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 Abstract- Softwarization is the current trend of networking based on the success of 

technologies like Software Defined Networking (SDN) and Network Virtualization. Network 

as a Service (NaaS) is a new paradigm based on virtualization that enables customers to 

instantiate their virtual networks over a physical substrate network, mapping necessary 

resources by a Virtual Network Embedding (VNE) algorithm. Each VNE algorithm defines 

a resource allocation strategy of the NaaS provider, and determines its expenditures and 

revenues. Even though the problem of VNE has been widely investigated in recent years, 

virtualization in SDN introduces new challenges due to the new role of the controller and 

additional architectural constraints. In this paper, we investigate the VNE problem where 

both virtual and substrate networks are software defined. We propose a mathematical 

programming formulation that considers both the objectives of the NaaS provider (profit 

maximization) and the customers (switch-controller delay minimization). Proposing new 

design metrics (i.e., k-hop delay, correlation, and distance), we develop a heuristic algorithm, 

and prove its effectiveness through extensive simulations in the well-known VNE evaluation 

tool, ALEVIN, and comparisons with other algorithms and mathematical bounds.  

Keywords: Software Defined Networking (SDN); Virtual Network Embedding (VNE); Network 

Virtualization; Multi-Objective Optimization; Network as Services (NaaS)   

I. INTRODUCTION 

In recent years, two technologies had major impact on computer networks, namely Software Define 

Networking (SDN) [1] and Network Virtualization [2]. SDN has introduced a new networking 

paradigm where the control plane is fully programmable and located in a logically centralized entity 

called the controller, while switches are simple packet forwarding devices (the data plane) where 

forwarding rules are programmed via an open interface e.g., ForCES [3], SoftRouter [4], and 

OpenFlow [5] in their flow tables. In software-defined networks, the switch-controller delay is a new 

important issue due to its impact on the network performance [6]. 

 Network Virtualization or "Network as a Service" (NaaS) allows to flexibly organize network 

functions and to deploy multiple virtual networks on a shared physical substrate network, where 

functions and resources are logically separated. 

Allocation of resources to virtual network (VN) requests, the key issue in NaaS, is commonly 

referred to as the Virtual Network Embedding (VNE) problem. In this problem, a set of VNs with 

given resource and topology requests should be mapped on a resource-limited substrate network 

optimizing specific efficiency objectives. A solution of the problem by a VNE algorithm is a resource 

allocation mechanism of the NaaS provider that directly impacts expenditures (since it determines 

substrate network resource consumption) and revenue (since it determines the VN requests that can be 

accommodated). Hence, from business point of view, efficient VNE algorithms are vital tools to 

manage the business of the NaaS providers.  

The VNE problem can be divided into two sub-problems namely the virtual nodes mapping 

(VNoM) and virtual links mapping (VLiM) problems. These sub-problems can be dealt with 

separately, in a coordinated way, or jointly. More coordination leads to higher efficiency, however at 
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the cost of significant computational complexity. Embedding virtual networks with nodes and links 

constraints has been proven to be a NP-Hard problem [7]. This has motivated researchers to focus on 

the development of heuristic methods able to provide good quality solutions for large instances in a 

reasonable time.  

Isolating the virtual tenant networks is a major implementation issue in network virtualization. 

Recently, both the substrate and virtual networks are moving toward the SDN paradigm and use its 

flexibility and programmability to enhance network virtualization including the isolation issue. SDN 

hypervisor, e.g., FlowVisor [8], facilitates the isolation. It is a critical component for virtualizing 

software-defined networks that abstracts the underlying physical SDN network into multiple logically 

isolated virtual SDN networks [9]. It is located between the substrate network switches and the 

controllers of the virtual SDN networks, and divides the substrate network resources into virtual slices 

where each is under the control of a virtual network controller.  

However, virtualization in SDN raises new issues in the VNE problem due to fundamental 

architectural differences of SDN from the traditional networks including: a) the centrality and 

importance of the controller which makes its placement an important problem [6], b) the constraints 

of switches on the number of entries in the forwarding table, c) the critical role of switch-controller 

delay, and d) virtualization by hypervisors whose location is vital in network performance. Therefore, 

whereas the VNE problem in the traditional networks has been widely studied and various approaches 

has been proposed [10], they are not directly applicable for the VNE problem in SDN.  

Recently, a few attempts to tackle the VNE problem in SDN have been done, although with some 

limitations. In [11], only the VLiM problem is investigated and the stages of nodes mapping and 

controller placement are not taken into consideration. In [12] and [13], the placement of controller is 

not considered and only the problems of embedding nodes and links are addressed. In [14], the 

limitations of the resources of the substrate network are not considered and no coordination between 

the mapping of nodes and links is made.  

In this paper, we investigate the problem of embedding a set of virtual SDN-based networks in a 

SDN-based substrate network where each virtual node/link is mapped on a physical node/path in the 

substrate network. And, by assuming that a distributed hypervisor is used in the substrate network, the 

controller of each VN is placed on a hypervisor instance in the substrate network. We consider both 

the objective of the NaaS provider to maximize its profit and the objective of customers to minimize 

the switch-controller delay in the VNs. We decompose the problem into two sub-problems and 

propose Mixed Integer Linear Programming (MILP) models for each of them.  

