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A B S T R A C T

An analytical procedure for dynamic stability of CFST column accounting for the creep of concrete core is
proposed. The long-term effect of creep of concrete core is formulated based on the creep model by the ACI 209
committee and the age-adjusted effective modulus method (AEMM). The equations of boundary frequencies
accounting for the effects of concrete creep are derived by the Bolotin's theory and solved as a quadratic ei-
genvalue problem. The effectiveness of the proposed method and the characteristics of time-varying distribution
of instability regions are numerically surveyed. It is shown that the CFST column becomes dynamically unstable
even when the sum of the sustained static load and the amplitude of the dynamic excitation is much lower than
the static instability load. It is also found that due to the time effects of concrete creep under the sustained static
load, the same excitation, that cannot induce dynamic instability in the early stage of sustained loading, can
induce the dynamic instability in a few days later. The critical amplitude and frequency of the dynamic ex-
citation can decrease by 6% and 3% in 5 days, and 11% and 6% in 100 days.

1. Introduction

Steel hollow sections are very efficient in resisting compression
forces, and filling these sections with concrete greatly enhances the
load-carrying capacity [1,2]. The concrete-filled steel tubular (CFST)
structure possesses many mechanic benefits, such as high strength and
fire resistances, favorable ductility and large energy absorption capa-
cities, so the CFST members are widely used in modern structures [3].
Moreover, with the advancement in the strength resistance and con-
struction techniques of CFST column, slender CFST columns are fre-
quently adopted to support the roofs of industrial plants, the decks of
railways and the floors of multistory buildings [4].

It is known when a slender column is subject to an axial compres-
sion, it could fail owing to lateral instability [5]. The instability of
slender CFST columns under axial static compression has been experi-
mentally and numerically studied by many researchers [4,6–8]. These
studies have shown that slender CFST columns are prone to global
buckling under static loading. In addition to the static loading, the
service loads of slender CFST members also involve the dynamic
loading. For example, the slender CFST piers in modern bridges are
subject to the dynamic vehicle loading, and the high CFST pillars sup-
porting large span roofs are loaded by dynamic wind loading. The

behavior of CFST columns subjected to cycles of compressive loading
has also been reported by many researchers [9–11]. Under a sustained
centric axial static load, the concrete core of a CFST column creeps with
the time and the creep of the concrete core may change the lateral
stiffness and the lateral natural frequency of the CFST column sig-
nificantly. If the column under the sustained load is further excited by
an axial dynamic excitation at some stage, the column may suddenly
lose its stability laterally due to dynamic resonance when certain re-
lationships between the frequency of excitation and the natural fre-
quency of the column are satisfied and the amplitudes of the excitation
are sufficiently high. Because the creep of the concrete core develops
with the time and changes the lateral natural frequency, the relation-
ships between the frequency of the excitation and the natural frequency
of the column and the required amplitude of the excitation inducing the
dynamic instability of the CFST column may change greatly with the
time. Such dynamic instability may occur even when the sum of the
amplitude of the excitation and the sustained static load is much
smaller than the static instability load of the column.

Meanwhile, the engineering structures are commonly subject to
sustained static loads and sudden dynamic excitations [12,13]. Since
the mechanical property of the concrete core is time-dependent due to
creep when it is under a sustained load, the dynamic stability of a CFST
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column under dynamic excitation would be affected by the loading time
difference between the first static loading and the dynamic excitation.
However, there is no knowledge about how the creep of the concrete
core influences the dynamic stability of a CFST column available in the
literature hitherto. To ensure that CFST columns under sustained static
loads and sudden dynamic excitations do not suddenly lost their sta-
bility, it is much needed to investigate the effects of the creep of the
concrete core on the dynamic stability of CFST columns.

This study, therefore, is devoted to establishing an analytical pro-
cedure for the time-dependent dynamic stability analysis of slender
CFST columns accounting for the creep of the concrete core. The
column under a sustained static load and suddenly subjected to a dy-
namic excitation is considered. The age-adjusted effective modulus
method (AEMM) is used to describe the effect of the creep on the ef-
fective modulus of the concrete and the time-dependent model of
concrete creep of the ACI committee 209 [14] is adopted in the in-
vestigation. Based on these, the differential equation of lateral motion
of the CFST column under the dynamic excitation is derived. The
equations of boundary frequencies are then established by the Bolotin's
method and they are solved to determine the boundaries of regions of
dynamic instability. Finally, the effectiveness of the proposed method
and the characteristics of time-dependent dynamic stability of CFST
columns accounting for the creep of the concrete core are discussed by
elaborate numerical examinations.

2. Creep of concrete core under sustained static load

The aging property of the concrete was firstly noticed about 110
years ago, and a large amount of literature have been concentrated on
this subject, such as the books by Bazant [5], Neville [15] and Gilbert
[16]. The final total strain of the concrete at time infinity could be
several times the initially instantaneous strain, so the analysis over-
looking the time effect might extraordinarily underestimate the load
effect in the concrete or concrete-composite structures [17–19]. The
gradual development of strains in the sustained loaded concrete is due
to the creep and shrinkage of the concrete [16]. The creep and
shrinkage strains of CFST columns with various cross-sectional shapes
and concrete types were widely tested [20–22] and numerically com-
puted [23–25]. It was found that the shrinkage of the concrete in CFST
columns is very small and negligible owing to the prevention of
moisture egress in a seated environment [25,26].

