

Accepted Manuscript

Multi-objective Embedding of Software-Defined Virtual Networks

Mohammad Khaksar Haghani , Bahador Bakhshi ,
Antonio Capone

PII: S0140-3664(17)31119-2
DOI: 10.1016/j.comcom.2018.07.017
Reference: COMCOM 5736

To appear in: Computer Communications

Received date: 19 October 2017
Revised date: 11 May 2018
Accepted date: 10 July 2018

Please cite this article as: Mohammad Khaksar Haghani , Bahador Bakhshi , Antonio Capone , Multi-
objective Embedding of Software-Defined Virtual Networks, Computer Communications (2018), doi:
10.1016/j.comcom.2018.07.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.comcom.2018.07.017
https://doi.org/10.1016/j.comcom.2018.07.017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Multi-objective Embedding of Software-Defined Virtual

Networks

Mohammad Khaksar Haghani

a
, Bahador Bakhshi

a,*
, Antonio Capone

b

a
Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran

b
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

* Corresponding Author

Email Addresses: mkhd_1369@aut.ac.ir (Mohammad Khaksar Haghani), bbakhshi@aut.ac.ir (Bahador

Bakhshi), capone@elet.polimi.it (Antonio Capone)
 Abstract- Softwarization is the current trend of networking based on the success of

technologies like Software Defined Networking (SDN) and Network Virtualization. Network

as a Service (NaaS) is a new paradigm based on virtualization that enables customers to

instantiate their virtual networks over a physical substrate network, mapping necessary

resources by a Virtual Network Embedding (VNE) algorithm. Each VNE algorithm defines

a resource allocation strategy of the NaaS provider, and determines its expenditures and

revenues. Even though the problem of VNE has been widely investigated in recent years,

virtualization in SDN introduces new challenges due to the new role of the controller and

additional architectural constraints. In this paper, we investigate the VNE problem where

both virtual and substrate networks are software defined. We propose a mathematical

programming formulation that considers both the objectives of the NaaS provider (profit

maximization) and the customers (switch-controller delay minimization). Proposing new

design metrics (i.e., k-hop delay, correlation, and distance), we develop a heuristic algorithm,

and prove its effectiveness through extensive simulations in the well-known VNE evaluation

tool, ALEVIN, and comparisons with other algorithms and mathematical bounds.

Keywords: Software Defined Networking (SDN); Virtual Network Embedding (VNE); Network

Virtualization; Multi-Objective Optimization; Network as Services (NaaS)

I. INTRODUCTION

In recent years, two technologies had major impact on computer networks, namely Software Define

Networking (SDN) [1] and Network Virtualization [2]. SDN has introduced a new networking

paradigm where the control plane is fully programmable and located in a logically centralized entity

called the controller, while switches are simple packet forwarding devices (the data plane) where

forwarding rules are programmed via an open interface e.g., ForCES [3], SoftRouter [4], and

OpenFlow [5] in their flow tables. In software-defined networks, the switch-controller delay is a new

important issue due to its impact on the network performance [6].

 Network Virtualization or "Network as a Service" (NaaS) allows to flexibly organize network

functions and to deploy multiple virtual networks on a shared physical substrate network, where

functions and resources are logically separated.

Allocation of resources to virtual network (VN) requests, the key issue in NaaS, is commonly

referred to as the Virtual Network Embedding (VNE) problem. In this problem, a set of VNs with

given resource and topology requests should be mapped on a resource-limited substrate network

optimizing specific efficiency objectives. A solution of the problem by a VNE algorithm is a resource

allocation mechanism of the NaaS provider that directly impacts expenditures (since it determines

substrate network resource consumption) and revenue (since it determines the VN requests that can be

accommodated). Hence, from business point of view, efficient VNE algorithms are vital tools to

manage the business of the NaaS providers.

The VNE problem can be divided into two sub-problems namely the virtual nodes mapping

(VNoM) and virtual links mapping (VLiM) problems. These sub-problems can be dealt with

separately, in a coordinated way, or jointly. More coordination leads to higher efficiency, however at

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the cost of significant computational complexity. Embedding virtual networks with nodes and links

constraints has been proven to be a NP-Hard problem [7]. This has motivated researchers to focus on

the development of heuristic methods able to provide good quality solutions for large instances in a

reasonable time.

Isolating the virtual tenant networks is a major implementation issue in network virtualization.

Recently, both the substrate and virtual networks are moving toward the SDN paradigm and use its

flexibility and programmability to enhance network virtualization including the isolation issue. SDN

hypervisor, e.g., FlowVisor [8], facilitates the isolation. It is a critical component for virtualizing

software-defined networks that abstracts the underlying physical SDN network into multiple logically

isolated virtual SDN networks [9]. It is located between the substrate network switches and the

controllers of the virtual SDN networks, and divides the substrate network resources into virtual slices

where each is under the control of a virtual network controller.

However, virtualization in SDN raises new issues in the VNE problem due to fundamental

architectural differences of SDN from the traditional networks including: a) the centrality and

importance of the controller which makes its placement an important problem [6], b) the constraints

of switches on the number of entries in the forwarding table, c) the critical role of switch-controller

delay, and d) virtualization by hypervisors whose location is vital in network performance. Therefore,

whereas the VNE problem in the traditional networks has been widely studied and various approaches

has been proposed [10], they are not directly applicable for the VNE problem in SDN.

Recently, a few attempts to tackle the VNE problem in SDN have been done, although with some

limitations. In [11], only the VLiM problem is investigated and the stages of nodes mapping and

controller placement are not taken into consideration. In [12] and [13], the placement of controller is

not considered and only the problems of embedding nodes and links are addressed. In [14], the

limitations of the resources of the substrate network are not considered and no coordination between

the mapping of nodes and links is made.

In this paper, we investigate the problem of embedding a set of virtual SDN-based networks in a

SDN-based substrate network where each virtual node/link is mapped on a physical node/path in the

substrate network. And, by assuming that a distributed hypervisor is used in the substrate network, the

controller of each VN is placed on a hypervisor instance in the substrate network. We consider both

the objective of the NaaS provider to maximize its profit and the objective of customers to minimize

the switch-controller delay in the VNs. We decompose the problem into two sub-problems and

propose Mixed Integer Linear Programming (MILP) models for each of them.