Even if the MILP formulations provide interesting results on the performance bounds, they cannot 

be used to solve the problem in short time and/or on large instances. Therefore, we propose a novel 

heuristic algorithm that considers the unique characteristics of the software-define networks, such as 

the constraints on the number of entries in the flow table and also the location of the controller and 

hypervisors. The proposed solution efficiently coordinates controller placement, nodes mapping, and 

also links mapping. More precisely, the main contributions of this paper include: 

 formulating and decomposing the problem of the virtual network embedding in SDN that aims to 

maximize the business profit of NaaS provider and minimizing the delay between switches and 

controller of the embedded virtual networks; 

 development of appropriate design metrics for VNE algorithms in SDN, including the concept of 

correlation between virtual nodes for node ranking, the k-hop delay concept for controller 

placement, and the distance metric to minimize virtual link resource consumption; 

 development a heuristic algorithm for VNE in SDN, SVE
1
, that is based on the design metrics, and 

for the first time, coordinates the stages of controller placement, nodes mapping, and links 

mapping; 

                                                      
1
 SVE stands for SDN Virtual network Embedding. 
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 extension of the well-known VNE evaluation tool, ALEVIN [15], to support SDN-based virtual 

and substrate networks, which is used to evaluate the proposed algorithm in comparison to 

previous work in different scenarios. 

The rest of the paper is organized as follows. Section 2 provides an overview of the related 

researches. In Section 3, the system model and formulation of the VNE in SDN problem as 

optimization models are presented. In Section 4, we develop the SVE algorithm for solving the 

embedding problem. The results obtained from the simulations are presented in Section 5; and in the 

last section, the future directions are discussed. 

II. PREVIOUS WORK 

Virtual network embedding is the key issue of resource allocation in NaaS, which is composed of 

the VNoM and VLiM sub-problems. The existing VNE approaches can be categorized into 

coordinated, uncoordinated, and joint groups in term of the interaction between the sub-problems. In 

the uncoordinated methods [16, 17], VNoM and VLiM are solved in two separated and uncoordinated 

stages. In contrast, in the coordinated approaches, there is a coordination between the sub-problems 

[18, 19]. In the joint approaches, both node and link mappings are performed jointly that increases the 

efficiency of the embedding at the significant cost of computational complexity. 

In [17], a two-stage node mapping scheme was proposed by means of resources migration to 

improve resource usage and acceptance ratio of VN requests. In [16], to maximize the acceptance 

ratio, it is aimed to reduce bottlenecks in the substrate network by a greedy algorithm for VNoM that 

maps virtual nodes on the substrate nodes with the maximum available resources. 

A recursive algorithm named VT-Planner was proposed in [18], which coordinates between VNoM 

and VLiM by minimizing the link pressure index in the node mapping stage. In [19], coordination 

between these two sub-problems was formulated as a MIP model; and to tackle its complexity, two 

rounding techniques, namely deterministic and random, were used.   

Even though the VNE problem in traditional networks has been widely investigated [2, 10], the 

proposed approaches cannot be directly applied to VNE in SDN because of the fundamental different 

characteristics of SDN. First, due to the crucial role of the controller in SDN, its placement is an 

important issue. In [6], the controller placement problem in a given (not necessarily virtual) SDN 

network, and its effect on the switch-controller delay, as an important factor in the network 

performance, was studied. However, it is not considered in the traditional VNE algorithms. It must be 

noted that network (nodes and links) embedding via the traditional VNE algorithms and then placing 

the controller in the embedded network, which are conducted in two separated stages, is not a 

feasible/efficient solution for the VNE in SDN problem. Because node mapping should be 

coordinated with controller placement in order to satisfy the required switch-controller delay in the 

embedded virtual network. Neither the traditional VNE algorithms nor the controller placement 

methods consider this coordination.   

Second, the size of flow table in SDN switches, as a new kind of substrate network resources, 

should also be managed. Finally, virtualization technologies in SDN are different from the traditional 

networks. In SDN, hypervisor has the responsibility of virtualizing the substrate network. It sits 

between the tenant SDN controllers and their respective virtual SDN networks and processes control 

traffic exchanged between them. Since switch-controller communication takes place through the 

hypervisor, its placement also impacts the performance of virtual networks. For scalability, 

performance and fault tolerance reasons, a distributed hypervisor can be used in the substrate network 

wherein multiple instances of the controller are installed in different locations. The problem of 

obtaining the required number and locations of the hypervisor instances, kwon as hypervisor 

placement problem (HPP), was studied in [20] and [21]. These papers assumed that the mapping of 
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virtual nodes and virtual links and also the placement of the virtual SDN controllers are given and 

aimed to minimize the switch-controller latency through the solution of HPP. In contrary, in this 

paper, we propose a solution for embedding virtual SDN networks, composed of node and link 

mapping and controller placement stages in a coordinated manner, which not only minimizes the 

latency, but also maximizes the profit of the NaaS provider. In this approach, the location of 

hypervisors is determined by the placement of the virtual controllers, i.e., an instance of the 

hypervisor is installed on a substrate node if at least one virtual controller is mapped on it. 

Recently, few studies have studied the VNE problem in SDN including [11], [12], [13], and [14]. 

In [12], the embedding problem was modeled as an ILP problem and a heuristic algorithm was 

proposed to solve the problem in large instances. The algorithm minimizes the link bandwidth 

consumption and the number of used substrate nodes. Whereas the solution was proposed for SDN, 

the controller placement problem is not considered, and also there is no effort to minimize the switch-

controller delay.  

In [11], the VLiM problem was formulated as a MILP model and a new algorithm named VLM was 

developed. VLM maps virtual links according to available bandwidth of physical links. It attempts to 

maximize the number of accepted links while minimizing substrate resources consumption. In [11], 

only VLiM is solved and the VNoM problem is neglected. Moreover, the controller placement, 

switch-controller delay, and flow table limitation are not considered. In [13], a MIP formulation, for a 

coordinated node and link mapping was proposed. The aim in this work is to maximize the revenue 

while minimizing resource consumption. The constraints taken into account are CPU capacity of 

nodes and the bandwidth on links. Moreover the controller placement is not considered.  

