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Abstract—Due to advances in parallel file systems for big
data (i.e. HDFS) and larger capacity hardware (multicore CPUs,
large RAM) it is now feasible to manage and query network
data in a parallel DBMS supporting SQL, but performing
statistical analysis remains a challenge. On the statistics side,
the R language is popular, but it presents important limitations:
R is limited by main memory, R works in a different address
space from query processing, R cannot analyze large disk-
resident data sets efficiently, and R has no data management
capabilities. Moreover, some R libraries allow R to work in
parallel, but without data management capabilities. Considering
the challenges and limitations described above, we present a
system that allows combining SQL queries and R functions in a
seamless manner. We justify a parallel DBMS and the R runtime
are two different systems that benefit from a low-level integration.
Our parallel DBMS is built on top of HDFS, programmed in
Java and C++, with a flexible scale out architecture, whereas R is
programmed purely in C. The user or developer can make calls in
both directions: (1) R calling SQL, to evaluate analytic queries or
retrieve data from materialized views (transferring result tables
in RAM in a streaming fashion and analyzing them in R), and
vice-versa (2) SQL calling R, allowing SQL to convert relational
tables to matrices or vectors and making complex computations
on them. We give a summary of network monitoring tasks at ATT
and present specific programming examples, showing language
calls in both directions (i.e. R calls SQL, SQL calls R).

I. INTRODUCTION

Big data is characterized by the 3 Vs: volume, variety and

velocity of data, where analyzing data is a central goal. It is

fair to say that managing and analyzing network data is more

difficult than other big data problems due to its streaming

velocity, higher volume and format variety. That is, it has

three more complicated Vs. Big data analytics is notoriously

difficult. This problem becomes orders of magnitude harder

with network big data due to its higher volume, streaming

behavior and format varying over time. In this paper, we

study how to perform statistical processing on a network

database [4], integrating diverse data streams (not packet-

level data, but network data summaries over time). Computer

Science “systems” research has has proposed systems with

optimized storage [10] for specialized processing based on

rows, columns, and arrays [9]. Most common targets include

transactions, queries, detecting patterns and computing math-

ematical models. In our work we focus on the last one.

Streams represent a further challenge, where processing is

pushed to main memory, with algorithms working in one pass.

On the data mining side there are tons of research proposing

algorithms for large data sets, but working mostly on flat files,

outside a DBMS. However, integrating statistical systems, like

R, with a database system is still a challenge. R is one of

the most popular open-source system to perform statistical

analysis due to its simple, but powerful, functional language,

extensive mathematical library, and interpreted runtime. Un-

fortunately, as noted in the literature, even though every vendor

offers some integration between R and the DBMS, R remains

difficult to use and slow to analyze high-velocity streams.

From a practical perspective, SQL remains the standard query

language for database systems, but it is difficult to predict

which language will be the standard for big data analytics: R

has a proven track record. With that motivation in mind, we

introduce STAR, a system to analyze network data integrating

the R runtime with a parallel DBMS for big data supporting

standard SQL queries and materialized views. Unlike other

R tools and prototypes, STAR can directly process relational

tables, truly performing “in-database” analytics. We emphasize

that STAR enables analytics in both directions closing the

analytic loop: (a) An R program can call SQL queries. (b)

An SQL query can call R functions.

II. RELATED WORK

We present an overview of database systems built at AT&T.

GigaScope Tool [2] was a pioneer system that could evaluate a

constrained form of SQL queries on packet-level data streams

(i.e. very high velocity) as network packets were flowing in

a network interface card (NIC). The main analytic goal was

to analyze the probablistic distribution of the data stream

based on histograms [1]. GigaScope had important limitations:

it could not store streaming data, it did not take advantage

of a parallel file system in a cloud infrastructure and it

could not correlate streaming data with stored historical data.

