosystem [47] . 

Hadoop V2.x is viewed as a three-layered model. These layers

are classified as storage, processing, and management, as shown in

Fig. 2 . The current Hadoop project has four components (modules),

which are MapReduce, the HDFS, Yet Another Resource Negotiator

(YARN), and Common utilities [17] . 

1- MapReduce : As a programming model, MapReduce is used as a

data processing engine and for cluster resource management.

With the emergence of Hadoop v2.0, the resource management

task became YARN’s responsibility [17] . WordCount is an exam-

ple illustrating how MapReduce works. As the name implies,

it calculates the number of times a specific word is repeated

within a document. Tuples 〈 w , 1 〉 are produced by the map

function, where w and 1 represents the word and the times

it appeared in the document respectively. The reduce function

groups the tuples that share the same word and sums their oc-

currences to reach the concluding result [61] . 

2- HDFS : HDFS represents the storage file-system component in

the Hadoop ecosystem. Its main feature is to store huge

amounts of data over multiple nodes and stream those data

sets to user applications at high bandwidth. Large files are split

into smaller 128 MB blocks, with three copies of each block

of data to achieve fault tolerance in the case of disk failure

[17,52,53] . 

3- YARN : YARN was introduced in Hadoop version 2.0, and it sim-

ply took over the tasks of cluster resource management from

MapReduce and separated it from the programming model,

thus making a more generalized Hadoop capable of selecting

programming models, like Spark [54] , Storm [55] , and Dryad

[56,57] . 
4- Common utilities : To operate Hadoop’s sub-projects or modules,

a set of common utilities or components are needed. Shared li-

braries support operations like error detection, Java implemen-

tation for compression codes, and I/O utilities [17,58] . 

Over the last few years, researchers in telecommunication

etworks started to consider big data analytics in their design

oolbox. Characterized by hundreds of tunable parameters, wire-

ess network design informed by big data analytics received

ost of the attention, however, other types of networks received

ncreasing attention as well. 

The vast amount of data that can be collected from the

etworks, along with the distributed modern high-performance

omputing platforms, can lead to new cost-effective design space

e.g. reducing total cost of ownership by employing dynamic

irtual Network Topology adaptation) when compared to classical

pproaches (i.e. static Virtual Network Topologies) [59] . This new

aradigm is promising to convert networks from being sight-

ess tubes for data into insightful context-aware networks. Our

ontributions in this paper are as follows: 

1- We show in this paper the role big data analytics can play in

wireless and wired network design. 

2- The above role is corroborated through the illustration of case

studies in Section 2 . 

3- The significance of this paper lies in helping academic re-

searchers save much effort by understanding the state-of-the-

art and identifying the opportunities, as well as the challenges

facing the use of big data analytics in network design. 

4- In addition to academic approaches, we surveyed network

equipment manufacturing companies highlighting network so-

lutions based on big data analytics. We also identified the com-

mon areas of interest among these solutions, and thus this sur-

vey can benefit both academic and industrial-oriented readers. 

5- This paper provided insights on potential research directions as

illustrated in Section 8 . 

This paper is organized as follows: Section 2 presents sev-

ral case studies uses big data analytics in wireless and wired

etworks. Sections 3 –6 illustrate the research conducted in the

irection of employing big data analytics in the fields of cellular,

DN & intra-data center, optical networks, and network secu-

ity, respectively. Section 7 summarizes some of the main big

ata-based network solutions offered by industry. Section 8 dis-

usses the network design cycle based on big data analytics and

ighlights the challenges encountered in big data-powered net-

ork design. In Section 9 we propose open directions for future

esearch. Finally, the paper ends with conclusions in Section 10 . 

. Case studies of the use of big data analytics for wireless and 

ired networks 

.1. Detection of sleeping cells in 5G SON 

A wireless cell may cease to provide service with no alarm

riggered at the Operation and Maintenance Center (OMC) side.

uch cells are referred to as sleeping cells in self organizing

etworks (SON). The authors in [60] tackled this problem and

resented a case study on the identification of the Sleeping Cells

SC). The simulation scenario comprised of 27 macro sites each

ith three sectors. The user equipment (UE) is configured to send

adio measurement and cell identification data of the serving and

eighboring cells to the base station, in addition to event-based

easurements. The above-mentioned measurements are sent

eriodically (i.e. every 240 ms). The simulation considered two

cenarios; reference (a normally-operating network) and SC. The

atter was simulated by dropping the antenna gain from 15 dBi



M.S. Hadi et al. / Computer Networks 132 (2018) 180–199 183 

(  

p  

i  

u  

n  

b  

m  

i  

a  

m  

d  

b  

a

2

s

 

f  

o  

i  

a  

t  

a  

p  

t  

a  

o  

t  

c

 

a  

r  

F  

e  

f  

i  

M  

c

2

 

n  

a  

t  

T  

t  

t  

t  

i  

I  

a  

t  

c  

i  

c  

r  

p  

v  

(

3

 

b  

t  

fi  

o  

t  

c

 

 

 

 

 

 

 

 

 

 

 

s  

a

3

3

 

s  

c  

m  

i  

t  

o  

l  

[  

f  

m  

a  

t  

a  

o

 

a  

p  

d  

P  

f

3

 

a  

N  

m

 

w  

i

 

 

 

 

 

 

 

 

reference scenario) to −50 dBi (SC scenario). Measurements re-

orted from UEs are then collected from each scenario and stored

n a database. The reference scenario provided measurements

sed by an anomaly detection model that is based on k-nearest-

eighbor algorithm to provide a network model with normal

ehavior. Multidimensional Scaling (MDS) is used to produce a

inimalistic Key Performance Index (KPI) representation. Thus the

nterrelationship between Performance Indexes (PIs) is reflected

nd an embedded space is constructed. Consequently, similar

easurements (i.e. normal network behavior) lie within close

istances while dissimilar measurements (i.e. anomalous network

ehavior) are far-scattered and hence easily identified. The model

ttained 94 percent detection accuracy with 7 mins training time. 

.2. A proposed architecture for fully automated MNO reporting 

ystem 

Mobile Network Operators (MNOs) collect vast amounts of data

rom a number of sources as it can offer actionable plans in terms

f service optimization. Visibility and availability of information

s vital for MNOs due to its role in decision making. Employing

 reporting system is pivotal in the cycle of transforming data

o information, knowledge, and lastly to actionable plans. The

uthors in [61] presented a case study aimed at illustrating the

otential role of big data analytics in the development a fully au-

omated reporting system. A Moroccan MNO is to benefit from the

lternative architecture. The authors highlighted the shortcomings

f the existing automatic reporting system that uses traditional

echnologies. Moreover, they inferred that using big data analytics

an provide the opportunity to overcome those shortcomings. 

The authors chose the Apache Flink [61] in their proposed

rchitecture to serve as their big data analytics framework. Several

easons contributed towards this choice, including the Apache

link’s ability to process data in both stream and batch modes,

ase of deployment, and fast execution when compared to other

rameworks such as Spark. Furthermore, the apache Flink can be

ntegrated with other projects like HDFS for data storage purposes.

oreover, Apache Flink is scalable which makes it an optimal

hoice for this system. 

.3. Network anomaly detection using NetFlow data 

Big data analytics can support the efforts in the subject of

etwork anomaly and intrusion detection. Towards that end, the

uthors in [62] proposed an unsupervised network anomaly detec-

ion method powered by Apache Spark cluster in Azure HDInsight.

he proposed solution uses a network protocol called NetFlow

hat collects traffic information that can be utilized for the de-

ection of network anomalies. The procedure starts by dividing

he NetFlows data embedded in the raw data stream into 1 min

ntervals. NetFlows are then aggregated according to the source

P, and data standardization is carried out. Afterwards, a k-means

lgorithm is employed to cluster (according to normal or abnormal

raffic behavior) the aggregated NetFlows. The following step is to

alculate the Euclidean distance between the cluster center and

ts elements. The procedure concludes by evaluating the success

riteria. The authors considered a dataset containing 4.75 h of

ecords captured from CTU University to analyze botnet traffic. The

roposed approach attained 96% accuracy and the results were

isualized in 3D after employing Principal Component Analysis

PCA) to attain dimension reduction. 

. Role of big data analytics in cellular network design 

In this section, we review the research done on the use of

ig data analytics for the design of cellular networks. Compared
o other network design topics, we observed that the wireless

eld has received the most attention, as measured by its share

f research papers. These papers can be classified according to

he application or area under investigation. Consequently, we have

lassified those papers into the following: 

1- Counter-failure-related: This includes fault tolerance (i.e. detec-

tion and correction), prediction, and prevention techniques that

use big data analytics in cellular networks. 

2- Network monitoring: This illustrates how big data analytics can

be beneficial as a large-scale tool for data traffic monitoring in

cellular networks. 

3- Cache-related: Investigates how big data analytics can be used

for content delivery, cache node placement and distribution,

location-specific content caching, and proactive caching. 

4- Network optimization: Big data analytics can be involved in

several topics including predictive wireless resource allocation,

interference avoidance, optimizing the network in light of Qual-

ity of Experience (QoE), and flexible network planning in light

of consumption prediction. 

It should be noted that Table 2 provides further detailed clas-

ification, with the chance to compare the role played by big data

nalytics across different network types and applications. 

.1. Failure prediction, detection, recovery, and prevention 

.1.1. Inter-technology failed handover analysis using big data 

One of the most frustrating encounters happens when a mobile

ubscriber gets surprised by a sudden call drop. Many of these in-

idents occur when the user is at the edge of a coverage area and

oving towards another, technologically-different area, e.g., mov-

ng from a 3G Base Station (BS) to a 2G BS. The common solutions

o address such shortcomings are by either conducting drive tests

r performing network simulation. However, another solution that

everages the power of big data was proposed by the authors in

63] . The proposed solution uses big data analytics (Hadoop plat-

orm) to analyze the Base Station System Application Part (BSSAP)

essages exchanged between the Base Station Subsystem (BSS)

nd Mobile Switching Center (MSC) nodes. Location updates (only

hose involved in the inter-technology handover) are identified

nd the geographic locations where the 3G-service disconnections

ccur are identified by relying on the provided target Cell ID. 