The closest work to this paper, i.e., [14], takes controller placement into account. In that paper, two 

objectives are considered, namely balancing stress on substrate resources and minimizing the switch-

controller delay. To determine the stress on a substrate node, in addition to the number of mapped 

virtual nodes on it, the computational power and the flow table space needed to handle the virtual 

links go through the node are also considered. In that paper, two algorithms named SBE
1
 and DME

2
 

were developed. SBE focuses on balancing the stress on substrate resources while keeping the switch-

controller delay within a given bound. On the other hand, DME minimizes the switch-controller delay 

while limiting the stress on substrate nodes and links. In comparison to other works, the SBE and 

DME algorithms are more applicable to VNE in SDN; however, they have considerable drawbacks. In 

these algorithms, the constraints of the capacity of the substrate resources, especially the size of 

switches’ flow table, are not considered. Besides, node mapping, link mapping, and controller 

placement are performed in three separated and uncoordinated steps. Finally, the SBE and DME 

algorithms do not directly consider the business profit of the NaaS provider.  

In summary, there is a considerable research gap in the problem of embedding software-defined 

virtual networks. In this paper, we formulate and solve the multi-objective VNE in SDN to maximize 

the profit of NaaS provider and minimize the switch-controller delay. We consider the special 

constraints of SDN in addition to traditional networks. More importantly, we coordinate the node 

mapping, link mapping, and the controller placement stages in our solution. Moreover, assuming 

using of a distributed hypervisor, we also determine the location of the instances of the hypervisor. 

III. SYSTEM MODEL AND PROBLEM STATEMENT 

In this section, first, the assumptions made in this paper are clarified. Then the abstract model of the 

substrate network and VN requests are explained. Finally, the problem of multi-objective embedding 

of software-defined virtual network is decomposed and formulated as two MILP optimization models. 

The notations used in this paper are summarized in Table I. 

                                                      
1
 Stress-Balancing Embedding 

2
 Delay-Minimizing Embedding 
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A. Assumptions 

In this paper, we study the off-line version of the VNE problem wherein all VN requests are known 

and given at the beginning. Each VN request can only be mapped on a subset of substrate nodes
1
, if 

there are enough resources, i.e., CPU, flow table and bandwidth, in the subset, this request is 

accepted, otherwise it is rejected.  

 

Table I. Notations 

Notation Description 
   The set of substrate network nodes 
   The set of substrate network links 

   
The set of substrate network nodes capable to host VN’s 
controller and substrate hypervisor instances 

   The CPU capacity of substrate node   
   The flow table capacity of substrate node    

       The bandwidth capacity of substrate link       

       The minimum delay between substrate nodes   and   

  
  The set of nodes of     VN request 

  
  The set of links of     VN request 

     
The subset of substrate nodes that     VN can be 
mapped on them 

   
The subset of substrate nodes that delay between them 
and node   is greater than  . 

  
  The required CPU capacity for     

  

  
  The required flow table capacity for     

  

      
  The required bandwidth capacity for         

  

D The set of VN requests 
      The number of virtual nodes mapped on      
      The number of virtual links go through      
       The set of virtual links mapped on          

   The upper limit of the switch-controller delay 
    Revenue of allocating a unit of CPU for a customer 

    Revenue of allocating a unit of bandwidth for customer 
  Cost of using a unit of bandwidth of substrate links 

Each virtual node of a given VN is mapped on only one substrate node, and two virtual nodes of a 

VN are not mapped on the same substrate node. 

To provide virtualization functionality in SDN, different hypervisor architectures were introduced in 

[21]. In this article, we assume that the NaaS provider uses the distributed hypervisor to isolate 

tenants’ virtual networks. 

In this architecture, multiple hypervisor instances are distributed over several locations in the 

network, and the substrate network switches support the multiple-controller feature2, and 

consequently can be controlled by multiple hypervisor instances3. We assume that in the physical 

location of a subset of substrate nodes, there is a server in addition to the switch. In the case of 

mapping of at least a virtual SDN controller to these nodes, an instance of the distributed hypervisor is 

installed on the server to host the mapped virtual controller(s). It is assumed that there is only one 

controller per virtual SDN. 

The architectures of the virtual networks and the substrate network, based on these assumptions, are 

illustrated in Fig. 1(a) and Fig. 1(b), respectively.  

  

 

                                                      
1
 The set considers various constraints, e.g., geographical constraint. 

2
 This feature was introduced in version 1.5 of the OpenFlow protocol. 

3
 The architecture is identical to the “Distributed Network Hypervisor Architecture for Multi-Controller SDN Switches,” in 

proposed in [21]. For more details about the architecture, please see. Fig. 1(c) and Section III.C. 
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(a) Two virtual networks (b) Substrate network (c) Embedding of the VNs in the substrate network 

Fig. 1. An illustration of the architecture of virtual networks, the architecture of the substrate network, and mapping of the VNs in the substrate 

network. The controllers of both VN requests are mapped on node G; hence, an instance of the distributed hypervisor is installed on the server to 

host the virtual controllers. 

 

 

As it shown, in the virtual networks, there is a controller that is connected to each switch via a 

dedicated link. In the illustrated substrate network, in nodes A, C, and G, there is also a server, 

depicted by hexagonal, besides the switch. Fig. 1(c) shows a mapping of the VNRs in the substrate 

network. The mappings of the nodes and links are depicted by dashed arrows. In this example, both 

the virtual controllers are mapped on node G. Therefore, an instance of the hypervisor is installed on 

the server in this node. 

A. Substrate Network Model 

The substrate network is represented by a directed graph    (        ) where    is the set of 

substrate nodes,    is the set of substrate network links, and        is a subset of the substrate 

nodes which are capable to host a hypervisor instance and consequently virtual SDNs’ controllers, 

i.e., in addition to switch, there is a server in these nodes, e.g., nodes A, C, and G in Fig. 1(b). For 

each substrate node     , the CPU and flow table capacities
1
 are respectively denoted by    and   . 