Even if the MILP formulations provide interesting results on the performance bounds, they cannot

be used to solve the problem in short time and/or on large instances. Therefore, we propose a novel

heuristic algorithm that considers the unique characteristics of the software-define networks, such as

the constraints on the number of entries in the flow table and also the location of the controller and

hypervisors. The proposed solution efficiently coordinates controller placement, nodes mapping, and

also links mapping. More precisely, the main contributions of this paper include:

 formulating and decomposing the problem of the virtual network embedding in SDN that aims to

maximize the business profit of NaaS provider and minimizing the delay between switches and

controller of the embedded virtual networks;

 development of appropriate design metrics for VNE algorithms in SDN, including the concept of

correlation between virtual nodes for node ranking, the k-hop delay concept for controller

placement, and the distance metric to minimize virtual link resource consumption;

 development a heuristic algorithm for VNE in SDN, SVE
1
, that is based on the design metrics, and

for the first time, coordinates the stages of controller placement, nodes mapping, and links

mapping;

1
 SVE stands for SDN Virtual network Embedding.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 extension of the well-known VNE evaluation tool, ALEVIN [15], to support SDN-based virtual

and substrate networks, which is used to evaluate the proposed algorithm in comparison to

previous work in different scenarios.

The rest of the paper is organized as follows. Section 2 provides an overview of the related

researches. In Section 3, the system model and formulation of the VNE in SDN problem as

optimization models are presented. In Section 4, we develop the SVE algorithm for solving the

embedding problem. The results obtained from the simulations are presented in Section 5; and in the

last section, the future directions are discussed.

II. PREVIOUS WORK

Virtual network embedding is the key issue of resource allocation in NaaS, which is composed of

the VNoM and VLiM sub-problems. The existing VNE approaches can be categorized into

coordinated, uncoordinated, and joint groups in term of the interaction between the sub-problems. In

the uncoordinated methods [16, 17], VNoM and VLiM are solved in two separated and uncoordinated

stages. In contrast, in the coordinated approaches, there is a coordination between the sub-problems

[18, 19]. In the joint approaches, both node and link mappings are performed jointly that increases the

efficiency of the embedding at the significant cost of computational complexity.

In [17], a two-stage node mapping scheme was proposed by means of resources migration to

improve resource usage and acceptance ratio of VN requests. In [16], to maximize the acceptance

ratio, it is aimed to reduce bottlenecks in the substrate network by a greedy algorithm for VNoM that

maps virtual nodes on the substrate nodes with the maximum available resources.

A recursive algorithm named VT-Planner was proposed in [18], which coordinates between VNoM

and VLiM by minimizing the link pressure index in the node mapping stage. In [19], coordination

between these two sub-problems was formulated as a MIP model; and to tackle its complexity, two

rounding techniques, namely deterministic and random, were used.

Even though the VNE problem in traditional networks has been widely investigated [2, 10], the

proposed approaches cannot be directly applied to VNE in SDN because of the fundamental different

characteristics of SDN. First, due to the crucial role of the controller in SDN, its placement is an

important issue. In [6], the controller placement problem in a given (not necessarily virtual) SDN

network, and its effect on the switch-controller delay, as an important factor in the network

performance, was studied. However, it is not considered in the traditional VNE algorithms. It must be

noted that network (nodes and links) embedding via the traditional VNE algorithms and then placing

the controller in the embedded network, which are conducted in two separated stages, is not a

feasible/efficient solution for the VNE in SDN problem. Because node mapping should be

coordinated with controller placement in order to satisfy the required switch-controller delay in the

embedded virtual network. Neither the traditional VNE algorithms nor the controller placement

methods consider this coordination.

Second, the size of flow table in SDN switches, as a new kind of substrate network resources,

should also be managed. Finally, virtualization technologies in SDN are different from the traditional

networks. In SDN, hypervisor has the responsibility of virtualizing the substrate network. It sits

between the tenant SDN controllers and their respective virtual SDN networks and processes control

traffic exchanged between them. Since switch-controller communication takes place through the

hypervisor, its placement also impacts the performance of virtual networks. For scalability,

performance and fault tolerance reasons, a distributed hypervisor can be used in the substrate network

wherein multiple instances of the controller are installed in different locations. The problem of

obtaining the required number and locations of the hypervisor instances, kwon as hypervisor

placement problem (HPP), was studied in [20] and [21]. These papers assumed that the mapping of

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

virtual nodes and virtual links and also the placement of the virtual SDN controllers are given and

aimed to minimize the switch-controller latency through the solution of HPP. In contrary, in this

paper, we propose a solution for embedding virtual SDN networks, composed of node and link

mapping and controller placement stages in a coordinated manner, which not only minimizes the

latency, but also maximizes the profit of the NaaS provider. In this approach, the location of

hypervisors is determined by the placement of the virtual controllers, i.e., an instance of the

hypervisor is installed on a substrate node if at least one virtual controller is mapped on it.

Recently, few studies have studied the VNE problem in SDN including [11], [12], [13], and [14].

In [12], the embedding problem was modeled as an ILP problem and a heuristic algorithm was

proposed to solve the problem in large instances. The algorithm minimizes the link bandwidth

consumption and the number of used substrate nodes. Whereas the solution was proposed for SDN,

the controller placement problem is not considered, and also there is no effort to minimize the switch-

controller delay.

In [11], the VLiM problem was formulated as a MILP model and a new algorithm named VLM was

developed. VLM maps virtual links according to available bandwidth of physical links. It attempts to

maximize the number of accepted links while minimizing substrate resources consumption. In [11],

only VLiM is solved and the VNoM problem is neglected. Moreover, the controller placement,

switch-controller delay, and flow table limitation are not considered. In [13], a MIP formulation, for a

coordinated node and link mapping was proposed. The aim in this work is to maximize the revenue

while minimizing resource consumption. The constraints taken into account are CPU capacity of

nodes and the bandwidth on links. Moreover the controller placement is not considered.

The closest work to this paper, i.e., [14], takes controller placement into account. In that paper, two

objectives are considered, namely balancing stress on substrate resources and minimizing the switch-

controller delay. To determine the stress on a substrate node, in addition to the number of mapped

virtual nodes on it, the computational power and the flow table space needed to handle the virtual

links go through the node are also considered. In that paper, two algorithms named SBE
1
 and DME

2

were developed. SBE focuses on balancing the stress on substrate resources while keeping the switch-

controller delay within a given bound. On the other hand, DME minimizes the switch-controller delay

while limiting the stress on substrate nodes and links. In comparison to other works, the SBE and

DME algorithms are more applicable to VNE in SDN; however, they have considerable drawbacks. In

these algorithms, the constraints of the capacity of the substrate resources, especially the size of

switches’ flow table, are not considered. Besides, node mapping, link mapping, and controller

placement are performed in three separated and uncoordinated steps. Finally, the SBE and DME

algorithms do not directly consider the business profit of the NaaS provider.