The results of the above method were then compared with

 drive test (which is an expensive and time-consuming ap-

roach) results, where coherence between the two results was

emonstrated. Another comparison was conducted with the Key

erformance Index (KPI)-based approach and the results were in

avor of the proposed approach. 

.1.2. Signaling data-based intelligent LTE network optimization 

By utilizing the combination of all around signaling and user

nd wireless environment data, combined with Self-Organized

etwork technologies (SON), full-scale automatic network opti-

ization could be realized. 

The authors of [27] developed an intelligent cellular net-

ork optimization platform based on signaling data. This system

nvolves three main stages: 

1- Defining network performance indicators through the extraction of

XDR keywords : The External Data Representation (XDR) contains

the key information of the signaling (e.g., the causes of the pro-

cess failures and signaling types). The status of a complete sig-

naling process can also be identified by the XDR (e.g., the suc-

cess or failure of signaling establishment and release). A num-

ber of performance indicators are defined by relying on this in-

formation. Querying these indicators is possible from multiple

dimensions and levels (e.g., user, cell, and grid level). 
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Table 2 

Research summary. 

Network type Research category Reference Proposed or deployed technique 

Wireless Failure prediction, Detection, 

Recovery, and prevention 

[63] Analyzed inter-technology (2G-3G) failed handovers. 

[27] Used XDR data to discover network failures and present a solution advice. 

[64] Developed CADM which uses CDRs to identify anomalous sites. 

[65] Presented three case studies of self-healing using big data analytics. 

[68] Suggested the analysis of the bandwidth trends to predict equipment failure. 

Network monitoring [69] Developed a Hadoop-based system to monitor and analyze network traffic. 

[70] Developed a solution powered by big data platforms with distributed storage 

and distributed database to solve the issues of data analysis and acquisition. 

Cache and content delivery [26] Utilized big data to form a cluster made up of nearby users that share the 

base station’s wireless channel. 

[72] Analyzed the data that resides within the cache nodes to enhance the 

determination, allocation, and distribution of cache nodes. 

[68] Suggested monitoring and analyzing social media and popular sites, to predict 

and cache certain contents, according to age category, at the predicted 

locations where these contents are highly demanded. 

[34] Proposed the use of big data analytics and machine learning techniques to 

proactively cache popular content in 5G networks. 

Network optimization [73] Presented three case studies in which a proposed network optimization 

framework is efficiently utilized. In particular, the work suggested: 

(1) The use of big data analytics to manage resources in HetNets. This is done 

in three stages (network planning, resource allocation, and interference 

coordination). 

(2) The deployment of cache servers in mobile CDN. 

(3) The optimization of networks with QoE in mind. 

[76] Proposed NCL self-configuration/optimization algorithms to achieve an 

automatic, self-optimized handover. The work relied on the processing of CM 

and PM KPIs using big data analytics platform. 

[77] Developed a three-stage framework that utilizes the network and user KPIs to 

reach an optimal allocation of radio resources (PRBs). 

[60] Presented a framework that uses big data collected from the cellular network 

to empower SON. They also presented a case study on how to detect 

sleeping cells using this framework. 

[27] Investigated the impact of big data on 5G networks in terms of: 

(1) Efficient content provisioning. 

(2) Flexibility in functionality and network deployment. 

(3) Utilizing user behavior in wireless resource optimization. 

(4) Achieving highly efficient network operation. 

(5) Saving energy in HetNet or Multi-RAT networks. 

[68] Correlated location data, service usage, and other contextual data to predict 

the consumption trends and select the optimal node location. 

SDN and Inter-Data Center Traffic prediction [85] Dynamic allocation of network resources by relying on traffic predicted by 

employing Hadoop platform. 

[86] Developed Pythia, a system that uses Hadoop’s properties to predict the 

volume of data communication at runtime in data center networks. 

Traffic reduction [87] Proposed Camdoop and run it over CamCube, the performance surpassed that 

of Camdoop running on a conventional switch. 

Optical Network optimization [91] Used Hadoop to find a solution for the RWA problem. 

[59] Predicted future traffic by using Big Data Analytics to reconfigure VNT 

regularly. 

Traffic prediction [93] Employed Hadoop MapReduce to solve multiple optimization problems of 

bin-packing nature. 

Security [100] Proposed a threat detection framework to detect peer-to-peer Botnet attacks. 

[104] Developed B-dIDS, a system that scans IDS log files to detect multi-pronged 

attacks in distributed networks. 

[106] Surveyed the topic of wireless device fingerprinting methods and how machine 

learning algorithms can be used for device identification. 

[107] Provided a survey discussing the role of data mining and machine learning 

algorithms in intrusion detection methods. 
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2- Problem discovery: Service establishment rate, the handover suc-

cess rate, and drop rate are among the network signaling-plane

statuses that can be reflected by the XDR-based network perfor-

mance indicators. Network equipment with unsatisfactory per-

formance indicators can be further analyzed, and this can be

done by conducting a further excavation of the corresponding

indicators’ original signaling. 

3- Providing best practice solutions : Identified and solved problems

can provide an optimization experience. As a consequence, a

variety of network problems can be verified. For example, when

a cell has a low handover success rate, according to the defini-

tion of the associated indicators, the reason is suggested to be
 a  
the low success rate of the handover preparation. The solution

would be to adjust the overlapping coverage areas formed be-

tween the source and the target cells and the parameters (e.g.,

the decision threshold offset and the handover initiation). 

A recommended solution can be provided when a deteriorating

ndicator surfaces, and this is simply done by clicking the index

uery that caused the deterioration. 

.1.3. Anomaly detection in cellular networks 

When a certain problem occurs in the cellular network, the

ser would usually be the first who feels the service disruption

nd suffers the impact. An abnormal and disrupted service may be
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dentified by examining the Call Detail Record (CDR) of the users

n a specific area. CDR files are generated upon making a call, and

nclude, among other information, the caller and called numbers,

he call duration, the caller location, and the cell ID where the call

as initiated or received. 

A CDR based Anomaly Detection Method (CADM) was proposed

y the authors in [64] . CADM was used to detect the anomalous

ehavior of user movements in a cellular network. This was done,

rst, with the CDR data being collected from the network nodes

nd stored in a mediation department. Then, the second phase

tarts by distributing the collected CDRs to the relevant depart-

ents (e.g., data warehouse, billing, and charging departments).

fter that, the Hadoop platform is used to detect the anomalies.

he discovered anomalies are then fed-back to the mediation

epartment for adequate actions. 

The use of big data analytics was essential in this case. Large

atasets that require distributed processing across computer clus-

ers were processed by the Hadoop Platform. The result was an

mproved system that is able to detect location based anomalies

nd improve the cellular system’s performance. 

.1.4. Self-healing in cellular networks 

The idea to develop a system that is capable of monitoring

tself, detecting the faults, performing diagnoses, issuing a com-

ensation procedure, and conducting a recovery is very appealing.

owever, the self-healing process has another factor to keep in

ind, which is time. The process should be carried out within a

easonable amount of time so it would not degrade the quality of

he delivered services. 

Three use cases were presented by the authors in [65] for a

elf-healing process in cellular networks: 

1- Data reduction: The Operation and Maintenance (O&M)

database can be used for troubleshooting purposes. How-

ever, the database size is relatively large as it contains the data

related to both normal and degraded intervals, which makes

it difficult to process. Separating the intervals to just keep the

degraded intervals will help in reducing that size. The authors

proposed parallelizing this process independently by analyzing

each BS separately. 

They chose the degraded interval detection algorithm of [66] (a

egraded interval is the time where the BS behavior is degraded),

nd these intervals were detected by comparing the BS’s KPIs to a

ertain threshold. This algorithm was parallelized by implementing

t as a map function, a field is added to identify each BS, and all

he fields are added by a reduce function. 

2- Detecting sleeping cells: Cell outage or sleeping cells is a com-

mon problem in mobile networks. Users are directed to neigh-

boring cells instead of the nearest and optimal cell. According

to the algorithm described in [67] , sleeping cells can be de-

tected through the utilization of neighboring BS measurements

hence calculating the impact of the sleeping cell outage. The

detection process relies on the Resource Output Period (ROP),

where each BS produces Configuration Management (CM), Fault

Management (FM), and Performance Management (PM) data

every 15 min. For each BS, incoming handovers from neighbor-

ing BSs are aggregated for the current and previous ROP. If the

number of handovers suddenly dropped to zero, and a malfunc-

tion is indicated by the cell’s Performance Indicators (PIs), the

cell is regarded as a sleeping cell. 

The authors in [65] proposed the use of the above-mentioned

lgorithm under the big data principle. They proposed to divide

he terrain into partitions that are the maximum distance between

eighbors, where each BS within the partitioned area is sequen-
ially tested by an instance of the algorithm, and this is done by

xamining the data of its neighbors. 

This approach was compared to other methods (e.g., lack of

PIs and availability of KPIs), and most of the simulated outages

ere detected (5.9% false negatives and 0% false positives). While

 lack of KPIs and availability of KPIs methodologies showed a

igh percentage of false negatives. 

3- KPI Correlation-based diagnosis: The authors in [65] used a

method that utilizes most correlated KPIs to identify the prob-

lem cause. To simplify the analysis task, the algorithm considers

the PIs of both the affected BS and the neighboring sectors. 

MapReduce was used to implement this algorithm in a paral-

elized manner, the correlation process and the creation of a PIs

ist arranged by correlation were implemented as map and reduce

unctions, respectively. 

.1.5. Cell site equipment failure prediction 

A sudden outage of services might have serious consequences,

nd this is why keeping communication equipment, like cell sites,

n a good working state is of high importance. The challenge iden-

ified by the authors in [68] is to analyze the user’s bandwidth on

he cell level. Equipment(s) failure and infrastructure faults can be

redicted by analyzing the bandwidth trends in a particular cell. 

