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a b s t r a c t 

An information system as a database that represents relationships between objects and at- 

tributes is an important mathematical model. An interval-valued information system is a 

generalized model of single-valued information systems. As important evaluation tools in 

the field of machine learning, measures of uncertainty can quantify the dependence and 

similarity between two targets. However, the existing measures of uncertainty for interval- 

valued information systems have not been thoroughly researched. This paper is devoted 

to the study of new measures of uncertainty for an interval-valued information system. 

Information structures are first introduced in a given interval-valued information system. 

Then, the dependence between two information structures is depicted. Next, new mea- 

sures of uncertainty for an interval-valued information system are investigated by using 

the information structures. As an application of the proposed measures, the rough entropy 

of a rough set is proposed by means of information granulation. Finally, a numerical ex- 

periment on the Face recognition dataset is presented to demonstrate the feasibility of the 

proposed measures, and a statistical effectiveness analysis is conducted. The results are 

helpful for understanding the essence of uncertainty in interval-valued information sys- 

tems. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Rough set theory, a mathematical tool to address imprecision and uncertainty in data analysis, has been successfully

applied to intelligent systems, machine learning, knowledge discovery, expert systems, decision analysis, inductive reasoning,

pattern recognition, split theory and signal analysis [17,18,22–24] . 

An information system based on rough sets was introduced by Pawlak [18] . An interval-valued information system is

a generalization of the classic information system. To address interval data, scholars have used the methods for managing

classic information systems to manage interval-valued information systems. For example, Yao and Li [34] proposed an in-

terval set model for interval-valued information systems with upper and lower approximations and introduced generalized
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decision logic. Dai et al. [3] studied the algebraic structures of interval-set-valued rough sets generated from an approxima-

tion space. Leung et al. [10] investigated a rough set approach on the basis of a knowledge induction process for selecting

decision rules with minimum feature sets in interval-valued information systems. Qian et al. [25] presented a dominance

relation for interval-valued information systems. Yang et al. [35] proposed a dominance relation and generated the optimal

decision rules in incomplete interval-valued information systems. Wu et al. [30] considered the real formal concept analysis

of grey-rough set theory by using grey numbers and proposed a grey-rough set approach to Galois lattice reductions. Sakai

et al. [29] developed a rule generation prototype system for incomplete information databases in Lipski that can process

interval-valued information systems. 

To measure the uncertainty of a system, Shannon [28] introduced the concept of entropy, which is a very useful mecha-

nism for characterizing information content in various modes and has been used in diverse fields. Some scholars have ap-

plied the extension of entropy and its variants to information systems or rough sets. For example, Liang and Qian [12] stud-

ied the theory of information particles and entropy in information systems. Liang et al. [13] researched information entropy,

rough entropy and knowledge granularity in incomplete information systems. Dai and Tian [4] considered the entropy mea-

sure and granularity measure of set-valued information systems. Wang and Yue [32] discussed the entropy measure and

granularity measure of interval-valued and set-valued information systems. Qian et al. [27] researched fuzzy information

entropy and the granularity of fuzzy information in fuzzy granular structures. Qian et al. [26] proposed fuzzy granularity

structure distance. Xu et al. [33] presented rough entropy of rough sets in ordered information systems. Dai et al. [7] stud-

ied uncertainty measurement based on the α-weak similarity for incomplete interval-valued information systems. Dai et al.

[5] introduced θ-similarity entropy and proposed the θ-rough degree to measure the uncertainty of concepts or rough sets

in an interval-valued information system. Dai et al. [6] constructed an extended conditional entropy for interval-valued de-

cision information systems. Zhang et al. [41] investigated uncertainty measures in a fully fuzzy information system. 

Granular computing, proposed by Zadeh [37] , is a vital topic in data mining and knowledge representation and is also a

crucial tool in artificial intelligence [37–40] . The aim of granular computing is to find an approximation scheme that enables

us to observe phenomena of different sizes and solve complex problems effectively. Granularity and granular structures are

two important concepts in granular computing. Information granules are a collection of objects that are drawn together

by certain constraints, such as ambiguity, similarity, or function. The construction process of information granules is called

granulation. A granular structure is a set of information particles in which the inner structure of each information parti-

cle can be considered to be a substructure. The construction, interpretation and representation of management information

granules is an important problem in granular computing. Four main approaches to granular computing have been reported:

rough set theory [17,18,22–24] , fuzzy set theory [36] , concept lattices [14,31] and quotient spaces [43] . Given an information

system, the information structures are granular structures by definition of granular computing. Information structures are

the basic structures of an information system. Some scholars have done some good work in granular computing. For exam-

ple, Al-Hmouz et al. [1] established a general framework of granular computing for description and prediction of time series.

Pedrycz [19] studied granular fuzzy data analysis. Hu et al. [9] considered fuzzy classifiers with information granules in fea-

ture space and logic-based computing. Loia et al. [11] investigated a granular computing approach based on formal concept

analysis for discovering periodicities in data. Pedrycz and Homenda [20] build the fundamentals of granular computing for

a principle of justifiable granularity. Zhong et al. [42] gave a framework of granular computing on granular data imputation.

Pedrycz et al. [21] proposed granular representation and granular computing with fuzzy sets. 

So far, however, measuring the uncertainty in an interval-valued information system itself has not been thoroughly stud-

ied. The aim of this paper is to address this topic. We first propose the concept of information structures in an interval-

valued information system and then present four types of measuring tools to measure uncertainty in this system by using

its information structures. Why do we study information structures and uncertainty measures together? Because information

structures are very helpful for knowledge discovery from an interval-valued information system, an interval-valued informa-

tion system has uncertainty, and it is difficult to compare the magnitude of the uncertainty measures of two interval-valued

information systems. If the dependence between the information structures of two interval-valued information systems is

given, then the magnitudes of the uncertainty measures can be compared by means of the dependence. 

The remainder of this paper is organized as follows. In Section 2 , we recall some basic concepts on binary relations,

interval-valued numbers and tolerance relations in an interval-valued information system. In Section 3 , we introduce the

information structures in the given interval-valued information system and study the dependence between two information

structures. In Section 4 , we propose tools for measuring uncertainty in interval-valued information systems. In Section 5 , we

define the rough entropy of a rough set in a given interval-valued information system by means of information granulation

and illustrate that the rough entropy is more accurate than the roughness. In Section 6 , a numerical experiment is presented,

and a statistical effectiveness analysis is conducted. Section 7 summarizes this paper. 

2. Preliminaries 

In this section, we recall some basic notions about binary relations, interval-valued numbers and tolerance relations in

interval-valued information systems. 

Throughout this paper, U denotes a non-empty finite set, 2 U denotes the family of all subsets of U , and | X | denotes the

cardinality of X ∈ 2 U . 
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In this paper, denote 

U = { x 1 , x 2 , · · · , x n } , 

δ = U × U, � = { (x, x ) | x ∈ U} . 
2.1. Interval-valued numbers 

Let 

[ R ] = { a = [ a −, a + ] | a −, a + ∈ R, a − ≤ a + } . 
For any a ∈ R , denote a = [ a, a ] . 

For any a , b ∈ [ R ], define 

(1) a = b ⇐⇒ a − = b −, a + = b + . 
(2) a ≤ b ⇐⇒ a − ≤ b −, a + ≤ b + ; a < b ⇐⇒ a ≤ b , a � = b . 

Definition 2.1 [15,16] . Let a , b ∈ [ R ]. Then, the possible degree of a relative to b is defined as 

P (a, b) = min 

{
1 , max 

{
a + − b −

(a + − a −) + (b + − b −) 
, 0 

}}
. 

Proposition 2.2 [8,16] . The following properties hold: 

(1) ∀ a , b ∈ [ R ], 0 ≤ P ( a , b ) ≤ 1 ; 

(2) ∀ a ∈ [ R ], P (a, a ) = 0 . 5 ; 

(3) ∀ a , b ∈ [ R ], P (a, b) + P (b, a ) = 1 . 

Definition 2.3 [6] . Let a , b ∈ [ R ]. Then, the similarity degree of a and b is defined as 

S(a, b) or S ab = 1 − | P (a, b) − P (b, a ) | . 
Proposition 2.4 [6] . The following properties hold: 

(1) ∀ a , b ∈ [ R ], S(a, b) = S(b, a ) ; 

(2) ∀ a , b ∈ [ R ], 0 ≤ S ( a , b ) ≤ 1 ; 

(3) ∀ a , b ∈ [ R ], S(a, b) = 1 ⇔ a = b. 

