
Continuous Auditing
Continuous Auditing of Database Applications: An Embedded Audit Module Approach1

S. Michael Groomer, Uday S. Murthy, 2

Article information:
To cite this document: S. Michael Groomer, Uday S. Murthy, 2. "Continuous Auditing of
Database Applications: An Embedded Audit Module Approach1" In Continuous Auditing.
Published online: 12 Mar 2018; 105-124.
Permanent link to this document:
https://doi.org/10.1108/978-1-78743-413-420181005

Downloaded on: 17 March 2018, At: 21:47 (PT)
References: this document contains references to 0 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 8 times since 2018*
Access to this document was granted through an Emerald subscription provided by emerald-
srm:387340 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our
Emerald for Authors service information about how to choose which publication to write for
and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors
for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The
company manages a portfolio of more than 290 journals and over 2,350 books and book series
volumes, as well as providing an extensive range of online products and additional customer
resources and services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative
for digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

https://doi.org/10.1108/978-1-78743-413-420181005

Continuous Auditing of Database

Applications: An Embedded Audit

Module Approach1

S. Michael Groomer and Uday S. Murthy2

Abstract

This paper demonstrates an approach to address the unique control and security
concerns in database environments by using audit modules embedded into appli-
cation programs. Embedded audit modules (EAM) are sections of code built into
application programs that capture information of audit significance on a continu-
ous basis. The implementation of EAMs is presented using INGRESS a rela-
tional database management system. An interface which enables the auditor to
access audit-related information stored in the database is also presented. The use
of EAMs as an audit tool for compliance and substantive testing is discussed.
Advantages and disadvantages of employing EAMs in database environments
and future directions in this line of research are discussed.

ADVANCES in computer technology over the past several years have made
computer-based accounting systems increasingly complex. With the virtual elimina-
tion of the traditional audit trail in computerized systems [Weber, 1982), internal
control and system security are critical concerns. With recent improvements in com-
puter technology and reductions in hardware costs, database management systems
[DBMS] have become commonly used for business data processing. While there are
unique control and security concerns relative to DBMS applications [Fernandez

Continuous Auditing: Theory and Application, 105�124

r American Accounting Association

All rights of reproduction in any form reserved

ISBN: 978-1-78743-414-1/doi:10.1108/978-1-78743-413-420181005

1From Journal of Information Systems 3(2), 53�69. Reprinted by permission of American Accounting

Association.
2S. Michael Groomer is Associate Professor of Accounting and Uday S. Murthy is Doctoral Candidate,

both of the Department of Accounting, Indiana University, and Bloomington, Indiana 47405

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

http://dx.doi.org/10.1108/978-1-78743-413-420181005

et al., 1981, p. 151), there is some evidence that auditors do not sufficiently adjust
their audit procedures in the environment of DBMS [Roberts, 1980].

A variety of computer audit techniques have been discussed in the literature
[Cash et al., 1977]. Though auditors have developed generalized audit software
[GAS] to obtain audit evidence in advanced computer systems, such software
packages are generally incompatible with the complex file structures of database
systems [Cash et al., 1977, p. 824; Fernandez et al., 1981, p. 164]. Access to client
database systems using GAS is most often done through intermediate sequential
files extracted from the database. Embedded audit modules [EAM] are an example
of concurrent auditing techniques [CAT] which continuously monitor transaction
processing. Weber [1982, p. 475] highlights the increased need for CATs in the envi-
ronment of database systems due to the integration of sub-systems and the sharing
of data. Further, EAMs are perceived by auditors to be very efficient methods of
auditing advanced computer-based systems [Tobison & Davis, 1981; Garsombke &
Tabor, 1986].

The purpose of this paper is to describe an approach to the continuous audit-
ing of database-driven accounting applications using EAMs. The objectives of this
paper are to discuss (1) a selected number of unique control and security issues
related to DBMS-driven accounting systems, (2) the use of a relational DBMS to
construct and implement EAMs in a sales application, and (3) the utilization of
EAMs as an audit tool. The significance of this paper lies in the demonstration of
how audit modules embedded in a DBMS-driven application can address the
unique control and security aspects of database environments. In addition, we
demonstrate how the DBMS might enable the auditor to access audit-related
information collected by the EAMs. In this manner, the illustration presented in
this paper would assist auditors contemplating the use of EAMs in DBMS
environments.

Need for EAMS in DBMS Environments

The unique control and security concerns in database environments can be
addressed in two ways. One approach, which we present in this paper, is to use audit
modules embedded into database-driven application programs. The advantage of
this approach is that it can be employed regardless of the security and integrity fea-
tures present in the particular DBMS being audited (or lack thereof). Another
approach would be to utilize the security and integrity features of the DBMS soft-
ware itself, if they are present and if they address the auditor’s concerns. These fea-
tures, which are programmed using the DBMS’s data description language, might
(1) prevent unauthorized accesses to database objects, (2) prevent unauthorized or
erroneous updates to database objects, and (3) disallow erroneous transactions from
being entered. The advantage of this approach is that controls need to be pro-
grammed only once-at the DBMS level. In contrast, the EAM approach requires
controls to be programmed for each DBMS-driven application.