The substrate link between nodes   and   has a bandwidth capacity which is indicated by       . The 

delay from node   to node   via the shortest (minimum delay) path between them is denoted by       . 

For each     , we define its forbidden set as    {      |           where   is the maximum 

acceptable switch-controller delay in the VNs. If the controller of a given VN is mapped on  , its 

respective switches cannot be mapped on     . 

The business model of the NaaS provider who is the owner of the substrate network is as follows. 

The revenue is generated by accepting VN requests and allocating the required resources. It is 

proportional to the amount of the requested resources; more specifically, the revenue by allocating a 

unit of CPU and bandwidth for customers is    and    respectively. Regarding the expenditure, it is 

assumed that the substrate switches and servers are the provider’s assets and installed in physical 

locations owned by the provider. Hence, allocating resources on the substrate nodes does not impose 

any cost for the NaaS provider. In contrast, bandwidth allocation on the substrate links is costly since 

                                                      
1
 In this paper, we focus on substrate switches resources and don’t consider the capacity constraint of the servers. 
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it is assumed that the NaaS provider leases the links between substrate nodes from another carrier 

[22]
1
. In summary, bandwidth allocation on the substrate links is the only cost that the NaaS provider 

should pay which is   per unit of bandwidth. 

B. Virtual Network Request Model 

The     VN request is represented by a graph   
     

    
       ; where   

  is the set of the nodes 

of the request,   
  is the set of the links, and         is a subset of substrate nodes that can be used 

for mapping     
 . The required CPU and flow table capacities of node     

  are denoted by   
  

and   
 , respectively. The requested bandwidth on link         

  is denoted by       
 . The set   

contains all VN requests.  

As depicted in Fig. 1(a), in each virtual network, there is a direct link between each switch and the 

controller for the southbound communications (i.e., OpenFlow protocol). Its delay must be less than a 

given parameter  . More precisely, assuming that the controller of   
  is mapped on substrate node  , 

virtual node     
  must not be mapped on the substrate nodes      since the minimum delay 

between   and   is more than  .  

C. Formulation of VNE in SDN  

In this section, we formulate the problem of multi-objective embedding of software-defined virtual 

networks. For a given substrate network   , a set   of VN requests, and the maximum acceptable 

switch-controller delay  , the objective is to accept a set of requests that maximizes the profit of the 

NaaS provider (according to the aforementioned business model) while minimizing the switch-

controller delay in the accepted VNs. Even though the maximum of the delay is bounded by 

parameter  , its minimization is crucial for the timely response of the controller to switch that impacts 

the performance of the virtual SDNs. This two-fold objective simultaneously takes the goals of the 

NaaS provider and customers into account. 

This embedding problem can be formulated as a single multi-objective MILP optimization model. 

However, that leads to a complicated model that even cannot be solved for small instances because of 

the coupling between decision variables in the objective function. In the following, we decompose the 

multi-objective MILP into two sub-problems.  

The VNE algorithm is the NaaS provider’s tool to maximize its profit. In short-term, the goal is 

achieved by satisfying the QoS requirements of the accepted requests. In long-term, it is influenced by 

customers’ QoE that depends on the performance of the embedded virtual network; and it is 

determined by the switch-controller delay. Therefore, minimizing the delay not only is the objective 

of the customers but also boosts the NaaS provider’s profit. Accordingly, the NaaS provider should 

consider minimizing the delay in the VNE algorithm; however, since its effect is long-term and 

indirect, the direct short-term profit maximization is prioritized over the delay minimization. Based on 

this fact, in the following, the problem is formulated in two stages. At the first step, we formulate 

maximizing the profit while maintaining QoS requirements of accommodated requests. Then, in the 

second stage, to improve the performance of accepted requests, we formulate minimizing the 

maximum switch-controller delay while maintaining the maximum achievable profit determined by 

the first sub-problem.  

The following decision variables are used to develop the optimization models: 

    is a binary variable that is equal to 1 if   
  is accepted; otherwise it is 0. 

     
  is a binary variable that is equal to 1 if virtual node     

  is mapped on substrate node 

    ; otherwise, it is 0. 

                                                      
1
 In practical cases, establishment of links between physical locations needs authorities which are given to a limited number of 

carrier companies. 
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             
  is a binary variable that is equal to 1 if link          belongs to the path that link 

        
  is mapped on; otherwise, it is 0. 

   
  is a binary variable that is equal to 1 if the controller of   

  is mapped on     ; otherwise, it 

is 0. 

   
  is a binary variable that is equal to 1 if a     

  is mapped on node     ; otherwise, it is 0. 

In the following, the objective function and constraints are formulated and then the important notes 

about them are clarified.  

In the first model, the goal is to maximize the profit; thus, the objective function is  

(1)                

where     and      are the revenue and cost of embedding, respectively. According to the 

aforementioned business model, they are as follows: 

(2)       ∑ ∑   
 

    
 

   

  
   

   ∑ ∑       
 

        
 

   

  
   



(3)       ∑ ∑ ∑       
 

        
 

             
 

  
           



The constraints of the problem are the node and link capacity constraints, virtual node and link 

mapping, and the switch-controller delay constraints, which are formulated as follows.  

The constraints on the capacity of substrate node’s CPU and flow table are (4) and (5). 

      ∑ ∑   
 

    
 

     
 

  
   

    

      ∑ ∑   
 

    
 

     
 

  
   

    

The substrate link’s bandwidth constraint is 



          

∑ ∑       
 

        
 

             
 

  
   

        

The constraint to map a virtual link on a path in substrate network is (7). 