Example 2.5 [5] . Select a = [1 , 3] and b = [2 , 5] . Then, 

P (a, b) = min 

{ 

1 , max 

{ 

3 − 2 

( 3 − 1) + (5 − 2) 
, 0 

} } 

= 

1 

5 

, 

P (b, a ) = min 

{ 

1 , max 

{ 

5 − 1 

( 5 − 2) + (3 − 1) 
, 0 

} } 

= 

4 

5 

, 

S(a, b) = 1 − | P (a, b) − P (b, a ) | = 1 − | 1 

5 

− 4 

5 

| = 0 . 4 . 

2.2. Tolerance relations in interval-valued information systems 

Recall that R is a binary relation on U whenever R ⊆ U × U . 

Let R be a binary relation on U . Then, R is called an equivalence relation on U if R is reflexive, symmetric and transitive;

R is called a tolerance relation on U if R is reflexive and symmetric; R is called a universal relation on U if R = δ; and R is

called an identity relation on U if R = � . 

Let U be an object set, and let A be an attribute set. Suppose that U and A are finite sets. Then, the pair ( U , A ) is

called an information system if each attribute a ∈ A determines an information function a : U → V a , where V a is the set of all

information function values with respect to attribute a . 

Given that ( U , A ) is an information system, ( U , A ) is referred to as an interval-valued information system if for each a ∈ A ,

V a ⊆ [ R ]. If P ⊆ A , then ( U , P ) is called the subsystem of ( U , A ). 

Definition 2.6 [5] . Let ( U , A ) be an interval-valued information system. Given θ ∈ (0, 1] and P ⊆ A , a binary relation on U

can be defined as 

S θP = { (x, y ) ∈ U × U | S(a (x ) , a (y )) ≥ θ, ∀ a ∈ P } . 
Clearly, S θ

P 
is a tolerance relation on U , and S θ

P 
= 

⋂ 

a ∈ P 
S θ{ a } . 

Denote 

S θP (x ) = { y ∈ U | (x, y ) ∈ S θP } . 
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Table 1 

An interval-valued information system. 

a 1 a 2 a 3 a 4 a 5 

x 1 [2.17,2.86] [2.45,2.96] [5.32,7.23] [3.21,3.95] [2.54,3.12] 

x 2 [3.37,4.75] [3.43,4.85] [7.24,10.47] [4.00,5.77] [3.24,4.70] 

x 3 [1.83,2.70] [1.78,2.98] [7.23,10.27] [2.96,4.07] [2.06,2.79] 

x 4 [1.35,2.12] [1.42,2.09] [2.59,3.93] [1.87,2.62] [1.67,2.32] 

x 5 [3.46,5.35] [3.37,5.11] [6.37,10.28] [3.76,5.70] [3.41,5.28] 

x 6 [2.29,3.43] [2.60,3.48] [6.71,8.81] [3.30,4.23] [3.01,3.84] 

x 7 [2.22,3.07] [2.43,3.32] [4.37,7.05] [2.66,3.68] [2.39,3.20] 

x 8 [2.51,4.04] [2.52,4.12] [7.12,11.26] [4.44,6.91] [3.06,4.65] 

x 9 [1.24,2.00] [1.35,1.91] [3.83,5.31] [2.13,3.01] [1.72,2.34] 

x 10 [1.00,1.72] [1.10,1.82] [3.58,5.65] [1.67,2.53] [1.10,1.84] 

 

 

 

 

 

 

 

 

 

 

 

Then, S θ
P 
(x ) is called the tolerance class of the point x under the tolerance relation S θ

P 
. 

Proposition 2.7 [5] . Let ( U , A ) be an interval-valued information system. Then, the following properties hold: 

(1) If P 1 ⊆ P 2 , then for any θ ∈ (0, 1] and x ∈ U , 

S θP 2 (x ) ⊆ S θP 1 (x ) ;
(2) If 0 ≤ θ1 ≤ θ2 ≤ 1, then for any θ ∈ (0, 1] and P ⊆ A , 

S θ2 

P 
(x ) ⊆ S θ1 

P 
(x ) . 

3. Information structures in interval-valued information systems 

In this section, we propose some concepts of information structures in a given interval-valued information system. 

3.1. Information granules and information structures 

Let ( U , A ) be an interval-valued information system. Given θ ∈ (0, 1] and P ⊆ A , we obtain a tolerance relation S θ
P 

on U .

For each x ∈ U , S θ
P 
(x ) is the tolerance class of point x under the tolerance relation S θ

P 
. This tolerance relation S θ

P 
divides the

object set U into tolerance classes. All tolerance classes form a covering of U . If y 1 , y 2 ∈ S θ
P 
(x ) , then we may say that y 1 ,

y 2 cannot be distinguished under the tolerance relation S θ
P 

. Thus, each tolerance class is seen to be an information granule

consisting of indistinguishable objects. The family of all these information granules constitutes a vector; this vector can be

seen as the information structure of the subsystem ( U , P ). This type of information structure will be helpful for establishing

the framework of granular computing in interval-valued information systems. 

Definition 3.1. Let ( U , A ) be an interval-valued information system. Given θ ∈ (0, 1] and P ⊆ A , then 

S θ (P ) = (S θP (x 1 ) , S 
θ
P (x 2 ) , · · · · · · , S θP (x n )) 

is called the information structure of the subsystem ( U , P ) with respect to θ . 

Example 3.2. Table 1 depicts an interval-valued information system ( U , A ) (see Table 1 in [10] ), where U = { x 1 , x 2 , x 3 ,
x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 } is an object set and A = { a 1 , a 2 , a 3 , a 4 , a 5 } is an attribute set. 

Select θ = 0 . 4 and P = { a 1 , a 2 } . Then, 

S θ (P ) = ({ x 1 , x 3 , x 6 , x 7 } , { x 2 , x 5 , x 8 } , { x 1 , x 3 , x 7 } , { x 4 , x 9 , x 10 } , { x 2 , x 5 } , { x 1 , x 6 , x 7 , x 8 } , { x 1 , x 3 , x 6 , x 7 , x 8 } , { x 2 , x 6 , x 7 , x 8 } , 
{ x 4 , x 9 , x 10 } , { x 4 , x 9 , x 10 } ) . 
Definition 3.3. Let ( U , A ) be an interval-valued information system, given θ1 , θ2 ∈ (0, 1] and P , Q ⊆ A . Suppose that S θ1 (P )

and S θ2 (Q ) are the information structures of P and Q with respect to θ1 and θ2 , respectively. If for each i , S 
θ1 
P 

(x i ) = S 
θ2 
Q 

(x i ) ,

then S θ1 (P ) and S θ2 (Q ) are considered to be the same. We write S θ1 (P ) = S θ2 (Q ) . 

3.2. Dependence between information structures 

In this subsection, we propose the dependence between information structures in interval-valued information systems. 

The following definition depicts three aspects of the dependence between information structures in interval-valued in-

formation systems. 

Definition 3.4. Let ( U , A ) be an interval-valued information system. Given θ1 , θ2 ∈ (0, 1] and P , Q ⊆ A , suppose that S θ1 (P )

and S θ2 (Q ) are the information structures of P and Q with respect to θ1 and θ1 , respectively. Then, 

(1) S θ2 (Q ) is considered to be dependent on S θ1 (P ) if for each i , S 
θ1 
P 

(x i ) ⊆ S 
θ2 
Q 

(x i ) . We write S θ1 (P ) � S θ2 (Q ) . 
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(2) S θ2 (Q ) is considered to be strictly dependent on S θ1 (P ) if S θ1 (P ) � S θ2 (Q ) and S θ1 (P ) � = S θ2 (Q ) . We write S θ1 (P ) ≺
S θ2 (Q ) . 

Clearly, 

S θ1 (P ) = S θ2 (Q ) ⇐⇒ S θ1 (P ) � S θ2 (Q ) and S θ2 (Q ) � S θ1 (P ) ;

S θ1 (P ) ≺ S θ2 (Q ) ⇒ S θ1 (P ) � S θ2 (Q ) . 

Theorem 3.5. Let ( U , A ) be an interval-valued information system. Given θ1 , θ2 ∈ (0, 1] and P , Q ⊆ A , then 

S θ1 (P ) = S θ2 (Q ) ⇐⇒ S θ1 

P 
= S θ2 

Q 
. 

Proof. The proof is trivial. �

Theorem 3.6. Let ( U , A ) be an interval-valued information system. Given θ1 , θ2 ∈ (0, 1] and P , Q ⊆ A , then 

S θ1 (P ) � S θ2 (Q ) ⇐⇒ S θ1 

P 
⊆ S θ2 

Q 
. 

Proof. The proof is trivial. �

Corollary 3.7. Let ( U , A ) be an interval-valued information system. Given θ1 , θ2 ∈ (0, 1] and P , Q ⊆ A , then 

S θ1 (P ) ≺ S θ2 (Q ) ⇐⇒ S θ1 

P 
⊂ S θ2 

Q 
. 