Therefore, as requirements changed it became necessary to

store summarized historical stream data (orders of magnitude

smaller than packet-level data, but orders of magnitude larger

than transactional data) and supporting standard SQL became

a requirement. Specifically, queries could have arbitrary joins

(natural, outer, time band) and diverse aggregations (dis-

tributive, algebraic, holistic). Storing, managing and querying

stream data was significantly more difficult than analyzing

packet-level data, but it enabled advanced analytics to monitor

the network. Such needs pushed the creation of the DataDepot

Warehouse system [3], which featured a POSIX-compliant

parallel file system, standard SQL and extensibility via UDFs

[7], [5] (which enabled mathematical analytics). The DarkStar

data warehouse at ATT, with DataDepot as the backbone

system, can manage hundreds of data streams and maintains

more than two thousand tables with real-time data loading

and long-term histories. This network big data warehouse
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supports networking analytics as well as real-time alerting

and troubleshooting applications for ATT network day-to-day

operations. In short, it is necessary to have access to real-time,

recent and historical data. The big data trend brought more

requirements and new technology: higher stream volume (with

more data), HDFS (instead of a POSIX file system), many

more database sources (more streams from more network

devices) intermittent streams (with traffic spikes and transfer

interruptions), more efficient C++ code for queries (because

critical SQL queries were compiled), eventual consistency and

advanced analytics beyond SQL queries. Given the common

wisdom that one-size-does-not-fit-all [10] and the difficulty of

changing the source code of a large existing system, it was

decided to develop a next generation DBMS, TidalRace [4].

III. SYSTEM DESCRIPTION

A. Parallel DBMS for Big Data: TidalRace

This section explains the main features of the parallel

DBMS TidalRace [4], with a scalable architecture to process

network big data. TidalRace [4] is a next-generation data ware-

housing system specifically built for data management of high

volume network data, building on long-term experience from

previous systems built at AT&T. The following paragraphs

summarize the main features of TidalRace and its limitations

for statistical analysis.

Storage: TidalRace is built on top of HDFS, to support

scale out as data volume grows. Time partitions (a small time

interval) are the main storage I/O unit for data streams, being

stored as large HDFS blocks across nodes in the parallel

cluster. The storage layout is hybrid: a row store for recent

data (to insert stream records and maintain small materialized

views), and a column store to query large historical tables

with recent and old data (to evaluate complex queries). The

system provides a Data Definition Language (DDL) with time-

oriented extensions. TidalRace’s SQL supports both atomic

(i.e. standard) and structured data types (to connect to R).

Atomic data types include integers, floats, date/time, POSIX

timestamps and strings. POSIX timestamps are fundamental

to create time partitions. Vectors and matrices are supported

internally within UDFs in C++ and special SQL access

functions. A major departure from traditional DBMSs is that

the TidalRace DBMS supports time-varying schemas, where

columns are added or deleted from an existing table over time.

This unconventional “varying structure” feature is fundamental

to keep the system running without interruption concurrently

processing insertions from new file formats, critical queries

and propagating updates to materialized views.

Language: The DBMS provides standard SQL enhanced

with time-oriented extensions to query streaming tables. As

mentioned above. TidalRace’s SQL supports both atomic (i.e.

standard) and structured data types (to connect to R). Its

SQL offers both distributive aggregations (e.g., sum() and

count()) and holistic aggregations (harder to compute, like

rank, median, quantiles). User-defined functions (UDFs) are

available as well: scalar and user-defined aggregates (espe-

cially useful to compute multidimensional statistical models

[6]), programmable in the C language. Query processing is

based on compiling SQL queries to efficient C code, instead of

producing a traditional query plan in an internal representation,

which allows optimizations only at compile time. Materialized

views, based on SQL queries combine WHERE filters, joins

and GROUP BY aggregations.

Processing: The database tables are refreshed by time

partition, being capable of managing out-of-order arrival of

record batches, intermittent streams and streams with varying

speed (e.g. traffic spikes). That is, the system is robust to

ingest many diverse streams traveling in a large network.

The system uses MVCC (lock-free), which provides read

isolation for queries when they are processed concurrently

with insertions. The system provides ACID guarantees for

base tables (historical tables) and database metadata (schema

info, time partition tracking), and eventual consistency for

views (derived tables). Therefore, queries, including those

used in views, read the most up-to-date version, which is

sufficient to compute queries with joins and aggregations on

a time window. Query processing is multi-threaded, where

threads are spawned at evaluation time by the query exe-

cutable program. A key feature are materialized views, which

are periodically updated when inserting records. Materialized

views are computed with SQL queries combining WHERE

selection filters on time partitions, time band joins (θ joins) and

GROUP BY aggregations. In general, new records from base

tables are propagated to materialized views with incremental

computation. We emphasize that every query and view should

have a time range, where such time range generally selects the

most recent data. A major goal is to operate on a sliding time

window with low latency. The DBMS operates with a minimal

time lag between data stream loading (less than 1 minute) and

querying (less than 2 minutes after loading) and efficiently

propagates insertion of new records and removes old records

to update materialized views (less than 5 minutes).