In summary, there is a considerable research gap in the problem of embedding software-defined

virtual networks. In this paper, we formulate and solve the multi-objective VNE in SDN to maximize

the profit of NaaS provider and minimize the switch-controller delay. We consider the special

constraints of SDN in addition to traditional networks. More importantly, we coordinate the node

mapping, link mapping, and the controller placement stages in our solution. Moreover, assuming

using of a distributed hypervisor, we also determine the location of the instances of the hypervisor.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, first, the assumptions made in this paper are clarified. Then the abstract model of the

substrate network and VN requests are explained. Finally, the problem of multi-objective embedding

of software-defined virtual network is decomposed and formulated as two MILP optimization models.

The notations used in this paper are summarized in Table I.

1
 Stress-Balancing Embedding

2
 Delay-Minimizing Embedding

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A. Assumptions

In this paper, we study the off-line version of the VNE problem wherein all VN requests are known

and given at the beginning. Each VN request can only be mapped on a subset of substrate nodes
1
, if

there are enough resources, i.e., CPU, flow table and bandwidth, in the subset, this request is

accepted, otherwise it is rejected.

Table I. Notations

Notation Description
 The set of substrate network nodes
 The set of substrate network links

The set of substrate network nodes capable to host VN’s
controller and substrate hypervisor instances

 The CPU capacity of substrate node
 The flow table capacity of substrate node

 The bandwidth capacity of substrate link

 The minimum delay between substrate nodes and

 The set of nodes of VN request

 The set of links of VN request

The subset of substrate nodes that VN can be
mapped on them

The subset of substrate nodes that delay between them
and node is greater than .

 The required CPU capacity for

 The required flow table capacity for

 The required bandwidth capacity for

D The set of VN requests
 The number of virtual nodes mapped on
 The number of virtual links go through
 The set of virtual links mapped on

 The upper limit of the switch-controller delay
 Revenue of allocating a unit of CPU for a customer

 Revenue of allocating a unit of bandwidth for customer
 Cost of using a unit of bandwidth of substrate links

Each virtual node of a given VN is mapped on only one substrate node, and two virtual nodes of a

VN are not mapped on the same substrate node.

To provide virtualization functionality in SDN, different hypervisor architectures were introduced in

[21]. In this article, we assume that the NaaS provider uses the distributed hypervisor to isolate

tenants’ virtual networks.

In this architecture, multiple hypervisor instances are distributed over several locations in the

network, and the substrate network switches support the multiple-controller feature2, and

consequently can be controlled by multiple hypervisor instances3. We assume that in the physical

location of a subset of substrate nodes, there is a server in addition to the switch. In the case of

mapping of at least a virtual SDN controller to these nodes, an instance of the distributed hypervisor is

installed on the server to host the mapped virtual controller(s). It is assumed that there is only one

controller per virtual SDN.

The architectures of the virtual networks and the substrate network, based on these assumptions, are

illustrated in Fig. 1(a) and Fig. 1(b), respectively.

1
 The set considers various constraints, e.g., geographical constraint.

2
 This feature was introduced in version 1.5 of the OpenFlow protocol.

3
 The architecture is identical to the “Distributed Network Hypervisor Architecture for Multi-Controller SDN Switches,” in

proposed in [21]. For more details about the architecture, please see. Fig. 1(c) and Section III.C.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) Two virtual networks (b) Substrate network (c) Embedding of the VNs in the substrate network

Fig. 1. An illustration of the architecture of virtual networks, the architecture of the substrate network, and mapping of the VNs in the substrate

network. The controllers of both VN requests are mapped on node G; hence, an instance of the distributed hypervisor is installed on the server to

host the virtual controllers.

As it shown, in the virtual networks, there is a controller that is connected to each switch via a

dedicated link. In the illustrated substrate network, in nodes A, C, and G, there is also a server,

depicted by hexagonal, besides the switch. Fig. 1(c) shows a mapping of the VNRs in the substrate

network. The mappings of the nodes and links are depicted by dashed arrows. In this example, both

the virtual controllers are mapped on node G. Therefore, an instance of the hypervisor is installed on

the server in this node.

A. Substrate Network Model

The substrate network is represented by a directed graph () where is the set of

substrate nodes, is the set of substrate network links, and is a subset of the substrate

nodes which are capable to host a hypervisor instance and consequently virtual SDNs’ controllers,

i.e., in addition to switch, there is a server in these nodes, e.g., nodes A, C, and G in Fig. 1(b). For

each substrate node , the CPU and flow table capacities
1
 are respectively denoted by and .

The substrate link between nodes and has a bandwidth capacity which is indicated by . The

delay from node to node via the shortest (minimum delay) path between them is denoted by .

For each , we define its forbidden set as { | where is the maximum

acceptable switch-controller delay in the VNs. If the controller of a given VN is mapped on , its

respective switches cannot be mapped on .

The business model of the NaaS provider who is the owner of the substrate network is as follows.

The revenue is generated by accepting VN requests and allocating the required resources. It is

proportional to the amount of the requested resources; more specifically, the revenue by allocating a

unit of CPU and bandwidth for customers is and respectively. Regarding the expenditure, it is

assumed that the substrate switches and servers are the provider’s assets and installed in physical

locations owned by the provider. Hence, allocating resources on the substrate nodes does not impose

any cost for the NaaS provider. In contrast, bandwidth allocation on the substrate links is costly since

1
 In this paper, we focus on substrate switches resources and don’t consider the capacity constraint of the servers.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

it is assumed that the NaaS provider leases the links between substrate nodes from another carrier

[22]
1
. In summary, bandwidth allocation on the substrate links is the only cost that the NaaS provider

should pay which is per unit of bandwidth.

B. Virtual Network Request Model

The VN request is represented by a graph

 ; where

 is the set of the nodes

of the request,
 is the set of the links, and is a subset of substrate nodes that can be used

for mapping
 . The required CPU and flow table capacities of node

 are denoted by

and
 , respectively. The requested bandwidth on link

 is denoted by
 . The set

contains all VN requests.