Proof. This holds by Theorems 3.5 and 3.6 . �

Theorem 3.8. Let ( U , A ) be an interval-valued information system. 

(1) If P ⊆ Q with P , Q ⊆ A , then for any θ ∈ (0, 1], S θ ( Q ) �S θ ( P ) . 

(2) If 0 < θ1 ≤ θ2 ≤ 1, then for any P ⊆ A , S θ2 (P ) � S θ1 (P ) . 

Proof. (1) Since P ⊆ Q , by Proposition 2.8(1), for any i , we have 

S θQ (x i ) ⊆ S θP (x i ) . 

Then, S θ ( Q ) �S θ ( P ). 

(1) Since θ1 ≤ θ2 , by Proposition 2.8(2), for any P ⊆ A , we have 

S θ2 

P 
(x ) ⊆ S θ1 

P 
(x ) . 

Then, S θ2 (P ) � S θ1 (P ) . �

Corollary 3.9. Let ( U , A ) be an interval-valued information system. Given θ1 , θ2 ∈ (0, 1] and P , Q ⊆ A , if P ⊆ Q and θ1 ≤ θ2 ,

then 

S θ2 (Q ) � S θ1 (Q ) � S θ1 (P ) , S θ2 (Q ) � S θ2 (P ) � S θ1 (P ) . 

Proof. This holds by Theorem 3.8 . �

4. New measures of uncertainty for interval-valued information systems 

In this section, we propose four tools to measure uncertainty in interval-valued information systems. 

4.1. Granulation measures for interval-valued information systems 

We first give an axiomatic definition of the information granulation of an interval-valued information system. 

Definition 4.1. Let ( U , A ) be an interval-valued information system. Given θ ∈ (0, 1]. Suppose that G 

θ : 2 A → (−∞ , + ∞ ) is a

function. G 

θ is called an information granulation function in ( U , A ) with respect to θ if G 

θ satisfies the following conditions:

(1) Non-negativity: ∀ P ⊆ A , G 

θ ( P ) ≥ 0; 

(2) Invariability: ∀ P , Q ⊆ A , if S θ (P ) = S θ (Q ) , then G 

θ (P ) = G 

θ (Q ) ; 

(3) Monotonicity: ∀ P , Q ⊆ A , if S θ ( P ) ≺S θ ( Q ), then G 

θ ( P ) < G 

θ ( Q ). 

Here, G 

θ ( P ) is called the information granulation of subsystem ( U , P ) with respect to θ . 

Definition 4.2. Suppose that ( U , A ) is an interval-valued information system. Given θ ∈ (0, 1], then the θ-information gran-

ulation of subsystem ( U , P ) with respect to θ is defined as 

G 

θ (P ) = 

1 

n 

2 

n ∑ 

i =1 

| S θP (x i ) | 2 . 
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Proposition 4.3. Assume that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ ∈ (0, 1], then 

1 

n 

≤ G 

θ (P ) ≤ n. 

Moreover, if S θ
P 

is an identity relation on U , then G 

θ achieves the minimum value 1 
n ; if S θ

P 
is a universal relation on U , then

G 

θ achieves the maximum value n. 

Proof. Since for each i , 1 ≤ | S θ
P 
(x i ) | ≤ n, we have n ≤

n ∑ 

i =1 

| S θ
P 
(x i ) | 2 ≤ n 3 . 

By Definition 4.2 , 

1 

n 

≤ G 

θ (P ) ≤ n. 

If S θ
P 

is an identity relation on U , then ∀ i , | S θ
P 
(x i ) | = 1 , so G 

θ (P ) = 

1 
n . 

If S θ
P 

is a universal relation on U , then ∀ i , | S θ
P 
(x i ) | = n, so G 

θ (P ) = n . �

Theorem 4.4. Assume that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ1 , θ2 ∈ (0, 1], 

(1) If S θ1 (P ) � S θ2 (Q ) , then G 

θ1 (P ) ≤ G 

θ2 (Q ) . 

(2) If S θ1 (P ) ≺ S θ2 (Q ) , then G 

θ1 (P ) < G 

θ2 (Q ) . 

Proof. (1) The proof is trivial. 

(2) By Definition 4.2 , 

G 

θ1 (P ) = 

1 

n 

2 

n ∑ 

i =1 

| S θ1 

P 
(x i ) | 2 , G 

θ2 (Q ) = 

1 

n 

2 

n ∑ 

i =1 

| S θ2 

Q 
(x i ) | 2 . 

Note that S θ1 (P ) ≺ S θ2 (Q ) . Then, ∀ i , S 
θ1 
P 

(x i ) ⊆ S 
θ2 
Q 

(x i ) and ∃ j , S 
θ1 
P 

(x j ) � S 
θ2 
Q 

(x j ) . Thus, ∀ i , | S θ1 
P 

(x i ) | ≤ | S θ2 
Q 

(x i ) | and ∃ j ,

| S θ1 
P 

(x j ) | < | S θ2 
Q 

(x j ) | . 
Hence, G 

θ1 (P ) < G 

θ2 (Q ) . �

This theorem shows that when the available information becomes coarse, the θ-information granulation increases, and

when the available information becomes fine, the θ-information granulation decreases. In other words, the greater the un-

certainty of the existing information, the greater the value of the θ-information granulation. Therefore, we can conclude

that the θ-information granulation introduced in definition 4.2 can be used to evaluate the degree of an interval-valued

information system. 

Proposition 4.5. Assume that ( U , A ) is an interval-valued information system. Then, 

(1) If P ⊆ Q with P , Q ⊆ A , then for any θ ∈ (0, 1], G 

θ ( Q ) �G 

θ ( P ) . 

(2) If 0 < θ1 ≤ θ2 ≤ 1, then for any P ⊆ A , G 

θ2 (P ) � G 

θ1 (P ) . 

Proof. This holds by Theorem 3.8 and Proposition 4.4(1). �

Corollary 4.6. Let ( U , A ) be an interval-valued information system. Given θ1 , θ2 ∈ (0, 1] and P , Q ⊆ A , if P ⊆ Q , θ1 ≤ θ2 , then 

G 

θ2 (Q ) � G 

θ1 (Q ) � G 

θ1 (P ) , G 

θ2 (Q ) � G 

θ2 (P ) � G 

θ1 (P ) . 

Proof. This holds by Proposition 4.5 . �

Theorem 4.7. G 

θ in Definition 4.2 is an information granulation function under Definition 4.1 . 

Proof. (1) Clearly, “non-negativity” holds. 

(2) Given P , Q ⊆ A and θ , if S θ (P ) = S θ (Q ) , then ∀ i , S θ
P 
(x i ) = S θ

Q 
(x i ) . 

By Definition 4.2 , G 

θ (P ) = G 

θ (Q ) . 

(3) “Monotonicity” follows from Theorem 4.4 . �

4.2. Information amounts in interval-valued information systems 

Definition 4.8. Suppose that ( U , A ) is an interval-valued information system. Given θ ∈ (0, 1], then the θ-information amount

of subsystem ( U , P ) with respect to θ is defined as 

E θ (P ) = 

n ∑ 

i =1 

| S θ
P 
(x i ) | 
n 

(
1 − | S θ

P 
(x i ) | 
n 

)
. 

Theorem 4.9. Assume that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ1 , θ2 ∈ (0, 1], 

(1) If S θ1 (P ) � S θ2 (Q ) , then E θ1 (P ) ≤ E θ2 (Q ) . 
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(2) If S θ1 (P ) ≺ S θ2 (Q ) , then E θ1 (P ) < E θ2 (Q ) . 

Proof. (1) The proof is trivial. 

(2) By Definition 4.8 , 

E θ1 (P ) = 

n ∑ 

i =1 

| S θ1 

P 
(x i ) | 
n 

(
1 − | S θ1 

P 
(x i ) | 
n 

)
, E θ2 (Q ) = 

n ∑ 

i =1 

| S θ2 

Q 
(x i ) | 
n 

( 

1 −
| S θ2 

Q 
(x i ) | 
n 

) 

. 

Note that S θ1 (P ) ≺ S θ2 (Q ) . Then, ∀ i , S 
θ1 
P 

(x i ) ⊆ S 
θ2 
Q 

(x i ) and ∃ j , S 
θ1 
P 

(x j ) � S 
θ2 
Q 

(x j ) . Thus, ∀ i , | S θ1 
P 

(x i ) | ≤ | S θ2 
Q 

(x i ) | and ∃ j ,

| S θ1 
P 

(x j ) | < | S θ2 
Q 

(x j ) | . 
Hence, E θ1 (P ) < E θ2 (Q ) . �

This theorem shows that as the structure of interval-valued information becomes finer, the θ-information amount de-

creases, and when the interval-valued information structure becomes rougher, the θ-information amount increases. 

