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Abstract
The banana weevil Cosmopolites sordidus is an important and serious insect pest in most

banana and plantain-growing areas of the world. In spite of the economic importance of this

insect pest very little genomic and transcriptomic information exists for this species. In the

present study, we characterized the midgut transcriptome of C. sordidus using massive

454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into

30,840 contigs with more than 400 bp, representing a significant expansion of existing

sequences available for this insect pest. Among them, 16,427 contigs contained one or

more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth tran-

scriptome analysis identified genes potentially involved in insecticide resistance, peritrophic

membrane biosynthesis, immunity-related function and defense against pathogens, and

Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with pro-

tein digestion. This transcriptome will provide a valuable resource for understanding larval

physiology and for identifying novel target sites and management approaches for this impor-

tant insect pest.

Introduction
The banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is considered
one of the most invasive and destructive pests of banana worldwide [1]. The larvae of C. sordi-
dus are a severe constraint on banana and plantain production in most areas where these crops
are cultivated, especially in Africa [2–5] where this insect pest has been associated with rapid
plantation decline [6] and with a phenomenon called “yield decline syndrome” in West Africa.
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The larvae of the banana weevil, which are the most destructive stage of the insect, is responsi-
ble for considerable damage of the plant corm, interfering with root initiation, nutrient and
water uptake and plant development [6]. When a severe weevil infestation occurs, crop losses
of up to 100% have been reported [7]. It is well known that chemical control of this insect pest
is not only undesirable but also expensive. Options for biological control are limited and phero-
mone-based insect trapping results in either low or ineffective captures [8, 9].

Many basic advances have been made by studying the banana weevil, including, studies
regarding pest resistance [10], insect resistant germplasm [2, 11, 12], plant antifeedants [13],
cultural control practices [14] and biological control [15]. Despite extensive and recent bio-
chemical and physiological studies, limited genomic information exists, especially for impor-
tant tissues such as the midgut. The availability of transcriptome sequences from insect midgut
tissues will facilitate identification of genes that are expressed in the intestinal tract and their
respective metabolic and functional roles. It is well known that the curculionids are the largest
family of beetles [16], which in general are important plant tissue damaging pests such as the
banana weevil C. sordidus[1].

The rapid growth of next-generation DNA sequencing technologies such as 454-based pyro-
sequencing [17, 18] have allowed the characterization of the transcriptome of many important,
non-model insect species [19–23], thus providing valuable and unprecedented opportunities to
increase our knowledge of expressed genes, especially in those insect pests where little or no
genomic resources exist [24].

In this study, we used a 454-based pyrosequencing platform to sequence the C. sordidus lar-
val midgut transcriptome allowing the characterization of transcripts encoding different genes
associated with metabolic functions and potential insecticide targets. Many of these transcripts
were protease-like genes from different digestive enzyme families, mainly associated with ami-
nopeptidases, carboxypeptidases, serine proteases and cysteine proteases. The C. sordidus tran-
scriptome represents an important contribution to understanding the biology of this insect
pest and for the identification of potential target genes involved in protein digestion and many
other metabolic pathways.

Materials and Methods
The experiments were carried out under a standard protocol in the lab and no specific permis-
sions were required for these locations/activities. In addition, these study did not involve any
endangered or protected species.

Insect dissection and of midgut RNA extraction
C. sordidus larvae were collected from corms obtained at a plantain field near Manizales,
Colombia (1058 m, 5° 4’ 13.2”N, 75° 41’ 7.7”O). Collected larvae were inspected under a ste-
reoscope and the fourth instar larvae were selected based on the size of the head capsule as
described by [25] and then used for midgut dissection (Fig 1). Gut tissue was obtained by dis-
secting in DEPC-treated distilled water. The gut content and peritrophic matrix were removed
and the washed midgut tissue was flash-frozen using liquid nitrogen and stored at -80°C. RNA
extraction was performed using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the
manufacturer’s instructions. RNA was then purified using the RNeasy MinElute Cleanup Kit
(Qiagen, Chatsworth, CA) after removing genomic DNA contamination using the TURBO
DNA-free™ Kit (Ambion, Carlsbad, CA) according to manufacturer’s instructions.
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C. sordidusmidgut normalized cDNA library preparation
Full-length-enriched double-stranded cDNA was then synthesized using the Mint-2 cDNA syn-
thesis kit (Evrogen, Moscow, Russia/ Cat # SK005). To reduce the prevalence of abundant tran-
scripts, the resulting double-stranded cDNAs were normalized using the Evrogen Trimmer-2
cDNA normalization kit (Evrogen, Moscow, Russia/ Cat # NK003) [26]. The resulting normal-
ized cDNAmidgut library was then submitted to 454- high-throughput pyrosequencing.

