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Neuroinflammation remains a central piece in Parkinson's disease (PD) pathophysiology. However, mechanisms
by which PD links to the neuroinflammation remain elusive.

Here, for the first time, we report that lower dose of niacin in PD patients may affect macrophage polarization
from M1 (pro-inflammatory) to M2 (counter-inflammatory) profile through the niacin receptor GPR109A. Skew
in the peripheral macrophages were accompanied by improved quality of life assessments in patients. Low dose

niacin supplementation may be beneficial in PD, boosting anti-inflammatory processes and suppressing in-
flammation. Varied niacin dosages for longer durations may further reveal the potential role of anti-in-
flammatory interventions in PD progression.

1. Introduction

Parkinson's disease is a progressive neurodegenerative disorder.
Aging, genetic susceptibility and environmental factors play pivotal
roles in its initiation, and progression. The main cause of PD still re-
mains unknown and there is no cure (Moehle and West, 2015).

Among all mechanisms and factors proposed to be involved in PD
pathology, inflammation is universally thought to play a central role in
the initiation and progression of PD (Moehle and West, 2015; Bartels
et al., 2010). Acute inflammatory responses may initially be beneficial,
however, chronic inflammation exacerbates brain damage. As a part of
innate immunity, macrophages and neutrophils are known to cross the
leaky blood brain barrier, secrete cytokines (e.g., interleukins, tumor
necrosis factor, interferon gamma) that in turn can initiate and regulate
inflammatory responses leading to neurodegenerative damage. Due to
lineage proximity to microglia, macrophages have attracted increasing
attention in relation to the onset and progression of PD (Moehle and
West, 2015; Lee et al., 2017; Zhao et al., 2014). Macrophages can be
divided into two classes of M1 (pro-inflammatory) and M2 (counter-
inflammatory) subtypes. The notion of macrophage polarization and
skewing from M1 to M2 type may be a plausible modality in containing
the chronic inflammation and slowing the progression of PD (Moehle

and West, 2015).

Our previous studies have demonstrated that niacin supplementa-
tion may influence the course of PD (Wakade et al., 2014; Wakade and
Chong, 2014). Niacin can play a significant role in triggering and
boosting anti-inflammatory immune responses in humans and animal
models (Feingold et al., 2014). Niacin is a ligand for hydroxycarboxylic
acid receptor 2 (HCAR2, also known as GPR109A). The counter in-
flammatory role of GPR109A has been already proposed (Salem and
Wadie, 2017). Several studies have suggested that niacin's effects
maybe mediated via GPR109A/HCA2, which is highly expressed in
adipose tissue and macrophages (Blad et al., 2012; Ganapathy et al.,
2013; Singh et al., 2014a).

Here in this study we demonstrated for the first time in PD patients,
that niacin supplementation through its receptor, GPR109A, may alter
the macrophages polarization from M1 to M2 profile. Most importantly,
our findings indicated an improvement in quality of life for PD patients.

2. Material and methods
2.1. Participants

46 patients diagnosed with PD participated in the study. Selection
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criteria and sampling were carried out in accordance with the
Declaration of Helsinki and approved by the institutional review board.
All participants gave informed consent before participating in the study.
The mean (+/— standard deviation) age for the placebo, 100 mg
niacin and 250 mg niacin groups were 62 (Zhao et al., 2014), 64
(Wakade et al., 2014), and 61 (Wakade and Chong, 2014) years. The
duration of disease in years for these groups was 7 (Wakade and Chong,
2014), 5 (Zhao et al., 2014), and 5 (Lee et al., 2017) years, respectively.
The H&Y scores were 1.9 (0.8), 2 (0.9), and 2.1 (0.7) respectively.