Proposition 4.10. Assume that ( U , A ) is an interval-valued information system. 

(1) If P ⊆ Q with P , Q ⊆ A , then for any θ ∈ (0, 1], E θ ( Q ) �E θ ( P ) . 

(2) If 0 < θ1 ≤ θ2 ≤ 1, then for any P ⊆ A , E θ2 (P ) � E θ1 (P ) . 

Proof. This holds by Theorems 3.8 and 4.9 . �

Corollary 4.11. Let ( U , A ) be an interval-valued information system. Given θ1 , θ2 ∈ (0, 1] and P , Q ⊆ A , if P ⊆ Q , θ1 ≤ θ2 , then 

E θ2 (Q ) � E θ1 (Q ) � E θ1 (P ) , E θ2 (Q ) � E θ2 (P ) � E θ1 (P ) . 

Proof. This follows from Proposition 4.10 . �

Theorem 4.12. E θ in Definition 4.8 is an information granulation function under Definition 4.1 . 

Proof. (1) Clearly, “non-negativity” holds. 

(2) Given P , Q ⊆ A and θ , if S θ (P ) = S θ (Q ) , then ∀ i , S θ
P 
(x i ) = S θ

Q 
(x i ) . 

By Definition 4.8 , E θ (P ) = E θ (Q ) . 

(3) “Monotonicity” follows from Theorem 4.9 . �

Theorem 4.13. Suppose that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ ∈ (0, 1], then 

1 ≤ G 

θ (P ) + E θ (P ) ≤ n. 

Proof. 

G 

θ (P ) + E θ (P ) = 

1 

n 

2 

n ∑ 

i =1 

| S θP (x i ) | 2 + 

n ∑ 

i =1 

| S θ
P 
(x i ) | 
n 

(
1 − | S θ

P 
(x i ) | 
n 

)

= 

1 

n 

2 

n ∑ 

i =1 

| S θP (x i ) | (| S θP (x i ) | + n − | S θP (x i ) | ) 

= 

1 

n 

n ∑ 

i =1 

| S θP (x i ) | . 

Since 1 ≤ | S θ
P 
(x i ) | ≤ n, 

1 ≤ G 

θ (P ) + E θ (P ) ≤ n. 

�

Corollary 4.14. Assume that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ ∈ (0, 1], then 

0 ≤ E θ (P ) ≤ n − 1 

n 

. 

Proof. Clearly, 0 ≤ E θ ( P ). 

By Proposition 4.3 , 1 
n ≤ G 

θ (P ) ≤ n . Then, 

−n ≤ −G 

θ (P ) ≤ −1 

n 

. 

By Theorem 4.13 , 1 ≤ G 

θ (P ) + E θ (P ) ≤ n . 

Thus, 

E θ (P ) ≤ n − 1 

n 

. 
�
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4.3. Entropy measure of interval-valued information systems 

Definition 4.15. Suppose that ( U , A ) is an interval-valued information system. Given θ ∈ (0, 1], then the θ-rough entropy of

subsystem ( U , P ) with respect to θ is defined as 

E θr (P ) = −
n ∑ 

i =1 

| S θ
P 
(x i ) | 
n 

log 2 
1 

| S θ
P 
(x i ) | . 

Proposition 4.16. Assume that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ ∈ (0, 1], then 

0 ≤ E θr (P ) ≤ n log 2 n. 

Moreover, if S θ
P 

is an identity relation on U , then E θr achieves the minimum value 0; if S θ
P 

is a universal relation on U , then E θr 
achieves the maximum value n log 2 n. 

Proof. Since ∀ i , 1 ≤ | S θ
P 
(x i ) | ≤ n, we have 

0 ≤ − log 2 
1 

| S θ
P 
(x i ) | = log 2 | S θP (x i ) | ≤ log 2 n, 0 ≤ | S θ

P 
(x i ) | 
n 

≤ 1 . 

Then, 

0 ≤ | S θ
P 
(x i ) | 
n 

log 2 
1 

| S θ
P 
(x i ) | ≤ log 2 n. 

By Definition 4.15 , 

0 ≤ E θr (P ) ≤ n log 2 n. 

If S θ
P 

is an identity relation on U , then ∀ i , | S θ
P 
(x i ) | = 1 . Therefore, E θr (P ) = 0 . 

If S θ
P 

is a universal relation on U , then ∀ i , | S θ
P 
(x i ) | = n . Therefore, E θr (P ) = n log 2 n . 

�

Theorem 4.17. Let ( U , A ) be an interval-valued information system. Given P , Q ⊆ A and θ1 , θ2 ∈ (0, 1] : 

(1) If S θ1 (P ) � S θ2 (Q ) , then E 
θ1 
r (P ) ≤ E 

θ2 
r (Q ) . 

(2) If S θ1 (P ) ≺ S θ2 (Q ) , then E 
θ1 
r (P ) < E 

θ2 
r (Q ) . 

Proof. (1) The proof is trivial. 

(2) By Definition 4.15 , 

E θ1 
r (P ) = −

n ∑ 

i =1 

| S θ1 

P 
(x i ) | 
n 

log 2 
1 

| S θ1 

P 
(x i ) | 

, E θ2 
r (Q ) = −

n ∑ 

i =1 

| S θ2 

Q 
(x i ) | 
n 

log 2 
1 

| S θ2 

Q 
(x i ) | 

. 

Note that S θ1 (P ) ≺ S θ2 (Q ) . Then, ∀ i , S 
θ1 
P 

(x i ) ⊆ S 
θ2 
Q 

(x i ) and ∃ j , S 
θ1 
P 

(x j ) � S 
θ2 
Q 

(x j ) . Thus, ∀ i , | S θ1 
P 

(x i ) | ≤ | S θ2 
Q 

(x i ) | and ∃ j ,

| S θ1 
P 

(x j ) | < | S θ2 
Q 

(x j ) | . 
Hence, ∀ i , 

−| S θ1 

P 
(x i ) | log 2 

1 

| S θ1 

P 
(x i ) | 

= | S θ1 

P 
(x i ) | log 2 | S θ1 

P 
(x i ) | 

≤ | S θ2 

Q 
(x i ) | log 2 | S θ2 

Q 
(x i ) | = −| S θ2 

Q 
(x i ) | log 2 

1 

| S θ2 

Q 
(x i ) | 

, 

∃ j , 
−| S θ1 

P 
(x j ) | log 2 

1 

| S θ1 

P 
(x j ) | 

= | S θ1 

P 
(x j ) | log 2 | S θ1 

P 
(x j ) | 

< | S θ2 

Q 
(x j ) | log 2 | S θ2 

Q 
(x j ) | = −| S θ2 

Q 
(x j ) | log 2 

1 

| S θ2 

Q 
(x j ) | 

. 

This result shows that E 
θ1 
r (P ) < E 

θ2 
r (Q ) . �

This theorem indicates that the greater the uncertainty of the available information, the greater the θ-rough entropy.

Therefore, we can conclude that the θ-rough entropy proposed in definition 4.15 can be used to evaluate the degree of

determination of interval-valued information systems. 

Proposition 4.18. Assume that ( U , A ) is an interval-valued information system. 
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(1) If P ⊆ Q with P , Q ⊆ A , then for any θ ∈ (0, 1], E θr (Q ) � E θr (P ) . 

(2) If 0 < θ1 ≤ θ2 ≤ 1, then for any P ⊆ A , E 
θ2 
r (P ) � E 

θ1 
r (P ) . 

Proof. This holds by Theorems 3.8 and 4.17 . �

Corollary 4.19. Let ( U , A ) be an interval-valued information system. Given θ1 , θ2 ∈ (0, 1] and P , Q ⊆ A. If P ⊆ Q , θ1 ≤ θ2 , then 

E θ2 
r (Q ) � E θ1 

r (Q ) � E θ1 
r (P ) , E θ2 

r (Q ) � E θ2 
r (P ) � E θ1 

r (P ) . 

Proof. This follows from Proposition 4.18 . �

Theorem 4.20. E θr in Definition 4.15 is also an information granulation function under Definition 4.1 . 

Proof. (1) Clearly, “non-negativity” holds. 

(2) Given P , Q ⊆ A and θ , if S θ (P ) = S θ (Q ) , then ∀ i , S θ
P 
(x i ) = S θ

Q 
(x i ) . 

By Definition 4.15 , E θr (P ) = E θr (Q ) . 

(3) “Monotonicity” follows from Theorem 4.17 . �

Definition 4.21. Suppose that ( U , A ) is an interval-valued information system. Given θ ∈ (0, 1], then the θ-information en-

tropy of subsystem ( U , P ) with respect to θ is defined as 

H 

θ (P ) = −
n ∑ 

i =1 

| S θ
P 
(x i ) | 
n 

log 2 
| S θ

P 
(x i ) | 
n 

. 