106 S. Michael Groomer and Uday S. Murthy

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

The extent to which present-day DBMS software contains the aforementioned
security and integrity features is a question that is beyond the scope of this paper.
When confronted with a particular DBMS environment, the auditor must determine
the extent to which the built-in security and integrity features would address audit
concerns. Since transaction processing in database environments invariably utilizes
application programs, audit concerns in such environments can be effectively
addressed by embedding audit modules into the application programs.

The next section of this paper discusses prior research, after which we discuss
control and security concerns unique to database applications. We then demonstrate
the implementation of EAMs in a relational DBMS. Thereafter, the use of EAMs
as an audit tool is discussed. The advantages and drawbacks of using EAMs in
database environments are then discussed. We conclude by discussing future direc-
tions in this line of research.

Prior Research

In a mail survey of 45 internal and 15 external auditors, Tobison and Davis [1981]
addressed the actual use and perceived utility of several different electronic data
processing [EDP] auditing techniques. Auditors were familiar with the use of audit
modules and perceived them to be an effective technique, but only eight of them
had used the technique in the past three years3. Auditors were most familiar with
GAS.

Reeve [1984] surveyed the offices of Chartered Accounting Firms in Australia.
The offices surveyed included all of the capital city offices of the Big-Eight account-
ing firms and a random selection of other offices of each of these firms. Sixty-six
usable responses were returned. Reeve’s findings support those of Tobison and
Davis in that EAMs for both large and small systems were not found to be in wide
usage. However, his survey results did indicate that the respondents expected to see
increased usage of EAMs particularly for large scale systems.

In a field study of 245 internal EDP auditors, Moreish [1987] investigated the fac-
tors affecting the use of CATs. The internal auditors’ involvement in the develop-
ment of new systems, the maturity level of the EDP audit function, and the
complexity of computerized systems were significant factors affecting the use of
CATs. A specific advantage of using CATs cited was the ability to perform continu-
ous monitoring of transactions in events-driven systems. The results of this study
support the contention that EAMs are efficient methods of continuously auditing
advanced computer-based systems.

Along these lines, Roberts [1980] investigated accounting control guide lines used
by auditors to audit advanced computer systems. Internal control questionnaires
from five Big-Eight firms were examined, and it was found that they were grossly

3In another mail survey by Garsombke and Tabor [1986] auditors rated EAMs as being very effective but

were not very familiar with the technique.

Continuous Auditing of Database Applications 107

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

inadequate for database systems (none of the 515 questions in the five different
questionnaires specifically addressed DBMS controls such as data-base access con-
trols). This suggests that auditors are not attuned to the idiosyncratic control and
security concerns of database systems. However, it is conceivable that auditors have
revised their control questionnaires and have become more aware of the control and
security issues relative to DBMS in the years since the Roberts study.

Hansen and Messier [1984] have proposed a relational database management
approach to providing the EDP auditor with a computer-based decision aid.
Application controls installed in a database, the locations of these controls, the vul-
nerabilities resulting from their absence (risks) and possible exposures from those
risks, are viewed as entities with certain attributes. The authors develop a concep-
tual schema of these entities which is mapped onto the database. The results of audit
testing using a CAT (such as the Integrated Test Facility) are “captured” in a rela-
tion (the authors do not elaborate on this point) The auditor can then query the
database by performing a series of relational algebraic operations (select, project
and join) on the set of relations to answer queries such as-what are the risk expo-
sures resulting from a specific failure to prepare a receiving report for incoming
materials?

The approach used by Hansen and Messier is insightful. and provides a way to
access data about transaction errors, once they have been captured. However, the
authors do not present an approach to actually capturing transaction errors. The
approach described in this paper uses EAMs in the transaction processing pro-
grams to capture and store information about errors as they occur in the database
environments. Additionally, an interface is provided such that the auditors can
access the stored information about actual errors and control violations. Gal and
McCarthy [1985] demonstrate how integrity constraints can be implemented into a
relational DBMS (Query-By-Example) consistent with traditional accounting con-
cepts that govern segregation of duties. Integrity constraints are implemented by
means of “views” to the database4. The method requires specification of views con-
sistent with particular job functions and the assertion of authority constraints in
these views.

Transactions that violate defined constraints are either disallowed with an error
message or allowed with a warning message to the user. However, the fact of the
error is not stored in the database for subsequent access by the auditor. The Gal
and McCarthy [1985] approach utilizes functions within the data description lan-
guage (DDL) of the DBMS software. Using this DDL approach, it is not possible
to capture information about transaction errors and access violations for subse-
quent access by the auditor. Our approach, described below, utilizes audit modules
embedded into the application programs (rather than using the DDL) and stores
information of audit significance in a separate table in the database.