Sequencing and assembly
For 454 pyrosequencing (Roche Applied Science), 3 μg of normalized cDNAs was sent to the
Core for Applied Genomics and Ecology (CAGE) facility at the University of Nebraska-Lin-
coln. The sequences obtained were preprocessed by filtering reads with low qualities (Q15) that
were less than 100 bp as well as trimming SMART adapters and Ns. Finally, processed reads
were clustered using the MIRA 3.4.0 assembler.

Homology searches and sequence annotation
Functional annotation of assembled sequences by gene ontology terms (GO; www.
geneontology.org), InterPro entries (InterProScan; http://www.ebi.ac.uk/tools/pfa/iprscan/)
and enzyme classification codes (EC) was conducted using Blast2Go software suite [27]. For
homology analysis, all sequences were searched against the NCBI non-redundant (nr) protein
database via BLASTx using an E-value cut-off of 10-25.

Fig 1. Cosmopolites sordidus. Adult (A), fourth instar larva (B), digestive tract from a fourth instar larvae (C).

doi:10.1371/journal.pone.0151001.g001
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Protein sequence alignment and phylogenetic analysis
The protein sequence of insect carboxypeptidases were aligned with ClustalW program (http://
www.ebi.ac.uk/clustalw/). The evolutionary relationship among carboxypeptidases was deter-
mined using phylogenetic analysis based on protein sequences and carried out using the Neigh-
bor-joining method using MEGA 6.0 software.

Semi-quantitative RT-PCR
One microgram of total RNA was used as template for synthesis of the first strand of cDNA
with an oligo-(dT) primer and the Maxima HMinus cDNA synthesis kit (Thermo Scientific,
kat # K1681)). The cDNA was employed as a template for amplification and detection of Car-
boxypeptidase (CsoCp), Chitin Synthase (CsoChs), and Aminopeptidase (CsoAp) transcripts in
five larval development and pupae stages of C. sordidus. The expression level of these tran-
scripts was evaluated using a specific set of primers as follow: CsoCp sequence (forward primer
5'-CCGAACCTTGCTCTGATACC-3', and reverse primer 5'-CGTACCCCCATGGATA
CAAC-3'), CsoChs sequence (forward primer 5'-CCATTTACCCCGAAGATCAA-3', and
reverse primer 5'-TGGATAAACATGCAAATACATTG-3'), and CsoAp sequence (forward
primer 5'-TTCCTGAATGAGGGATTTGC-3', and reverse primer 5'-GGTGCTTGAA
GTGCTTGTGA-3'). C. sordidus β-actin gene was also amplified by PCR using the following
set of primers: forward primer 5'-AAGACATCAGGGCGTAATGG-3', and reverse primer 5'-
GAAGGTGTGGTGCCAGATTT-3'. The PCR reaction was carried out in a 10 μl final volume.
PCR conditions were: 95°C for 3 min, 60°C for 30 s, 72°C for 30 s followed by 32 cycles, and
5-min extension at 72°C. All PCR products were resolved by electrophoresis on 1% agarose
gels.

Results

Pyrosequencing, assembly, and annotation
Normalization of the C. sordidusmidgut cDNA library resulted in an even distribution of tran-
scripts ranging from 0.2 to 1.5 kb in length (Fig 2). 454-pyrosequencing of the normalized
library from C. sordidusmidgut transcriptome generated a total of 596,389 sequencing reads
with an average length of 491 bp (Table 1). After filtering reads with low quality (Q15) and less
than 100 bp in length as well as trimming SMART adapters and Ns, 425,605 reads were assem-
bled using the MIRA 3.4.0 assembler. The assembly resulted in 47,729 contigs and 139,600 sin-
gletons that did not assemble into a contig. The average contig length was 491 bp (100–4270
bp) with N50 of 505 bp (Table 1). These data were deposited in NIH Short Read Archive with
accession number SRP061782. It was found that almost 35% of all contigs returned at least one
blast hit and one GO term (Table 1). In addition, 13.5% of these contigs (6,457) received an EC
number, which assigned a known enzymatic function.