Due to the size and diversity of the collected data, it is essen-

ial to use big data analytics to process it. Thus, the customers’

eceived bandwidth can be acquired over a particular time period

i.e., month or year, etc.). Next the data from diverse data sources

re integrated and then analyzed to know the bandwidth trends. 

.2. Network monitoring 

.2.1. Large-scale cellular network traffic monitoring and analysis 

Large cellular networks have relatively high data rate links

nd high requirements to meet. Usually these networks use a

igh-performance and large capacity server to perform traffic

onitoring and analysis. 

However, with the continuous expansion in data rates, data

olumes, and the requirements for detailed analysis, this approach

eems to have a limited scalability. Hence, the authors of [69] pro-

osed a system to undertake that task, utilizing the Hadoop

apReduce, HDFS, and HBase (a distributed storage system that

anages the storage of structured data and stores them in a

ey/value pair) as an advanced distributed computing platform.

hey exploited its capability of dealing with large data volumes

hile operating on commodity hardware. The proposed system

as deployed in the core side of a commercial cellular network,

nd it was capable of handling 4.2 TB of data per day supplied

hrough 123 Gbps links with low cost and high performance. 

.2.2. Mobile internet big data operator 

China Unicom, China’s Largest WCDMA 3G mobile operator

ith 250 million subscribers in 2012, introduced an industry

cosystem. The researchers in [70] highlighted this as a telecom

perator-centric ecosystem that is based on a big data platform. 

The above-mentioned big data platform is developed for re-

rieving and analyzing data generated by mobile Internet users.

n an aim to optimize the storage, enhance the performance,

nd accelerate the database transactions, the authors proposed a

latform that uses HDFS for distributed storage. The cluster had

88 nodes used to store data, perform statistical data analyses, and

s management nodes. The approximate storage space was 1.9 PB.

Base has the role of the distributed database, with a writing

ate that can reach 145 k records per second; HBase stores the

tructured data located on the HDFS. 
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Compared with the Oracle database, it is noted that the system

achieved a four times lower insertion rate. The query rate was

compared to an Oracle database as well, and the HBase showed

a better performance when taking into consideration the impact

imposed by the records’ size. 

3.3. Cache and content delivery 

3.3.1. Optimized bandwidth allocation for content delivery 

Mobile networks, usually, have a large number of users, and

with the increase in Internet-based applications, it has become

essential to allocate the required bandwidth that meets the user

expectations, as well as to ensure a competitive level of service

quality. Cellular networks can provide Internet connectivity to their

users at any time; however, video (especially high quality) con-

tents are still slow and relatively expensive. From the base station’s

point of view, the impact of forwarding the same video content to

several users on the same base station is massive. The LTE system

addressed this through multicast techniques. However, multicast is

still regarded as a big challenge in cellular networks. To overcome

the above problem, the authors of [26] proposed a solution that

can dynamically allocate bandwidth. The idea is based on sharing

the base station’s wireless channel by a user cluster that wishes

to download the contents. Thus, saving the base station resources,

as well as providing a better data rate for the clustered users,

and providing an opportunity for the users who did not join the

cluster to benefit from the saved resources (bandwidth). It should

be noted that the clustered users can receive the contents from

the cluster head by using short range communication techniques

like Wi-Fi Direct [71] and Device to Device (D2D). 

Two conditions have to be satisfied before forming a user

cluster. First, the users who request the same content are the

ones who form the cluster. Second, the users should be or will be

within a short range of each other. For that reason, the authors

suggested using big data analytics to identify the users’ closeness

and to group the users into cluster(s). A cluster head is then

selected among the nearby users, and the process is repeated

among the base station users until there is either a cluster of

users or a free (un-clustered) user(s). The simulation was carried

for a single base station network and the results showed faster

content delivery and improved throughput at the user level. 

3.3.2. Improve cache node determination, allocation, and distribution 

accuracy in cognitive radio networks 

In cognitive radio networks, Secondary Users (SU) have to

leave the licensed spectrum when their activity starts to affect

the QoS level of the licensed users. This move would require the

existence of a cache node to compensate for the interrupted data

transactions during the SU switch to the unlicensed spectrum. 

The author of [72] proposed the use of big data analytics to

process the data accumulated over time within the nodes. The

goal was to utilize this data to reach a decision on the cache node

distribution in a cluster network. 

The author selected two out of three categories (open and

selectively open systems) of cognitive radio networks. Due to

the nature of the open systems, every SU willingly shares its

information to be processed, which results in a large amount of

data, so the prediction accuracy is high. 

For the selectively open systems, the SU selectively shares its

information with either some cache nodes, with the cluster head

for a particular time interval, or with specific SUs in a cluster.

This results in a variable amount of shared data, thus resulting in

variable accuracy. 
.3.3. Tracking and caching popular data 

The number of social network (i.e., Facebook and Twitter)

sers is massive. The multimedia contents of these networks are

ormally shared between common interest groups. However, big

nd important events attract a lot of attention and consequently

 lot of content is shared across these networks. When a certain

ideo or event goes viral, this sharing will eventually burden the

etwork as the requested content would have to travel along the

etwork on its way to the servers. The solution to such a problem

as suggested by the authors of [68] , they suggested monitoring

opular and social media websites, analyzing the data, identifying

f there is a growing interest in certain content, by which age

ategory, and caching the popular data for a specific base station.

ig data analytics can be of major use in this situation by em-

loying it to do the required analysis. The result would be cached

ontent available to the users faster (reduced provisioning delay)

nd without burdening the network. 

.3.4. Proactive caching in 5G networks 

Cache-enabled base stations can serve cellular subscribers, this

s done by predicting the most strategic contents and storing them

n their cache. Thus, minimizing both the amount of time and the

onsumed network bandwidth, which can payoff in other ways

i.e., less congestion and less resource utilization). 

An approach, proposed by the authors in [34] , used big data

nalytics and machine learning to develop a proactive caching

echanism by predicting the popularity distribution of the con-

ent in 5G cellular networks. They demonstrated that this approach

an achieve efficient utilization of network resources (backhaul

ffloading) and an enhanced user experience. 

After collecting the raw data, i.e., the user traffic, the big data

latform (Hadoop) has the task of predicting the user demands by

xtracting the useful information, like Location Area Code (LAC),

yper Text Transfer Protocol (HTTP) request-Uniform Resource

dentifier (URI), Tunnel Endpoint Identifier (TEID)-DATA, and TEID

or control and data planes. Then using this information to evalu-

te the content popularity from the previously collected raw data.

xperimentally testing this work on 16 base stations, as part of an

perational cellular network, resulted in 100% request satisfaction

nd 98% backhaul offloading. 

.4. Network optimization 

.4.1. Big data-driven mobile network optimization framework 

When thinking about optimizing a cellular network, it is impor-

ant to collect as much information as possible. Large networks, as

ell as their users, generate a plethora of data, for which the use

f big data analytics is vital to analyze the colossal amount. 

The authors in [73] proposed a mobile network optimization

ramework that is Big Data Driven (BDD). This framework includes

everal stages, starting from the collection of big data, managing

torage, performing data analytics, and the last stage of the process

s the network optimization. 

Three case studies were used to show that the proposed

ramework could be used for mobile network optimization. 

1- Managing resources in HetNets 

The Mobile Network Operators (MNOs) may use big data

o provide real time and history analysis across users, mobile

etworks, and service providers. MNOs can benefit from BDD

pproaches in the operation and deployment of their network, and

his can be done in several stages: 

(A) Network planning: Due to a deficiency in the level of suf-

ficient statistical data, evolved Node B (eNB) sites are not

optimally optimized, this can be dealt with if an adequate
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1- NCL self-configuration for new cells 
amount of information (user and network) is provided for

analyses. Big data analytics can help MNOs reach better de-

cisions concerning the deployment of eNB in the mobile

network. The authors in [73] suggested the use of the net-

work and anonymous users’ data (e.g., dynamic position in-

formation and other service features). Providing a relation

between the data and their events can offer a better un-

derstanding of the traffic trends. Big data sets provide ac-

tionable knowledge to reach an optimal decision concern-

ing how and where to deploy eNBs in the network. Another

important feature is the ability to prepare for future invest-

ments depending on the predicted traffic trends. 

(B) Predictive resource allocation : Resource requirements change

depending on the density and usage patterns of mobile net-

work subscribers. Predicting where and when mobile users

are using the network can help in preparing for sudden sig-

nificant traffic fluctuations. The authors in [73] suggested the

use of big data analytics to examine behavioral and senti-

ment data from social networks and other sources. They also

showed an interest in utilizing current and historical data to

predict the traffic in highly populated areas within the net-

work. 

Using the cloud RAN architecture [74] , the right place at the

right time can be served through the predictive resource al-

location, thus minimal service disruption can be achieved. 

(C) Interference coordination : HetNets with small cells can be

used to conduct interference coordination among macro and

small cells. This coordination has to be carried out in the

time domain instead of the frequency domain. Schemes like

the enhanced Inter-Cell Interference Coordination (eICIC)

in LTE-Advanced [75] efficiently enable resource allocation

among interfering cells, as well as improving the inter-cell

load balancing in the HetNets. eICIC allows Macro cells

evolved Node B (MeNB) and its neighboring Small cell eNBs

(SeNBs) to have data transmitted in isolated subframes,

thus interference from MeNB to SeNB can be avoided. To

implement eICIC, a special type of subframe named an

Almost Blank Subframe (ABS) that carries minimum (and

most essential) control information, was defined. It is worth

noting that the ABS subframes are transmitted with reduced

power [75] , and that the network operator can control the

configuration of that subframe. 

Many factors contribute to the determination of the ABS

ratio of the macro cell to the small cell, such as the traffic

load in a specific area, the service type, and so on. The

optimal ABS ratio varies dynamically, and this is due to the

fact that inter-cell interference changes with time for the

factors mentioned above. 

In a BDD system, optimizing the radio resource allocation

can be accomplished through the use of network analytics.