 ∑             
 

        

 ∑             
 

        

     
      

  

   
              

         

The constraints for the relations between the variables are   

    
          

 
 ∑     

 

      

    

    
             

∑     
 

    
 

    

    
            

  
  ∑     
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    
    ∑   

 

    

    

The following equation formulates the maximum tolerable delay between switches and controller, 

  
    

   

    
                 

Finally the domain constraints are as follows. 

   
       {    


   

         
             

        
    

  {    


   

             
  

          
            

  {    

   
           

    
  {    

The following notes about these equations need to be clarified: 

 Equations (1), (2), and (3) define the objective function. It is formulated based on the explained 

business model that maximizes the profit obtained from embedding VN requests in cost of using 

the carrier links.  

 Substrate network resource constraints are formulated by (4), (5), and (6). As mentioned, in this 

paper, we don’t consider the resources needed for the controllers, and moreover, since the volume 

of the southbound communication traffic is negligible in comparison to data traffic, it is not 

considered in the formulation. 

 Constraint (7) guarantees that the virtual link         
  is mapped on a path between the 

substrate nodes that   and   are mapped on them. 

 The constraint (8) guarantees that in the case of accepting   
 , each virtual node     

  is mapped 

on a single substrate node. 

 The constraint (9) guarantees that for each accepted request, two virtual nodes are not mapped on 

the same substrate node. 

 The constraint (10) indicates that if node        is used for mapping a node of   
 . 

 The constraint (11) guarantees that if   
  is accepted, its controller must be mapped on a substrate 

network node. 

 The constraint (12) guarantees that if the controller of   
  is mapped on     , i.e.,   

   , and 

delay between   and   exceeds  , i.e.,     , then none of the switches of the request can be 

mapped on  , i.e.,   
  must be zero. In other words, this constraint implies that the switches of   

  

can only be mapped on a nodes that satisfy the switch-controller delay constraint.  

In summary, the optimization model of the first stage is as follows. 

maximize (1) 

s. t. (2) – (16) 

As explained, in the second stage, the objective is to minimize the maximum switch-controller delay 

while maintaining the maximum obtainable profit. Therefore, in the second stage, the maximum profit 

obtained at the first stage        is added as the following constraint.  

(17)               
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All the constraints of the first stage model should also be satisfied in this model. Moreover, the 

following constraint is added to limit the maximum switch-controller delay by   which is minimized 

in the objective function.  

 
   

    
             

    
                     

This inequality implies that if both   
  and   

  are equal one,   has to be at least       , otherwise it 

does not impose any constraint. 

In summary the optimization model of the second stage is as follows: 

Minimize   

s. t. (2) – (18) 

The solution of the first stage problem determines the maximum achievable profit and the 

corresponding acceptable VN requests. The solution of second model rearranges the mappings of the 

accepted requests in order to minimize the switch-controller delay while maintaining the profit.   

Note that the solution of the second stage problem specifies the mapping of virtual nodes and links 

and also the placement of the virtual controllers. When the controller of   
  is mapped on substrate 

node  ,   
   , a hypervisor instance must also be installed on the server in node   to host the 

controller. Thus, in our approach, by solving the VNE problem that specifies the placement of the 

controllers, the location and the required number of hypervisor instances, the HPP problem, are also 

determined; in other words, the hypervisor placement problem is also implicitly solved. 

Whereas decomposing the multi-objective problem into the sub-models decreases its complexity, 

unfortunately these formulations also cannot be used to solve the problem in a reasonable time and/or 

in practical instances due to the NP-Completeness of the problem [7]. This encourages us to develop a 

heuristic algorithm for embedding software-defined VNs. It should be noted that in the following 

sections, these optimization models are relaxed to obtain the performance bounds to evaluate the 

heuristic algorithms. 

IV. THE SVE ALGORITHM 

In this section, we propose a heuristic algorithm named SVE to solve the multi-objective software-

defined VNE problem. At the beginning, the features and underlying ideas of SVE are explained, and 

then, in the following subsections, the details are discussed.  

The main features of SVE differentiating it from the existing methods are as follows: 

 In addition to coordination between nodes and links mapping stages, for the first time, SVE 

coordinates the controller placement and nodes mapping stages too.  

 SVE tries to maximize the profit of NaaS provider meanwhile it also guarantees that the worst 

switch-controller delay does not exceed r.  

 In SVE, in addition to the CPU capacity, the number of entries in flow table is also considered as 

a node constraint. 

The SEV algorithm is designed based on a few key ideas. First, traditional VNE algorithms, e.g., 

[14], aim to distribute VN requests in the substrate network in order to balance the load and avoid 

bottlenecks in the substrate network. However, in SVE, an opposite idea is used to reflect the 

architectural differences between SDN and traditional networks. SVE takes the importance of switch-

controller delay into account by mapping virtual nodes around the controller.  

Second, distributing virtual nodes in the substrate network leads to significant resource consumption 

by virtual links since they are mapped on long paths. To reduce the cost, SVE coordinates the node 

and link mapping stages by considering the bandwidth of virtual links in the node mapping stage. 
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Third, in the off-line version of the VNE problem, the information about all VN requests is 

available at the beginning. This information is used by SVE to increase the profit by maximizing the 

number of accepted requests while minimizing the cost of mapping. Both the acceptance probability 

and the mapping cost are proportional to the amount of substrate resources needed for mapping a 

request; and it is mainly influenced by virtual links because each virtual node is always mapped on a 

single substrate node but a virtual link can be mapped on a path in substrate network where its length 

determined by the embedding algorithm. To take this fact in consideration, SVE sorts VN requests 

according to the total number of virtual links in descending order. In this way, large requests that 

make more revenue are processed before other requests; therefore, their acceptance probabilities 

increase that enhances the revenue, and since substrate links have not been consumed by the other 

VNs, their large number of virtual links are mapped on short paths, that reduces the mapping cost.  