4McFadden and Hoffer [1985, p. 482-41:3] discuss how views can be defined in a database in such a way

that users are allowed access to only a subset of data through that particular view.

108 S. Michael Groomer and Uday S. Murthy

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

Database Control and Security, and EAMS

This section discusses the unique control and security considerations relative to
database systems from an audit standpoint. We also discuss how audit modules
embedded into transaction processing programs that interface with the DBMS can
address these unique control and security concerns.

Database Control and Security

Database accounting applications are characterized by increasing integration of
functions and data that are typically separated in a manual or file-oriented com-
puter system [Fernandez et al., 1981, p. 151]. The effect of such integration is that
redundancy and independent sources of comparison are lost. The traditional audit
trail thus becomes increasingly obscured. Integration of data further implies that
data items that are common to multiple applications are stored only once and are
“shared” by different applications. Sharing of data elements causes the different
application subsystems to be tightly coupled, each relying heavily on the correct
functioning of the other [Weber, 1982, p. 475].

Sharing of data makes it increasingly important to identify the “owner” of the
data. Only the owner of the data should be authorized to update data (i.e., append,
delete and modify) while others may be allowed read access. Further, there may be
some data that are so sensitive that even read access must be denied to users. The
need to ascertain that only authorized transactions are processed through the system
is thus heightened. Further, the sheer size of many databases makes it difficult to
scan them for errors [Fernandez et al., 1981, p. 151].

The idiosyncratic nature of DBMS applications necessitates focusing on access
violations (i.e., access to the database) and control violations (in light of the concen-
trated nature of processing and the immense size of databases). Access violations
comprise updates or retrievals of data by employees not authorized to do so.
Control violations consist of transactions that are erroneous from an audit perspec-
tive (e.g., paying a nonexistent supplier). The increased concentration and integra-
tion of the transaction processing functions in DBMS environments necessitates
intensified concern that proper authorization exists for all transactions that are pro-
cessed by the DBMS. Furthermore, the auditor needs assurance that no violations
occur with regard to management’s approval of accesses to database entities.

Control Approaches in DBMS Environments

Establishing Controls Using DBMS Facilities

One approach to establishing controls in database environments is to use functions
within the data description language (DDL) of the DBMS. Specifically, “permis-
sions” can be granted on tables in the database to certain users, restricting the fields
and records they may access and the times during which such access may be

Continuous Auditing of Database Applications 109

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

performed. Further, “integrities” can be specified to ensure that, for example, all
sales amounts are positive. Unfortunately, most existing database definition and
manipulation languages, including SQL (Structured Query Language) [Astrahan
et al., 1976], do not provide such facilities.

INGRES5, 4 for example, allows the specification of permits (DEFINE PER-
MIT) and integrities (DEFINE INTEGRITY) at the individual table level. If a user
attempts to perform functions that violate the permissions granted to him/her, an
error message appears and the transaction is aborted. Similarly, if integrity is
violated during run time, an error message is displayed and the transaction is not
processed. However, no information about such violations is captured. Ideally,
every exception should trigger functions that record information about the violation
in separate tables in the database. While the DDL in INGRES provides the system
developer with the ability to define permits and integrities, it does not satisfy audit
requirements since information about exceptions cannot be captured as they occur.
An alternative approach, discussed below, is to embed audit modules into the appli-
cation programs to capture information about these control and access violations as
they occur.

The advantage of using the DDL to satisfy control and security concerns is that
it promotes data independence. Permits and integrities defined at the level of indi-
vidual tables do not have to be changed if modifications are made to application
programs accessing the same tables. However, as noted earlier, the disadvantage of
using the DDL in INGRES is that information about the violations cannot be cap-
tured. With the move towards standardization of SQL as the predominant database
definition and manipulation language, it is noteworthy that it lacks features such as
permits and integrities. Such features, together with the ability to capture informa-
tion about violations as they occur, should be investigated for possible inclusion in
future versions of SQL.

Audit Modules Embedded Into DBMS Application Programs

An alternative approach to using the DDL to specify permits and integrities is to
embed modules into the application programs used to process transactions in data-
base environments. Transaction processing in database systems is accomplished by
means of application programs that interface with the DBMS software to access the
relevant database entities. The application programs themselves are written in
widely used third-generation languages (e.g., COBOL and FORTRAN). To inter-
face with the DBMS, these application programs have statements that “call” the
database and manipulate data elements in the syntax of the particular implementa-
tion’s database manipulation language. The relationship between the application
program, the DBMS software, and the database itself is depicted in Figure 1.

5INGRES, a full-featured relational DBMS, is a product of Relational Technology Inc. [1986]. The ver-

sion of INGRES used in this study is a full-featured variant implemented on a DEC VAX 11/785, run-

ning under the VMS operating system.