The deployment of BDD optimization functions at the MeNB

would enable them to collect and analyze eNB-originated

raw big data (e.g., service characteristics and traffic features)

in real-time, thus enabling a quick response. As a result, the

performance optimization of each cell and the users can be

fulfilled. 

Optimizing ICIC parameters (e.g., ABS ratio) can be achieved

by processing raw data in a periodic manner to acquire

statistics and to detect traffic variations automatically. 

2- Deployment of cache server in mobile CDN 

Popular content (e.g., movies) can be delivered through a

ontent Delivery Network (CDN), which is a method that is con-

idered efficient by many MNOs. Distributed cache servers should

e located near the users to achieve a fast response as well as to
educe the delivery cost. In hierarchical CDN, it is vital to place

ache servers in an optimal location. Due to the unique features

hat RAN has, it was the primary interest of the authors in [73] . 

It is expected that there will be an enhanced backhaul ca-

ability in 5G networks, and this would result in minimizing

he concerns related to the latency and traffic load of backhaul

ransmissions. Therefore, not all MeNBs would require a dedicated

istributed cache server. In addition, a SeNB can have a distributed

ache server. 

Optimal cache server placement depends on several factors,

uch as the features and load of traffic in a given area, as well as

he cost of storage and streaming equipment. To help the MNOs

ecide where to deploy their cache servers, data analytics methods

an be regarded as a feasible solution. However, this would require

he collection of all the above-mentioned factors over a long

eriod in the related coverage area. 

3- QoE modelling for the support of network optimization 

The authors of [73] believed that the management of services

nd applications needed more than just relying on the QoS pa-

ameters. Instead, they suggested taking the quality (i.e., QoE), as

erceived by the end users, to be regarded as the optimization

bjective. Accurate and automatic real time QoE estimation is

mportant to realize the optimization objective. In addition to

he technical factors, non-technical factors (e.g., user emotions,

abit, and expectations, etc.) can affect the QoE. A profile for each

articular user comprising the above non-technical factors would

elp in the QoE evaluation. 

Since answering the questions that would lead to a clear

rofile is not a task that would be fancied by a typical user, the

uthors suggested installing a profile collection engine on the

sers’ mobile devices. User activities are compared and tracked

o recognize differences and similarities, and then they are stored

n a database for additional processing. After profiling, the follow-

ng step constitutes the use of machine learning to identify the

elationship between QoE and the influencing factors. 

Data analytics can be used to discover what impacts the QoE

n users’ devices, as well as the services and network resources.

he next step is for network optimization functions to react to

etermining what caused the problem and select the optimal

ction accordingly. 

.4.2. Improve QoS in cellular networks through self-configured cells 

nd self-optimized handover 

Cellular networks have a crucial element on which the concept

f mobility depends. This element is the handover success rate,

hich ensures call continuity while the user moves from one cell

o another. Failing in that particular element would impact the

uality of the service, thus putting the operator into a questionable

ituation. 

Operators try to make sure that each cell has a list of manually

onfigured and optimized neighbor cells. Hence, it is vital to note

he high probability of these cells failing to adapt when a rapid

esponse is required due to a sudden network change. 

The authors in [76] presented two methods that used big

ata analytics to introduce a self-configured and self-optimized

andover process, the first was associated with newly introduced

ells, while the latter was concerned with the already existing

ells. The analysis started by collecting and archiving predefined

andover KPIs. A dispatcher process is run after the collection

eriod, and its aim is to check the files to see if they were marked

s new cells (where Self-Configuration Analytics is started) or not

where Self-Optimization Analytics is started): 
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Newly installed base stations require Neighbor Cell List (NCL)

to be configured on the new cells. The selection process takes into

consideration the antenna type, the azimuth angle (for directional

cells), the geographic location of the candidate cells, and the

process concludes by selecting cells with a minimum distance and

maximum traffic load to be the top candidate cells. The NCL is

configured via Network Management System (NMS) Configuration

Management (CM) tools. 

2- NCL self-optimization for existing cells 

The process starts by collecting KPI measurement statistics for

the failed and successful handovers, and this task is done by the

Performance Management (PM) or the NMS. 

Cells with a handover failure rate below a predefined threshold

are excluded from the NCL, while unlisted neighboring cells with

a successful rate above a predefined threshold are considered as

new neighboring cells. 

3.4.3. Optimizing the resource allocation in LTE-A/5G networks 

The overall system performance evaluation in advanced wire-

less systems, like LTE, depends on KPIs. In a quest to enhance the

user experience, the authors of [77] proposed an approach that

utilizes user and network data, such as configuration and log files,

alarms, and database entries/updates. This approach relies on the

use of big data analytics to process the above-mentioned data. The

ultimate goal is to provide an optimal solution to the problem of

allocating radio resources to RAN users, and guarantee a minimal

latency between requesting the resource and allocating it. This is

done through user and network behavior identification, which is a

task well-matched for big data analytics. 

The proposed framework involves three stages: 

First stage : This process is carried out in the eNB system,

processing the data from the cellular and core network side.

Binary values are acquired by comparing cellular level KPIs to

their respective threshold values, thus keeping the binary matrix

updated. This procedure is repeated at fixed intervals. 

Second stage : Repeat the same steps as in the first stage. How-

ever, this process is carried out on subscriber level data to acquire

subscriber KPI, and maintain a binary matrix. 

Third stage : This is activated when a user initiates a resource

allocation request. A binary pattern is generated based on the

user requirements. This pattern is later handed over to stage 2 to

update the binary matrix (if required) and incorporate the new

values in the row that represents the requested bandwidth. After

generating the updated row, it is transferred to the first stage

for comparisons with the current Physical Resource Block (PRB)

groups. To identify which PRBs suit the user, the fuzzy binary

pattern-matching algorithm [78] was used for that purpose. 

Using this algorithm, the execution time increased linearly for

an exponential increase in the number of comparison patterns. 

3.4.4. Framework development for big data empowered SON for 5G 

The authors of [79] proposed a framework called Big data

empowered SON (BSON) for 5G cellular networks. Developing

an end-to-end network visibility is the core idea of BSON. This

is realized by employing appropriate machine learning tools to

obtain intelligence from big data. 

According to the authors, what makes BSON distinct from SON

are three main features: 

• Having complete intelligence on the status of the current net-

work. 

• Having the ability to predict user behavior. 

• Having the ability to link between network response and net-
work parameters.  
The proposed framework contains operational and functional

locks, and it involves the following steps: 

1- Data gathering : An aggregate data set is formed from all the

information sources in the network (e.g., subscriber, cell, and

core network levels). 

2- Data transformation : This involves transforming the big data to

the right data. This process has several steps, starting from: 

a. Classifying the data according to key Operational and Busi-

ness Objectives (OBO), such as accessibility, retainability, in-

tegrity, mobility, and business intelligence. 

b. Unify/diffuse stage, and the result of this stage is more sig-

nificant KPIs, which are obtained by unifying multiple Per-

formance Indicators (PIs). 

c. According to the KPI impact on each OBO, the KPIs are

ranked . 

d. Filtration is performed on the KPIs impacting the OBO less

than a pre-defined threshold. 

e. Relate , for each KPI and find the Network Parameter (NP)

that affects it. 

f. Order the associated NP for each KPI according to their as-

sociation strength. 

g. Cross-correlate each NP by finding a vector that quantifies

its association with each KPI. 

3- Model : Learn from the right data acquired in step 2 that will

contribute to the development of a network behavior model. 

4- Run SON engine : New NPs are determined and new KPIs are

identified using the SON engine on the model. 

5- Validate : If a new NP can be evaluated by expert knowledge or

previous operator-experience, proceed with the changes. Oth-

erwise, the network simulated behavior for new NPs is deter-

mined. If the simulated behavior tallies with the KPIs, proceed

with the new NPs. 

6- Relearn/improve : If the validation in step 5 was unsuccessful,

feedback to the concept drift [80] block, which will update the

behavior model. To maintain model accuracy, concept drift can

be triggered periodically even if there was a positive outcome

in the validation step. 

.4.5. User-centric 5G access network design 

Enhancing the user experience, giving a higher data rate, and

educing the latency are considered the key goals of a 5G system.

he authors of [27] expect the following to be the key elements in

he design of a user-centric 5G access network. 

.4.5.1. Personalized local content provisioning. It is important for

he access network to evolve from being user and service agnostic,

y acting merely as a blind pipe that connects the user to the core

etwork, to becoming user-centric. The latter term would direct

he network access to the right path of being user and service

ware, thus facilitating a key technology in 5G, which is local

ontent provisioning, this in-turn would pay off in the form of

nd-to-end latency reduction and enhancing the user experience. 

The role of big data analytics becomes very clear, as it pro-

ides a necessary ability of predicting user requirements. These

equirements can be met in the case of local availability. 

The authors of [27] proposed several steps to achieve content

rovisioning, and they are as follows: 

• Traffic and user information acquisition : Traffic attributes (appli-

cation type, server address, and port number, etc.) are collected

through packet analysis, and analyzed using a clustering algo-

rithm (e.g., k-means [81] ) to perform traffic labelling (news,

sports, and romance, etc.). 

• Analyzing and predicting user requirements : This step is achieved

by a big data analysis algorithm (an algorithm like collaborative
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1- User preference analysis server 
filtering was recommended [82] ), which utilizes the traffic at-

tributes mentioned above, and thus recommends content based

on user’s interests. 

• Local caching and content management : Popular content is pro-

vided in the form of local copies. Content that might be of in-

terest to the users are to be locally cached after being down-

loaded from the application server. 

• Content provisioning : When an application request is initiated

by the user, the system will check if the content is already lo-

cally cached, so it can be sent directly. Furthermore, big data

analysis can give content recommendations, thus the system

will check if these contents are cached locally, and push them

directly to the user. 

.4.5.2. Providing flexible network and functionality deployment. The

uthors of [27] noted that processing the characteristics of both

he regional user and service using big data analytics can be of

reat help in flexible network and functionality deployment in the

ollowing ways: 

• Flexible network deployment 

Since 5G will support diverse low-cost Access Points (APs),

uch as coverage APs and hot spot APs, using big data analytics

an be useful to forecast the traffic characteristic, hence establish

he base for achieving a dynamic network deployment for the APs.