2.2. Blood collection and sample preparation

Eight ml blood samples were collected by venipuncture following
standard procedures and processed within 4h as described earlier
(Wakade et al., 2014). Briefly, purple-top ethylenediaminetetraacetic
acid (EDTA) tubes were used to collect the blood sample and im-
mediately kept in ice. Whole blood was spun and leukocytes (WBCs)
were then collected and placed in fresh tubes, re-suspended in 4 ml of
ACK Lysing Buffer (Lonza cat # 10-548E) and incubated for 10 min at
room temperature before being spun again at 300 x g for 5min. The
process was repeated one more time. Supernatant was discarded from
the clean WBCs pellet. WBCs pellets were washed twice with 1 ml of
PBS and WBCs pellets were then stored at — 80 °C until further analyses
(Wakade et al., 2014).

2.3. Analytical flow cytometry

As described previously (Stranahan et al., 2016), whole blood cells
were incubated with antibodies for surface markers including CD11b,
CD68, F4/80 (M1), CD206 (M2), and GPR109a. Next, cells were fixed
and permeabilized using fix/perm concentrate (eBioScience) before
incubation with antibodies for intracellular staining of IL-10 (functional
M25s). Cells were then washed and run through a four-color flow cyt-
ometer (FACS Calibur). Data were collected using Cell Quest software.
Samples were double-stained with control IgG (isotypes) and cell
markers to assess any spillover signal of fluorochromes. Gating ex-
cluded dead cells and debris using forward and side scatter plots.

2.4. Western blot analysis

Venous blood samples (10 ml/subject) were collected from each
patient during each visit at the beginning of the study and three month
completion of the niacin treatment according to Augusta University,
IRB approval for biochemical analysis of GPR109A receptor protein
level by using western blots. WBCs were separated as described pre-
viously (Perry, 2012). WBCs were subjected to lysis by RIPA buffer with
a protease inhibitor cocktail and protein concentration was measured
by Bradford reagent (Bio-Rad). Again the samples were subjected to
western blot using Bio-Rad 4-15% SDS-PAGE then transferred to PVDF
membrane followed by incubation with respective antibody overnight
and developed with an ECL kit (Giri et al., 2007).

2.5. Behavioral analysis

Three questionnaire forms were used to evaluate the subjects'
quality of life: the Rapid Assessment of Postural Instability in
Parkinson's disease (RAPID) (Chong et al., 2011; Jenkinson and
Fitzpatrick, 2007), the Parkinson's Disease Quality of Life (PDQ-8)
(Jenkinson and Fitzpatrick, 2007) and the Parkinson's Disease Sleep
Scale (Chaudhuri et al., 2002). The investigator blinded to the protocol
administered the questionnaires. The interview was carried out in a
quiet environment in presence of a caregiver. The subjects were seen in
the morning after breakfast and taking PD medications. The total score
from each questionnaire was combined to produce a composite quality
of life aggregate for each subject.
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2.6. Statistical analysis

Statistical analysis was carried out using GraphPad Prism 5. One-
way ANOVA with Tukey's post hoc test, two-way ANOVA, the
Kruskal-Wallis test, two-sample Student's unpaired t-test, or Pearson's
correlation was used as appropriate, and all correlations were corrected
for corresponding variables. Normality of distribution was evaluated
using the D'Agostino and Pearson omnibus normality test. Statistical
significance was set at p < 0.05. Cutoff scores were based on the
highest sensitivity and specificity combinations for x2 analysis. The
composite quality of life score was analyzed with a 2 (Period) x 3
(Group) Mixed ANOVA.

3. Results
3.1. Niacin skews the macrophage polarization from M1 type towards M2

Flow cytometry analysis of whole blood of PD patients showed that
niacin treatment significantly increased the number of M2 type mac-
rophages (CD11b+, CD68 +, F4/80+, CD206 +, IL-10 + ) resulting in a
higher ratio of M2:M1 (CD11b + F4/80+, CD206-, TNFa macrophages
(Fig. 1A—C panels). As shown, the most significant rate of M2 polar-
ization was obtained when niacin was administered at the 250 mg dose,
followed by 100 mg and the rate was unchanged from baseline in the
placebo group.