110 S. Michael Groomer and Uday S. Murthy

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

We propose that EAMs incorporated into application programs can address the
audit objectives related to the special control and security concerns outlined earlier.
Essentially, EAMs are modules (code) built into application programs that are
designed to capture audit-related information on an ongoing basis. This automated
capture of audit-related information constitutes a substantive test of all transactions
processed during the year. From a programming standpoint, audit modules are sub-
routines that are invoked whenever certain conditions of audit significance are met.
The function of the subroutines is to record facts about erroneous transactions in
the database so that the information can subsequently be accessed by the auditor,
either through programs developed to generate specially designed reports or by
using the database query facility to generate the desired reports.

All routine transaction processing activity must necessarily use the application
programs6. Properly designed EAMs will detect and capture information of audit
significance as actual transactions are processed. Thus, EAMs constitute a monitor-
ing system resident in the application supported by the DBMS that provides a “con-
tinuous audit” of a particular accounting application.

Figure 1: Application Programs in DBMS Environments.

6We assume that the majority of routine transactions are processed using the application programs

designed for that purpose. While transactions could certainly be processed by directly accessing the data-

base using the query language, sound management practices would dictate that only personnel authorized

by the database administrator could do so.

Continuous Auditing of Database Applications 111

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

https://www.emeraldinsight.com/action/showImage?doi=10.1108/978-1-78743-413-420181005&iName=master.img-000.jpg&w=248&h=237

Auditing Database Applications Using EAMS

In this section, we first discuss alternative approaches to controlling transaction
errors and access violations. We then demonstrate how audit modules implemented
into a sales transaction processing program can detect and store information
about control and access violations in a relational DBMS. An interface that allows
the auditor to access information about control and access violations is also
described.

Error Handling Approaches

There are two approaches to the handling of transactions that constitute control or
access violations. The transactions in error could either be disallowed, or they could
be allowed and the fact of the error stored in control tables. Gal and McCarthy
[1985, p. 30] describe these two approaches as “pre-operative” and “post-operative”
constraint checking sequences. The pre-operative approach detects errors in transac-
tions and disallows them. The post-operative approach also detects the error, but
the transaction is executed.

Pragmatically, the accounting system will have to be designed such that trans-
action processing proceeds expeditiously. For instance, rather than being unable
to process a credit memorandum due to the absence of a particular manager, the
transaction will most likely be processed and approved subsequently. However,
certain errors will be significant enough to disallow the transaction from being
executed. The nature of errors that would be sufficient cause to disallow transac-
tions, and errors that can be “conditionally” accepted, is a design consideration
that must be worked out with the client. In our example, we assume that errone-
ous transactions are to be allowed, with the fact of the error stored in a control
table.

Access violations, on the other hand, are of such significance that they must not
only be detected but information regarding them should be captured. Illegal access
to the database must be prevented, with particulars of the attempted access stored
for review by the auditor. Wong [1985, p. 294] discusses the importance of monitor-
ing and regularly reviewing access violations. Straub [1986] discusses the effective-
ness of administrative methods to deter such violations.

Implementation of EAMS

The database and an example sales transaction processing module are developed in
INGRES. The system designed accepts transactions “on-line,” i.e., sales invoices are
directly entered into the database using the sales application program.

Audit modules are embedded into this program. Figure 2 shows a portion of the
program where the EAMs are “called,” and also the EAM subroutine that captures
credit approval and credit limit violations. The program is written in EQUEL

112 S. Michael Groomer and Uday S. Murthy

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

(Embedded QUEry Language) FORTRAN. EQUEL programs allow the program-
mer to embed a fourth generation database query language (QUEL) into a third
generation language (FORTRAN). QUEL and the popular SQL differ primarily in
their syntax: their functions are very similar.

Figure 2: Part of the Sales Transaction Program Where the “Credviol” Subroutine
is Called.

Continuous Auditing of Database Applications 113

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

https://www.emeraldinsight.com/action/showImage?doi=10.1108/978-1-78743-413-420181005&iName=master.img-001.jpg&w=317&h=448

The extent of familiarity with the programming environment required to imple-
ment EAMs in database environments is significant. Computer audit specialists7

must be conversant with both the host language in which the application program is
written (FORTRAN in our example) and the query language of the particular
DBMS (QUEL in our example).

Figure 2: (Continued)

7We envision that the design and implementation of EAMs will primarily be performed by internal audi-

tors with computer expertise or by computer audit specialists in the major accounting firms if external

auditors participate. However, accessing information of audit significance captured by the EAMs could

be done by personnel who may not necessarily be computer audit specialists, such as senior accountants.

114 S. Michael Groomer and Uday S. Murthy

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

https://www.emeraldinsight.com/action/showImage?doi=10.1108/978-1-78743-413-420181005&iName=master.img-002.jpg&w=267&h=368

The tables used in this example are shown in Figure 3. The ‘employees’
table shows the personal identification number of each employee, his or her depart-
ment, the grade in the department, and the employee’s password. The ‘authmatrix’
table contains the employee personal identification number, the table (i.e., sales)
that the employee may access, and the type of access permissible. The ‘credauth’
table shows particulars of customers to whom credit has been extended. A list of
authorized customers is shown in the ‘custlist’ table. Sales invoices are stored in the

Figure 3: Tables and their contents.