Based on these ideas, the SVE algorithm, after sorting the requests, maps each VN in three stages. 

At first step, the location of network controller is specified wherein mapping the nodes around the 

controller is taken in consideration. In the second step, it maps the nodes while reflects the cost of link 

mapping. Finally, at the third step, the links are mapped. The details and design considerations of 

these steps are explained in the following subsections.   

A. Controller Placement Stage 

Controller placement has significant impact on both the NaaS provider’s and customer’s objectives. 

More precisely, resource availability around the controller’s location in the substrate network 

determines both the acceptance probability and the switch-controller delay. If controller is mapped on 

a node where there is not enough resource in the neighbor, the VN request is likely rejected or the 

virtual nodes of the request have to be mapped away from the controller that increases the delay and 

also the mapping cost. 

To locate a suitable place for controller and switches, in this paper, we use the stress index as the 

load measure. The node and link stress indexes are defined in [23]; and redefined for SDN paradigm 

in [14]. In this paper, we use the same definition of the node and link stress indexes. 

For a substrate node     , its stress is a weighted sum of the number of virtual nodes mapped on 

it (     ), and the number of virtual links traversing that node (     ). More formally, the stress of 

substrate node  , denoted by      , is 

                      

where   and   are design parameters that determine the importance of each factor of the node stress. 

The stress of the substrate link          is the sum of data and control traffic loads. Since we 

assumed that control plane traffic is negligible in comparison to the data plane, it is not taken into 

account. Let        denotes the virtual links mapped on substrate link      ; the stress of the link is 

        ∑ ∑
      

 

      
        

          
   

To measure the availability of resources around a substrate node, we used the concept of 

neighborhood resource availability (NR) which is defined in [23] as follows: 

 
      (  

         )

(∑ (  
           )        

)

where   
                 and   

                           are respectively the maximum node 

and link stress of the substrate network.    is the set of substrate links adjacent to s. A high       

value indicates that node   and its adjacent links are lightly loaded. 

      reflects the NaaS provider’s objective in controller placement stage. However, to take the 

customer’s objective into account, the delay between node   and other substrate nodes should also be 
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considered. For this purpose, another metric named k-hop delay, denoted by          is defined. Let 

       is the  -hop bounded neighbors of  , i.e., the set of substrate nodes that are connected to node 

     through at most   hops, and then we have 

         
∑               

|      |


The value of   depends on node   and VN request   
 . It should be large enough to be able to map all 

    
  on the neighbors. More formally, 

         {|  
 |  |      |  

        is different from the estimation used in [14], where the average delay to all substrate nodes 

is obtained. However, the idea behind         is that the substrate nodes which are unlikely be used 

for mapping     
  in the case of selecting   for hosting the controller of   

 , should not affect the 

placement of the controller. 

For placing the controller, SVE calculates       for all nodes     ; the node with the largest    

is selected to place the controller. If there are several nodes with the same value of   , the node with 

the lowest         is selected. 

B. Nodes Mapping Stage 

The main question of the node mapping stage is to find a substrate node to map a given virtual node. 

However, in SVE, at first, we try to find the proper order of the virtual nodes for mapping. To clarify 

the importance of this issue, consider mapping of two virtual nodes       
 , where the required 

bandwidth between them,       
 , is very high. If after mapping   on     , nodes other than   are 

mapped, likely the substrate nodes around   are used. Hence, there is not any room to map   near  ; 

so,   must be mapped on a node away from   that increases the length of the path for mapping virtual 

link      ; and consequently increases the mapping cost.  

We introduce the correlation coefficient metric to determine the appropriate order of virtual nodes 

mapping that minimizes the cost. For a given request   
 , the correlation coefficient for every non-

mapped virtual node     
  with respect to the mapped nodes of the request is defined as 

                
       

                 
 

where,   
    

  is a set of the virtual nodes that mapped before  . This metric measures the 

correlation between a non-mapped node   and the mapped nodes   
  in terms of required bandwidth 

between them.                 indicates that required bandwidth between   and the mapped 

nodes is greater than the corresponding bandwidth for   ; so, as explained before, to minimize the cost 

of the virtual link mapping in the substrate network, node   should be mapped before   . Based on 

this idea, in the node mapping stage, SVE dynamically ranks virtual nodes based on        in 

descending order
1
. 

This node ranking mechanism is different from the procedures proposed in [24-26] that determine a 

static order of virtual node mapping at the beginning. In SVE, the order of unmapped nodes depends 

on the mapped nodes. In this way, it considers the resources that will be used by virtual links and 

makes coordination between the node mapping and the link mapping stages. Moreover, since this 

metric reflects the required virtual links bandwidth, SVE maps bandwidth intensive links on shorter 

paths to reduce the cost.   

Ranking substrate nodes for mapping a virtual node is the second issue in the node mapping stage. 

SVE ranks the substrate nodes according to the weight metric. The weight for a substrate node        

with respect to virtual node     
  is defined as follows: 

                                                      
1
 For mapping the first node, where   

  is empty, the node with the largest degree is selected. 
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 
       ∑       

         

     
 

 

where, and    is the substrate node that virtual node   is mapped on, and         is the number of 

hops between the substrate nodes   and   . By this definition, the weight of   for mapping   is the 

lower bound on the total bandwidth which will be used in the substrate network for mapping the 

virtual links       if   is mapped on  . By selecting a substrate node   with the minimum weight, 

SVE coordinates the node and link mapping stages even more to minimize the cost.  