B. System Architecture and Streaming Processing

From the parallel DBMS TidalRace we get a parallel file

system (currently HDFS, formerly a POSIX file system),

stream data management and query processing. On the other

hand, from the R side we get single threaded processing

in main memory, text file I/O and rich set of mathematical

operators and libraries.

C. Chunk-based Processing in RAM

We make two reasonable assumptions to process data

streams based on a sliding time window: (1) the result table

from an SQL query or materialized view having a time range

filter generally fits in RAM. (2) the result data frame or output

matrix from an R program can be divided into chunks (data

blocks in RAM) and processed in streaming fashion. Our

system incorporates optimizations to efficiently transform a

relational table into an R data frame and vice-versa under

the assumption that the data set fits in RAM. This is a valid

assumption because the data set is computed by an SQL query
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Fig. 1. Bi-directional analytic architecture: R ⇔ DBMS.

in a materialized view. That is, our system assumes data is pre-

processed, transformed and summarized in SQL, not in R.

Based on these assumptions, our system provides a fully

bidirectional programming API: an R program can call (eval-

uate) any SQL query and its results are seamlessly and effi-

ciently transferred block-wise into R. Alternatively, SQL can

call any R function via UDFs (embedding R calls into C code)

and stored procedures (mixing queries with procedure calls).

This bidirectional communication is achieved by a direct

binding between R and DBMS runtimes in main memory,

bypassing network communication protocols. Our integrated

system architecture is shown in Figure 1.

The key issues to integrate R with a parallel Database

System are understanding main memory management, layout

of vectors and matrices in RAM, building data frames as a set

of columns, setting up R function calls, access serialization and

properly configuring the operating system environment. Main

memory management is significantly different in both systems.

R has a garbage collector and the runtime is single threaded.

R can address main memory with 64 bits, but integers for

subscripts to access data structures are internally 32 bits. On

the other hand, the C++ in the DBMS uses a flat 64 bit

memory space also with a single thread per compiled query,

but no garbage collector. Therefore, each system works as

a separate process with its own memory space. In addition,

since both systems internally have different data structure

formats it is necessary to transfer and cast atomic values

between them. A fundamental difference with other systems,

integrating R and a parallel data system is that building

data structures and transferring them is done only in main

memory, copying atomic values as byte sequences in most

cases, moving memory blocks from one system to the other

and avoiding creating files.

D. Mapping Data Types and Data Transfer

R and SQL exchange data with a careful mapping between

atomic values. Data structures like vectors, matrices, data

frames and tables are built from atomic values. Data structures

include vectors, matrices and data frames on the R side and

only tables (including materialized views) in SQL. To achieve

maximum efficiency, transferring is always done as byte se-

quences: string parsing is avoided. We make sure a data frame

only contains atomic values, thereby enabling converting data

into an SQL table. Notice lists in R violate a database first

normal form. Therefore, they cannot be transferred into the

DBMS, but they can be pre-processed converting them into a

set of data frames. Transferring in the opposite direction, an

SQL table is straightforward to convert into an R data frame

since the latter is a more general data structure. Converting

an SQL table into an R matrix requires considering a sparse

or dense matrix storage and how subscripts are represented in

SQL. Finally, vectors and matrices in C++ are a mechanism to

efficiently transfer and serialize data from the UDF to vectors

and matrices in R (which have different storage and require

memory protection), but not to perform statistical analysis.

That is, they are transient data structures.

E. R calling SQL

Since R has a flexible script-based runtime it is not nec-

essary to develop specialized C code to call an SQL query:

the SQL query is simply called with a system command

call. Transferring data from the evaluated SQL query to R is

achieved via a packed binary record format that is converted

into data frame format and then incrementally transferred to a

data frame in RAM (via Unix pipes). This format resembles a

big network packet, with a header specifying fields and their

sizes, followed by a payload with the sequence of packed

records. We note that since in a DBMS strings generally

have variable length then records also have variable length.