This study assumes that the CFST column is under a centric axial
sustained static load for some time and then is suddenly subjected to a
centric axial dynamic excitation for a short period. Under the sustained
axial load, the effective modulus of the concrete changes with the time
due to the creep of the concrete core. The age-adjusted effective mod-
ulus method [27] is adopted in this investigation. According to the
method, the effective modulus of concrete Eec at the time t1 is given by

=
+

E t τ E τ
χ t τ φ t τ

( , ) ( )
1 ( , ) ( , )ec 1 0

c 0

1 0 1 0 (1)

where Ec(τ0) represents the elastic modulus of concrete at the time τ0 of
first loading; φ(t1,τ0) is the creep coefficient and χ(t1,τ0) is the aging
coefficient.

The time-related creep coefficient φ(t1,τ0) can be determined ac-
cording to the long-term model proposed by the ACI committee 209
[14].

= −
+ −

∗φ t τ t τ
t τ

φ τ( , ) ( )
10 ( )

( )1 0
1 0

0.6

1 0
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(2)

where (t1-τ0) denotes the duration of loading (in days); φ∗(τ0) is the
final creep coefficient. According to the existing creep test results
[21,28], the final creep coefficient φ∗=2.29 is used here.

Additionally, the aging coefficient χ (t1,τ0) can be computed by the
empirical expression [16,29].
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⎝

⎞
⎠
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201 0
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where χ * is the final aging coefficient

=
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k τ
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1

1.33 ( )
2

1.33 ( )0 0 (5)

Therefore, for a CFST column under sustained static loading from
the time τ0, when the column is dynamically excited at the time t1, the
effective modulus of concrete at time t1 can be computed by Eqs.
(1)–(5) for the dynamic stability analysis of the CFST column under a
dynamic excitation starting at the time t1.

3. Dynamic stability analysis accounting for creep of concrete
core

3.1. Governing equation of dynamic stability

A simply-supported CFST column is initially subjected to a sustained
axial concentric static load P0 from the time τ0 and then subjected to an
additional dynamical excitation from a time t1 (t1> τ0), as shown in
Fig. 1. Without loss of generality, the dynamic excitation is considered
as a harmonic type excitation = +P t P P θt( ) cost0 with the period
T=2π/θ, where P0 is the sustained static load, and Pt and θ denote the
amplitude and circular frequency of dynamic excitations.

For a straight column subject to an axial excitation, it would vibrate
in the axial direction. However, when certain relationships between the
frequency and amplitude of the excitation and the lateral natural fre-
quency of the column are satisfied, the column may suddenly vibrate
laterally and lose its stability in a dynamic resonance instability mode
[30–34]. The initial and deformed configurations of CFST column
during dynamic instability is shown in Fig. 1a. The length of column is
L, and the lateral displacement of column is represented by u(x,t),
where t is the time and x is the coordinate along the length of column.
The cross section of column consisted of a steel tube and a concrete core
is shown in Fig. 1b.

Forces acting on the infinitesimal element dx in the deformed po-
sition of the column are shown in Fig. 1c. These forces include the in-
ertia force me∂

2u/∂t2 and the viscous damping force c(x)∂u/∂t, where me

is the equivalent mass per unit length of the column and c(x) is a
damping constant; the axial force N, the shear force V and the moment
M at the bottom of the element; and the axial force N+(∂N/∂x)dx, the
shear force V+(∂V/∂x)dx, and the moment M+(∂M/∂x)dx on the top
of the element. The inertial moment caused by the angular acceleration
of the element is neglected.

The following assumptions are adopted for the dynamic stability
analysis of CFST columns [28,35,36]: (1) the size of the cross section of
the CFST column is much smaller than the length of the column such
that the column is sufficiently slender; (2) oscillation of CFST column is
small and the deformation is linearly elastic, which satisfies the Euler-
Bernoulli hypothesis on that the cross section remains plane and per-
pendicular to the column axis during deformation; (3) the concrete core
and the steel tube of the CFST column are fully bonded; and (4) the
flexural stiffness of the CFST column is regarded as constant along the
CFST column. Because the axial rigidity of the CFST column is much
higher than its lateral rigidity, the influence of the axial vibration on the
lateral vibration is negligible and the internal axial force is equal to the
sum of the sustained static load and the external axial excitation.

Based on the assumptions, considering the forces acting on the in-
finitesimal element shown in Fig. 1, the equation of motion for the
column be derived as
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and the equation of equilibrium of internal forces can also be derived as

+ − ∂
∂

=V x t N x t ϕ M x t
x

( , ) ( , ) ( , ) 0 (7)

where me= ρsAs +ρcAc, ρs and ρc denote the densities of the steel tube
and the concrete core, respectively, and As and Ac denote the cross-
sectional areas of the steel tube and the concrete core, respectively; the
small angle φ can be calculated by φ= ∂u/∂x.