• Flexible functionality deployment 

Analyzing and predicting regional user and service require-

ents can be realized using big data analytics. This will form the

oundation of dynamic functionality deployment, which will help

ecide where to deploy certain functionality modules (e.g., safety

odules where there are security requirements). 

.4.5.3. Using user behavior awareness to optimize wireless resources

G networks. Optimization of wireless resources should be carried-

ut according to the user and 5G service requirements. This is

one to enhance the user experience and improve the efficiency. 

According to what the authors of [27] proposed, big data can

e used to analyze user mobility patterns, predict the motion

rajectory, and hence pre-configure the network accordingly. Each

ser’s historical Access Point (AP) list is recorded by the APs. This

ata can be uploaded to a central module for processing, or to

 target AP in case the service AP was altered. Using a big data

nalytics algorithm, the collected data is analyzed to forecast the

otion trajectories. 

.4.5.4. Big data-based network operation system. The authors of

27] proposed a system that can maximize the efficiency of big

ata based network operation. This can be fulfilled by optimally al-

ocating the network resources to each AP and user. The proposed

ystem consists of two parts: 

1- Decision making domain 

This is responsible for collecting and managing the user,

etwork upgrades, configuration, service, and terminal state in-

ormation. This domain exploits big data analytics to provide

he basic configuration essential for network initialization. For

his domain to function properly, it would need to realize the

hole picture of the user and service requirements, as well as the

unctionality distribution in the network. 

2- Implementation domain 

Its responsibility is mainly for status reporting of the user,

erminal, and network, dynamic deployment, and network con-

guration. Depending on the requirements after acquiring the

ersonalized configuration, this domain can use the dynamic APs

unctionality and configuration to build multi-connectivity bearers

ith terminals. 
.4.5.5. Multi-RAT or HetNet energy saving. Small cells are used in

ulti-Radio Access Technology (RAT) or HetNet mobile networks.

or energy saving purposes, when traffic falls below a certain

hreshold, small cells may enter into a dormant state, and this

orces the small neighboring cells to serve the dormant cell’s

overage area. Several energy saving schemes were discussed

n [83] . However, these schemes failed to adapt to the dynamic

emporal and spatial traffic variations, as they operate under a

elatively long time scale leading to unacceptable delay. This hap-

ens because when a number of newly arrived User Equipment

UE) seek access to the network, where cell activation is essential,

he corresponding small cells requires to be first activated, before

perating normally. Only at that point can the UEs access the

etwork using the standard procedure. UEs, however, would suffer

rom an unacceptable delay when trying to access the cells. 

The authors of [27] proposed a user-centric approach that

s based on big data analytics. The proposed solution claims to

chieve optimal implementation for the activation of small cells as

ell as UE access to the network. Thus, joint optimization for both

Es’ access and energy saving can be achieved. 

.4.6. Network flexibility using consumption prediction 

Consumption analysis is concerned with two factors: customer

ocations and type of service. Consumption trends can be classified

n a timely manner into long-term, seasonal, and short-term. 

To reach an accurate prediction, the authors in [68] implied

hat user data (e.g., GPS location and service usage) can be cor-

elated with other data (e.g., news, social network, events, and

eather conditions). Using big data analytics to analyze these

orrelations, operators would be able to decide when and where

o place their nodes without affecting the subscribers’ satisfaction. 

. The role of big data analytics in SDN & intra-data center 

etworks 

SDN offers the ability to program the network with a central-

zed controller, this controller is capable of programming several

ata planes using one standardized open interface, thus providing

exible architectural support [1] . The following research topics uti-

ized the properties of both Software Defined Network (SDN) and

ig data analytics by employing the analysis results to program

he network. Those topics can be classified according to the area

nder discussion as follows: 

1- Traffic prediction: The paper surveyed in this section employ

traffic prediction to optimize network resource allocation. 

2- Traffic reduction: Pushing the aggregation from the edge to-

wards the network. 

.1. Traffic prediction 

.1.1. Cognitive routing resources in SDN networks 

The network’s next generation has to be smart and flexible,

ith the ability to modify its strategy according to the net-

ork status in an automatic manner. To simplify the network

anagement, SDN has made the above requirement possible

y decoupling the control and forwarding planes through the

penFlow protocol [84] . 

OpenFlow is considered to be the first standardized protocol in

DN, it is also identified as the enabler of SDN. SDN/OpenFlow has

nfluenced Google to switch to OpenFlow in its inter-data center

etwork, which resulted in an approximate 99% increase in the

verage Google WAN link utilization [85] . 

The architecture proposed by the authors of [85] included the

ollowing parts: 
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The authors adopted the Hadoop platform to realize the pre-

diction functionality. They utilized the analyses of both network

traffic and user application information to find each application

flow distribution. For each data flow, they found a specific distri-

bution law. They analyzed that law, and for different applications

and areas they developed a preliminary general prediction model

to fit the case of the same application but in different areas. 

2- Interface design between SDN controller and database 

A cloud platform is responsible for calculating and predicting

the flow distribution values of each OpenFlow switch. In addition,

this platform will read the link information and perform traffic

prediction. A database will hold the recorded values and the last

predicted values will be updated. To ensure that the allocation of

resources accommodates the traffic variation, Floodlight (a Java-

based SDN controller that can accommodate different applications

by loading different modules) will read the newest predicted

values from the database regularly. 

3- SDN controller-based routing module 

The predicted values are used as preferences to select the

best route. The researchers used an improvement on the Dijkstra

algorithm. 

Application awareness and the prediction of user preferences

were integrated into SDN through the newly proposed archi-

tecture, which would facilitate and enhance network resources

allocation and provide better application classification. 

The role of big data is exemplified by its ability to use network

flow analyses and users’ behavior to forecast the type and rate of

the incoming traffic flows. 

The procedure proposed by the authors of [85] is as follows: 

1- Current network load (i.e., traffic volume and type, etc.) is read

by a cloud platform. 

2- The overall traffic is predicted in advance and gathered in a

database. This is done using a big data-powered prediction al-

gorithm. 

3- The SDN controller accesses the database and reads the stored

data mentioned in step two. 

4- A resource allocation scheme is created by the SDN controller

using the above-mentioned routing algorithm, and this scheme

is sent later to the related switches. 

Big data analytics can use the users’ requirements to provide

the network with a dynamic resource allocation and applica-

tion classification, hence providing the network with better load

balancing techniques. 

The results from the implemented testbed showed the ability

of the proposed solution to self-adapt towards flow variation by

dynamically issuing traffic tables to the related switches, which

can increase the resource utilization and attain an improved

overall load balance. 

4.1.2. Predicting data communication volume at runtime in data 

center networks using SDN 

Networks that deal with big data applications may suffer from

the size and speed of data. For example, the networks’ overall

response time is affected by MapReduce’s heavy-communication

phase. This problem can be intensified if the communication

patterns experience a heavy skew impact. The authors of [86] have

proposed Pythia, which is a system that can optimize the data

center network at the runtime by utilizing the real time commu-

nication prediction of Hadoop. It also maps the end-to-end flows

to the underlying network. 

Pythia utilizes the SDN-offered programmability to achieve ef-

ficient and timely network resource allocation for shuffle transfers.
Depending on the network workload and blocking ratio, the

adoop workload saw a consistent acceleration when using Pythia,

nd job completion time was reduced between 3% and 46% in

omparison with MapReduce benchmarks. 

.2. Traffic reduction 

.2.1. Increasing network performance through traffic reduction 

Large networks, such as those of Google and Facebook, or

ven small and medium sized enterprise networks suffer from a

lethora of traffic. This happens due to the colossal amount of

ata being processed either in batch or real time applications. 

A common solution is to increase the available bandwidth in

he enterprise clusters. However, the authors of [87] proposed an-

ther approach that improves the network performance, pushing

he data aggregation from the edge towards the network, thus

ecreasing the traffic. 

A platform called CamCube [88] was used; it substitutes the

se of dedicated switches by distributing the functionality of

he switch across the servers. It is worth noting that CamCube

ffers the ability to intercept and modify packets at each hop. In

ddition, it uses a direct-connect topology, in which, a 1 Gbps

thernet cross-over cable is used to connect servers to each other

n a direct way. 

Exploiting CamCube’s properties to realize high performance,

amdoop, which is a CamCube service that runs MapReduce-like

obs, was used. It offers full on-path data stream aggregation.

amdoop builds aggregation trees where the children are resem-

led by the intermediate data sources, while the roots are located

t the servers performing the final reduction in traffic. 

A small prototype of Camdoop running on CamCube was tested,

nd a simulation was used to show that the same properties still

old at scale. The results showed a significant traffic reduction

ith the proposed system when compared to Camdoop running

n a switch and when compared to systems like Hadoop and

ryad/DryadLINQ [56,89] . 

. The role of big data analytics in optical networks 

This section discusses research papers that employ big data

nalytics for optical network design, the topics are classified as

ollows: 

1- Network optimization: Here the parallel processing merits of

Hadoop are utilized to reduce the execution time of different

(bin-packing) optimization algorithms. 

2- Traffic prediction: Using big data analytics to dynamically re-

configure the network according to predicted traffic. 

.1. Providing solutions to network optimization problems 

.1.1. Solving the RWA problem 

The Routing and Wavelength Assignment (RWA) algorithm

90] plays an important role in optical networks. The authors in

91] considered the RWA algorithm to be an illustration of the bin-

acking problem that is listed as a classical NP-hard problem [92] . 

The authors in [91] used a Hadoop cloud computing system

hat consisted of 10 low-end desktop computers to indepen-

ently run an instance of the RWA algorithm on each of them

or a certain number of demand sequences. The goal is to suffi-

iently evaluate the demand sequence within a short period. The

rocedure is as follows: 

1- An input file is fed to the HDFS, it incorporates the information

of the lightpath demand requests. 