Therefore, conversion and transfer row by row is mandatory

(instead of block by block), but it can be efficiently done in

RAM, moving byte sequences. In the unusual case (because

a time range is assumed) that the output SQL table does not

fit in RAM the data set can be processed in a block-by-block

fashion in R; the drawback is that many existing R functions

assume the entire data set is used as input and therefore they

must be reprogrammed. Finally, a data frame containing only

real numbers can be easily converted to matrix. Therefore, it

becomes feasible to call most R functions with a data frame or

a matrix as input. Further math processing happens in R and

in general R mathematical results (models, a set of matrices,

diagnostic statistics) remain in R. However, when the R output

is a data frame, preferably with a timestamp attribute, it can be

converted to our packed binary format and then loaded back

into the DBMS, possibly into a materialized view.

F. SQL calling R

SQL is neither a flexible nor an efficient language to

manipulate data structures in main memory, but it offers UDFs

programmable in C/C++ (called in a SELECT statement) and

stored procedures (calling external routines). On the other

hand, the most flexible mechanism to call R to perform low-

level manipulation of data is to embed R function calls inside

C (or C++) code. Since UDFs are C++/C code fragments

plugged into the DBMS that isolate the programmer from the

internals of physical database operators and memory manage-

ment we use them as the main programming mechanism to
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TABLE I
TABLES STORED ON THE DBMS.

Name Type Size
Device Measurement base large
Link utilization base large
Phone call base large
Connection base large
Feeds base large
Interrupted phone call derived large
Device measurement summary by minute derived medium
Link utilization by hour derived medium
Connection summarization derived medium
Feed summary by source/dest derived medium
High traffic site derived medium
Minutes used per phone derived medium
Quantile traffic approximate histogram derived small
Abnormal connections derived small

call R, bypassing files and network communication protocols.

Specifically, calling R from the UDF C++ code is achieved by

building temporary C++ vectors and then converting the set of

C++ vectors into an R matrix. Notice we do not convert SQL

records to data frame format in R because we assume the R

function to call takes a matrix as input, the most useful case

in practice. R results can be further processed in C++ inside

the DBMS and potentially be imported back into a table. Only

R results that are a data frame can be transferred back into an

SQL table. In general, there exist materialized views which

have a dependence on this temporary table. From a query

processing perspective when the R result is a data frame the

DBMS can treat R functions as table user-defined operators,

where the size of the result is known or bounded in advance.

IV. STATISTICAL ANALYSIS ON NETWORK BIG DATA

A. Network Big Data Tables

As mentioned before, TidalRace stores a mix of tables to

ingest stream data on base tables and periodically propagate

changes to derived tables (materialized views). Table I shows

tables going from stream ingestion to sophisticated data ana-

lytics.

B. Network Monitoring

As mentioned above, our system assumes every SQL query

has a time range, which results in a sliding time window.

Such time range represents the last x minutes in real time,

where 1 ≤ x ≤ 60 (with 1 minute being near real-time or

so-called active data warehousing) or the last y hours where

1 ≤ 24 (with 24 hours being a worst case scenario with

systemic patterns too hard to detect quickly). That is, our

system enables monitoring the network for the most recent

events with up to one hour delay, but not sooner than one

minute. In general, it is not possible to guarantee an event

is detected in less than one minute because streams must be

transferred from diverse sources on the network all over the

world, ingested into a single-point feed management system

(Bistro [8]), transformed into quasi-relational files (because

schema varies over time) and then transferred, distributed and

Fig. 2. Network big data analytics.

stored on HDFS. Recall that these two last steps are performed

by the TidalRace DBMS.

Figure 2 shows important end-user applications at AT&T,

where base tables are periodically appended by time partition

as streams are ingested and derived tables represent material-

ized views, periodically refreshed during low traffic periods.

C. Analytic Examples in Both Directions

R calling SQL: Assume there exists a long script with

many SQL queries to derive a data set for statistical analysis.

In a network data warehouse environment, such data set is

periodically recomputed from a materialized view based on a

sliding time window (e.g. every 5 minutes, every 30 minutes,

every day). The resulting data set is produced by aggregating

columns to create variables for statistical analysis in the R

language. We contrast analytic calls on streams with three

transfer mechanisms going from slowest (but most portable) to

fastest (but ad-hoc): (1) JDBC connection, the standard DBMS

protocol; (2) plain files exported from the DBMS and loaded

into R; (3) binary files directly transferred in RAM to R via

Unix pipes. By leveraging sufficient statistics maintained on

the time window the analyst can call R functions to compute a

predictive model such as linear regression (to predict a numeric

variable) or classification (to predict a discrete variable). These

analytic tasks boil down to developing an SQL script, starting

the R language runtime, sending the SQL queries to the DBMS

for evaluation, transferring the final SQL table for the data

set into a data frame and then analyzing the R data frame

with R operators and mathematical functions. We emphasize

that in general the output of these calls cannot be easily and

intuitively transferred back to the DBMS because they are a

complicated collection of diverse vectors, matrices, arrays and

associated diagnostic metrics (e.g. error, fit, and so on). That

is, it is preferable they are managed by the R language.