As the angle φ is small, the curvature of the column can be calcu-
lated by Ref. [37].

= ∂ ∂
+ ∂ ∂

≈ ∂
∂κ

u x
u x

u
x

1 /
[1 ( / ) ]

2 2

2 3/2

2

2 (8)

where κ is the radius of curvature.
Based on the first two assumptions, for the initially straight column

of a uniform cross section, the normal strain εx in the x-direction across
the section can be expressed as

= − = − ∂
∂

ε
κ

y u
x

y1
x

2

2 (9)

where y is the distance between the location point of εx and the neutral
surface of the column.

According to the third assumption that the concrete core is fully
bonded with the steel tube, the deformations of the steel tube and the
concrete core must be compatible with each other, so the steel tube and
the concrete core have the same normal strain at their interface and
thus the same radius of curvature [38]. Therefore, both the normal
strains at the cross sections of the steel tube and the concrete core can
be calculated by Eq. (9). Moreover, the stress of the steel tube is dif-
ferent from that of the concrete core at the interface due to the fact that
they have different Young's moduli. The stresses are computed by Ref.
[39].
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2
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⎝

− ∂
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⎞
⎠
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x

yxc ec ,c ec
2

2 c (11)

where σs and σc denote the normal stresses on the cross section of the
steel tube and the concrete core, respectively; ys and yc correspond to
the values of y of the steel tube and the concrete core, respectively; Es
denotes the elastic modulus of steel; and Eec denotes the age-adjusted
effective modulus of concrete, which is computed by Eqs. (1)–(5).

Thus, the moment M at the cross-section of CFST column due to the
normal stresses can be expressed as

∫ ∫= − − = − + ∂
∂

M y σ dA y σ dA E I E t I u
x

( ( ) )
A As s s c c c s s ec 1 c

2

2s c (12)

where EsIs + Eec(t1)Ic denotes the effective lateral stiffness of the CFST
column and t1 is the time when the periodic excitation is acted; Is and Ic
are the second moments of area of the cross section of the steel tube and
the concrete core, respectively.

Substituting Eq. (12) into Eq. (7) gives the shear force V as

= − ∂
∂

− ∂
∂

⎡
⎣⎢

+ ∂
∂

⎤
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V x t N x t u x t
x x
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x
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s s ec 1 c

2

2 (13)

By further differentiating Eq. (13) with respect to x and substituting
into Eq. (6), the time-dependent governing equation for the lateral vi-
bration of the CFST column under an axial load P(t) can be obtained as

+
+ + =

∂
∂

∂
∂

m c x( )
0

u x t
t

u x t
te

( , ) ( , )2

2

(14)

Based on the above fourth assumption, the effective stiffness
EsIs + Eec(t1)Ic is independent of x and the axial force N(x,t)= P(t) and
so Eq. (14) can be simplified as

∂
∂

+ ∂
∂

+ + ∂
∂

+ ∂
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=
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t

c x u x t
t
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x
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x

( , ) ( ) ( , ) ( ( ) ) ( , )

( ) ( , ) 0

e

2

2 s s ec 1 c

4

4

2

2 (15)

In analyzing the structural dynamic stability problem, the dynamic
response is generally expanded with respect to the free vibration forms
[30,40,41]. Thus, the lateral dynamic response u(x,t) can be expressed
as [42].

Fig. 1. Lateral resonance of a CFST column.
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=
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where yn(t) denotes the n-th modal response of the column; and sin
(nπx/L) denotes the n-th mode shape of a simply-supported column.

By substituting Eq. (16) into Eq. (15), it can be obtained that
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It is clear that for Eq. (16) to satisfy Eq. (15), the quantity in the
square bracket of Eq. (17) should vanish at any time t as

+ +
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Eq. (18) can further be written as
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denote the n-th natural frequency of free vibration of the unloaded
column at the time t1 of being subjected to the periodic excitation and
the n-th Euler buckling load of the column.

When a CFST column is only statically loaded by the central axial
load P0, it would lose its stability when P0 reaches the static critical load
Pcr, n(t1) of the column. However, when the CFST column under a
central axial static load P0 much smaller than Pcr, n(t1) can dynamically
lose its stability when it is excited by an central axial periodic load. It is
shown in Eqs. (19)–(21) that the time effect of the creep of the concrete
core is mainly manifested in the structural frequency ωn(t1) and Euler
load Pcr, n(t1).

Considering = +P t P P θt( ) cost0 , Eq. (19) yields
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where
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denotes the n-th frequency of the column under the load P0, and

=
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P t P
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t
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is the excitation parameter.
Eq. (22) is the differential equation for the dynamic stability ana-

lysis of CFST column subject to a parametric excitation accounting for
the effects of creep of the concrete core. According to Eq. (22), each
mode of a column affects the dynamic stability of the column in-
dependently. That is, the dynamic stability of a CFST column can be
represented by the dynamic stability in any mode of the column.
Consequently, the index n in Eq. (22) can be dropped and Eq. (22) is
then expressed as

+ + − =d y t
dt

ξω t dy t
dt

Ω t μ t θt y t( ) 2 ( ) ( ) ( )[1 2 ( )cos ] ( ) 0
2

2
2

1 1 (25)

where ξ is the modal damping coefficient defined by 2ξω= c/me.