Functional classifications, homology searches and Gene Ontology
Analysis
After read assembly, contigs were submitted to BLASTx similarity search against NCBI non-
redundant protein database (nr) to assess their putative function. The similarity distributions
and E-value of the C. sordidus BLAST hits against the non-redundant database are presented
in Fig 3. Most of the BLAST hits are to the bark beetle Dendroctonus ponderosae (66%) and to
the model coleopteran, Tribolium castaneum genomes (18.5%) (Fig 3C), which is one of the
few beetle genomes that has been fully sequenced so far. Enzyme classification (EC) was used
to classify the predicted C. sordidusmidgut proteins. Enzyme classification shows that ligases
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account for the largest proportion of C. sordidus enzymes (55.4%), followed by hydrolases
(17.5%), transferases (14.2%) and oxidoreductases (11.3%) (Fig 4). In addition to enzyme clas-
sification, gene ontology (GO) assignments were used to classify the functions of the predicted
proteins, producing 37,982 terms for biological process categories, 16,457 terms for cellular
component categories and 22,870 terms for molecular function categories.

Fig 2. Electrophoresis of normalized cDNA fromC. sordidusmidgut.Normalized cDNA library
containing transcripts ranging from 0.2 to 1.5 kb in size were subject to 454-mediated pyrosequencing. L,
molecular mass markers. N, normalized cDNA library.

doi:10.1371/journal.pone.0151001.g002
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Most of the cellular component GO terms (Fig 5A) were associated with the cell (44.23%)
followed by the membrane (17.71%) and organelle (17.46%). Metabolic (27.51%) and cellular
processes (28.62%) were involved with more than half of the biological process GO terms fol-
lowed by biological regulation (15.13%) (Fig 5B). Most of the molecular function GO terms
were associated with binding (45.44%) followed by catalytic activity (41.17%) and transporter
activity (6.19%) (Fig 5C). The InterPro analysis was also used in addition to enzyme classifica-
tion and GO assignments and identified that almost 14% of predicted proteins received a GO
assignment and almost 48% of the predicted C. sordidus proteins did not have an InterPro
assignment (Fig 6).

Genes of interest related to midgut metabolic functions and xenobiotic
metabolism
A list of C. sordidus larval genes related to general digestion, peritrophic membrane biosynthe-
sis, degradation and remodeling as well as detoxification and protease-like related genes are
presented in Table 2. A total of 51 detoxification related contigs were identified in the C. sordi-
dusmidgut transcriptome. Of these, 22 corresponded to cytochrome P450 genes, 11 to gluta-
thione-S-transferases, 13 to carboxylesterases and 5 to superoxide dismutases (SOD). Contigs
related to peritrophic membrane biosynthesis, degradation and remodeling include chitinase
(15), chitin synthase (6), and chitin deacetylase (5). Contigs associated with general digestion
from this pyrosequencing analysis include cysteine proteinases (143), serine proteinases (61),
aminopeptidases (38), carboxypeptidases (22), Dipeptidyl peptidases (8), lipases (3), and β-glu-
cosidases (7). An additional 40 contigs related to immunity and defense against pathogens
were identified from the C. sordidusmidgut transcriptome. Among these contigs, lectin (17)
and serine protease inhibitors (serpin) (11) were the most abundant.

Protein alignment of protease-like enzymes and phylogenetic analysis
A carboxypeptidase predicted protein (AFH35127.1), which was recently submitted to the
GenBank from our group, shows 45–58% amino acid identity to other coleopteran carboxy-
peptidase-like proteins. Amino acid alignment of the predicted carboxypeptidase CsoCP1 with
insect protease-like proteins is shown in the supplementary materials (S1 Fig). To determine
the relatedness of the predicted proteinase-like proteins from the C. sordidusmidgut transcrip-
tome with other insect digestive enzymes, phylogenetic trees were constructed based on
protein sequence. It was found that the carboxypeptidase predicted protein from C. sordidus

Table 1. Summary statistics forC. sordidusmidgut transcriptome after assembly and annotation.

Assembly

Total number of reads (before filtering) 596,389

Number of reads that entered assembly (after filtering) 425,600

Total base pairs that entered assembly 178,143,660

Average contig length (range) 491 (100–4270)

N50 length (bp) 505

Number of contigs >400 bps 30,840

Annotation

% contigs with at least one GO term 34.4%

% contigs with at least one blast hit 35.4%

% contigs with at least one InterPro cross ref 34.5%

% contigs with an EC number 13.5%

doi:10.1371/journal.pone.0151001.t001
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(AFH35127.1) clustered together with two carboxypeptidase-like proteins from D. ponderosae
(Scolytidae) (AEE63523 and AEE62416) (Fig 7).