2- The file is read by the map function, where the demand list is

regarded as a value and combined with different keys ranging
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from 0 to 19 that later serve as random seeds in the reduce

functions. It is worth noting that the authors set two reduce

functions per computer (i.e., a total of 20 reduce functions). 

3- The key-value pairs are then forwarded to the 20 reduce func-

tions where parallel computing is conducted. The lightpath de-

mand list is shuffled 250 times in a random fashion (i.e., 50 0 0

shuffled demand sequences), and this happens for each key-

value pair within each reduce function. To acquire the num-

ber of required wavelengths, the RWA heuristic is run for each

of the shuffled demand sequences. The optimal result of each

reduce function is then compared against the remaining 19 to

find the global optimum. 

Different test networks (ranging from 20 to 500 nodes) were

sed to evaluate the performance of the Hadoop system. The

esults were optimality evaluated by comparing them against the

esults of an Integer Linear Programming (ILP) optimization model

nd they showed a close proximity to the optima (except for

wo cases). It is worth noting that the ILP approach assumes full

avelength conversion, which plays the role of the performance’s

ower bound in the present evaluation. 

.1.2. Solving multiple optimization problems using Hadoop 

The authors in [93] proposed to solve several optimization

roblems in the optical network paradigm. The problems are: 

1- Energy minimization problem [94] , where the goal is to min-

imize the overall network power consumption from non-

renewable energy sources. 

2- Shared Backup Path Protection (SBPP)–based elastic optical net-

work planning problem [95] , where a heuristic used the con-

cept of Spectrum Windows Planes (SWPs). The objective was to

minimize the maximum number of Frequency Slots (FSs) in the

network. 

3- Adaptive Forward Error Correction (FEC) assignment problem

[96] , where the goal is to maximize the total number of FSs uti-

lized for user data transmission. A heuristic based on SWPs was

developed to solve the Routing and Spectrum Allocation (RSA)

problem. 

The above problems are of a bin-packing type and classified as

P-hard. Several aspects (i.e. demand size and route) should be

onsidered when serving network traffic demands. Due to the high

omputational complexity and the order of served demands, the

erformance of heuristic algorithms trying to solve these problems

annot be guaranteed. This is because of using the simple largest

o smallest ordering strategy. Good performance can be attained

y randomly shuffling demand sequences, then implement a

euristic algorithm for each sequence and choosing the one with

he optimum performance. To shorten the computation time and

o overcome the computational complexity, a Hadoop cloud com-

uting system consisting of seven computers was proposed by the

uthors in [93] . This way, a heuristic algorithm can be executed

or multiple shuffled demand sequences in a parallel manner. 

The Hadoop MapReduce platform makes it possible to eval-

ate multiple shuffled demand sequences in parallel. A heuristic

lgorithm serves each of the shuffled demand sequences and a

esult is produced each time. The results are then compared and

he one with the best performance is chosen. The same procedure

s repeated on each Reduce function. The final global optimum is

ound by comparing the results across all reduce functions. 

Performance evaluation is done by employing two test net-

orks; the 24-node, 43-link USNET network (adopted for problems

 and 3) and the 11-node, 26-link COST239 network (used for

roblem 2). For the first optimization problem, the total con-

umption of non-renewable energy decreased by 8% (when the

umber of shuffled demand sequences increased from 10 0 0 to
0,0 0 0). As for the second optimization problem, the number of

equired FSs was significantly reduced. In the third problem, the

otal number of FSs for user data transmission was increased and

% performance improvement was noted when compared with

he case of running Hadoop on a single machine. The computation

ime for all three problems was significantly shorter compared to

 single-Hadoop machine. 

.2. Dynamic network reconfiguration 

.2.1. VNT adaptability using traffic prediction 

The emergence of new services is placing new demands on

etworks in terms of large and dynamic bit rate requirements.

his caused network operators to look for a Virtual Network

opology (VNT) architecture that can cope with the anticipated

raffic in a dynamic fashion. One solution is realized by overpro-

ision the network, however, the downside is the increase in Total

ost of Ownership (TCO). Another solution saves power by using

hreshold-based capacity reconfiguration [97] . The drawback is

hat there is no saving in the number of transponders that needs

o be installed in each IP router compared to overprovisioning. 

An alternative solution is proposed in [59] where VNT re-

onfiguration can be attained regularly using big data analytics.

his is done by periodically analyzing Origin-Destination (OD)

raffic so that VNT reconfiguration can be performed accordingly.

ollection of traffic monitoring data takes place at edge IP routers

egularly. A set of traffic samples is collected by every edge router

or every other destination router. These sets are stored in a

ollected data repository . According to a predefined time period,

he collected data is then summarized for each OD pair by peri-

dically retrieving the collected data repository and performing

ata stream mining sketches. The result of this stage is a modeled

ata repository which includes, among others, maximum, average,

nd minimum bit rate for every OD pair. Using machine learning

echniques (i.e. Artificial Neural Networks), a prediction module

enerates the predicted OD traffic matrix for the upcoming period.

he decision on whether to perform VNT reconfiguration or not is

etermined by a decision-maker module by relying on the above-

entioned matrix. If a reconfiguration is required, a VNT optimizer

s provided with both current and predicted OD traffic matrices.

he solution is fedback to the network controller to implement

he required changes in the data plane. 

The performance of the proposed solution was compared

gainst the static and the threshold-based methods. An overall

aving between 8% and 42% in the number of installed transpon-

ers was achieved. The proposed solution has the ability to react

uring low traffic hours by deactivating transponders, thus, energy

aving is attained. Also, the advantage of cost reduction is attained

y releasing lightpaths from the underlying optical layer. 

. The role of big data analytics in network security 

.1. Peer-to-Peer Botnet detection 

Many security problems on the Internet are caused by Botnets,

hich can be defined as networks of malware-infected machines

ontrolled by an adversary [98] . Botnet attacks form a real security

oncern, with the ability to utilize 90,0 0 0 IPs in an attack [99] ,

t is a challenge on an international scale, especially when taking

nto consideration the financial damage they can inflict. 

To detect and neutralize such attacks, security researchers and

etwork analysts consider packet capturing and network tracing

o be amongst the most appreciated resources. However, analyzing

hese massive sized datasets is not an easy task for today’s com-

uters. To overcome that challenge, the authors of [100] proposed
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Fig. 3. Percentage of surveyed research topics according to subject area. 
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a scalable threat detection framework that uses the following

components: 

1- Traffic sniffer : Dumpcap [101] is used for packet sniffing while

Tshark [101] is used for field extraction, and the fields are then

submitted to the HDFS for storage. 

2- Feature extraction module : The HDFS-submitted files are then

processed by Apache Hive [102] for feature extraction. 

3- Machine learning module : Scalability is a requirement when it

comes to the machine learning module. This requirement is met

using a machine learning library called Mahout [103] , thus har-

nessing the cluster high computational power to achieve opti-

mized results. It is worth noting that Mahout is built on top of

Hadoop, and its classification and clustering core algorithms are

run as MapReduce jobs. 

The proposed approach achieved a detection time within tens

of seconds, and the authors claimed that this time can be reduced

to less than 10 s after some Hadoop tweaking and additions to the

cluster. 

6.2. Improving network security by discovering multi-pronged attacks

Networks are considered a target for intruders who would try

to infiltrate them. Multi-pronged attacks may spread over network

subnets; the spreading might target several scattered network

points or take place in different events over time. 

To discover and predict such attacks, the authors of [104] pro-

posed a system named Big-distributed Intrusion Detection System

(B-dIDS) that relies on two components: 

1- HAMR: An in-memory MapReduce engine used for big data

processing. It is worth noting that HAMR supports both batch

and streaming analytics in a seamless manner. 

2- An analytics engine: Residing on top of HAMR, the analytics en-

gine includes a novel ensemble algorithm. Its basic principle re-

lies on using clusters with multiple IDS alarms to extract the

training data. 

The proposed system scans the IDS log data, checking for

alarms that might be treated as unthreatening at first glance

(when examined separately) but that may result in an opposite

judgment after combining them with other alerts. 

6.3. Device fingerprinting in wireless networks 

Big data analytics and machine learning have several algo-

rithms in common [105] . More security concerns can be addressed

through the use of machine learning algorithms such as device

fingerprinting. The authors in [106] have conducted a survey

on wireless device fingerprinting methods in wireless networks.

They illustrated the main features and techniques used towards

this end. Device fingerprinting can be defined as the process of

generating device-specific signatures by gathering device informa-

tion. This is done through analyzing the information across the

protocol stack, and it can be used to counter the vulnerability of

wireless networks to insider attacks and node forgery. Two types

of fingerprinting algorithms were discussed; white-list based (i.e.

supervised learning) and unsupervised learning based approaches. 

The device fingerprinting process is broken into three main

steps; step one is concerned with identifying relevant features

found in all layers across the protocol stack. Step two is where

features are extracted and modeled. The features tend to be

stochastic in nature due to the dynamic nature of wireless chan-

nels, consequently, the models will be stochastic as well. Step three

is where device identification takes place by employing machine

learning algorithms (supervised and unsupervised). 
The authors reviewed the existing algorithms and concluded

hat despite the high computational complexity of unsupervised

earning methods, their role is limited to detect the presence and

he likely culprit involved in the attack while failing to pinpoint

he malicious devices in an exact manner. In spite of the limita-

ion, unsupervised learning approaches showed further practicality

hen compared to white-list based approaches, as they require no

re-registration process and human intervention. 

.4. Machine learning methods for cybersecurity intrusion detection 

The authors in [107] surveyed the topic of intrusion detection

ethods based on data mining and machine learning algorithms.

hey compared different methods taking into account complexity,

ccuracy, understandability of the final solution, and classifica-

ion time of an unknown instance using a trained model. They

eferred to the availability of labeled data as the biggest gap that,

f bridged, can lead to significant advances in machine learning

nd data mining methods in the field of cyber security. They also

ighlighted an open area for research, namely the investigation of

ast incremental learning methods to update misuse and anomaly

etection models on a daily bases. 