3.2. Time-dependent boundaries of regions of dynamic instability

As a Mathieu-Hill type equation, the convergence of solutions of Eq.
(25) is closely related to the characteristic roots of Eq. (25). The real
characteristic roots yield regions of unbounded solutions, and the
complex characteristic roots produce the region of bounded solutions.
Moreover, the multiple characteristic roots correspond to the bound-
aries between the instability regions and the stability regions [30].
Because the multiple roots denote that Eq. (25) has the periodic solu-
tions with the period T or 2T (T=2π/θ) of the column, the issue of
computing the boundaries of regions of dynamic instability is reduced
to finding the conditions under which Eq. (25) has periodic solutions
[43,44].

Thus, a periodic solution of Eq. (25) with the period 2T can be ex-
pressed as
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where ak and bk are coefficients independent of time.
By substituting Eq. (26) into Eq. (25) and comparing the coefficients

of identical terms of sin(kθt/2) and cos(kθt/2), it yields
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Similarly, the periodic solution of Eq. (25) with the period T has the
form
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Substituting Eq. (31) into Eq. (25) leads to
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Eqs. (27) and (32) are the systems of linear homogeneous equations
and so the non-trivial solutions exist only if the determinants of their
coefficient matrices vanish

=tAdet( ( )) 0T2 1 (36)

and

=tAdet( ( )) 0T 1 (37)

Eqs. (36) and (37) can be solved in a quadratic form as [33,34,45].

⎡
⎣⎢

− − ⎛
⎝

⎞
⎠

⎤
⎦⎥

=t θ
Ω

θ
Ω

A A Adet ( )
2 2

00 1 1

2

2
(38)

where the matrices A0, A1 and A2 corresponding to Eq. (36) are
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and those corresponding to Eq. (37) are
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When the damping coefficient ξ and the loading time difference
between the static load and the periodic excitation are given, the cri-
tical frequency ratio θ/2Ω(t1) corresponding to each excitation para-
meter μ(t1) can be determined by solving the equation of boundary
frequencies given by Eq. (38). The odd and even regions of dynamic
instability corresponding to Eqs. (39) and (40) can then be obtained
respectively and displayed on the parametric plane (θ, Pt) under a given
static load P0.

4. Numerical investigations

In order to verify the effectiveness of the proposed method and
explore the effects of the creep of the concrete core on the dynamic
stability of CFST columns, a CFST column with the slenderness ratio of
160 is investigated in this section. The length of the CFST column is
4.0 m, while the outer diameter and thickness of the steel tube are
100mm and 5mm, respectively. The modal damping coefficient for the
CFST column proposed in Ref. [45] is adopted as ξ=0.02. Other re-
lated material parameters of steel and concrete are shown in Table 1.

By the proposed method, all the odd and even regions of dynamic
instability of the CFST column at the time t1 can be obtained.
Meanwhile, since the first region of dynamic instability is the principal
one with great significance [30,34], it is mainly investigated in this
work.

4.1. Numerical verification on the instability region

The first or principal region of dynamic instability of the CFST
column at t1= τ0= 15 days is shown in Fig. 2a for P0= 133 kN. The
abscissa θ/2ω1 denotes the ratio of the excitation frequency to the first
natural frequency of column at time t1. The red-shaded area represents
the principal region of dynamic instability. Fig. 2a shows that the CFST
column would become dynamically unstable when θ/2ω1 is in the vi-
cinity of 0.7. Moreover, when a parametric point (θ/2ω1, Pt) corre-
sponding to a specific CFST column and an excitation locates inside the
region of instability, the column would become dynamically unstable

Table 1
Material parameters of the CFST column.

Steel Concrete

ρs (kg/m3) Es (GPa) ρc (kg/m3) τ0 (day) Ec(τ0) (GPa) φ∗(τ0)
7850 202 2400 15 27.6 2.29
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under the excitation, i.e. its dynamic response could be divergent under
the excitation. On the other hand, if the parametric point is situated
outside the instability region, the column should vibrate stably around
its equilibrium position under the excitation. Therefore, the validity
and accuracy of the boundaries separating the instability regions from
the stability regions are very crucial for arriving at the correct con-
clusion on the dynamic stability of a CFST column.

In order to verify the validity of the boundaries, three parametric
points A1 to A3 are randomly selected around the boundary of the
principal instability region, as shown in Fig. 2a, and their corre-
sponding dynamic responses of the CFST column are computed by a
finite element (FE) model of ANSYS. The FE model of CFST column,
which is simulated by a 2-D elastic element BEAM3, possesses the
geometric, material and boundary condition properties identical to
those in the dynamic instability analysis by the proposed analytical
method. The dynamic responses of the CFST column are shown in
Fig. 2b, where the abscissa t is non-dimensionalized by the first natural
period T1 of the CFST column and the ordinate denotes the response u
(L/2,t) at the middle of the column. It can be seen from Fig. 2 that the
dynamic response corresponding to point A2 diverges with time while
the dynamic responses of other two points A1 and A3 are steady and
stable with time. This agrees with the conclusion from the region of
dynamic instability that the point A2 locates inside the instability region
while other points are outside the instability region. Thus, the results of
the proposed method agree with the FE results excellently.