Continuous Auditing of Database Applications 115

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

https://www.emeraldinsight.com/action/showImage?doi=10.1108/978-1-78743-413-420181005&iName=master.img-003.jpg&w=317&h=405

‘salesinv’ table. Control and access violations captured by the EAMs are stored in
the ‘violations’ table as they occur.

Control Violations

For demonstration purposes, the following types of transaction errors are
designed to be captured: (1) sales invoices above $10,000 for which pre-approved
credit has not been obtained, (2) sales to customers who are not on the approved
customer list (see the ‘custlist’ table in Figures 3), and (3) sales invoices above
$5,000 which have been prepared by someone other than the sales manager. Pre-
approved credit is checked by reference to the ‘credauth’ table which indicates the
customer name and the amount of credit approval. Of course, in an actual sales
transaction processing system the audit modules would be designed to capture
many more types of errors.

The moment these errors are detected by the audit modules (i.e., as the sales
transactions are being processed), the following information about the errors is
stored in the ‘violations’ table: (1) a transaction identifier (i.e., the invoice num-
ber), (2) the personal identification number of the employee who input the trans-
action, (3) the date of the error, (4) the fact that the error is a control violation
(‘C’), (5) the exact description of the violation, and (6) the dollar amount of the
transaction. Additional particulars, such as the name and department of the
employee, can be obtained by joining the ‘violations’ table with the ‘employees’
table (the ‘personal_id’ field is the basis for the join; an example is provided at
the end of this section).

Access Violations

As stated earlier, one of the purposes of the EAMs in the database environment is
to ensure that only the owner of data updates or adds data items, while non–
owners may be allowed read access to the data. In our example, it is assumed that
all employees above a certain grade in the sales department are authorized to update
(modify or delete) or add sales records. For example, Tom Jones (personal
id=TM123), a manager in the sales department, is allowed update access to the
sales table (see the ‘authmatrix’ table in Figure 3). Other users in the organization,
e.g., accounts receivable, credit approval, marketing, etc., will be allowed read
access only. In our example, John Doe (personal id= JD111) is allowed read access
only to the sales table (see Figure 3). Note that Phil Collins (personal id=PC101) is
allowed access to the purchases table but not to the sales table.

The audit modules are designed to capture the following information about
unauthorized accesses to the sales table: (1) the personal identification number of
the employee who accessed the table, (2) the date of the unauthorized access, (3) the
fact that the error is an access violation (‘A’), (4) the exact description of the viola-
tion, and (5) the dollar amount of the transaction. As with control violations,

116 S. Michael Groomer and Uday S. Murthy

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

particulars such as the name and department of the employee, can be obtained by
joining the ‘violations’ table with the ‘employees’ table.

The basis for the detection of access violations is an ‘authorization matrix’ (see
the ‘authmatrix’ table in Figure 3; ‘R’ stands for read-only access and ‘U’ for update
access). Of course, appropriate protection will have to be provided for the authori-
zation matrix itself to prevent illegal changes to it. When the sales application pro-
gram is invoked, the employee is asked to enter his or her personal identification
number and pass word. This is checked by referring to the ‘employees’ table where
the personal identification number, name, and password of all employees is stored.

Rather than granting access to particular employees, a more robust approach is
to grant access to organizational positions. The ‘authmatrix’ table can specify
table accesses based on the ‘grade’ field rather than the ‘personal_id’ field. Thus,
when employees change positions or leave the organization, changes need be made
only to the ‘employees’ table and not to the ‘authmatrix’ table as well.

Auditor Interface

Audit relevant information is stored in a separate violations table. Note that one of
the attributes of this table is “viol_type” which identifies whether the violation is a
control violation or an access violation (see the ‘violations’ table in Figure 3). The
table also identifies the employee who originated the transaction (i.e., through
the ‘personal_id’ field) and describes the violation (‘viol_desc’). The amount of the
transaction is also stored. As with the ‘authmatrix’ table, appropriate protections
will have to be specified so that modifications and deletions to the ‘violations’
table are prevented.

The auditor can access information stored in the ‘violations’ table by invoking
report generation programs at the operating system level. These programs are writ-
ten using the “Report Writer” capabilities of INGRES. At periodic intervals the
auditor can run these report programs to determine what transaction errors
(viol_type = ‘C’) and access violations (viol_type= ‘A’) have occurred. Note that the
dollar amount of the error has been captured and stored in each case. In keeping
with the auditor’s materiality threshold, the report-writer programs are designed so
that only errors that meet or exceed the materiality threshold are reported. The
materiality level parameter is entered by the auditor at the time the report-writer
program is invoked. Figure 4 shows sample outputs from running the INGRES
report-writer programs.

The report-writer programs could be used by both the internal and the external
auditor. In fact, the internal auditor may want to investigate errors below the exter-
nal auditor’s materiality threshold since they may be indicative of user difficulties
with the system. For instance, the errors may stern from lack of personnel training,
ineffective supervision, or poor documentation.