Finally, we summarise the research outcomes related to big data

nalytics-based network design in Fig 3 . It is clear that the wireless

eld is getting most of the researchers’ attention compared to the

ther fields. This may be attributed to the more significant chal-

enges faced by wireless networks compared to wired networks

nd hence the more significant level of opportunities. The larger

umbers of papers addressing the use of big data analytics and

ethods in wireless may also be a reflection of the larger number

f researchers that focus on wireless networks compared to wired

etworks. Furthermore, we present a summary in Table 2 for all

he research topics illustrated between Sections 2 and 5 . 

. Big data analytics in the industry 

Throughout our survey, we came across several companies

hat offer network solutions based on big data analytics. These

ompanies and solutions are highlighted in Table 3 . It should be

oted that these solutions are enabled by research conducted

n their corresponding areas. We have added academic research

apers related to each solution in Table 3 . 

Due to the proprietary nature of industrial products, the exact

lgorithms or methods behind these products is not available

n the open literature. Therefore, academic papers with related

oncept(s) are cited. NetReflex IP and NetReflex MPLS utilizes big

ata analytics [27,73,108] to provide services like anomaly analysis
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Table 3 

Big data analytics-powered industrial solutions. 

No. Manufacturer Solution name Related academic papers Usage, functions and capabilities 

1 Juniper NetReflex IP [27,73,108] Eliminates network errors. 

Monitors QoS/QoE. 

Capacity planning, traffic routing, caching, and other optimizations. 

NetReflex MPLS Segment and trend MPLS and VPN usage to plan for congestion. 

Identifies traffic utilization and trends to optimize operational cost. 

Ability to slice network performance according to VPN, Cost of Service (CoS), 

and Provider Edge (PE)-PE enabling more efficient planning. 

2 Nokia Traffica [69,109] Real-time issues detection and network troubleshooting. 

Gain real-time, end-to-end insight on traffic, network, devices, and subscribers. 

Wireless Network Guardian [110] Improves end-to-end network analytics and reporting with real-time 

subscriber-level information. 

Detects anomalies and reports airtime, signaling, and bandwidth resource 

consumption. 

Proactive detection of issues, including automatic detection of user anomalies 

and low QoE score alerts. 

Preventive Complaint Analysis [111] Detects network elements’ behavior anomalies. 

Predicting where customer complaints might arise and prioritizes network 

optimization accordingly. 

Predictive Care [110,112] Used for network elements, and proved its effectiveness by helping Shanghai 

Mobile become more agile and responsive. 

Accuracy of the simplified alerts is around 98 percent, reducing operational 

workload. 

3 HP (HPE) Vertica [64,113] Provides CDR analysis that can help Communication Service Provides (CSPs). 

Examines dropped call records and other maintenance data to determine 

where to invest in infrastructure. 

Failure prediction and proactive maintenance. 

4 Amdocs Deep Network Analytics [114] Combines RAN information with BSS and customer data to deploy the network 

proactively. 

Predictive maintenance. 

5 Apervi Apervi’s Real-time Log 

Analytics Solution (ARLAS) 

[115–117] Collects, aggregates, and stores log data in real-time. 
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nd traffic analysis. Nokia provided several solutions targeting the

ireless field. For example, Traffica introduces itself as a real-time

raffic monitoring tool that analyzes user behavior to gain network

nsights, similar approaches were presented in academia by the

uthors of [69,109] . The Wireless Network Guardian detects user

nomalies in mobile networks where a comparable topic was

iscussed in [110] . Preventive Complaint Analysis makes use of big

ata analytics to detect behavioral anomalies in mobile network

lements where the authors in [111] provided a similar approach.

redictive Care utilizes big data analytics to identify anomalies

n network elements before affecting the user, a comparable

cademic approach is presented in [110,112] . HP presented Vertica ,

 solution that exploits CDRs for network planning, optimization,

nd fault prediction purposes. 

The authors in [64,113] researched akin approaches. Amdoc’s

eep Network 

Analyzer provides predictive maintenance and proactive net-

ork deployment for cellular networks. The authors in [114] pre-

ented a similar approach. Log analytics can be used for a variety

f purposes. Aprevi’s ARLAS solution provided real-time collection

nd storage of network logs. Related academic research was

resented by the authors in [115–117] . 

Examining the above solutions, one can note that the majority

f the solutions are in the wireless field. This, in fact, coincides

ith the orientation of the academically-researched topics. Sam-

ling through the offered solutions, we noticed the increased

nterest in anomaly prediction and network node deployment.

hus, offering the customer a service that is as close to optimal as

ossible, while minimizing network expansion expenditures. 

. Big data analytics-powered design cycle and challenges 

In this section, we are highlighting a common theme among

ost of the surveyed papers. This can be realized as depicted in
ig. 4 . Also, we are illustrating the challenges facing the imple-

entation of big data analytics in network design and operation. 

.1. Big data analytics design cycle 

The quest for a well-designed communication network is

ever-ending. Researchers in the big data era rely on the capabil-

ties offered by big data analytics to transform the way networks

re being designed. This includes employing big data analytics to

redict and minimize the bandwidth utilization, anticipate and

repare for upcoming failures, and predict the precise energy

equirements. Hence, creating a network with fewer outages,

igher user satisfaction, and an enhanced performance. 

The network design process using big data can be outlined as

hown in Fig. 4 . Big data is collected from the network, stored,

nd processed in a big data cluster to extract useful information,

uch as trends, patterns, and correlations (step 1). 

The resulting information is then transferred to the decision-

aking platforms where a new design decision for the network is

valuated by algorithms based on the inward inferred knowledge

step 2). Finally, the new design decision is sent as feedback

onfiguration parameters to the network where re-configuration is

mplemented (step 3). 

It should be noted that the duration of the above-mentioned

ycle might vary depending on the application type of the net-

ork, e.g., enterprise, healthcare, agriculture, or transportation.

or instance, enterprise networks can generate large amounts of

ata over a short period and usually configuration faults could be

ndone anytime. On the other hand, healthcare networks usually

enerate less monitoring data over time, and they should not be

e-configured until there is sufficient data available, as frequent

econfigurations may result in failures with severe impacts on

eoples’ health. 
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Fig. 4. Big-data-powered network design cycle. 
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8.2. Challenges facing the use of big data analytics in network design 

8.2.1. Network size vs big data analytics gains 

Depending on the network size, the ease of redesigning a

network through the feedback cycle that we mentioned in Fig. 4 is

highly affected by the number of nodes. 

For instance, large data streams can be generated from the

mass deployment of small Wireless Sensor Networks (WSNs)

nodes and IoT [118] . The collected data may not carry a mean-

ingful value until it is effectively analyzed. However, analyzing or

mining that immense amount of data demands finely tuned big

data analytical capabilities, which turns out to be a challenging

task [119] . Furthermore, these massive amounts of data require

hierarchal communication and data processing solutions. The plan-

ning of such deployments in conjunction with the data processing

framework is a challenging task [118] . 

Comparing optical to IoT networks, the former has a small

number of nodes, hence they are easier to redesign, while the

latter has a larger number of connected objects, and that can

impose a problem. 

8.2.2. Security and privacy 

Users’ common patterns can be of great help. Network users

can share certain patterns, like downloading some popular videos,

retweeting about some certain upcoming game that would take

place downtown, or even checking the same online channels.

This information can be of a great value when used for network

planning or optimization. However, to use this information, access

to user data has to be obtained, which is a thought that may cause

unrest for many. 

When dealing with user data, there is always a flag raised, and

that flag carries two issues: these issues are the security and the

privacy of the data. This is why big data has to be protected from

unauthorized access and release [35] . 

Big data security is a vital topic. If we want to label a system

as “secured”, it must meet the data security requirements, which

are [120] : 

1- Confidentiality : This implies the means to protect the data from

unapproved disclosure. 

2- Integrity : This implies the measures taken to protect the data

from being modified improperly or without permission. 

3- Availability : This is the system’s ability to prevent and recover

from hardware as well as software failures that might result in
the database system being unavailable.  
Privacy of data is an increasing concern. As a matter of fact,

aving accessible data does not mean it is ethical to access it

121] . Electronic health records have strict laws that precisely

dentify what can and cannot be accessed. 

As an example, a user’s location information can be tracked

hrough cell towers and after a while, “a trail of crumbs” is going

o be left by the user that could be used to link the user to

heir residence or office location, and to eventually determine

he user’s identity, private health information (e.g., attending a

ancer treatment center) or religious preferences (e.g., attending a

hurch) may be discovered by tracking the user’s movement over

ime [122] , especially when we take into consideration the close

orrelation between an individual’s identity and their movement

atterns [123] . Some user data can be very valuable, for example,

he estimated value of all global personal location data could

each $100 billion in revenue during the next 10 years for service

roviders, and when it comes to consumers and business end

sers, that figure can reach up to $700 billion [39] . 

With no obvious and secure way to handle the collected user

ata, big data analytics cannot be considered a reliable system. The

ecurity issues related to big data analytics can be divided into four

oncerns, starting with an input (e.g., handheld device, sensor, or

ven IoT device) where protecting the sensors from being compro-

ised by attacks is regarded as an important security issue, as well

s the other areas of data analysis, output, and communication

ith other systems [124] . It should be noted that these concerns

re present in all steps throughout the design cycle shown in Fig 4 .

A solution that has been designed to address the big data

ecurity and privacy challenge is the integrated Rule-Oriented Data

iRODS [125] ). This novel technology was designed to ensure secu-

ity and privacy in big data, and it has some technological features

uch as federated data grid or "intelligent clouds", distributed rule

ngine, “iCAT” metadata catalogue, storage access layer that facil-

tates common access, two ways of interfacing graphical and com-

and line, and APIs to interact with the iRODS data grid [35,125] . 