As depicted in Fig. 1(a), in each virtual network, there is a direct link between each switch and the

controller for the southbound communications (i.e., OpenFlow protocol). Its delay must be less than a

given parameter . More precisely, assuming that the controller of
 is mapped on substrate node ,

virtual node
 must not be mapped on the substrate nodes since the minimum delay

between and is more than .

C. Formulation of VNE in SDN

In this section, we formulate the problem of multi-objective embedding of software-defined virtual

networks. For a given substrate network , a set of VN requests, and the maximum acceptable

switch-controller delay , the objective is to accept a set of requests that maximizes the profit of the

NaaS provider (according to the aforementioned business model) while minimizing the switch-

controller delay in the accepted VNs. Even though the maximum of the delay is bounded by

parameter , its minimization is crucial for the timely response of the controller to switch that impacts

the performance of the virtual SDNs. This two-fold objective simultaneously takes the goals of the

NaaS provider and customers into account.

This embedding problem can be formulated as a single multi-objective MILP optimization model.

However, that leads to a complicated model that even cannot be solved for small instances because of

the coupling between decision variables in the objective function. In the following, we decompose the

multi-objective MILP into two sub-problems.

The VNE algorithm is the NaaS provider’s tool to maximize its profit. In short-term, the goal is

achieved by satisfying the QoS requirements of the accepted requests. In long-term, it is influenced by

customers’ QoE that depends on the performance of the embedded virtual network; and it is

determined by the switch-controller delay. Therefore, minimizing the delay not only is the objective

of the customers but also boosts the NaaS provider’s profit. Accordingly, the NaaS provider should

consider minimizing the delay in the VNE algorithm; however, since its effect is long-term and

indirect, the direct short-term profit maximization is prioritized over the delay minimization. Based on

this fact, in the following, the problem is formulated in two stages. At the first step, we formulate

maximizing the profit while maintaining QoS requirements of accommodated requests. Then, in the

second stage, to improve the performance of accepted requests, we formulate minimizing the

maximum switch-controller delay while maintaining the maximum achievable profit determined by

the first sub-problem.

The following decision variables are used to develop the optimization models:

 is a binary variable that is equal to 1 if
 is accepted; otherwise it is 0.


 is a binary variable that is equal to 1 if virtual node

 is mapped on substrate node

 ; otherwise, it is 0.

1
 In practical cases, establishment of links between physical locations needs authorities which are given to a limited number of

carrier companies.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T


 is a binary variable that is equal to 1 if link belongs to the path that link

 is mapped on; otherwise, it is 0.


 is a binary variable that is equal to 1 if the controller of

 is mapped on ; otherwise, it

is 0.


 is a binary variable that is equal to 1 if a

 is mapped on node ; otherwise, it is 0.

In the following, the objective function and constraints are formulated and then the important notes

about them are clarified.

In the first model, the goal is to maximize the profit; thus, the objective function is

(1)

where and are the revenue and cost of embedding, respectively. According to the

aforementioned business model, they are as follows:

(2) ∑ ∑

 ∑ ∑



(3) ∑ ∑ ∑



The constraints of the problem are the node and link capacity constraints, virtual node and link

mapping, and the switch-controller delay constraints, which are formulated as follows.

The constraints on the capacity of substrate node’s CPU and flow table are (4) and (5).

 ∑ ∑

 ∑ ∑

The substrate link’s bandwidth constraint is



∑ ∑

The constraint to map a virtual link on a path in substrate network is (7).

 ∑

 ∑

 

The constraints for the relations between the variables are



 ∑



∑



 ∑

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T


 ∑

The following equation formulates the maximum tolerable delay between switches and controller,



 



Finally the domain constraints are as follows.


 { 



 

 { 



 

 { 


 

 { 

The following notes about these equations need to be clarified:

 Equations (1), (2), and (3) define the objective function. It is formulated based on the explained

business model that maximizes the profit obtained from embedding VN requests in cost of using

the carrier links.

 Substrate network resource constraints are formulated by (4), (5), and (6). As mentioned, in this

paper, we don’t consider the resources needed for the controllers, and moreover, since the volume

of the southbound communication traffic is negligible in comparison to data traffic, it is not

considered in the formulation.

 Constraint (7) guarantees that the virtual link
 is mapped on a path between the

substrate nodes that and are mapped on them.

 The constraint (8) guarantees that in the case of accepting
 , each virtual node

 is mapped

on a single substrate node.

 The constraint (9) guarantees that for each accepted request, two virtual nodes are not mapped on

the same substrate node.

 The constraint (10) indicates that if node is used for mapping a node of
 .

 The constraint (11) guarantees that if
 is accepted, its controller must be mapped on a substrate

network node.

 The constraint (12) guarantees that if the controller of
 is mapped on , i.e.,

 , and

delay between and exceeds , i.e., , then none of the switches of the request can be

mapped on , i.e.,
 must be zero. In other words, this constraint implies that the switches of

can only be mapped on a nodes that satisfy the switch-controller delay constraint.

In summary, the optimization model of the first stage is as follows.

maximize (1)

s. t. (2) – (16)

As explained, in the second stage, the objective is to minimize the maximum switch-controller delay

while maintaining the maximum obtainable profit. Therefore, in the second stage, the maximum profit

obtained at the first stage is added as the following constraint.

(17)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

All the constraints of the first stage model should also be satisfied in this model. Moreover, the

following constraint is added to limit the maximum switch-controller delay by which is minimized

in the objective function.



This inequality implies that if both
 and

 are equal one, has to be at least , otherwise it

does not impose any constraint.

In summary the optimization model of the second stage is as follows:

Minimize

s. t. (2) – (18)

The solution of the first stage problem determines the maximum achievable profit and the

corresponding acceptable VN requests. The solution of second model rearranges the mappings of the

accepted requests in order to minimize the switch-controller delay while maintaining the profit.

Note that the solution of the second stage problem specifies the mapping of virtual nodes and links

and also the placement of the virtual controllers. When the controller of
 is mapped on substrate

node ,
 , a hypervisor instance must also be installed on the server in node to host the

controller. Thus, in our approach, by solving the VNE problem that specifies the placement of the

controllers, the location and the required number of hypervisor instances, the HPP problem, are also

determined; in other words, the hypervisor placement problem is also implicitly solved.