4.2. Time-dependent characteristics of dynamic instability

4.2.1. Time-related parameters
According to Eq. (2), the creep coefficient φ(t1,τ0) increases from 0

(at τ0= 15 days) to 1.97 (at t1= 1000 days), which is 86% of its final
value 2.29 (Fig. 3). The day rate of change of φ(t1,τ0), defined as
[φ(ti,τ0)-φ(ti-1,τ0)]/φ(ti-1,τ0), possess a maximum value of about 45% at
the beginning of loading and becomes less than 0.01% after about 880
days.

From Eq. (3), the aging coefficient χ(t,τ0) decreases from 1.0 (at
τ0= 15 days) to 0.793 (at t1= 1000 days), which is 99.5% of the final
aging coefficient χ∗=0.789 (Fig. 3). The absolute day rate of change of
χ is about 1% at the beginning of loading and becomes less than 0.01%
after about 210 days.

Owing to the variations of φ and χ with time, the effective modulus
Eec of the concrete decreases from 27.6 GPa to 10.76 GPa in about 1000
days according to Eq. (1), which drops by about 61% (Fig. 4). The
absolute day rate of change of Eec has its maximum of 17% at the be-
ginning of sustained loading and goes below 0.01% after about 600
days. Accordingly, the effective lateral stiffness (EsIs + EecIc) of the
CFST column investigated in this paper decreases by 12.6% in about
1000 days, and its absolute day rate of change goes under 0.01% after

about 110 days (Fig. 4).
The lateral natural frequency ω and Euler buckling load Pcr of a

CFST column are two parameters controlling the shapes of regions of
dynamic instability of the column and they are also affected by the age-
adjusted effective modulus Eec or the effective lateral stiffness
(EsIs + EecIc) according to Eqs. (20) and (21). As shown in Fig. 5, due to
the creep of the concrete core, the first lateral natural frequency ω1 of
the CFST column reduces rapidly from about 77.9 Hz to 73.6 Hz in 65

Fig. 2. Comparison of dynamic stability between instability region and dynamic responses (a) Principal region of instability; (b) Dynamic response.

Fig. 3. Time-variation of creep coefficient φ and aging coefficient χ.

Fig. 4. Time-variation of age-adjusted effective modulus and effective lateral
stiffness.

Y.Q. Huang et al. Composites Part B 157 (2019) 173–181

178



days, and then slowly to 72.8 Hz in 1000 days. The natural frequency
for each mode changes in a similar fashion. In addition, the Euler
buckling load Pcr of the CFST column caused by the creep of the con-
crete core can reduce about 11.2% in the first 110 days and the re-
duction rate becomes less than 0.01% after the first 110 days as shown
in Fig. 5. Therefore, in the investigation of the effects of the creep of the
concrete core on the dynamic instability, it is proper to investigate the
dynamic stability of CFST columns under the sustained central axial
load when the periodic excitation is applied within 100 days after the
first sustained loading time τ0.

4.2.2. Time effect of concrete creep on dynamic instability region of CFST
column

If the central axial periodic excitation is applied to the CFST column
on any day of the first 5 days of the sustained static load, the corre-
sponding boundaries of the principal region of dynamic instability on
the plane (θ, Pt) are computed by the proposed method and shown in
Fig. 6. In the computation, the sustained static load P0 is assumed to be
equal to 0.3Pcr, i.e. the value of constant loading coefficient α is always
set as α= P0/Pcr(t1)= 0.3. That is, the possible dynamic instability is
investigated when the static load is much smaller than the static in-
stability load of the column.

It can be seen from Fig. 6 that the instability regions of the CFST
column are significantly influenced by the time when the periodic ex-
citation is applied. As the time of the application of the periodic ex-
citation changes from the day τ0 to the day τ0+4, the instability region

shifts towards the direction of lower frequencies θ and amplitudes Pt of
the excitation. Hence, the column would become dynamically unstable
under the excitation with smaller frequency and amplitude.

The values of the critical amplitude Pt and frequency θ when the
excitation is applied in 5 days after the first static load at the time τ0 are
given in Table 2, in which the decreasing rate ri = (value at day i - value
at day i-1)/value at day i×100%. Table 2 shows that the decreasing
rates for critical Pt and θ gradually reduce when the column is peri-
odically excited at the time of later days, and the total rates of de-
creasing of the critical Pt and θ are about 6% and 3% from the day τ0 to
the day τ0+4. This indicates that the creep of the concrete core has
significant effects on the critical amplitude Pt and frequency θ of the
excitation for inducing dynamic instability of CFST columns.