3.2. Niacin reduces the expression level of GPR109a on macrophages in PD

As shown in Figs. 1 (D, E) and 2, niacin treatment decreased the
expression of GPR109A receptor on macrophages significantly in PD
subjects, while the highest decrease was seen in patients taking 250 mg
of niacin followed by 100 mg of niacin. Importantly, the most sig-
nificant reduction of GPR109A expression was detected on type 2
macrophages (Fig. 1D).

3.3. Niacin improves quality of life

Our findings demonstrated improvement in the quality-of-life
composite score in the group treated with 100 mg niacin compared to
the placebo group (p < .0065). Many PD subjects also reported in-
creased energy levels and improved mood (Fig. 3).

4. Discussion

This is the first demonstration that macrophage polarization is as-
sociated with PD. Our findings support the notion that treatment with
niacin can be a therapeutic modality in the treatment of PD patients.
Through its receptor, GPR109A, niacin alters the macrophage polar-
ization from M1 (pro-inflammatory) to M2 (counter-inflammatory)
profile. In fact, some studies suggested that Gprl09a signaling may
promote anti-inflammatory properties in certain macrophages and
dendritic cells and enabled them to induce differentiation of Treg cells
and IL-10-producing T cells (Singh et al., 2014b). Engagement of
GPR109A may cause the down-regulation of the NFxB signaling
pathway, antioxidant mechanisms, boosting mitochondrial NAD, which
may explain how niacin produces macrophage skew towards M2 pro-
file. In fact, it is very plausible that suppression of NF-kB signaling
pathway and counter inflammatory functions of M2 macrophages
through induction of IL-10 and TGF[( signaling eliciting the niacin-in-
duced neuroprotective effects in PD patients (Moehle and West, 2015).

Furthermore, this study provides evidence to suggest that niacin
may improve the life quality of PD patients. Although, both low
(100 mg) and high (250 mg) doses of niacin had beneficial effects,
however, the lower dose showed more protective effects compared to
the higher dose. The patterns of cellular and molecular changes com-
pared to the clinical outcome were not coherent after niacin treatment.
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Fig. 1. Niacin treatment in PD patients skews the macrophage polarization from M1 type towards M2 macrophages. A) Flow cytometry analysis of macrophages in
the peripheral blood of PD patients receiving low (100 mg) and high (250 mg) of niacin. While both low and high doses of niacin reduced the level of GPR109A
expression on macrophages compared to placebo, however, the effect of high dose was more significant. Histograms at the bottom show the isotype controls (grey

filled graphs) versus actual specific antibodies (red not-filled graphs

B) Bar graph demonstrating M1/M2 ratio based on the absolute values in all groups. ** representing significant difference between groups (p < 0.05)). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

This disconnect between the dose effect on the clinical improvement
may be due to the short treatment duration. A longer study may pro-
duce a stronger association between them. Nevertheless, our findings
suggested that niacin, at the very least may slow the disease progression
in long term which would be a very desirable outcome in PD.

5. Conclusion

Despite all controversies about the role and impact of niacin on
different diseases, our findings for the first time provides the rationale
for further investigations to help better understand and define the
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potential therapeutic role of niacin in the treatment of PD patients. The
interaction between niacin and macrophages as an important cellular
component of innate immunity provides a solid base from which the
potential of niacin as safe and non-expensive immunotherapeutic target
may be further explored. These results may have implications for an
immunotherapeutic approach to treat PD patients by niacin supple-
mentation targeting macrophages as crucial component of immune
system.
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Fig. 2. GPR109A protein expression in Parkinson Disease attenuated by niacin (Vitamin B3). (A) Demonstrates representative expressions of GPR109A at base level
vs treated: placebo, niacin 100 mg and niacin 250 mg groups. The lower panel indicates B-actin as the loading control. (B) Bar diagram demonstrates densitometry
analyses of GPR109A Western blots in placebo, niacin 100 mg and niacin 250 mg groups using ImageJ software. Results are expressed as means + SEM from fifteen

independent subjects of each group. *Significant (p < 0.05) using Students t-test.
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Fig. 3. Quality of life composite score. Improvement in the quality-of-life
composite score was shown in the group treated with niacin compared to the
placebo group (p < 0.0065).
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