In a position paper, the authors of [126] noted a number of

rivacy-preserving challenges in the realm of big data analytics,

nd these challenges are classified as follows: 

1- Individuals’ interaction: 

a. Transparency : Big data analytics is mostly associated with

information collection and processing of specific individuals’

data. However, this means that each individual is entitled

to know about the data processing operations conducted on

his/her data, and the challenging part is in allocating that

specific piece of information linked to that person’s identity.
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b. Individual’s consent : According to many privacy laws, an in-

dividual is entitled to the right to be asked for his/her in-

formed consent, and such consent is a way of ensuring the

individual is aware of the type of processing that is con-

ducted. This type of consent, along with the explanation it

requires is in fact considered challenging. 

c. Consent cancellation and discarding personal data : Granting

consent, on one hand, should also allow the right of revok-

ing it. However, if an individual wished for his/her consent

to be canceled, then this means all personal data has to be

erased as well. This is a challenging requirement when con-

sidering the fact that the data might have been spread to

various data collectors and data analysts. 

2- Re-identification attacks: A user’s identity may be compromised

when correlating different types of datasets, and this type of

attack was further classified: 

a. Correlation attacks . 

b. Arbitrary identification attacks . 

c. Targeted identification attacks . 

3- Probable vs. provable results: Different results can be produced

by different queries conducted upon datasets. In this way, a

provable link can turn out to be merely a probable one. 

4- Economical outcomes: Providing huge amounts of datasets in

advance is essential for big data analytics to work. One way to

provide such datasets is by buying them from data providers

who offer to sell their users’ data to their customers, thus pri-

vacy threats might appear. Context faults along with confu-

sion and distraction are just two examples of other threats (i.e.,

fraud, censorship, and surveillance). 

.2.3. Data center scalability 

In the big data paradigm, data centers are not only a platform

o concentrate data storage, but can also carry out further respon-

ibilities, such as acquiring, managing, organizing, processing and

everaging data values and functions. That would encourage the

rowth of the infrastructure and related software [36] . 

The continuous expansion in data volume, coupled with the

ver greater demand for faster processing speeds, and the in-

reasing complexity of Relational Database Management System

RDBMS) are considered the main elements to motivate the hunt

or expandable (scalable) data centers to handle the data volume

nd parallel processing requirements; hence, a number of technical

hallenges have to be taken into consideration when we try to

esign a scalable data center that can efficiently store, process, and

nalyze big data, these challenges can be mapped to the middle

ctagon (big data cluster) shown in Fig. 4 , and they are: 

• Taking into consideration the variety and sheer volume of the

disparate data sources, just collecting and integrating data with

scalability from scattered locations is a difficult task to accom-

plish. 

• Massive datasets must be mined by big data analytics at differ-

ent levels and in either a real time or near real time fashion. 

• Massive and heterogeneous datasets are to be stored and man-

aged by big data systems while providing the function and per-

formance guarantees needed in terms of fast retrieval, scalabil-

ity, and privacy protection. . Facebook is a clear example, in that

particular matter as it needs to store, access, and analyze over

30 petabytes of user-generated data [39] . 

Although some might claim that the current problem is not

bout storage (large volume), but it is about the online processing

bility [11] , a scalable data center should also incorporate the

bility to have a scalable storage system. Non-volatile memory

NVM) technologies are expected to have a promising role in

uture memory/storage designs [127] . 
An ideal storage platform has three vital points (constraints)

o meet: it should support efficient data access in case of failure

network partitions and node failures), offer its clients a consistent

iew of the data, and provides high-availability. However, accord-

ng to Brewer’s CAP theorem [128] , this ideal system cannot exists,

hich is due to the fact that it is impossible for the consistency

o be guaranteed and for high-availability to be offered in the

resence of network partitions. As a result, one of the above

onstraints has to be relaxed by distributed storage systems [127] . 

When it comes to securing the required processing speed, Chip

ultiprocessors (CMPs) are expected to be the computational

lotter for big data analytics [127] . Targeting the emerging trend,

atacenter-on-Chip (DoC) architectures were proposed by the

uthors of [39] , with four usage models that depend on the state

f the consolidating applications, if they were cooperating or not.

ey scalability challenges were identified and addressed by cache

ierarchies and shortage in performance isolation [127,129] . 

. Open research directions 

1- Processing minimization : The first step in the processing of big

data is the collection of data and performing pre-processing.

Data cleaning is one form of data pre-processing. One partic-

ular example where pre-processing might be implemented is

using Computational Radio Frequency Identification (CRFID) 

sensors. In this approach, wireless sensors can be wirelessly

powered using technologies like magnetically powered res-

onance [130] , upon proximity to a moving collector object

(e.g., a vehicle). This would enable the movement of some

of the pre-processing tasks towards the CRFID sensors’ side,

thus collecting an already cleaned and reduced amount of data

that is transferred to the relay before moving it to the data

center for final processing. This would allow more efficiency,

reduce the analysis time, allow for better storage utilization,

and facilitate real-time analytics. As a result, it would lead to

faster decision making and an optimally-optimized network. 

2- Facilitating satellite based Internet connectivity in highly popu-

lated and poor areas : Projects like SpaceX are already emerging

with more than 40 0 0 satellites and more than 1$ billion

combined funding, the project announced by Elon Musk [131] ,

intends to provide high-speed Internet satellites worldwide. By

utilizing big data analytics in the field of satellite communica-

tion networks, this will focus more power in a selective fashion.

The result is less signal-reception requirements, e.g., smaller

antenna size and lower Block Up Converter (BUC) power in the

above-mentioned areas. Big data analytics can be used to corre-

late ground data, e.g., geographical info and weather conditions,

along with economy-related data to help identify these areas. 

3- Efficient use of idle time : Big data analytics can be used by

operators to help them run their own data and discover pat-

terns that would facilitate service and network optimization.

However, analytics may not be a 24/7 job, especially if it is

a batch process. Hence, this would leave the equipment and

the software in an idle state. An operator may offer the use

of his/her equipment to his/her clients from medium and

small sized businesses. They could run their data during the

idle time, which would offer better energy utilization, provide

big data analytics for everyone, and create another source of

money where everyone is benefiting. Game theory approaches

can be harnessed here to coordinate resource provisioning

among several providers. 

4- Analytics reuse : Cellular networks have high similarity in terms

of equipment capabilities, specifications, subscriber require-

ments, and subscriber geographic distribution. Those operators

can benefit from other operator’s big data analytics, thus the

result of running the data can be applied directly, or after small
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modifications. For example by omitting the parts associated

with different f eatures of the two networks. This would reduce

the purchasing cost, minimize the energy consumption, and

reduce the optimization time by adopting a proven solution.

Another challenge here is to provide a standard APIs between

the different operators’ equipment so they can access each

other’s data in an agreed up on manner. 

5- Big data and IoT node placement : The main cause for the

increase in IoT sensors is the desire to collect more data,

which–in turn–will result in reaching an enhanced control

or comprehension. According to HP, by 2030, IoT sensors will

reach one trillion, and this will make IoT data the most signif-

icant part of big data [36] . However, gathering data efficiently

requires placing the IoT sensors where they can harvest as

much data as possible. Many sensors are simply wasted due to

placing them in the wrong location (a location that will not be

helpful in providing a valuable amount/type of data). Big data

can be used to identify these IoT sensors and simply propose

better locations, especially when coupled with other informa-

tion, like weather conditions, social activities, and movement

patterns. To reach the optimal IoT network design, big data

analytics can correlate several parameters (e.g., traffic patterns,

social events, network parameters, and whether conditions) to

determine where the best locations are to place the sensors. 

6- Providing test environments for critical applications : Collecting

large amounts of processed data may not be enough to pro-

ceed with network reconfiguration. This has to be considered

for some critical applications (e.g., health care, military, and

aerospace) where human lives could be jeopardized. The

design cycle has to comprise an additional test environment

in which the proposed design modification has to undergo a

certain test cycle before being put to work, although this might

postpone the ratification of the newly-proposed design. There

will always be a trade-off between accuracy and speed. It is

true that waiting for sufficient data to be accumulated would

pay off as a better decision-making step, but that rule is not

suitable when it comes to critical applications (e.g., medical

networks). The design cycle has to undergo a thorough test

first. Identifying these applications and providing suitable test

environments is a very important task. 

7- Selecting the most efficient energy source for network nodes :

Another aspect that can be added for a greener network is

the ability to selectively utilize energy sources based on the

correlation of energy source attributes and their ability to serve

a particular task. For example, solar energy source can be ideal

for outdoor usage during the day when it is sunny, with a

backup plan to switch to other sources (i.e., electrical) during

special events or bad weather conditions. This can be the case

for IoT devices scattered in a business district, where they are

mostly utilized during the day, while running idle after the

usual office hours. 

10. Conclusions 

There are many areas in which big data analytics can be

utilized in the network design process. The concept of gathering

network data and correlating them with user trends and service

requirements can indeed create an adaptive and user-centric

network design. 

Throughout our survey, we noticed a lot of focus on the field of

wireless communication networks design using big data. Delving

deeper reveals that the field of 5G is getting the majority of the

researchers’ attention due to the new opportunities it has to offer.

The optical networking, inter-DC and SDN fields, on the other

hand, have yet further research challenges to tackle. We also note

that the integration of SDN and big data analytics would facilitate
he perfection of the design cycle. The field of network security

lso has its share where big data analytics is utilized to detect

ecurity threats. 

Industrial effort s toward optimizing networks based on big data

nalytics reflect the increasing trend toward employing AI-like

pproaches, such as pattern recognition and machine learning for

etwork design. 

Some of the considered solutions handle big data in a batch

anner while others are capable of performing real-time process-

ng. Handling big data in a batch mode can offer more accurate

nformation at the expense of delayed results due to the size of the

rocessed data, while real-time processing offers fast results at the

xpense of accuracy. Hence, it would be an application-dependent

ecision whether to choose the former or the latter option. 

We predict that the field of network design based on big data

nalytics will continue to flourish in the near future as more data

re collected from the networks and processed to extract useful in-

ormation regarding network behavior. In the far future, or maybe

uite soon, as some claim, employing quantum computing for ma-

hine learning purposes could help in dethroning Moor’s law and

rovide more processing space per unit time. This extra space can

e harnessed for big data analytics employed in network design. 
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