Semi-quantitative RT-PCR
RT-PCR expression analysis was carried out to determine the expression profiles of specific
enzyme-like transcripts in larval and pupae stages of C. sordidus (Fig 8). Results shows that
expression of all protease-like transcripts were clearly visible through the first three larval
stages. However, it was found that Chitin Synthase (CsoChs) transcript is expressing in all five
larval development stages but not in pupae stage. In addition, none of evaluated transcripts
was expressed in pupae stage. Just the control actin housekeeping gene (CsoAct) was clearly vis-
ible at all insect developmental stages.

Discussion
Despite the enormous economic impact of the banana weevil C. sordidus on plantain crops
worldwide [1], there is a general lack of transcriptome sequence data for this insect pest that
could be used to examine traits of biological relevance that might be exploited for developing
novel control methods. By using 454-based pyrosequencing, we obtained extensive sequence
data providing an unprecedented opportunity for genomic research in an insect pest for which
little genomic information is currently available. For example, transcriptome analysis in insects
using 454-based pyrosequencing technologies have contributed significantly to the discovery of

Fig 3. Summary of homology searches (BLAST) ofC. sordidusmidgut 454-pyrosequencing data against the non-redundant (nr) database. (A) E-
value distribution (Cut-off 10–20). (B) Similarity distribution of the top BLAST hit. (C) Species distribution of the top BLAST hit. Note that the majority of top
hits are to the beetles D. ponderosae (66.1%) and T. castaneum (18.5%).

doi:10.1371/journal.pone.0151001.g003
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insect molecular markers (SNPs)[28], Bt receptors [20], immune responses [29, 30], insecticide
targets and detoxifying enzymes [19, 31].

The transcriptomic data of the banana weevil C. sordidus that is presented here dramatically
increases the number of C. sordidusmidgut ESTs. For instance, the number of reported nucleo-
tide sequences related to C. sordidus that were previously available represents only six genes
(GenBank, February 15, 2016). This insect EST midgut collection provided by this study will
allow the characterization of different genes not only for those closely related to other insect
pests, but for many other coleopterans. A good example of this statement is found in the study
of the molecular evolution of glycoside hydrolase (GH) genes in the western corn rootworm
Diabrotica virgifera virgifera [32]. Results from this study have revealed the presence of three
GH family genes (GH45, GH48, and GH28), which are found almost exclusively in Chrysome-
loidea and Curculionoidea superfamilies, indicating the possibility of their acquisitions by hori-
zontal gene transfer rather than simple vertical transmission. The transcriptomic analysis of
the C. sordidusmidgut provides an opportunity to identify genes unique to the C. sordidusmid-
gut, thus providing an unprecedented opportunity for future insect specific management
approaches. The 454-based deep pyrosequencing of the C. sordidusmidgut transcriptome
allowed the identification of contigs encoding proteins with functions strongly related not only
to peritrophic membrane biosynthesis, membrane degradation and remodeling, detoxification,
and immunity-related genes as well as defense against pathogens, but also to key digestive pro-
teases involved with midgut physiology among many others (Table 2). Importantly, such genes
could be targeted by using RNA interference (RNAi) which has been proposed as a novel con-
trol technology for other coleopterans. The banana weevil C. sordidus, like many other most
insect species, can metabolize not only secondary plant chemicals but also insecticide-like
chemicals, a metabolic process that includes a pool of detoxification enzymes such as cyto-
chrome P450s, glutathione-S-transferase (EC 2.5.1.18), carboxylesterase (EC 3.1.1.1) and
superoxide dismutase (EC 1.15.1.1) [19]. Transcripts encoding proteins linked to these

Fig 4. General Enzyme Classification (EC) terms for the contigs of C. sordidusmidgut transcriptome.Oxidoreductases (EC: 1.x.x), Transferases (EC:
2.x.x), Hydrolases (EC: 3.x.x), Lyases (EC: 4.x.x), Isomerases (EC: 5.x.x), and Ligases (EC: 6.x.x).

doi:10.1371/journal.pone.0151001.g004
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Fig 5. Gene ontology (GO) assignments for the C. sordidusmidgut transcriptome. Panel A represents cellular components, while panel B represents
biological processes and panel C is for molecular function at level 2.

doi:10.1371/journal.pone.0151001.g005
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Fig 6. Summary information for InterProScan results in theC. sordidusmidgut transcriptome.

doi:10.1371/journal.pone.0151001.g006

Table 2. Selection of C. sordidus larval genes related to midgut metabolic functions and “Detox”
related.