In addition, because α= P0/Pcr(t1) and Pcr(t1) decreases with the
time t1 (Fig. 5 and Table 2), the constant value of the loading coefficient
α actually means reducing the sustained static load P0. Consequently,
the values of the required sustained load, and the critical amplitude and
frequency of the excitation for inducing dynamic instability all decrease
if the excitation is applied at the time of later days. This means that the
dynamic instability of the CFST column would occur under a smaller
sustained central axial load owing to the creep of concrete.

Moreover, it is shown in Table 2 that the values of critical amplitude
Pt of the excitation are only about 7% of the Euler critical load Pcr, so
periodic excitation with amplitude much smaller than the static in-
stability load could result in the dynamic instability of the CFST
column.

4.2.3. Long-term time effect on the instability region
To further investigate the time effects of the creep of the concrete

core on the boundaries of instability regions of the CFST columns, the
boundaries of instability regions of the CFST column when the excita-
tion is applied at the day τ0 to the day (τ0+105) are calculated by the
proposed procedure and shown in Fig. 7. It is demonstrated that the
region of dynamic instability shifts towards the direction of lower fre-
quencies, and the shifting slows down when the excitation is applied
after the day (τ0+5). The critical amplitude Pt and frequency θ when

Fig. 5. Time-variation of natural frequency ω1 and Euler buckling load Pcr.

Fig. 6. Boundaries of instability regions of excitation applied at first 5 days
after τ0.

Table 2
Critical Pt and θ of excitation starting in 5 days after τ0.

Time t1 (day) τ0 τ0+1 τ0+2 τ0+3 τ0+4

Critical Pt (kN) 17.5 16.9 16.7 16.5 16.4
ri for Pt (%) – 3.4 1.2 1.2 0.6
θ (Hz) 130.3 127.9 127.1 126.6 126.2
ri for θ (%) – 1.8 0.6 0.4 0.3
Pcr (kN) 265 256 253 249 248

Fig. 7. Variation of boundaries of instability regions in about 100 days after τ0.
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the excitation is applied at the day t1 = (τ0+105) are 15.6 kN and
122.7 Hz, respectively, which is equivalent to about 11% and 6% re-
duction of the critical value of Pt and θ in about 100 days and the re-
duction is about twice of that in the first 5 days.

For further manifesting the effect of concrete creep on the state of
dynamic stability of the CFST column, two parametric points B1 (130,
20) and B2 (126, 17.5) are selected on the region plane of Fig. 7. Their
modal responses y(t) corresponding to the excitations applied at the day
t1= τ0 and at the day t1 = (τ0+5) are given in Fig. 8 and Fig. 9, re-
spectively. It can be observed that the dynamic state of the CFST
column corresponding to point B1 is stable at the day τ0, i.e. the creep of
the concrete core is insufficient to influence the lateral natural fre-
quency and the lateral buckling load of the CFST column, while the
point B1 is located in the instability region when the excitation is ap-
plied at the time of the day (τ0+5). However, the state of dynamics of
the CFST column at the point B2 changes from instability at the time τ0
to stability when the excitation is applied at the time of the day (τ0+5).
Consequently, it is again demonstrated that the creep of concrete core
could greatly influence the dynamic stability of CFST columns.

5. Conclusions

An analysis procedure for assessing the dynamic stability of slender
CFST columns due to the time effects of the creep of the concrete core is
proposed in this work based on the creep model of the ACI committee
209 and the effective modulus evaluation from the AEMM. Through the
detailed numerical investigations on a typical CFST column, the validity
and effectiveness of the proposed method is verified and the time-de-
pendent characteristics of dynamic stability of the CFST column are
explored.

For the typical CFST column under a sustained central axial load, its
natural frequency and Euler buckling load decrease by about 5.5% and
11.2% in 65 days and 110 days, respectively. Since the natural fre-
quency and Euler load are two key parameters directly influencing the
regions of dynamic instability, and their absolute day rates of change
become less than 0.01% in about 100 days, the time of 100 days of the
creep of the concrete core can be used to evaluate the time effect of the
creep of the concrete core on dynamic stability of the CFST column.

The dynamic stability of CFST column is significantly affected by
the creep of the concrete core. Dynamic instability of a CFST column
under a sustained central axial load much lower than its static lateral
buckling load such as P0/Pcr=0.3 would occur in a few days when the
creep of the concrete core shifts the amplitude and frequency of the
excitation into the instability region of the column. With the develop-
ment of creep, the CFST column would become dynamically unstable
under a dynamic excitation with a very small amplitude Pt such as Pt/
P0= 2%. The critical amplitude Pt and frequency θ of the excitation can
decrease by about 6% and 3% in 5 days of the first loading and re-
spective 11% and 6% in 100 days. Under the same excitation, the dy-
namics of the CFST column could convert from stability to instability or
changes in the opposite direction owing to the creep of the concrete
core.
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Fig. 8. Dynamic responses of point B1 under different perturbance time (a) t1= τ0 day; (b) t1 = (τ0+5)th day.

Fig. 9. Dynamic responses of point B2 under different perturbance time (a) t1= τ0 day; (b) t1 = (τ0+5)th day.