If the internal and external auditors are familiar with a fourth-generation data-
base query language (QUEL in the case of INGRES), they could directly access the
‘violations’ table and generate reports based on ad hoc queries. For example, to

Continuous Auditing of Database Applications 117

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

determine the violation description, the amount and the names and departments of
employee(s) responsible for all control violations on a particular day (9/26/87), the
auditor would enter the following query in QUEL:

range of e is employees
range of v is violations
retrieve (v.viol_desc, v.arnount,e.narne,e.departrnent) where:
v.vioLtype= “C”
and v.viol date= “9/26/87”
and v.personaLid= e.personaLid

The result of entering the above query is shown in Figure 5. The query operates
by joining the employees table with the violations table on the common field,

Figure 4: Report of Control Violations.

Figure 5: Result of AD-HOC Query in Quel.

118 S. Michael Groomer and Uday S. Murthy

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

https://www.emeraldinsight.com/action/showImage?doi=10.1108/978-1-78743-413-420181005&iName=master.img-004.jpg&w=311&h=230
https://www.emeraldinsight.com/action/showImage?doi=10.1108/978-1-78743-413-420181005&iName=master.img-005.jpg&w=311&h=64

‘personal_id.’ Note that only selected fields from the ‘violations’ and ‘employees’
table are extracted in this ad-hoc query.

The process of implementing EAMs into application programs may be summa-
rized as follows: Step 1-Deterrnine application to be audited; Step 2-Deterrnine
audit objectives relative to the application; Step 3-Identify triggers in the application
program which are to be considered as control and access violations; Step 4-
Determine audit relevant information to be captured when the trigger conditions
occur; Step 5-Write audit modules (e.g., subroutines in FORTRAN or procedures
in PASCAL) to capture audit relevant information in separate database entities;
Step 6-Program the trigger conditions that invoke the audit modules at various
points in the application program; Step 7-Create database entities in which the audit
modules would store audit relevant information (e.g., tables in a relational DBMS);
Step a-Recompile and test the application program to ensure that the audit modules
are operating as desired; Step 9-Place the new version of the program in the produc-
tion library. These steps are depicted in Figure 6.

In the next section, we discuss how EAMs can be used as an audit tool for com-
pliance testing or for substantive testing.

Use of EAMS as an Audit Tool

EAMs in database applications can operate both as compliance testing and substan-
tive testing tools. EAMs can potentially capture information about all transaction
errors and control violations. However, whether EAMs are used for compliance
testing or for substantive testing or for both purposes (i.e., as a dual-purpose test)
depends on whether they are operative continuously or only periodically.

If EAMs are operative continually, throughout the accounting period, they con-
stitute a very comprehensive compliance and substantive testing audit tool. The
auditor would have information about the operation of controls (i.e., EAMs as com-
pliance testing tools), as well as information about actual transaction errors (i.e.,
EAMs as substantive testing tools), as well as information about actual transaction
errors (i.e., EAMs as substantive testing tools). Thus, EAMs can operate to facilitate
dual-purpose testing. The extent of traditional year-end substantive tests of transac-
tions and balances can be virtually eliminated-the auditor needs only to access the
control tables for information about control violations and transaction errors.

However, due to operational considerations (discussed in the following section),
EAMs may be operative only during a part of the accounting period. In this event,
the auditor may choose to “turn on” the EAMs during the interim audit.
Information about control and access violations captured by the EAMs during the
interim audit serves as information from a compliance testing perspective. After
evaluating the audit evidence collected by the EAMs during the interim audit, the
auditor may decide to curtail the extent of substantive tests of transactions and bal-
ances at year end. Furthermore, since EAMs can operate as a substantive testing
tool, the auditor could simply activate the EAMs during the sensitive months

Continuous Auditing of Database Applications 119

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

around year-end. In this manner, the auditor can perform an efficient substantive
test of the client’s transactions and balances at year-end.

The versatility of EAMs is thus apparent: they can operate in a dual purpose
mode if operative continually throughout the audit period, or they can be employed
to compliance test controls during the interim audit and to perform substantive tests
of transactions and balances at year-end. Which option is chosen depends in large

Figure 6: The EAM Implementation Process.

120 S. Michael Groomer and Uday S. Murthy

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

https://www.emeraldinsight.com/action/showImage?doi=10.1108/978-1-78743-413-420181005&iName=master.img-006.jpg&w=116&h=431

part on the evaluation of the overall client environment and the audit objectives
taken as a whole. For instance, if frequent control violations and transaction errors
are found during the interim audit, it may be deemed necessary to have the EAMs
operational throughout the remainder of the year. On the other hand, in a stable,
well controlled client environment, the EAMs may be employed only intermittently.

In the following section we discuss the various operational considerations in
using EAMs and also point out the advantages and disadvantages of the EAM
approach.

Advantages and Drawbacks of EAMS

This section discusses some of the operational considerations to be evaluated when
implementing EAMs into a database-oriented application environment. We also high-
light the advantages and drawbacks of employing EAMs in database environments.