Whereas decomposing the multi-objective problem into the sub-models decreases its complexity,

unfortunately these formulations also cannot be used to solve the problem in a reasonable time and/or

in practical instances due to the NP-Completeness of the problem [7]. This encourages us to develop a

heuristic algorithm for embedding software-defined VNs. It should be noted that in the following

sections, these optimization models are relaxed to obtain the performance bounds to evaluate the

heuristic algorithms.

IV. THE SVE ALGORITHM

In this section, we propose a heuristic algorithm named SVE to solve the multi-objective software-

defined VNE problem. At the beginning, the features and underlying ideas of SVE are explained, and

then, in the following subsections, the details are discussed.

The main features of SVE differentiating it from the existing methods are as follows:

 In addition to coordination between nodes and links mapping stages, for the first time, SVE

coordinates the controller placement and nodes mapping stages too.

 SVE tries to maximize the profit of NaaS provider meanwhile it also guarantees that the worst

switch-controller delay does not exceed r.

 In SVE, in addition to the CPU capacity, the number of entries in flow table is also considered as

a node constraint.

The SEV algorithm is designed based on a few key ideas. First, traditional VNE algorithms, e.g.,

[14], aim to distribute VN requests in the substrate network in order to balance the load and avoid

bottlenecks in the substrate network. However, in SVE, an opposite idea is used to reflect the

architectural differences between SDN and traditional networks. SVE takes the importance of switch-

controller delay into account by mapping virtual nodes around the controller.

Second, distributing virtual nodes in the substrate network leads to significant resource consumption

by virtual links since they are mapped on long paths. To reduce the cost, SVE coordinates the node

and link mapping stages by considering the bandwidth of virtual links in the node mapping stage.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Third, in the off-line version of the VNE problem, the information about all VN requests is

available at the beginning. This information is used by SVE to increase the profit by maximizing the

number of accepted requests while minimizing the cost of mapping. Both the acceptance probability

and the mapping cost are proportional to the amount of substrate resources needed for mapping a

request; and it is mainly influenced by virtual links because each virtual node is always mapped on a

single substrate node but a virtual link can be mapped on a path in substrate network where its length

determined by the embedding algorithm. To take this fact in consideration, SVE sorts VN requests

according to the total number of virtual links in descending order. In this way, large requests that

make more revenue are processed before other requests; therefore, their acceptance probabilities

increase that enhances the revenue, and since substrate links have not been consumed by the other

VNs, their large number of virtual links are mapped on short paths, that reduces the mapping cost.

Based on these ideas, the SVE algorithm, after sorting the requests, maps each VN in three stages.

At first step, the location of network controller is specified wherein mapping the nodes around the

controller is taken in consideration. In the second step, it maps the nodes while reflects the cost of link

mapping. Finally, at the third step, the links are mapped. The details and design considerations of

these steps are explained in the following subsections.

A. Controller Placement Stage

Controller placement has significant impact on both the NaaS provider’s and customer’s objectives.

More precisely, resource availability around the controller’s location in the substrate network

determines both the acceptance probability and the switch-controller delay. If controller is mapped on

a node where there is not enough resource in the neighbor, the VN request is likely rejected or the

virtual nodes of the request have to be mapped away from the controller that increases the delay and

also the mapping cost.

To locate a suitable place for controller and switches, in this paper, we use the stress index as the

load measure. The node and link stress indexes are defined in [23]; and redefined for SDN paradigm

in [14]. In this paper, we use the same definition of the node and link stress indexes.

For a substrate node , its stress is a weighted sum of the number of virtual nodes mapped on

it (), and the number of virtual links traversing that node (). More formally, the stress of

substrate node , denoted by , is

 

where and are design parameters that determine the importance of each factor of the node stress.

The stress of the substrate link is the sum of data and control traffic loads. Since we

assumed that control plane traffic is negligible in comparison to the data plane, it is not taken into

account. Let denotes the virtual links mapped on substrate link ; the stress of the link is

 ∑ ∑

 

To measure the availability of resources around a substrate node, we used the concept of

neighborhood resource availability (NR) which is defined in [23] as follows:


 (

)

(∑ (
)

)

where
 and

 are respectively the maximum node

and link stress of the substrate network. is the set of substrate links adjacent to s. A high

value indicates that node and its adjacent links are lightly loaded.

 reflects the NaaS provider’s objective in controller placement stage. However, to take the

customer’s objective into account, the delay between node and other substrate nodes should also be

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

considered. For this purpose, another metric named k-hop delay, denoted by is defined. Let

 is the -hop bounded neighbors of , i.e., the set of substrate nodes that are connected to node

 through at most hops, and then we have


∑

| |


The value of depends on node and VN request
 . It should be large enough to be able to map all

 on the neighbors. More formally,

 {|
 | | | 

 is different from the estimation used in [14], where the average delay to all substrate nodes

is obtained. However, the idea behind is that the substrate nodes which are unlikely be used

for mapping
 in the case of selecting for hosting the controller of

 , should not affect the

placement of the controller.

For placing the controller, SVE calculates for all nodes ; the node with the largest

is selected to place the controller. If there are several nodes with the same value of , the node with

the lowest is selected.

B. Nodes Mapping Stage

The main question of the node mapping stage is to find a substrate node to map a given virtual node.

However, in SVE, at first, we try to find the proper order of the virtual nodes for mapping. To clarify

the importance of this issue, consider mapping of two virtual nodes
 , where the required

bandwidth between them,
 , is very high. If after mapping on , nodes other than are

mapped, likely the substrate nodes around are used. Hence, there is not any room to map near ;

so, must be mapped on a node away from that increases the length of the path for mapping virtual

link ; and consequently increases the mapping cost.

We introduce the correlation coefficient metric to determine the appropriate order of virtual nodes

mapping that minimizes the cost. For a given request
 , the correlation coefficient for every non-

mapped virtual node
 with respect to the mapped nodes of the request is defined as



 

where,

 is a set of the virtual nodes that mapped before . This metric measures the

correlation between a non-mapped node and the mapped nodes
 in terms of required bandwidth

between them. indicates that required bandwidth between and the mapped

nodes is greater than the corresponding bandwidth for ; so, as explained before, to minimize the cost

of the virtual link mapping in the substrate network, node should be mapped before . Based on

this idea, in the node mapping stage, SVE dynamically ranks virtual nodes based on in

descending order
1
.