Y.Q. Huang et al. Composites Part B 157 (2019) 173–181

180



References

[1] Wu B, Wu D, Gao W, Song CM. Time-variant random interval response of concrete-
filled steel tubular composite curved structures. Compos B Eng 2016;94:122–38.

[2] Wu D, Gao W, Feng J, Luo K. Structural behaviour evolution of composite steel-
concrete curved structure with uncertain creep and shrinkage effects. Compos B Eng
2016;86:261–72.

[3] Han L, Li W, Bjorhovde R. Developments and advanced applications of concrete-
filled steel tubular (CFST) structures: Members. J Constr Steel Res
2014;100:211–28.

[4] An Y, Han L, Zhao X. Behaviour and design calculations on very slender thin-walled
CFST columns. Thin-Walled Struct 2012;53(2):161–75.

[5] Bazant ZP, Cedoliin L. Stability of structures: elastic, inelastic, fracture and damage
theories. River Edge, USA: World Scientific; 2010.

[6] Schnabl S, Jelenić G, Planinc I. Analytical buckling of slender circular concrete-
filled steel tubular columns with compliant interfaces. J Constr Steel Res
2015;115:252–62.

[7] Portolés JM, Romero ML, Filippou FC, Bonet JL. Simulation and design re-
commendations of eccentrically loaded slender concrete-filled tubular columns. Eng
Struct 2011;33(5):1576–93.

[8] Dai X, Lam D, Jamaluddin N, Ye J. Numerical analysis of slender elliptical concrete
filled columns under axial compression. Thin-Walled Struct 2014;77(4):26–35.

[9] Lahlou K, Lachemi M, Aïtcin PC. Confined high-strength concrete under dynamic
compressive loading. J Struct Eng 1999;125(10):1100–8.

[10] Ge HB, Usami T. Cyclic tests of concrete-filled steel box columns. J Struct Eng
1996;122(122):1169–77.

[11] Nie JG, Wang YH, Fan JS. Experimental research on concrete filled steel tube col-
umns under combined compression-bending-torsion cyclic load. Thin-Walled Struct
2013;67(2):1–14.

[12] Asadi H, Wang Q. Dynamic stability analysis of a pressurized FG-CNTRC cylindrical
shell interacting with supersonic airflow. Compos B Eng 2017;118:15–25.

[13] Hazarika A, Mandal M, Maji TK. Dynamic mechanical analysis, biodegradability
and thermal stability of wood polymer nanocomposites. Compos B Eng
2014;60:568–76.

[14] ACI 209 SP27-3. Prediction of creep, shrinkage and temperature effects in concrete
structures. Designing for effects of creep, shrinkage and temperature in concrete
structures. Detroit, MI. 1992. p. 51–93.

[15] Neville AM. Creep of concrete: plain, reinforced and prestressed. Amsterdam: North
Holland Publishing Co.; 1970.

[16] Gilbert RI. Time effects in concrete structures. Amsterdam: Elsevier; 1988.
[17] Emara M, Torres L, Baena M, Bards C, Moawad M. Effect of sustained loading and

environmental conditions on the creep behavior of an epoxy adhesive for concrete
structures strengthened with CFRP laminates. Compos B Eng 2017;129:88–96.

[18] Gonilha JA, Correia JR, Branco FA. Creep response of GFRP-concrete hybrid
structures: application to a footbridge prototype. Compos B Eng 2013;53:193–206.

[19] Choi KK, Meshgin P, Taha MMR. Shear creep of epoxy at the concrete-FRP inter-
faces. Compos B Eng 2007;38:772–80.

[20] Furlong RW. Strength of steel-encased concrete beam-columns. J Struct Division
ASCE 1967;93:113–24.

[21] Uy B. Static long-term effects in short concrete-filled steel box columns under
sustained loading. ACI Struct J 2017;98(1):96–104.

[22] Wang YY, Geng Y, Ranzi G, Zhang SM. Time-dependent behaviour of expansive
concrete-filled steel tubular columns. J Constr Steel Res 2011;67(3):471–83.

[23] Han LH, Yang YF. Analysis of thin-walled steel RHS columns filled with concrete
under long-term sustained loads. Thin-Walled Struct 2003;41(9):849–70.

[24] Naguib W, Mirmiran A. Creep modeling for concrete-filled steel tubes. J Constr
Steel Res 2003;59(11):1327–44.

[25] Liu H, Wang YX, He MH, Shi YJ, Waisman H. Strength and ductility performance of
concrete-filled steel tubular columns after long-term service loading. Eng Struct
2015;100:308–25.

[26] Ichinose LH, Watanabe E, Nakai H. An experimental study on creep of concrete
filled steel pipes. J Constr Steel Res 2001;57(4):453–66.

[27] Bazant ZP. Prediction of concrete creep effects using age-adjusted effective modulus
method. ACI J 1972;69:212–7.

[28] Luo K, Pi Y, Gao W, Bradford MA. Long-term structural analysis and stability as-
sessment of three-pinned CFST arches accounting for geometric nonlinearity. Steel
Compos Struct 2016;20(2):379–97.

[29] Neville AM, Dilger WH, Brooks JJ. Creep of plain and structural concrete. Longman
Group Ltd: Construction Press; 1983.