Operational Considerations

From the client’s point of view, the use of EAMs in application programs may cause
an undesirable impact on system performance. The overhead attributable to EAMs
may be substantial, especially if the nature and extent of control procedures to be
examined is extensive. Therefore, due to hardware and software performance con-
siderations, the system of EAMs could be designed so that they can be “turned on
and off” at the auditor’s discretion. A separate ‘auditor’ table can be constructed in
which the auditor can specify dates when the audit modules are to be operational.
When the sales application program is invoked, the ‘auditor’ table can be accessed
to determine whether the auditor has specified that the modules are to be operatio-
nalized during that particular period.

Information collected in the ‘violations’ table may be fairly extensive and thereby
costly to store in an on-line mode. However, even with existing computer technol-
ogy, data collected by EAMs can be transferred periodically to inexpensive storage
media. Technical improvements in hardware and software may very well facilitate
the utilization of EAMs on a full time basis, even in large installations.

A critical concern is control over the EAMs themselves. In the auditor’s review of
general controls, special attention must be paid to control over program modifications
and programmer access to application source codes. Additionally, periodic checks will
have to be made to ensure that the modules are in fact operational. This can be accom-
plished by processing test transactions online to determine whether the modules cap-
ture information about control and access violations as they were designed.

Advantages of Using EAMS

The use of EAMs should be considered advantageous for a number of reasons.
First, information about control violations and dollar errors is captured on a

Continuous Auditing of Database Applications 121

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

continuous, real time basis. If EAMs are not present, the audit organization
would have no choice but to employ traditional ex-post auditing approaches.
Traditional sampling approaches require the auditor to infer the quality of
accounting outputs based on results of applying audit procedures to the sample.
Second, using EAMs the audit organization is not confined to sampling processes
at the traditional interim or year-end periods. Since properly designed EAMs
should capture all transaction errors, substantive testing at year end should be vir-
tually eliminated when compared to traditional sampling-approaches. Third,
EAMs provide a superior method of ensuring that material errors or control vio-
lations are trapped. Even if EAMs are operative only intermittently, sampling risk
is reduced, since the auditor has knowledge of all errors in the periods sampled.
Fourth, since the audit organization can capture control violations and dollar
errors at will, this approach would seemingly reduce the extent of compliance test-
ing compared to approaches where EAMs are not used. Fifth, where EAMs are
to be used only intermittently, their use provides a “surprise” test capability, since
the application personnel should not be aware that the auditor has activated the
EAMs.

Drawbacks

There are a number of drawbacks to the use of EAMs. First, the computer audit
specialist must not only be knowledge able about DBMS, but also must be knowl-
edgeable of the application environment, particularly with respect to the control
environment, host and query languages. With the increasing complexity of com-
puter-based environments, we believe that auditor comprehension of the mechan-
ics of the client’s computer-driven systems is unavoidable. Second, client
cooperation to allow the implementation of EAMs is necessary. The auditor must
be able to demonstrate and convince the client of the merit of such an undertak-
ing. We suggest that the primary point of interest is a reduction of audit fees over
the long run, since the benefits of EAMs will accrue over several accounting peri-
ods. Moreover, the auditor should indicate that improvement of client systems is
also a by-product. However, the “selling” of these concerns to the client may not
be an easy task.

The third drawback is that EAMs are not viable where the target client system is
unstable. If the client system is in a constant state of flux, the audit modules, if
implemented, will likely have to undergo modification at frequent intervals thus
raising the cost of the audit modules approach. Regardless, the use of these modules
requires an on-going commitment of personnel and funds by the client and the audi-
tor. We believe that the most effective implementation of EAMs can be accom-
plished where auditors are involved in the systems development process. Auditor
involvement will likely result in not only an effectively designed, implemented and
controlled system, but a system in which consideration was given to the use of
EAMs at the initial stages of design. This should result in well designed and cost
effective EAMs.

122 S. Michael Groomer and Uday S. Murthy

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

Conclusion

The approach described above, using EAMs in database environments, is important
in that it demonstrates the feasibility of addressing the idiosyncratic control and
security concerns relative to DBMS-driven applications. In addition, the approach
illustrates how audits of such applications can be performed in an efficient manner.
A superior approach would be to use the DDL to specify permits and integrity con-
straints, if information on violations could be captured as they occur. Future devel-
opments in database definition and manipulation languages may incorporate such
features, which would obviate the need to embed audit modules in application
programs.

Further research should investigate whether auditors are more attuned now to
the special control and security problems present in database environments. The
cost-benefit aspect of using EAMs should also be addressed. Specifically, the impact
on system performance of incorporating audit modules should be investigated.
There are suggestions in the literature that auditors should be more involved in the
design of accounting systems [e.g., Grabski, 1986]. As indicated in the previous sec-
tion, we suggest that auditors should propose the implementation of EAMs in appli-
cation programs to capture and store information of audit significance on a
continuous basis. Further research could investigate whether the utilization of more
efficient concurrent auditing techniques (i.e., EAMs) leads to decreased audit risk in
the environment of complex database accounting systems.