EC
number

Total number of
contigs

“Detox” related

Cytochrome P450 - 22

Glutathione-S-transferase 2.5.1.18 11

Carboxylesterase 3.1.1.1 13

Superoxide dismutase 1.15.1.1 5

Peritrophic membrane biosynthesis, degradation, and
remodeling

Chitinase 3.2.1.14 15

Chitin synthase 2.4.1.16 6

Chitin deacetylase 3.1.5.41 5

General digestion

Cysteine proteinase all types - 143

Serine proteinase all types - 61

Aminopeptidase all types - 38

Carboxypeptidase all types - 22

Dipeptidyl peptidase all types - 8

Lipase 3.1.1.3 3

β-glucosidase 3.2.1.21 7

Immunity-related and defense against pathogens

Peptidoglycan recognition protein - 5

C-type lectins - 17

Defensin-like - 6

Lysozyme - 1

Serin protease inhibitors (Serpin) - 11

doi:10.1371/journal.pone.0151001.t002
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detoxification enzyme families were found in the C. sordidus normalized midgut transcrip-
tome. In total, 51 contigs were associated with xenobiotic metabolism. It has been reported that
P450s represent a large superfamily of heme-containing monooxygenases that catalyze the
metabolisms of exogenous and endogenous compounds [33]. A454-based transcriptomic

Fig 7. Phylogenetic analysis of carboxypeptidases fromC. sordidus and other insect species (accession numbers are given). Phylogenetic analysis
was conducted in MEGA6.0 using the Neighbor-joining method. Positions containing alignment gaps and missing data were eliminated only with pairwise
deletion. Amino acid sequences of carboxypeptidases used for this analysis were C. sordidus (CsoCP), D. ponderosae (DpoCP), Eupolyphaga sinensis
(EsiCP), Nasonia vitripennis (NviCP),Coptotermes formosanus (CfoCP), Bombus terrestris (BteCP), Bombus impatiens (BimCP), T.castaneum (TcaCP),
Apis mellifera (AmeCP), A. dorsata (AdoCP), Phlebotomus papatasi (PhpaCP), Aedes polynesiensis (ApoCP), Aedes aegypti (AaeCP), Lutzomyia
longipalpis (LloCP),Culex quinquefasciatus (CquCP), N. vitripennis (NviCP), Bombyx mori (BmoCP), Acromyrmex echinatior (AecCP),Ochlerotatus
epactius (OepCP),Musca domestica (MdoCP),Harpegnathos saltator (HsaCP), Trichoplusia ni (TniCP).

doi:10.1371/journal.pone.0151001.g007

Transcriptome of the BananaWeevilC. sordidus

PLOSONE | DOI:10.1371/journal.pone.0151001 March 7, 2016 11 / 16



analysis of greenhouse whitefly Trialeurodes vaporariorum identified 57 putative P450s [19].
However, it is possible that the number of these detoxification-related transcripts in the C. sor-
didusmidgut transcriptome could be greater, especially the great variation of total number of
P450 genes identified in different insect species [34] and availability of full length of some
genes related to detoxification in this database, which could be a valuable prospect to be
explored in future, this in turn will facilitate a better understanding of the role of these genes in
xenobiotic metabolism and to evaluate the possibility of targeting some of them by using RNAi
silencing technology.

As presented in Table 2, the most abundant uncovered protease-like transcripts in the C.
sordidusmidgut transcriptome are cysteine proteinases, serine proteinases, aminopeptidases
and carboxypeptidases, indicating the widespread distribution of these protease-like genes in
the C. sordidusmidgut. It is well known that proteases are hydrolytic enzymes that are involved
in many important roles in insect physiology from protein digestion to polyphenol oxidase
activation [35]. The abundance of protease-like transcripts in the C. sordidusmidgut transcrip-
tome, as well as the expression of some of these specific transcripts as presented in results ses-
sion of this manuscript, shows that the development of the banana weevil is extremely
dependent on proteolytic enzymes indicating that those genes could represent a good target for
RNAi-based technologies. In addition, the finding of the expression of the specific Chitin
Synthase (CsoChs) transcript through all five larval development stages represent a strong evi-
dence of the importance of these remodeling-like genes in insect metabolism. It is well known
that chitin is not only the principal component of the arthropod cuticle, but also an integral
part of peritrophic matrices [36], thus chitin synthesis is essential for insect development and
survival and a potential target for RNA-based silencing technology (RNAi). In this context,
previous research works have showed that RNAi-mediated down-regulation of T. castaneum
CHS genes results in the reduction of chitin content [37].