[30] Bolotin VV. Dynamic stability of elastic systems (translation from the Russian). San
Francisco, USA: Holden–Day Inc.; 1964.

[31] Farshad M. Stability of structures. Netherlands: Elsevier Science B.V.; 1994.
[32] Huang Y, Liu AR, Pi Y, Lu H, Gao W. Assessment of lateral dynamic instability of

columns under an arbitrary periodic axial load owing to parametric resonance. J
Sound Vib 2017;395:272–93.

[33] Huang Y, Lu H, Fu J, Liu A, Gu M. Dynamic stability of Euler beams under axial
unsteady wind force. Math Probl Eng 2014:434868.

[34] Xie W. Dynamic stability of structures. New York: Cambridge University Press;
2006.

[35] Luo K, Pi Y, Gao W, Bradford MA, Hui D. Investigation into long-term behaviour
and stability of concrete-filled steel tubular arches. J Constr Steel Res
2015;104:127–36.

[36] Li W, Han L, Chan TM. Performance of concrete-filled steel tubes subjected to ec-
centric tension. J Struct Eng ASCE 2015;141(12):04015049.

[37] Lee HP. Dynamic stability of spinning pre-twisted beams subject to axial pulsating
loads. Comput Meth Appl Mech Eng 1995;127(1–4):115–26.

[38] Pi Y, Bradford MA, Qu W. Long-term non-linear behavior and buckling of shallow
concrete-filled steel tubular arches. Int J Non Lin Mech 2011;46(9):1155–66.

[39] Riley W, Sturges L, Morris D. Mechanics of materials. sixth ed. Hoboken, USA: John
Wiley & Sons Inc; 2007.

[40] Sahmani S, Ansari R, Gholami R, Darvizeh A. Dynamic stability analysis of func-
tionally graded higher-order shear deformable microshells based on the modified
couple stress elasticity theory. Compos B Eng 2013;51:44–53.

[41] Li C, Liu JJ, Cheng M, Fan XL. Nonlocal vibrations and stabilities in parametric
resonance of axially moving viscoelastic piezoelectric nanoplate subjected to
thermo-electro-mechanical forces. Compos B Eng 2017;116:153–69.

[42] Craig JrRR. Structural dynamics. New York, USA: John Wiley & Sons Inc; 1981.
[43] Liu A, Yang Z, Lu H, Fu J, Pi Y. Experimental and analytical investigation on the in-

plane dynamic instability of arches owing to parametric resonance. J Vib Contr
2017. https://doi.org/10.1177/1077546317726210.

[44] Liu A, Lu H, Fu J, Pi Y, Huang Y, Li J, Ma Y. Analytical and experimental studies on
out-of-plane dynamic instability of shallow circular arch based on parametric re-
sonance. Nonlinear Dynam 2017;87:677–94.

[45] Tort C. Reliability-based performance-based design of rectangular concrete-filled
steel tube (RCFT) members and frames Dissertation USA: The University of
Minnesota; 2007

Y.Q. Huang et al. Composites Part B 157 (2019) 173–181

181

http://refhub.elsevier.com/S1359-8368(18)32047-X/sref1
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref1
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref2
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref2
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref2
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref3
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref3
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref3
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref4
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref4
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref5
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref5
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref6
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref6
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref6
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref7
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref7
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref7
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref8
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref8
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref9
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref9
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref10
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref10
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref11
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref11
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref11
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref12
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref12
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref13
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref13
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref13
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref14
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref14
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref14
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref15
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref15
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref16
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref17
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref17
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref17
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref18
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref18
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref19
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref19
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref20
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref20
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref21
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref21
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref22
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref22
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref23
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref23
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref24
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref24
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref25
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref25
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref25
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref26
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref26
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref27
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref27
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref28
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref28
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref28
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref29
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref29
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref30
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref30
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref31
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref32
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref32
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref32
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref33
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref33
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref34
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref34
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref35
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref35
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref35
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref36
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref36
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref37
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref37
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref38
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref38
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref39
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref39
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref40
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref40
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref40
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref41
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref41
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref41
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref42
https://doi.org/10.1177/1077546317726210
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref44
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref44
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref44
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref45
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref45
http://refhub.elsevier.com/S1359-8368(18)32047-X/sref45

	Effect of concrete creep on dynamic stability behavior of slender concrete-filled steel tubular column
	Introduction
	Creep of concrete core under sustained static load
	Dynamic stability analysis accounting for creep of concrete core
	Governing equation of dynamic stability
	Time-dependent boundaries of regions of dynamic instability

	Numerical investigations
	Numerical verification on the instability region
	Time-dependent characteristics of dynamic instability
	Time-related parameters
	Time effect of concrete creep on dynamic instability region of CFST column
	Long-term time effect on the instability region


	Conclusions
	Acknowledgement
	References