Theorem 4.22. Assume that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ ∈ (0, 1], then 

log 2 n ≤ E θr (P ) + H 

θ (P ) ≤ n log 2 n. 

Proof. 

E θr (P ) + H 

θ (P ) = −
n ∑ 

i =1 

| S θ
P 
(x i ) | 
n 

log 2 
1 

| S θ
P 
(x i ) | −

n ∑ 

i =1 

| S θ
P 
(x i ) | 
n 

log 2 
| S θ

P 
(x i ) | 
n 

= −
n ∑ 

i =1 

| S θ
P 
(x i ) | 
n 

( log 2 
1 

| S θ
P 
(x i ) | + log 2 

| S θ
P 
(x i ) | 
n 

) 

= −
n ∑ 

i =1 

| S θ
P 
(x i ) | 
n 

log 2 
1 

n 

= 

log 2 n 

n 

n ∑ 

i =1 

| S θP (x i ) | . 

Since 1 ≤ | S θ
P 
(x i ) | ≤ n, 

log 2 n ≤ E θr (P ) + H 

θ (P ) ≤ n log 2 n. 

�

Corollary 4.23. Assume that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ ∈ (0, 1], then 

0 ≤ H 

θ (P ) ≤ log 2 n. 

Proof. Clearly, 0 ≤ H 

θ ( P ). 

By Definition 4.21 , 0 ≤ E θr (P ) ≤ n log 2 n . Then, 

−n log 2 n ≤ −E θr (P ) ≤ 0 . 

By Theorem 4.22 , log 2 n ≤ E θr (P ) + H 

θ (P ) ≤ n log 2 n . 

Thus, 

H 

θ (P ) ≤ n log 2 n. �

5. An application 

As an application of the proposed measures, this section presents the rough entropy of a rough set in an interval-valued

information system and shows that it is more accurate than the roughness in the same system. 
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5.1. Accuracy and roughness in an information system 

Accuracy and roughness represent the complete and incomplete extent of the knowledge of a given object subset, respec-

tively. They represent the number of elements in each approximation region and can be used to evaluate the uncertainty of

the boundary region. 

If ( U , A ) is an information system and P ⊆ A , then an equivalence relation IND ( P ) can be defined by 

IND (P ) = { (x, y ) ∈ U × U | ∀ a ∈ P, a (x ) = a (y ) } . 
Definition 5.1. [17] Suppose that ( U , A ) is an information system. Given P ⊆ A , for any X ∈ 2 U , 

P X = { x ∈ U | [ x ] P ⊆ X } , P X = { x ∈ U | [ x ] P ∩ X � = ∅} , 
where [ x ] P = { y ∈ U | (x, y ) ∈ IND (P ) } . Then, P ( X ) and P (X ) are called the lower and upper approximations with respect to P ,

respectively. 

If P X = P X, then X is said to be definable with respect to P ; otherwise, X is said to be rough with respect to P . 

Pawlak [18] proposed two numerical measures for evaluating the uncertainty of a rough set X : accuracy and roughness.

The two measures are defined as 

αP (X ) = 

| P X | 
| P X | , ρP (X ) = 1 − αP (X ) . 

5.2. Limitation of classical measures in interval-valued information systems 

Definition 5.2 [5] . Let ( U , A ) be an interval-valued information system. Given P ⊆ A and θ ∈ (0, 1], for any X ∈ 2 U , define 

P θ (X ) = { x ∈ U | S θP (x ) ⊆ X } , P 
θ

X = { x ∈ U | S θP (x ) ∩ X � = ∅} . 
Then, P θ ( X ) and P 

θ
(X ) are called the θ-lower and θ-upper approximations of X with respect to P , respectively. X is said to

be θ-definable with respect to P if P θ (X ) = P 
θ
(X ) ; otherwise, X is said to be θ-rough with respect to P . 

Definition 5.3 [5] . Let ( U , A ) be an interval-valued information system. Given P ⊆ A and θ ∈ (0, 1], suppose that X is a

θ-rough set with respect to P . Then, the θ-accuracy and θ-roughness of X with respect to P are, respectively, defined as 

αθ
P (X ) = 

| P θ X | 
| P θ X | 

, ρθ
P (X ) = 1 − | P θ X | 

| P θ X | 
. 

If X is θ-definable with respect to P , then ρθ
P 
(X ) = 0 ; if X is θ-rough with respect to P , then ρθ

P 
(X ) � = 0 . 

Example 5.4. (Continued from Example 3.1 ) Select X = { x 2 , x 5 } , P = { a 1 , a 2 } , Q = { a 1 , a 2 , a 3 } and θ = 0 . 4 . Then, 

P 0 . 4 (X ) = Q 

0 . 4 (X ) = { x 5 } , P 
0 . 4 

(X ) = Q 

0 . 4 
(X ) = { x 2 , x 5 , x 8 };

S θ (P ) = ({ x 1 , x 3 , x 6 , x 7 } , { x 2 , x 5 , x 8 } , { x 1 , x 3 , x 7 } , { x 4 , x 9 , x 10 } , { x 2 , x 5 } , { x 1 , x 6 , x 7 , x 8 } , { x 1 , x 3 , x 6 , x 7 , x 8 } , { x 2 , x 6 , x 7 , x 8 } , 
{ x 4 , x 9 , x 10 } , { x 4 , x 9 , x 10 } ) , 

S θ (Q ) = ({ x 1 , x 7 } , { x 2 , x 5 , x 8 } , { x 3 } , { x 4 } , { x 2 , x 5 } , { x 6 , x 8 } , { x 1 , x 7 } , { x 2 , x 6 , x 8 } , { x 9 , x 10 } , { x 9 , x 10 } ) . 
Clearly, 

P θ (X ) � = P 
θ
(X ) , Q 

θ (X ) � = Q 

θ
(X ) . 

Then, X is a θ-rough set with respect to both P and Q . 

Thus, 

ρθ
P (X ) = 0 . 67 = ρθ

Q (X ) . 

Note that S θ ( Q ) ≺S θ ( P ). Then, S θ ( P ) depends strictly on S θ ( Q ). By Theorem 4.4 (2), G 

θ ( Q ) < G 

θ ( P ). Then, the uncertainty of

subsystem ( U , P ) with respect to θ is larger than that of subsystem ( U , Q ) with respect to θ . However, the θ-roughness of

rough set X with respect to P is equal to the θ-roughness of X with respect to Q , i.e., the roughness of X in subsystem ( U ,

P ) with respect to θ is equal to the roughness of X in subsystem ( U , Q ) with respect to θ . Thus, X has the same roughness

in subsystems ( U , P ) and ( U , Q ) with respect to θ . Therefore, a new and more accurate uncertainty measure is required for

rough sets in interval-valued information systems. 

5.3. Rough entropy of a rough set in interval-valued information systems 

Definition 5.5. Let ( U , A ) be an interval-valued information system, and let P ⊆ A . Suppose X ∈ 2 U is θ-rough with respect

to P . Then, the θ-rough entropy of rough set X with respect to P is defined as 

RE θP (X ) = ρθ
P (X ) G 

θ (P ) . 
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Proposition 5.6. Suppose that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ ∈ (0, 1], then 

0 ≤ RE θP (X ) ≤ n. 

Moreover, if X = U , then for any P ⊆ A and θ ∈ (0, 1], RE θ
P 

achieves the minimum value 0; if X = ∅ and S θ
P 

is a universal

relation on U , then RE θ
P 

achieves the maximum value n. 

Proof. Since for each i , 1 ≤ | S θ
P 
(x i ) | ≤ n, we have 0 ≤ ρθ

P 
(X ) ≤ 1 and 

1 
n ≤ G 

θ (P ) ≤ n . 

By Definition 5.1 , 

0 ≤ RE θP (X ) ≤ n. 

If X = U, then ρθ
P 
(U) = 0 . Therefore, RE θ

P 
(U) = 0 . 

If X = ∅ and S θ
P 

is a universal relation on U , then ρθ
P 
(∅ ) = 1 and G 

θ (P ) = n . Therefore, RE θ
P 
(∅ ) = n . 

�

Theorem 5.7. Assume that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ1 , θ2 ∈ (0, 1] : 

(1) If S θ1 (P ) � S θ2 (Q ) , then RE 
θ1 
P 

(X ) ≤ RE 
θ2 
Q 

(X ) . 

(2) If S θ1 (P ) ≺ S θ2 (Q ) , then RE 
θ1 
P 

(X ) < RE 
θ2 
Q 

(X ) . 

Proof. (1) The proof is trivial. 