References

Astrahan, M. M., M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P.

Griffiths, W. F. King, R. A. Lorie, P. R. McJones,]. W. Mehl, G. R. Putzolo, I. L.

Traiger, B. W. Wade, and V. Watson, “System-R: Relational Approach to Database

Management,” ACM Transactions on Database Systems (June 1976). pp. 97�137.

Biggs, S. F., W. F. Messier, Jr., and J. V. Hansen, “A Descriptive Analysis of Computer

Audit Specialists’ Decision-Making Behavior in Advanced Computer Environments,”

Auditing: A Journal of Practice & Theory (Spring 1987), pp. 1�21.

Cash, J. I., Jr., A. D., Bailey, Jr., and A. B. Whinston, “A Survey of Techniques foR

Auditing EDP-Based Accounting Information Systems,” The Accounting Review (October

1977), pp. 813�832.

Fernandez, E. B., R. C. Summers, and C. Wood, Database Security and Integrity (Reading,

MA: Addison-Wesley Publishing Company, 1981).

Gal, G., and W. E. McCarthy, “Specification of Internal Controls in a Database Environ-

ment,” Computers and Security (March 1985). pp. 23�32.

Garsombke, P. H., and R. H. Tabor, “Factors Explaining the Use of EDP AudiT Techni-

ques,” The Journal of Information Systems (Fall 1986), pp. 48�66.

Grabski, S., “Auditor Participation in Accounting Systems Design: Past Involvement and

Future Challenges,” The Journal of Information Systems (Fall 1986), pp. 3�23.

Continuous Auditing of Database Applications 123

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F978-1-78743-413-420181005&crossref=10.1145%2F320455.320457&citationId=p_1
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F978-1-78743-413-420181005&crossref=10.1016%2F0167-4048%2885%2990006-9&citationId=p_5

Hansen, J. V., and W. F. Messier, Jr., “A Relational Approach to Decision Support for EDP

Auditing,” Communications of the ACM (November 1984), pp. 1129�1133.

McFadden, F. R., and J. A. Hoffer, Data Base Management (Menlo Park, CA: The Benjamins/

Cummings Publishing Company, 1985).

Mohrweis, L. C., “An Empirical Investigation of Factors Affecting the Use of Concurrent

EDP Audit Techniques,” Working Paper, Indiana University, September 1987.

Reeve, R. C., “Trends in the Use of EDP Audit Techniques.” The Australian Computer

Journal (May 1984), pp. 42�47.

Relational Technology, Inc., INGRES Reference Manual (Berkeley, CA: Relational

Technology, Inc., 1986).

Roberts, M. B., “An Investigation of Guidelines for Review and Evaluation of Accounting

Controls in Data Base Management Systems,” Unpublished Ph.D. Dissertation, Georgia

State University, 1980.

Straub, D., “Deterring Computer Abuse: The Effectiveness of Deterrent Countermeasures in

The Computer Security Environment,” Unpublished Ph.D. dissertation, Indiana

University, 1986.

Tobison, G. L., and G. B. Davis, “Actual Use and Perceived Utility of EDP Auditing

Techniques,” The EDP Auditor (Spring 1981), pp. 1�22.

Weber, R., EDP Auditing: Conceptual Foundations and Practice (New York, NY: McGraw-

Hill Book Company, 1982).

Wong, K. “Computer Crime-Risk Management and Computer Security,” Computers and

Security (December 1985). pp. 287�295.

124 S. Michael Groomer and Uday S. Murthy

D
ow

nl
oa

de
d

by
 G

öt
eb

or
gs

 U
ni

ve
rs

ite
t A

t 2
1:

47
 1

7
M

ar
ch

 2
01

8
(P

T
)

https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F978-1-78743-413-420181005&crossref=10.1016%2F0167-4048%2885%2990047-1&citationId=p_17
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F978-1-78743-413-420181005&crossref=10.1016%2F0167-4048%2885%2990047-1&citationId=p_17
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F978-1-78743-413-420181005&crossref=10.1145%2F1968.358295&citationId=p_8

	Continuous Auditing of Database Applications: An Embedded Audit Module Approach
	Continuous Auditing of Database Applications: An Embedded Audit Module Approach
	Need for EAMS in DBMS Environments
	Prior Research
	Database Control and Security, and EAMS
	Database Control and Security
	Control Approaches in DBMS Environments
	Establishing Controls Using DBMS Facilities
	Audit Modules Embedded Into DBMS Application Programs

	Auditing Database Applications Using EAMS
	Error Handling Approaches
	Implementation of EAMS
	Control Violations
	Access Violations
	Auditor Interface

	Use of EAMS as an Audit Tool
	Advantages and Drawbacks of EAMS
	Operational Considerations
	Advantages of Using EAMS
	Drawbacks

	Conclusion
	References