Fig 8. Semi-quantitative RT-PCR expression analysis of Carboxypeptidase (CsoCp), Chitin Synthase
(CsoChs), Aminopeptidase (CsoAp) transcripts in five larval development and pupae stages ofC.
sordidus. Expression of the Actin Housekeeping gene (CsoAct) is shown as control. 1–5 represent first,
second, third, fourth and fifth instar larvae while P is for pupae stage.

doi:10.1371/journal.pone.0151001.g008
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Cysteine proteinases (EC 3.4.22) are digestive enzymes that have been isolated and partially
characterized and which are widely distributed among many coleopteran species [38, 39].
Despite their importance in insect digestion, many of these protease-like enzymes remain
poorly understood for their molecular functions. It is well known that the study of insect diges-
tive enzymes has often focused on aminopeptidase-like enzymes due to the fact that this group
of digestive proteases may act as natural receptors for Bt endotoxins [40, 41]. In fact, the insect
midgut has become the primary target for both Bt-derived insecticides and a Bt alternative
for pest control of Chrysomela tremulae [20]. The physiological role of these digestive-like
enzymes in herbivorous insects like C. sordidus is to participate actively in the digestion of pro-
teins. These enzymes cleave single amino acid residue from the N-terminus of proteins, which
represents one of the most abundant compounds that are currently found in plant tissues. It is
known that the expression level of proteases in insect guts depends on the protein content of
the plant tissue that the insect uses as the main food source [35]. It is also important to point
out that carboxypeptidases, with 22 contigs found in the C. sordidus transcriptome, represents
an important group of peptidases in the banana weevil midgut. The lack of nucleotide
sequences in the GenBank for this specific group of insect digestive enzymes (1 from our tran-
scriptome data (AFH35127.1), as well as for many other gene sequences, will facilitate future
research approaches that focus on C. sordidus peptidases and proteases. In addition, genes
encoding proteinase inhibitors (PI) can represent a valuable alternative for control of insect
pests when considering their inclusion into plant genomes using transgenic approaches [42].
Serine proteases are a group of digestive enzymes that are widely distributed in animals and
microorganisms [43], playing key roles in many biological processes. As in C. sordidus, it has
been also reported that many other insect species contains serine-type proteinases in their
intestinal tract, allowing the insect to digest proteins that are naturally found in their food [44].
It has been observed that insects with alkaline midgut pH usually show higher serine proteinase
activity [45], which are more active at neutral to alkaline pH, the condition of many lepidop-
teran insects. However, coleopteran insects that have a more acid pH in the digestive tract rely
on cysteine or aspartic proteinases, which have better enzymatic activity at acidic pH [45].

Transcriptomic analysis of the C. sordidus genes involved in the insect immune and defense
response led to the identification of C-type lectins, a protein family that has diverse functions,
such as pathogen recognition and neutralization [46]. In the C. sordidus larval midgut EST
database, the most abundant contig associated with immune response are C-type lectins fol-
lowed by putative serine proteinase inhibitors or serpins. Similar results were found in the Plu-
tella xylostella larval midgut transcriptome [47]. Results presented in this report represent the
first transcriptomic analysis of the banana weevil C. sordidus, the most invasive and destructive
pest of banana and plantain worldwide. This analysis has not only dramatically increased the
number of known genes for this insect pest but it has also allowed the identification of novel
gene sequences that are expressed in the intestinal tract providing a valuable source of informa-
tion for understanding larval physiology and for identifying potential targets and management
approaches for this insect pest or even as an important source of cDNAs in genome annotation.
In addition, this transcriptome data adds to other research work focused on insect genome
sequencing projects [48–50].

Sequence Submission
The raw data obtained by 454-based pyrosequencing was submitted to the Short Read Archive
database at NCBI (http://www.ncbi.nlm.nih.gov/guide/howto/submit-data/) (Accession SRP#:
SRP061782).
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Supporting Information
S1 Fig. Amino acid alignment of a predicted C. sordidus carboxypeptidase with known
insect carboxypeptidase-like genes. An asterisk (�) indicates identical residues, semicolon (:)
indicates highly conserved substitutions and a period (.) indicates semi-conserved substitu-
tions. Dashes represent gaps introduced to preserve alignment. Species and accession numbers
included in the alignment were C. sordidus (AFH35127), D. ponderosae (AEE63523), P. papa-
tasi (ABV44754), and L. longipalpis (ABV60312).
(TIF)
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