This node ranking mechanism is different from the procedures proposed in [24-26] that determine a

static order of virtual node mapping at the beginning. In SVE, the order of unmapped nodes depends

on the mapped nodes. In this way, it considers the resources that will be used by virtual links and

makes coordination between the node mapping and the link mapping stages. Moreover, since this

metric reflects the required virtual links bandwidth, SVE maps bandwidth intensive links on shorter

paths to reduce the cost.

Ranking substrate nodes for mapping a virtual node is the second issue in the node mapping stage.

SVE ranks the substrate nodes according to the weight metric. The weight for a substrate node

with respect to virtual node
 is defined as follows:

1
 For mapping the first node, where

 is empty, the node with the largest degree is selected.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T


 ∑

 

where, and is the substrate node that virtual node is mapped on, and is the number of

hops between the substrate nodes and . By this definition, the weight of for mapping is the

lower bound on the total bandwidth which will be used in the substrate network for mapping the

virtual links if is mapped on . By selecting a substrate node with the minimum weight,

SVE coordinates the node and link mapping stages even more to minimize the cost.

Similar to the ranking of the virtual nodes, substrate nodes’ ranking should also consider the NaaS

customer’s objective, i.e., minimizing the switch-controller delay. For this purpose, we define the

Distance of substrate node with respect to virtual node
 as follows:



 

 (

) (

)

where,
 is the set of substrate nodes that are not used for mapping virtual nodes

 up

to now,
 is the delay between and the substrate node that the controller of

 is mapped on it; and

 is a coefficient between 0 to 1. By changing the value of , the importance of each term is

controlled. Small value of reduces the importance of the switch-controller delay while its large

value reduces the importance of substrate resource consumption. To select the proper substrate node

for mapping , is calculated for all substrate nodes
 that have enough CPU and

flow table resources, then the node with the smallest Distance value is selected to map this virtual

node.

C. Link Mapping Stage

In this paper, each virtual link is mapped on a single path in the substrate network; therefore

mapping all virtual links of a given VN is an instance of the integer multi-commodity flow problem,

which is NP-hard [27]. To tackle its complexity, in SVE algorithm, the K-Shortest Path algorithm is

used to map the virtual links. To map
 , the minimum-delay paths are found from to

in the substrate network and is mapped on the shortest feasible path, i.e., has sufficient residual

bandwidth. The flowchart of the SVE algorithm is illustrated in Fig. 2.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 2. The Overall flowchart of the SVE algorithm

V. EVALUATION AND NUMERICAL RESULTS

In this section, the performance of SVE is compared with the SBE and DME algorithms [14] and

the bounds obtained from the optimization models. SBE aims to balance stress on substrate nodes and

links while guaranteeing the worst switch-controller delay. On the other hand, DME tries to minimize

the average switch-controller delays while limiting the stress.

A. Simulation Settings

For evaluations, the ALEVIN simulator
10

 was used [15]. The simulations were performed in 10

substrate networks with different topologies and sizes, depicted in Table II. The Waxman Generator

was used to create the virtual network requests, where the number of nodes is between 5 to 18,

parameter α is randomly selected from interval [0.3, 0.7], and .

In the following figures, the horizontal axis is the number of VN requests, which is the measure of

network load. In the simulations, for each number of requests, we created five different equal-size sets

of VNs. The sets of VNs are mapped on 10 different substrate networks. Therefore, the results in the

following figures are the average of 50 different embedding experiments, which is sufficient for about

94% confidence interval in the results.

10

 ALEVIN does not support SDN by default. It is extended for this purpose which is available at

ceit.aut.ac.ir/~bakhshis/papers/alevin-fork.zip

Start

Is there any VN
Request to map?

End

Calculate NR for all nodes in and
map the controller on node with
highest NR. If there are multiple
nodes, map the controller on node
with smaller average k-hop delay.

Choose next virtual node according to
node degree and correlation factor.

Is there any
unmapped virtual

node?

Map virtual node according to node
weight and Distance value.

No

Yes

Yes

NoMap virtual links using k-
shortest path alghorithm

Is node mapping
successful?

Is virtual links
mapping successful?

VN request is acceptedVN request is rejected

Sort VNs based on size (number of
virtual links) in descending order.

Yes

No

No

Yes

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In these simulations, we assumed that all substrate nodes are capable to host the controller, i.e.,

 moreover, all substrate nodes can be used for mapping each request, i.e.,
 .

The simulation settings are summarized in Table III.

Since the SBE and DME algorithms do not consider the node and link capacity constraints and

consequently always accept VN requests, we made modifications to enforce the resource constraints

in the algorithms.

Table II. Substrate Networks in Simulation

Substrate network # of nodes # of links

1 39 172

2 37 114

3 40 178

4 54 162

5 65 216

6 50 176

7 37 164

8 34 166

9 33 132

10 32 116

Table III. Simulation Settings

Parameter Value

Virtual Network Generator Waxman Generator

Waxman α parameter Randomly in [0.3, 0.7]

Waxman parameter 0.5

Number of nodes per VNR [5, 18]

SVE parameter 0.25

 50 ms

SVE parameter 1

SVE parameter 1

 SVE parameter 50

 100

 100

 1

In addition to the heuristic algorithms, the results of the optimization models are also presented as

the benchmark to evaluate the efficiency of the algorithms. Since the problem is NP-Hard, the models

cannot be solved even for small instances; so, in the following results, the upper-bounds for the

revenue and lower-bounds for the switch-controller delay were obtained by relaxing the binary

variables
 and

 .

B. Numerical Results

In this section, we use the acceptance rate, revenue, and revenue-to-cost ratio metrics to evaluate the

algorithms; these are the commonly used evaluation criteria of VNE algorithms. Moreover, the

average and maximum of the switch-controller delay, the particular metric of software-defined virtual

networks, are also evaluated.

B.1. Acceptance, Revenue and Cost

Fig. 3 shows the acceptance rate of the SVE, SBE, and DME algorithms. The results show that SVE

achieves better acceptance rate than the others since it considers the substrate resource consumption

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

by means of the correlation coefficient and distance metrics. The efficiency of SVE increases as more

load offered to the network, i.e., increasing the number of VN requests, because of the proper ordering

of VN requests according to their size by this algorithm. The performance of SVE is comparable to

the upper bound especially in the lightly loaded networks.