Similar to the ranking of the virtual nodes, substrate nodes’ ranking should also consider the NaaS 

customer’s objective, i.e., minimizing the switch-controller delay. For this purpose, we define the 

Distance of substrate node      with respect to virtual node     
  as follows: 



              

     (
      

   
    

 
        

)   (
  

 

   
    

 
   

 )  

where,   
       is the set of substrate nodes that are not used for mapping virtual nodes     

  up 

to now,   
  is the delay between   and the substrate node that the controller of   

  is mapped on it; and 

  is a coefficient between 0 to 1. By changing the value of  , the importance of each term is 

controlled. Small value of   reduces the importance of the switch-controller delay while its large 

value reduces the importance of substrate resource consumption. To select the proper substrate node 

for mapping  ,               is calculated for all substrate nodes     
  that have enough CPU and 

flow table resources, then the node with the smallest Distance value is selected to map this virtual 

node. 

C. Link Mapping Stage 

In this paper, each virtual link is mapped on a single path in the substrate network; therefore 

mapping all virtual links of a given VN is an instance of the integer multi-commodity flow problem, 

which is NP-hard [27]. To tackle its complexity, in SVE algorithm, the K-Shortest Path algorithm is 

used to map the virtual links. To map         
 , the   minimum-delay paths are found from    to    

in the substrate network and       is mapped on the shortest feasible path, i.e., has sufficient residual 

bandwidth. The flowchart of the SVE algorithm is illustrated in Fig. 2.  
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Fig. 2. The Overall flowchart of the SVE algorithm 

 

 

V. EVALUATION AND NUMERICAL RESULTS 

In this section, the performance of SVE is compared with the SBE and DME algorithms [14] and 

the bounds obtained from the optimization models. SBE aims to balance stress on substrate nodes and 

links while guaranteeing the worst switch-controller delay. On the other hand, DME tries to minimize 

the average switch-controller delays while limiting the stress. 

A. Simulation Settings 

For evaluations, the ALEVIN simulator
10

 was used [15]. The simulations were performed in 10 

substrate networks with different topologies and sizes, depicted in Table II. The Waxman Generator 

was used to create the virtual network requests, where the number of nodes is between 5 to 18, 

parameter α is randomly selected from interval [0.3, 0.7], and      . 

In the following figures, the horizontal axis is the number of VN requests, which is the measure of 

network load. In the simulations, for each number of requests, we created five different equal-size sets 

of VNs. The sets of VNs are mapped on 10 different substrate networks. Therefore, the results in the 

following figures are the average of 50 different embedding experiments, which is sufficient for about 

94% confidence interval in the results. 

                                                      
10

 ALEVIN does not support SDN by default. It is extended for this purpose which is available at 

ceit.aut.ac.ir/~bakhshis/papers/alevin-fork.zip  

Start

Is there any VN 
Request to map?

End

Calculate NR for all nodes in     and 
map the controller on node with 
highest NR. If there are multiple 
nodes, map the controller on node 
with smaller average k-hop delay.
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node degree and correlation factor.
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unmapped virtual 
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NoMap virtual links using k-
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In these simulations, we assumed that all substrate nodes are capable to host the controller, i.e., 

       moreover, all substrate nodes can be used for mapping each request, i.e.,             
 . 

The simulation settings are summarized in Table III.  

Since the SBE and DME algorithms do not consider the node and link capacity constraints and 

consequently always accept VN requests, we made modifications to enforce the resource constraints 

in the algorithms. 

 

 

 

Table II. Substrate Networks in Simulation 

Substrate network # of nodes # of links 

1 39 172 

2 37 114 

3 40 178 

4 54 162 

5 65 216 

6 50 176 

7 37 164 

8 34 166 

9 33 132 

10 32 116 

 

Table III. Simulation Settings 

Parameter Value 

Virtual Network Generator Waxman Generator 

Waxman α parameter Randomly in [0.3, 0.7] 

Waxman   parameter 0.5 

Number of nodes per VNR [5, 18] 

      

            
  

SVE   parameter 0.25 

  50 ms 

SVE   parameter 1 

SVE   parameter 1 

 SVE   parameter 50 

    100 

     100 

  1 

In addition to the heuristic algorithms, the results of the optimization models are also presented as 

the benchmark to evaluate the efficiency of the algorithms. Since the problem is NP-Hard, the models 

cannot be solved even for small instances; so, in the following results, the upper-bounds for the 

revenue and lower-bounds for the switch-controller delay were obtained by relaxing the binary 

variables     
  and             

 . 

B. Numerical Results 

In this section, we use the acceptance rate, revenue, and revenue-to-cost ratio metrics to evaluate the 

algorithms; these are the commonly used evaluation criteria of VNE algorithms. Moreover, the 

average and maximum of the switch-controller delay, the particular metric of software-defined virtual 

networks, are also evaluated. 

B.1. Acceptance, Revenue and Cost 

Fig. 3 shows the acceptance rate of the SVE, SBE, and DME algorithms. The results show that SVE 

achieves better acceptance rate than the others since it considers the substrate resource consumption 
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by means of the correlation coefficient and distance metrics. The efficiency of SVE increases as more 

load offered to the network, i.e., increasing the number of VN requests, because of the proper ordering 

of VN requests according to their size by this algorithm. The performance of SVE is comparable to 

the upper bound especially in the lightly loaded networks.  

The revenue generated by each VNE algorithm is important for the NaaS provider. The comparison 

between the revenue of the algorithms and the mathematical upper bound, i.e., the value of the 

objective function of the LP relaxation of the first stage model, is depicted in Fig. 4. These results 

show that, not only SVE accepts more requests, which is depicted in Fig. 3, but also, it generates more 

revenue since it exploits the available information about the requests to order and map them 

accordingly. Moreover, it has a comparable performance with respect to the mathematical bound. The 

gap between SVE and the bound increases by the number of VN request which is in part due to 

looseness of the bound. 