(2) Since S θ1 (P ) ≺ S θ2 (Q ) , we have S θ1 (P ) � S θ2 (Q ) . Then, for ∀ i, S 
θ1 
P 

(x i ) ⊆ S 
θ2 
Q 

(x i ) , such that P θ1 (X ) ≥ Q 

θ2 (X ) and

P 
θ1 (X ) ≤ Q 

θ2 (X ) . Then, ρ
θ1 
P 

(X ) ≤ ρ
θ2 
Q 

(X ) . By Theorem 4.4 , G 

θ ( P ) < G 

θ ( Q ). Then, RE θ
P 
(X ) < RE θ

Q 
(X ) . �

Corollary 5.8. Assume that ( U , A ) is an interval-valued information system. Given P , Q ⊆ A and θ1 , θ2 ∈ (0, 1], if S θ1 (P ) = S θ2 (Q ) ,

then RE 
θ1 
P 

(X ) = RE 
θ2 
Q 

(X ) . 

Proof. This holds by Theorem 4.5 . �

Proposition 5.9. Assume that ( U , A ) is an interval-valued information system. 

(1) If P ⊆ Q with P , Q ⊆ A , then for any θ ∈ (0, 1], RE θ
Q 
(X ) ≤ RE θ

P 
(X ) . 

(2) If 0 < θ1 ≤ θ2 ≤ 1, then for any P ⊆ A , RE 
θ2 
P 

(X ) ≤ RE 
θ1 
P 

(X ) . 

Proof. This holds by Theorem 3.8 and Proposition 5.7 (1). �

Corollary 5.10. Let ( U , A ) be an interval-valued information system. Given θ1 , θ2 ∈ (0, 1] and P , Q ⊆ A , if P ⊆ Q , θ1 ≤ θ2 , then 

RE θ2 

Q 
(X ) ≤ RE θ1 

Q 
(X ) ≤ RE θ1 

P 
(X ) , RE θ2 

Q 
(X ) ≤ RE θ2 

P 
(X ) ≤ RE θ1 

P 
(X ) . 

Proof. This follows from Proposition 5.9 . �

Example 5.11 (Continued from Example 5.4 ) . We have 

ρθ
P (X ) = 0 . 67 = ρθ

Q (X ) . 

By Definition 4.2 , G 

θ
P 

= 1 . 22 and G 

θ
Q 

= 0 . 44 . 

Then, RE θ
P 
(X ) = 0 . 817 , and RE θ

Q 
(X ) = 0 . 295 . 

Thus, 

G 

θ
P > G 

θ
Q , 

and 

RE θP (X ) > RE θQ (X ) . 

This example illustrates that the rough entropy of a rough set in a subsystem with respect to a given parameter is more

accurate than is its roughness in the same subsystem with respect to the same parameter in an interval-valued information

system. Clearly, this subsystem can take into account the whole system. 

6. Numerical experiments and effectiveness analysis 

6.1. Numerical experiments 

Example 6.1. To demonstrate the performance of the uncertainty measurement, we construct a numerical experiment on

the Face recognition dataset (see Table 1 in [2] or Table 2 in [5] ). This dataset consists of the 27 observations shown in

Table 2 . There are 6 attributes, including the length spanned by the eyes, the length between the eyes, and the length from

the outer right eye to the upper middle lip at the point between the nose and mouth. There are two groups of experiments.

In the first experiment, we compare four tools for measuring the uncertainty of subsystems. 
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Table 2 

Face recognition dataset. 

Subject a 1 a 2 a 3 a 4 a 5 a 6 

FRA1 [155.00,157.00] [58.00,61.01] [100.45,103.28] [105.00,107.30] [61.40,65.73] [64.20,67.80] 

FRA2 [154.00,160.01] [57.0 0,64.0 0] [101.98,105.55] [104.35,107.30] [60.88,63.03] [62.94,66.47] 

FRA3 [154.01,161.00] [57.0 0,63.0 0] [99.36,105.65] [101.04,109.04] [60.95,65.60] [60.42,66.40] 

HUS1 [168.86,172.84] [58.55,63.39] [102.83,106.53] [122.38,124.52] [56.73,61.07] [60.44,64.54] 

HUS2 [169.85,175.03] [60.21,64.38] [102.94,108.71] [120.24,124.52] [56.73,62.37] [60.44,66.84] 

HUS3 [168.76,175.15] [61.40,63.51] [104.35,107.45] [120.93,125.18] [57.20,61.72] [58.14,67.08] 

INC1 [155.26,160.45] [53.15,60.21] [95.88,98.49] [91.68,94.37] [62.48,66.22] [58.90,63.13] 

INC2 [156.26,161.31] [51.09,60.07] [95.77,99.36] [91.21,96.83] [54.92,64.20] [54.41,61.55] 

INC3 [154.47,160.31] [55.08,59.03] [93.54,98.98] [90.43,96.43] [59.03,65.86] [55.97,65.80] 

ISA1 [164.00,168.00] [55.01,60.03] [120.28,123.04] [117.52,121.02] [54.38,57.45] [50.80,53.25] 

ISA2 [163.0 0,170.0 0] [54.04,59.00] [118.80,123.04] [116.67,120.24] [55.47,58.67] [52.43,55.23] 

ISA3 [164.01,169.01] [55.00,59.01] [117.38,123.11] [116.67,122.43] [52.80,58.31] [52.20,55.47] 

JPL1 [167.11,171.19] [61.03,65.01] [118.23,121.82] [108.30,111.20] [63.89,67.88] [57.28,60.83] 

JPL2 [169.14,173.18] [60.07,65.07] [118.85,120.88] [108.98,113.17] [62.63,69.07] [57.38,61.62] 

JPL3 [169.03,170.11] [59.01,65.01] [115.88,121.38] [110.34,112.49] [61.72,68.25] [59.46,62.94] 

KHA1 [149.34,155.54] [54.15,59.14] [111.95,115.75] [105.36,111.07] [54.20,58.14] [48.27,50.61] 

KHA2 [149.34,155.32] [52.04,58.22] [111.20,113.22] [105.36,111.07] [53.71,58.14] [49.41,52.80] 

KHA3 [150.33,157.26] [52.09,60.21] [109.04,112.70] [104.74,111.07] [55.47,60.03] [49.20,53.41] 

LOT1 [152.64,157.62] [51.35,56.22] [116.73,119.67] [114.62,117.41] [55.44,59.55] [53.01,56.60] 

LOT2 [154.64,157.62] [52.24,56.32] [117.52,119.67] [114.28,117.41] [57.63,60.61] [54.41,57.98] 

LOT3 [154.83,157.81] [50.36,55.23] [117.59,119.75] [114.04,116.83] [56.64,61.07] [55.23,57.80] 

PHI1 [163.08,167.07] [66.03,68.07] [115.26,119.60] [116.10,121.02] [60.96,65.30] [57.01,59.82] 

PHI2 [164.00,168.03] [65.03,68.12] [114.55,119.60] [115.26,120.97] [60.96,67.27] [55.32,61.52] 

PHI3 [161.01,167.00] [64.07,69.01] [116.67,118.79] [114.59,118.83] [61.52,6 8.6 8] [56.57,60.11] 

ROM1 [167.15,171.24] [64.07,68.07] [123.75,126.59] [122.92,126.37] [51.22,54.64] [49.65,53.71] 

ROM2 [168.15,172.14] [63.13,68.07] [122.33,127.29] [124.08,127.14] [50.22,57.14] [49.93,56.94] 

ROM3 [167.11,171.19] [63.13,68.03] [121.62,126.57] [122.58,127.78] [49.41,57.28] [50.99,60.46] 

Table 3 

Four θ-measure values of the uncertainty for 

( U , P i ) on the Face recognition dataset. 

i G θ ( P i ) H θ ( P i ) E θr (P i ) E θ ( P i ) 

1 2.550 13.638 24.578 5.487 

2 0.896 11.381 10.633 3.734 

3 0.306 9.214 4.347 2.546 

4 0.295 9.037 4.171 2.483 

5 0.281 8.889 3.967 2.423 

6 0.257 8.565 3.586 2.299 

 

 

 

 

 

 

 

(1) We compare four tools for measuring the uncertainty of systems with different P . Select P 1 = { a 1 } , P 2 = { a 1 , a 2 } ,
P 3 = { a 1 , a 2 , a 3 } , P 4 = { a 1 , a 2 , a 3 , a 4 } , P 5 = { a 1 , a 2 , a 3 , a 4 , a 5 } , P 6 = { a 1 , a 2 , a 3 , a 4 , a 5 , a 6 } and θ = 0 . 4 . 

By Definitions 4.1, 4.8, 4.15 and 4.21 , we obtain Table 3 . 