The revenue generated by each VNE algorithm is important for the NaaS provider. The comparison

between the revenue of the algorithms and the mathematical upper bound, i.e., the value of the

objective function of the LP relaxation of the first stage model, is depicted in Fig. 4. These results

show that, not only SVE accepts more requests, which is depicted in Fig. 3, but also, it generates more

revenue since it exploits the available information about the requests to order and map them

accordingly. Moreover, it has a comparable performance with respect to the mathematical bound. The

gap between SVE and the bound increases by the number of VN request which is in part due to

looseness of the bound.

Revenue to cost ratio is another important metric from the NaaS provider’s business point of view,

since two algorithms can have the same revenue and acceptance rate but in different amount of

substrate network resource consumption. This ratio shows how well the substrate network resources

are used. The results are shown in Table IV. As it shown, the SVE algorithm achieved considerably

higher revenue-to-cost ratio. The reason is the coordination between node and link mapping stages in

this algorithm. It tries to map adjacent nodes near each other by using the correlation coefficient and

distance metrics that decreases the cost of mapping.

Fig. 3. Acceptance rate of the algorithms and its upper bound with respect to number of VN requests

Fig. 4. Revenue of the algorithm and its upper bound with respect to number of VN requests

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

A
c
c
e

p
ta

n
c
e

 R
a

te
 (

%
)

Number of VN requests

SVE

SBE

DME

Bound

0

1500

3000

4500

6000

7500

9000

10500

1 2 3 4 5 6 7 8 9 10

R
e

v
e

n
u

e

Number of VN requests

SVE

SBE

DME

Bound

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table IV. Revenue-to-cost ratio of the algorithms and its upper bound with respect to number of VN requests

The number

of requests

Approach

SVE SBE DME Bound

2 0.609 0.378 0.486 0.812

4 0.634 0.388 0.485 0.804

6 0.608 0.384 0.489 0.781

8 0.600 0.375 0.460 0.752

10 0.580 0.367 0.455 0.752

B.2. Switch-controller delay

The most important performance metric for the NaaS customer, i.e., the switch-controller delay, is

evaluated in this section. The average and maximum of the delay for the heuristic algorithms and the

lower bounds are depicted in Fig. 5 and Fig. 6, respectively.

The average switch-controller delay in the networks mapped by SVE is less than the VNs which are

mapped by SBE, and it is comparable to DME. Note that results obtained from DME are less than the

results by SVE and even by the optimization models, it is not surprising. The algorithm only aims to

minimize the delay and does not consider NaaS provider’s profit therefore it accepts a fewer requests

and minimize the delay in the accepted demands which can be less than the delay in the case of

accepting more requests, which is obtained by SVE or the optimization model.

Therefore, it accepts a little number of requests (which is shown in Fig. 3) and tries to map the nodes

around the controller to minimize the delay. On the other hand, the average delay for SBE is very high

since it does not attempt to minimize it. The lower bound on the delay, i.e., the value of the objective

function of the second stage model, is also depicted in the figure that shows the efficiency of SVE. As

shown in Fig. 6, similar to the average switch-controller delay, the maximum of the delay for SVE is

much less than SBE and more than DME. These results, in conjunction with the results in the previous

section, confirm that SVE can efficiently satisfy both the provider and customer objectives.

Fig. 5. The average switch-controller delay in mapped VN requests by the algorithms and optimization model

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 S

w
it

c
h

-C
o

n
tr

o
ll

e
r

D
e

la
y
 (

m
s
)

Number of VN requests

SVE

SBE

DME

Bound

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Fig. 6. The maximum switch-controller delay in mapped VN requests by the algorithms and optimization model

B.3. Impact of design parameters

SVE is a parametric algorithm, where the parameters and influence on the performance of the

algorithm. The parameter determines the number of hops which are used to estimate the K-hop

delay. In SVE, it is claimed that bounding the number of hops leads to a better estimation of delay,

and consequently more suitable location of controller is found that decreases the delay between

switches and controllers. This statement is satisfied in Fig. 7 where the average delays of two versions

of SVE are depicted. In one version, depicted by dashed lines, the K-hop bounding is used where is

determined by (23), while in the second version, depicted by solid line, the K-hop bounding

mechanism is removed from the algorithm. As indicated, using the K-hop delay leads to decrease in

the switch-controller communication delay.

The second parameter is that balances between the profit and the delay. The effect of this

parameter is shown in Fig. 8 that depicts the average switch-controller delay by SVE for different

values of . By increasing the value of , SVE puts more attention to the delay and tries to map

virtual nodes as close as possible to the controller. Increasing the value of causes that SVE does

make effort to map virtual nodes alongside each other. Therefore, virtual links are mapped on longer

paths that increase the cost and consequently decrease the revenue-to-cost ratio. This effect of on

the ratio is shown in Table V.

Fig. 7. The impact of “K-hop delay” in the SVE algorithm on the switch-controller delay in the mapped VN requests

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

M
a

x
im

u
m

 S
w

it
c
h

-C
o

n
tr

o
ll

e
r

D
e

la
y

(m
s
)

Number of VN requests

SVE

SBE

DME

Bound

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 S

w
it

c
h

-C
o

n
tr

o
ll

e
r

D
e

la
y
 (

m
s
)

Number of VN requests

SVE With K-hop Delay

SVE Without K-hop Delay

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 8. The average switch-controller delay for different values of parameter δ in the SVE algorithm

Table V. The revenue to cost ratio of SVE for different values of

The number of

requests

revenue-to-cost ratio

2 0.631 0.591 0.518

4 0.632 0.614 0.551

6 0.614 0.599 0.550

8 0.612 0.582 0.512

10 0.599 0.563 0.513

VI. CONCLUSION AND FUTURE WORK

In this paper, the VNE problem is formulated in SDN ecosystem wherein a set of software-defined

VN requests are mapped on a SDN based substrate network in order to maximize the profit of the

NaaS provider and minimize the delay between switches and controller in the mapped VNs. The

problem is solved by the proposed algorithm which consists of three coordinated stages namely the

controller placement, virtual nodes mapping, and virtual links mapping stages.

In the controller placement stage, SVE maps controller to the node with most resources in its

neighbor according to the NR metric, and also considers the switch-controller delay by the K-hop

delay metric. In the node mapping stage, it selects virtual nodes for mapping in descending order of

the correlation coefficient metric that considers the amount of traffic volume between virtual nodes;

and maps them on the substrate node with the minimum weight and distance. Finally, an instance of

the distributed hypervisor is installed in the nodes where at least a controller mapped on.