SQL calling R: In this scenario we assume there is an

experienced SQL user, with basic statistics knowledge, who

needs to call R to exploit some mathematical function in a
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materialized view. In contrast to the previous case all process-

ing takes place in main memory. A representative analysis

is getting the covariance or correlation matrix of all variables.

Moreover, these matrices are used as input to multidimensional

models like PCA. Assume the user builds the data set with

SQL queries as explained above, but the user wants to compute

some model with data residing on the DBMS. To accomplish

this goal, the user just needs to develop a “wrapper” function

(aggregate UDF) that incrementally builds a matrix, row by

row. Every tuple is dynamically converted to vector format

in RAM. When the matrix is ready the desired R function is

called in embedded C code. A second representative analysis

is building a time series and smoothing the time series. In con-

trast to the previous example, the analyst stores the smoothed

time series back into the DBMS. A common scenario is that

the user wants to call R to solve the Fast Fourier Transform

(FFT), a sophisticated mathematical computation definitely out

of reach for SQL, to find the harmonic decomposition of

the time series (i.e. from primitive time series) and identify

its oscillation period (the one with strongest correlation to

some specific primitive time series). When the period has

been determined time series values are averaged (smoothed)

with a sliding time window. The result is a transformed time

series that is much easier to interpret and further analyze

because it has less noise and a periodic pattern has been

identified. We assume the input table has a timestamp and

some numeric measure. Then a DBMS user-defined function

(UDF) dynamically builds a data frame in RAM and then it

calls R to get an output data frame. Finally, this transformed

time series is efficiently transferred back into the DBMS as a

stream, but only in RAM. That is, the stream data records do

not touch disk on the R side.

D. Throughput and Performance

Two major goals are to monitor devices and monitor connec-

tions. To monitor devices, in general, each record contains at

a minimum 3 attributes: a timestamp, a device id or network

address, and some measurement (i.e. bytes per second). To

monitor connections records are used to track data transmis-

sion, which requires more attributes: source and destination

(IP addresses), protocol, transmission time, received time,

throughput metrics and status. Summarizing, network data

sets have between 3 and 10 attributes. In other words, they

are relatively narrow, but extremely large. It is assumed SQL

queries reduce such size orders of magnitude because they

compute summarizations. Therefore, in general the data sets

for statistical analysis in R fit in RAM.

Given our system efficiency, high-end hardware and sim-

plicity we did not conduct a detailed performance study.

Our system is capable of transferring between n =1M and

n =10M records per second from the DBMS to R and vice-

versa on average hardware (e.g. a Quadcore CPU, 8 GB of

RAM). This time excludes the actual time to compute an SQL

query or update a materialized view. In an analog manner,

this time excludes the time to call R on a data frame or

matrix and transform, return results as an SQL table and

loading them back into the DBMS. Analyzing overall time

to compute statistical models or transformations on diverse

network monitoring problems is an issue for future research.

V. CONCLUSIONS

We presented a system that enables fast bi-directional data

transfer between a parallel DBMS and the R runtime. In one

direction our system converts SQL relational tables into R

data frames or matrices. On the opposite direction an R data

frame or matrix is converted into a relational table, with a

transformed data frame being the most common case. Our

system is built on top of a careful mapping between atomic

data types. The system efficiently constructs data structures

(i.e. non-atomic data types) in RAM in one pass over a data

set. The net gain is that an R script can call an SQL query

or materialized view to analyze the result set. On the other

hand, an SQL query (not a script or longer embedded SQL

program) can call an R function to perform some mathematical

computation in an intermediate step.

Our initial prototype opens several research directions. We

want to define functional constructs in the R programming

language to transform relational tables into data frames. In a

similar manner, we want to study alternatives to transform a

matrix into an SQL object (flat table, subscript/value triples,

or binary object). Propagating insertions to materialized views

and then to a mathematical model computed by R is a

challenging problem. Finally, we need to conduct a detailed

performance study on the ATT network data warehouse.
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