The experimental results are shown in Fig. 1 . The uncertainty measures of the interval-valued information system ( U , A )

show certain regularity with growth in attribute subset P ⊆ A , which is reflected in the following facts: 

1) G 

θ , E θr and E θ are monotonically decreasing with attributes increases; 

2) E θr is more sensitive than G 

θ , H 

θ and E θ ; 

3) When i in { a 1 , a 2 , ���, a i } reaches 3, the values of the four uncertainty measurements of the interval-valued informa-

tion system ( U , A ) tend to constant values; 

4) The differences among G 

θ , H 

θ and E θ are almost identical. 

Thus, θ-rough entropy is more suitable than other measures for the uncertainty measurement of interval-valued infor-

mation systems. 

(2) We compare four tools for measuring the uncertainty of systems with different θ . Select θ1 = 0 . 1 , θ2 = 0 . 2 , θ3 =
0 . 3 , θ4 = 0 . 4 , θ5 = 0 . 5 , θ6 = 0 . 6 , θ7 = 0 . 7 , θ8 = 0 . 8 , θ9 = 0 . 9 and P = A . 

By Definitions 4.1, 4.8, 4.15 and 4.21 , we obtain Table 4 . 

The experimental results are shown in Fig. 2 . As the threshold θ increases, the uncertainty measures of interval-valued

information system ( U , A ) show a certain regularity, which is reflected in the following facts: 

1) G 

θ , E θr and E θ monotonically decreases as the threshold θ increases; 

2) H 

θ and E θr are almost identical; 

3) H 

θ and E θr are more sensitive than G 

θ and E θ . 

Thus, the changes in the θ-information entropy and θ-rough entropy are closely related to θ , and the change in θ-

information granulation is not closely related to θ . 
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Fig. 1. The change of four tools for measuring uncertainty with different subsystems. 

Table 4 

Four θ i -measure values of the uncertainty for 

( U , P ) on the Face recognition dataset. 

i G θi (P) H θi (P) E θi 
r (P) E θi (P) 

1 0.333 9.510 4.755 2.667 

2 0.333 9.510 4.755 2.667 

3 0.306 9.214 4.347 2.546 

4 0.257 8.565 3.586 2.299 

5 0.193 7.768 2.622 1.992 

6 0.128 6.712 1.565 1.613 

7 0.062 5.367 0.4 4 4 1.161 

8 0.045 4.959 0.148 1.029 

9 0.037 4.755 0 0.963 

Fig. 2. The change of four tools for measuring uncertainty with different θ . 

 

 

 

 

In the second experiment, we compare ρθ
P 
(X ) and RE θ

P 
(X ) . 

(1) We compare ρθ
P 
(X i ) and RE θ

P 
(X i ) . 

Let P = A and θ = 0 . 4 . Select 

X 1 = { x 1 , x 2 } , X 2 = { x 1 , x 2 , · · · , x 4 } , X 3 = { x 1 , x 2 , · · · , x 6 } , X 4 = { x 1 , x 2 , · · · , x 8 } , X 5 = { x 1 , x 2 , · · · , x 10 } , X 6 = { x 1 , x 2 , · · · , x 12 } ,
X 7 = { x 1 , x 2 , · · · , x 14 } , X 8 = { x 1 , x 2 , · · · , x 16 } , X 9 = { x 1 , x 2 , · · · , x 18 } , X 10 = { x 1 , x 2 , · · · , x 20 } , X 11 = { x 1 , x 2 , · · · , x 22 } , X 12 =
{ x 1 , x 2 , · · · , x 24 } , X 13 = { x 1 , x 2 , · · · , x 26 } , X 14 = { x 1 , x 2 , · · · , x 27 } . 

Fig. 3 shows that these two measures can be used to evaluate the uncertainty of interval-valued information systems.

Furthermore, when the object subset X is not fixed, the curve of RE θ
P 

is smoother than the curve of ρθ
P 
, which indicates that

RE θ
P 

is better than ρθ
P 

. 

(2) We compare ρθ
P 
(X ∗) and RE θ

P 
(X ∗) . 
i i 
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Fig. 3. The results of ρθ
P 
(Xi ) and RE θp (Xi ) with different i. 

Fig. 4. The results of ρθ
P 1 

(X ∗) and RE θ
R 
(Xi ∗) with different i. 

Fig. 5. The results of ρθ
P 
(X ∗) and RE θ

P 
(X ∗) with different i. 

 

 

Let X ∗ = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 } and θ = 0 . 4 . Select 

P 1 = { a 1 } , P 2 = { a 1 , a 2 } , P 3 = { a 1 , a 2 , a 3 } , P 4 = { a 1 , a 2 , a 3 , a 4 } , P 5 = { a 1 , a 2 , a 3 , a 4 , a 5 } , P 6 = { a 1 , a 2 , a 3 , a 4 , a 5 , a 6 } . 
Fig. 4 shows that ρθ

P 
(X ∗) and RE θ

P 
(X ∗) both decrease as the attribute subset grows. Furthermore, RE θ

P 
is more sensitive

than ρθ
P 

to growth in the attribute subset, which indicates that RE θ
P 

is better than ρθ
P 

. 

(3) We compare ρ
θi 
P 

(X ∗) and RE 
θi 
P 

(X ∗) . 
Let X ∗ = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 } and P = A . Select 

θ1 = 0 . 1 , θ2 = 0 . 2 , θ3 = 0 . 3 , θ4 = 0 . 4 , θ5 = 0 . 5 , θ6 = 0 . 6 , θ7 = 0 . 7 , θ8 = 0 . 8 , θ9 = 0 . 9 , 

Fig. 5 shows that ρθ
P 
(X ∗) and RE θ

P 
(X ∗) decrease as the threshold θ increases. Additionally, when θ > 0.4, ρθ

P 
(X ∗) =

θ ∗ θ θ θ θ
RE 
P 
(X ) = 0 ; when θ < 0.4, RE 

P 
is more sensitive than ρ

P 
, which indicates that RE 

P 
is better than ρ

P 
. 
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Fig. 6. Four θ-measure sets. 

 

 

 

 

 

 

 

 

 

6.2. Effectiveness analysis 

In this section, we conduct a numerical experiment and perform a statistical effectiveness analysis from three aspects:

dispersion, correlation and variance. 

6.2.1. Analysis of dispersion 

In statistical analysis, we often research the degree of dispersion of a dataset. A metric used to measure the dispersion

degree of a dataset is called a difference measure. Common difference measures include the range, four point difference,

average difference, standard deviation, and standard deviation coefficient. In this paper, we apply the standard deviation

coefficient to perform the effectiveness analysis of the proposed measures. 

Given dataset X = { x 1 , · · · , x n } , its arithmetic average x = 

1 
n 

∑ n 
i =1 x i , its standard deviation σ (X ) = 

√ 

1 
n 

∑ n 
i =1 (x i − x ) 2 , and

its standard deviation coefficient 

CV (X ) = 

σ (X ) 

x 
. 

Four θ-measure sets on the Face recognition dataset are defined as follows: 

X G (θ ) = { G 

θ (P 1 ) , · · · , G 

θ (P 6 ) } , X E (θ ) = { E θ (P 1 ) , · · · , E θ (P 6 ) } , 

X E r (θ ) = { E θr (P 1 ) , · · · , E θr (P 6 ) } , X H (θ ) = { H 

θ (P 1 ) , · · · , H 

θ (P 6 ) } . 
We compare the CV of the four θ-measure sets. The experimental results are shown in Fig. 6 . 

CV (X G (θ )) > CV (X E r (θ )) > CV (X E (θ )) > CV (X H (θ )) means the dispersion degree of H is the minimum. 

Four P -measure sets on the Face recognition dataset are defined as follows: 

X G (P ) = { G 

θ1 (P ) , · · · , G 

θ9 (P ) } , X E (P ) = { E θ1 (P ) , · · · , E θ9 (P ) } , 

X E r (P ) = { E θ1 
r (P ) , · · · , E θ9 

r (P ) } , X H (P ) = { H 

θ1 (P ) , · · · , H 

θ9 (P ) } . 
We compare the CV of four P -measure sets. The experimental results are shown in Fig. 7 . 

CV (X E r (P )) > CV (X G (P )) > CV (X E (P )) > CV (X H (P )) means the dispersion degree of H is the minimum. 

Thus, we obtain the following results: 

(1) if we require only monotonicity, then G 

θ , ( E r ) 
θ and E θ can be applied to measure the uncertainty of an interval-valued

information system; 

(2) if we consider only the dispersion degree, then H 

θ has better performance for measuring the uncertainty of an

interval-valued information system; 

(3) if we pay are concerned with both monotonicity and the dispersion degree, then E θ has much the best performance

for measuring the uncertainty of an interval-valued information system. 

6.2.2. Analysis of correlation 

In statistics, the Pearson correlation coefficient is used to measure the strength of a linear correlation between two

variables or two datasets. 
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Fig. 7. Four P-measure sets. 