In this paper, we considered several practical aspects of VNE in SDN; the following issues can be

investigated in future work:

 Whereas we use the NR, correlation coefficient, and distance metrics to coordinate controller

placement, virtual nodes mapping, and virtual links mapping; these stages are carried out in three

separate phases. For the next step, to achieve higher efficiency, these problems can be tackled as a

joint problem.

 In this paper, the embedding problem was considered in off-line mode, wherein the information of

all requests is available at the beginning; at the next step, the problem can be studied in on-line

mode where whole VN requests are not known in advance and arrive to the network one-by-one.

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 S

w
it

c
h

-C
o

n
tr

o
ll

e
r

D
e

la
y
 (

m
s
)

Number of VN requests

δ=0

δ=0.5

δ=1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

[1] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, "Software-defined

networking: A comprehensive survey," Proceedings of the IEEE, vol. 103, pp. 14-76, 2015.

[2] N. M. K. Chowdhury and R. Boutaba, "A survey of network virtualization," Computer Networks, vol. 54, pp. 862-876,

2010.

[3] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, et al., "Forwarding and control element separation

(ForCES) protocol specification," 2070-1721, 2010.

[4] T. Lakshman ,T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo, "The softrouter architecture," in Proc. ACM

SIGCOMM Workshop on Hot Topics in Networking, 2004.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, et al., "OpenFlow: enabling

innovation in campus networks," ACM SIGCOMM Computer Communication Review, vol. 38, pp. 69-74, 2008.

[6] B. Heller, R. Sherwood, and N. McKeown, "The controller placement problem," in Proceedings of the first workshop

on Hot topics in software defined networks, 2012, pp. 7-12.

[7] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves, "On the computational complexity of the virtual network

embedding problem," Electronic Notes in Discrete Mathematics, pp. 213-220, 2016.

[8] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, et al., "Flowvisor: A network

virtualization layer," OpenFlow Switch Consortium, Tech. Rep, pp. 1-13, 2009.

[9] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, "Survey on network virtualization hypervisors for software defined

networking," IEEE Communications Surveys & Tutorials, vol. 18, pp. 655-685, 2016.

[10] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach, "Virtual network embedding: A survey," IEEE

Communications Surveys & Tutorials, vol. 15, pp. 1888-1906, 2013.

[11] R. Trivisonno, I. Vaishnavi, R. Guerzoni, Z. Despotovic, A. Hecker, S. Beker, et al., "Virtual Links Mapping in Future

SDN-Enabled Networks," in Future Networks and Services (SDN4FNS), 2013 IEEE SDN for, 2013, pp. 1-5.

[12] A. R. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and R. Boutaba, "Design and management of dot: A distributed

openflow testbed," in 2014 IEEE Network Operations and Management Symposium (NOMS), 2014, pp. 1-9.

[13] R. Guerzoni, R. Trivisonno, I. Vaishnavi ,Z. Despotovic, A. Hecker, S. Beker, et al., "A novel approach to virtual

networks embedding for SDN management and orchestration," in Network Operations and Management Symposium

(NOMS), 2014 IEEE, 2014, pp. 1-7.

[14] M. Demirci and M. Ammar, "Design and analysis of techniques for mapping virtual networks to software-defined

network substrates," Computer Communications, vol. 45, pp. 1-10, 2014.

[15] A. Fischer, J. F. Botero Vega, M. Duelli, D. Schlosser, X. Hesselbach Serra, and H. De Meer, "ALEVIN-a framework

to develop, compare, and analyze virtual network embedding algorithms," in Open-Access-Journal Electronic

Communications of the EASST, 2011, pp. 1-12.

[16] M. Yu, Y. Yi, J. Rexford, and M. Chiang, "Rethinking virtual network embedding: substrate support for path splitting

and migration," ACM SIGCOMM Computer Communication Review, vol. 38, pp. 17-29, 2008.

[17] Y. Zhou, Y. Li, D. Jin, L. Su, and L. Zeng, "A virtual network embedding scheme with two-stage node mapping based

on physical resource migration," in Communication Systems (ICCS), 2010 IEEE International Conference on, 2010,

pp. 761-766.

[18] R. Riggio, F. De Pellegrini, E. Salvadori, M. Gerola, and R. D. Corin, "Progressive virtual topology embedding in

OpenFlow networks," in Integrated Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on,

2013, pp. 1122-1128.

[19] M. Chowdhury, M. R. Rahman, and R. Boutaba, "ViNEYard: virtual network embedding algorithms with coordinated

node and link mapping," IEEE/ACM Transactions on Networking (TON), vol. 20, pp. 206-219, 2012.

[20] A. Blenk, A. Basta, J. Zerwas, and W. Kellerer, "Pairing SDN with network virtualization: The network hypervisor

placement problem," in Network Function Virtualization and Software Defined Network (NFV-SDN) ,IEEE

Conference on, 2015, pp. 198-204.

[21] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer, "Control plane latency with SDN network hypervisors:

The cost of virtualization," IEEE Transactions on Network and Service Management, vol. 13 ,pp. 366-380, 2016.

[22] N. M. K. Chowdhury and R. Boutaba, "Network virtualization: state of the art and research challenges," IEEE

Communications magazine, vol. 47, 2009.

[23] Y. Zhu and M. H. Ammar, "Algorithms for Assigning Substrate Network Resources to Virtual Network Components,"

in INFOCOM, 2006.

[24] J. Ding, T. Huang, J. Liu, and Y.-j. Liu, "Virtual network embedding based on real-time topological attributes,"

Frontiers of Information Technology & Electronic Engineering, vol. 16, pp. 109-118, 201 5.

[25] M. Feng, J. Liao, J. Wang, S. Qing, and Q. Qi, "Topology-aware virtual network embedding based on multiple

characteristics," in Communications (ICC), 2014 IEEE International Conference on, 2014, pp. 2956-2962.

[26] Z. Wang, Y. Han, T. Lin, H. Tang ,and S. Ci, "Virtual network embedding by exploiting topological information," in

Global Communications Conference (GLOBECOM), 2012 IEEE, 2012, pp. 2603-2608.

[27] S. Even, A. Itai, and A. Shamir, "On the complexity of time table and multi-commodity flow problems," in

Foundations of Computer Science, 1975., 16th Annual Symposium on, 1975, pp. 184-193.