Revenue to cost ratio is another important metric from the NaaS provider’s business point of view, 

since two algorithms can have the same revenue and acceptance rate but in different amount of 

substrate network resource consumption. This ratio shows how well the substrate network resources 

are used. The results are shown in Table IV. As it shown, the SVE algorithm achieved considerably 

higher revenue-to-cost ratio. The reason is the coordination between node and link mapping stages in 

this algorithm. It tries to map adjacent nodes near each other by using the correlation coefficient and 

distance metrics that decreases the cost of mapping. 

 

 
Fig. 3. Acceptance rate of the algorithms and its upper bound with respect to number of VN requests 

 
Fig. 4. Revenue of the algorithm and its upper bound with respect to number of VN requests 
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Table IV. Revenue-to-cost ratio of the algorithms and its upper bound with respect to number of VN requests 

The number 

of requests 

Approach 

SVE SBE DME Bound 

2 0.609 0.378 0.486 0.812 

4 0.634 0.388 0.485 0.804 

6 0.608 0.384 0.489 0.781 

8 0.600 0.375 0.460 0.752 

10 0.580 0.367 0.455 0.752 

B.2. Switch-controller delay 

The most important performance metric for the NaaS customer, i.e., the switch-controller delay, is 

evaluated in this section. The average and maximum of the delay for the heuristic algorithms and the 

lower bounds are depicted in Fig. 5 and Fig. 6, respectively.  

The average switch-controller delay in the networks mapped by SVE is less than the VNs which are 

mapped by SBE, and it is comparable to DME. Note that results obtained from DME are less than the 

results by SVE and even by the optimization models, it is not surprising. The algorithm only aims to 

minimize the delay and does not consider NaaS provider’s profit therefore it accepts a fewer requests 

and minimize the delay in the accepted demands which can be less than the delay in the case of 

accepting more requests, which is obtained by SVE or the optimization model. 

Therefore, it accepts a little number of requests (which is shown in Fig. 3) and tries to map the nodes 

around the controller to minimize the delay. On the other hand, the average delay for SBE is very high 

since it does not attempt to minimize it. The lower bound on the delay, i.e., the value of the objective 

function of the second stage model, is also depicted in the figure that shows the efficiency of SVE. As 

shown in Fig. 6, similar to the average switch-controller delay, the maximum of the delay for SVE is 

much less than SBE and more than DME. These results, in conjunction with the results in the previous 

section, confirm that SVE can efficiently satisfy both the provider and customer objectives. 

 
Fig. 5. The average switch-controller delay in mapped VN requests by the algorithms and optimization model 
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Fig. 6. The maximum switch-controller delay in mapped VN requests by the algorithms and optimization model 

B.3. Impact of design parameters 

SVE is a parametric algorithm, where the parameters   and   influence on the performance of the 

algorithm. The parameter   determines the number of hops which are used to estimate the K-hop 

delay. In SVE, it is claimed that bounding the number of hops leads to a better estimation of delay, 

and consequently more suitable location of controller is found that decreases the delay between 

switches and controllers. This statement is satisfied in Fig. 7 where the average delays of two versions 

of SVE are depicted. In one version, depicted by dashed lines, the K-hop bounding is used where   is 

determined by (23), while in the second version, depicted by solid line, the K-hop bounding 

mechanism is removed from the algorithm. As indicated, using the K-hop delay leads to decrease in 

the switch-controller communication delay. 

The second parameter is   that balances between the profit and the delay. The effect of this 

parameter is shown in Fig. 8 that depicts the average switch-controller delay by SVE for different 

values of  . By increasing the value of  , SVE puts more attention to the delay and tries to map 

virtual nodes as close as possible to the controller. Increasing the value of   causes that SVE does 

make effort to map virtual nodes alongside each other. Therefore, virtual links are mapped on longer 

paths that increase the cost and consequently decrease the revenue-to-cost ratio. This effect of   on 

the ratio is shown in Table V. 

 
Fig. 7. The impact of “K-hop delay” in the SVE algorithm on the switch-controller delay in the mapped VN requests 
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Fig. 8. The average switch-controller delay for different values of parameter δ in the SVE algorithm 

 

 

 

Table V. The revenue to cost ratio of SVE for different values of   

The number of 

requests 

revenue-to-cost ratio 

              

2 0.631 0.591 0.518 

4 0.632 0.614 0.551 

6 0.614 0.599 0.550 

8 0.612 0.582 0.512 

10 0.599 0.563 0.513 

VI. CONCLUSION AND FUTURE WORK 

In this paper, the VNE problem is formulated in SDN ecosystem wherein a set of software-defined 

VN requests are mapped on a SDN based substrate network in order to maximize the profit of the 

NaaS provider and minimize the delay between switches and controller in the mapped VNs. The 

problem is solved by the proposed algorithm which consists of three coordinated stages namely the 

controller placement, virtual nodes mapping, and virtual links mapping stages. 

In the controller placement stage, SVE maps controller to the node with most resources in its 

neighbor according to the NR metric, and also considers the switch-controller delay by the K-hop 

delay metric. In the node mapping stage, it selects virtual nodes for mapping in descending order of 

the correlation coefficient metric that considers the amount of traffic volume between virtual nodes; 

and maps them on the substrate node with the minimum weight and distance. Finally, an instance of 

the distributed hypervisor is installed in the nodes where at least a controller mapped on. 

In this paper, we considered several practical aspects of VNE in SDN; the following issues can be 

investigated in future work:  

 Whereas we use the NR, correlation coefficient, and distance metrics to coordinate controller 

placement, virtual nodes mapping, and virtual links mapping; these stages are carried out in three 

separate phases. For the next step, to achieve higher efficiency, these problems can be tackled as a 

joint problem. 

 In this paper, the embedding problem was considered in off-line mode, wherein the information of 

all requests is available at the beginning; at the next step, the problem can be studied in on-line 

mode where whole VN requests are not known in advance and arrive to the network one-by-one. 
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