Table 5 

r -values of sixteen pairs of four θ-measure sets on 

the Face recognition dataset. 

r X G ( θ ) X E ( θ ) X E r (θ ) X H ( θ ) 

X G ( θ ) 1 

X E ( θ ) 0.997 1 

X E r (θ ) 0.9985 0.9942 1 

X H ( θ ) 0.9662 0.995 0.9786 1 

Table 6 

The correlation between two θ-measures. 

G θ E θ E r 
θ H θ

G θ CPC 

E θ HPC CPC 

E r 
θ HPC HPC CPC 

H θ HPC HPC HPC CPC 

 

 

 

 

 

 

 

 

 

 

 

 

Given two datasets X = { x 1 , · · · , x n } and Y = { y 1 , · · · , y n } , the Pearson correlation coefficient between X and Y , denoted

by r ( X , Y ), is defined as 

r(X, Y ) = 

∑ n 
i =1 (x i − x )(y i − y ) √ ∑ n 

i =1 (x i − x ) 2 
√ ∑ n 

i =1 (y i − y ) 2 
, 

where x = 

1 
n 

∑ n 
i =1 x i , and y = 

1 
n 

∑ n 
i =1 y i . 

Clearly, 

−1 ≤ r(X, Y ) ≤ 1 . 

If r(X, Y ) = 0 , then there is no correlation between X and Y ; if r ( X , Y ) > 0, then the correlation between X and Y is

positive; if r ( X , Y ) < 0, then the correlation between X and Y is negative. Specifically, r(X, Y ) = 1 indicates complete positive

correlation between X and Y , and r(X, Y ) = −1 represents complete negative correlation between X and Y . 

The closer | r | is to 0, the smaller the degree of correlation between variables; conversely, the closer the absolute value

of the Pearson correlation coefficient r is to 1, the greater the degree of correlation between variables. Generally, the de-

gree of correlation can be classified as follows: | r| = 1 is called complete correlation; 0.7 ≤ | r | < 1 is called high correlation;

0.4 ≤ | r | < 0.7 is called moderate correlation; 0 < | r | < 0.4 is called low correlation; and r = 0 is called no correlation. 

The Pearson correlation coefficients on θ-measure sets are shown in Table 5 . 

r ( X G ( θ ), X E ( θ )) > 0.7 indicate high positive correlation between X G ( θ ) and X E ( θ ). Therefore, G 

θ and E θ are highly posi-

tively correlated. Similarly, G 

θ and E θr , G 

θ and H 

θ , E θ and E θr , E θ and H 

θ , and E θr and H 

θ are highly positively correlated.

The conclusions are shown in Table 6 , where “HPC” and “CPC” indicate “high positive correlation” and “complete positive

correlation”, respectively. 

The Pearson correlation coefficients on P -measure sets are shown in Table 7 . 

r ( X G ( P ), X E ( P )) > 0.7 indicates high positive correlation between X G ( P ) and X E ( P ). Therefore, G 

θ and E θ are highly posi-

tively correlated. Similarly, G 

θ and E θr , G 

θ and H 

θ , E θ and E θr , E θ and H 

θ , and E θr and H 

θ are highly positively correlated.

The conclusions are shown in Table 8 , where “HPC” and “CPC” indicate “high positive correlation” and “complete positive

correlation”, respectively. 
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Table 7 

r -values of sixteen pairs of four P -measure sets on the Face 

recognition dataset. 

r X G ( P ) X E ( P ) X E r (P) X H ( P ) 

X G ( P ) 1 

X E ( P ) 0.9974 1 

X E r (P) 0.9998 0.9987 1 

X H ( P ) 0.9949 0.9996 0.9968 1 

Table 8 

The correlation between two θ-measures. 

G θ E θ E r 
θ H θ

G θ CPC 

E θ HPC CPC 

E r 
θ HPC HPC CPC 

H θ HPC HPC HPC CPC 

Table 9 

Calculation table for the sum of squares of the four sets of data. 

x / R R G R E R Er R H �R ( �R ) 2 

x P 1 2.55 5.487 24.578 13.638 46.253 2139.340 

x P 2 0.896 3.734 10.633 11.381 26.644 709.903 

x P 3 0.306 2.546 4.347 9.214 16.413 269.387 

x P 4 0.295 2.483 4.171 9.037 15.986 255.552 

x P 5 0.281 2.423 3.967 8.889 15.56 242.114 

x P 6 0.257 2.299 3.586 8.565 14.707 216.296 

�x 4.585 18.972 51.282 60.724 135.563 3832.591 

�x 2 7.631 67.854 782.029 634.461 1491.974 

( �x ) 2 / n 3.504 59.989 438.307 614.567 1116.368 

n 6 6 6 6 N = 24 

x̄ 0.764 3.162 8.547 10.121 

 

 

 

 

 

 

6.2.3. Analysis of variance 

Analysis of variance (for short, ANOVA) is a collection of statistical models and their associated procedures (such as “vari-

ation” among and between groups) used to analyse the differences among group means. ANOVA was developed by statisti-

cian and evolutionary biologist Ronald Fisher. In its simplest form, ANOVA provides a statistical test of whether the means

of several groups are equal and therefore generalizes the t -test to more than two groups. ANOVA is useful for comparing

(testing) three or more means (groups or variables) for statistical significance. ANOVA is conceptually similar to multiple

two-sample t -tests and is therefore suited to a wide range of practical problems. 

We conduct a comprehensive F test for the ANOVA to verify whether there are significant differences in the effects of

the proposed measures. The test steps are as follows: 

Step 1 Propose the hypothesis. 

H 0 : μ1 = μ2 = μ3 = μ4 , 

H 1 : At least two population a v erages are not equal. 

Step 2 Calculate the value of the F test statistic. 

(1) Calculate the sums of square according to the data in Table 9 . 

Total sum of squares 

SS t = 

∑ ∑ 

x 2 − ( 
∑ ∑ 

x ) 2 

N 

= 1491 . 974 − 135 . 563 

2 

24 

= 726 . 253 , 

Inter-group sum of squares 

SS b = 

∑ 

[
( 
∑ 

x ) 2 

n 

]
− ( 

∑ ∑ 

x ) 2 

N 

= 1116 . 368 − 135 . 563 

2 

24 

= 350 . 646 , 

Block sum of squares 

SS r = 

∑ 

[
( 
∑ 

R ) 2 

K 

]
− ( 

∑ ∑ 

x ) 
2 

N 

= 

3832 . 591 

4 

− 135 . 563 

2 

24 

= 192 . 426 , 

where K = 4 is the number of groups. 

Sum of squares of errors 

SS e = SS t − SS − SS r = 183 . 181 . 
b 
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(2) Calculate the degrees of freedom 

Total degrees of freedom 

df t = N − 1 = 24 − 1 = 23 , 

Inter-group degrees of freedom 

df b = K − 1 = 4 − 1 = 3 , 

Block degrees of freedom 

df r = n − 1 = 6 − 1 = 5 , 

Error degree of freedom 

df e = 23 − 3 − 5 = 15 . 

(3) Calculate the variance 

Inter-group variance 

MS b = 

SS b 
df b 

= 

350 . 646 

3 

= 116 . 882 , 

Block variance 

MS r = 

SS r 

df r 
= 

192 . 426 

5 

= 38 . 485 , 

Error variance 

MS e = 

SS e 

df e 
= 

183 . 181 

15 

= 12 . 212 . 

(4) Calculate the F value 

F = 

MS b 
MS e 

= 

116 . 882 

12 . 212 

. 

Step 3 Statistical decision. 

df b = 3 , df e = 15 , α = 0 . 01 . Check the F -value table, F (3 , 15)0 . 01 = 5 . 42 . The actual value of the calculated F test statistic

F = 9 . 571 . Since F = 9 . 571 > F (3 , 15)0 . 01 = 5 . 42 , we have P ( F > 5.42) < 0.01. 

Note that the value of the sample statistic falls within the rejection region. Thus, the null hypothesis H 0 is rejected, and

the alternative hypothesis H 1 is accepted. Therefore, at least two of the overall averages in the four θ-measure sets are not

equal. Thus, there are significant differences in the effects of the proposed measures. 

7. Conclusions 

In this paper, we have proposed four measuring tools (i.e., θ-information granulation, θ-information amount, θ-rough

entropy and θ-information entropy) to evaluate the uncertainty of a given interval-valued information system by means

of its information structure. As an application of information granulation, we have proposed the rough entropy of a rough

set in interval-valued information systems. We have presented a numerical experiment on the Face recognition dataset

and conducted a statistical effectiveness analysis from three aspects, namely, dispersion analysis, correlation analysis and

variance analysis, to demonstrate the feasibility of the proposed measures. The measures proposed in this paper can be

applied to data mining from interval data. In the future, we will consider additional applications of the proposed measures.
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