
 

Accepted Manuscript

An Ecosystem for Anomaly Detection and Mitigation in
Software-defined Networking

Luiz Fernando Carvalho, Taufik Abrão, Leonardo de Souza Mendes,
Mario Lemes ProençaJr.

PII: S0957-4174(18)30172-6
DOI: 10.1016/j.eswa.2018.03.027
Reference: ESWA 11874

To appear in: Expert Systems With Applications

Received date: 24 November 2017
Revised date: 11 February 2018
Accepted date: 14 March 2018

Please cite this article as: Luiz Fernando Carvalho, Taufik Abrão, Leonardo de Souza Mendes,
Mario Lemes ProençaJr., An Ecosystem for Anomaly Detection and Mitigation in Software-defined
Networking, Expert Systems With Applications (2018), doi: 10.1016/j.eswa.2018.03.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.eswa.2018.03.027
https://doi.org/10.1016/j.eswa.2018.03.027


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Ecosystem for anomaly detection and mitigation in Software-defined Net-

working.

• Traffic profiling and anomaly detection tasks operate autonomously.

• The system employs a multi-feature analysis to profile the normal traffic

usage.

• Mitigation policy is chosen according to the recognized anomalies.

• Our system outstanding in terms of accuracy and low false-positive rate.
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Abstract

Along with the rapid growth of computer networks comes the need for automat-

ing management functions to prevent errors in decision-making and reduce the

cost of ordinary operations. Software-defined networking (SDN) is an emergent

paradigm that aims to support next-generation networks through its flexible

and powerful management mechanisms. Although SDN provides greater con-

trol over traffic flow, its security and availability remain a challenge. The major

contribution of this paper is to present an SDN-based ecosystem that moni-

tors network traffic and proactively detects anomalies which may impair proper

network functioning. When an anomalous event is recognized, the proposal

conducts a more active analysis to inspect irregularities at the network traf-

fic flow level. Detecting such problems quickly is essential to take appropriate

countermeasures. In this manner, the potential for centralized network monitor-

ing based on SDN with OpenFlow is addressed in order to evaluate mitigation

policies against threats. Experimental results demonstrate the proposed ecosys-

tem succeeds in achieving higher detection rates compared to other approaches.

In addition, the performance analysis shows that our approach can efficiently

∗Corresponding author
Email addresses: luizfcarvalhoo@gmail.com (Luiz Fernando Carvalho), taufik@uel.br

(Taufik Abrão), lmendes@decom.fee.unicamp.br (Leonardo de Souza Mendes),
proenca@uel.br (Mario Lemes Proença Jr.)

Preprint submitted to Journal of LATEX Templates March 15, 2018



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

contribute to the network’s resilience.

Keywords: Anomaly Detection, Software-defined networking (SDN),

OpenFlow, Multinomial Logistic Regression.

1. Introduction

The rigid structure of traditional networks increases and complicates the

task of managing them as they expand. As demand for real-time applications

increases, it has become difficult to scale existing networks while ensuring avail-

ability and security without degradation of performance. To express the policies

of agreed service levels (ASL) and to maintain quality of service (QoS), network

operators need to configure each device separately as a heterogeneous collection

of switches, routers, middleboxes, and so on, using low-level commands spe-

cific to each equipment supplier (Kreutz et al., 2013). Changes in such policies

are time-consuming and usually require a large staff to focus efforts on making

thousands of changes manually in network components. In this scenario, de-

spite frequent investments in communications innovation, dissatisfaction with

the capacity of traditional networks to adapt to the changes required by new

technologies will become increasingly evident (Jammal et al., 2014).

Software-defined networks (SDNs) have emerged as the next-generation net-

working paradigm aiming to improve network resource utilization, simplify net-

work management, reduce operating costs, and promote evolution (Lin et al.,

2016). To achieve these benefits, SDN separates the data plane from the con-

trol plane by removing decisions from the forwarding devices (e.g., routers and

switches), enabling forwarding hardware programming through a standardized

interface (commonly using the OpenFlow protocol). A controller guides the con-

trol plane using applications to define the behavior of the network-forwarding

infrastructure. With the separation of planes, various network devices can share

the same controller. A significant advantage is that if there is the need for policy

changes or the establishment of service quality, it can be accomplished through

control plane programming, which uses a more intuitive high-level language than
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device configuration commands. Indeed, the administrator can modify network

forwarding rules, prioritize, or even block specific types of traffic.

Although SDN networks provide greater control over traffic flow, owing to

their dynamic nature, they have also introduced new challenges and issues to

be addressed. Researchers argue that SDNs are vulnerable and easier to over-

whelm (Li et al., 2016)(Kreutz et al., 2013). Concerns about resiliency and

robustness arise when the logic behind forwarding behavior is centralized and

located in the controller, which becomes a single point of failure (Rathee et al.,

2017). Thereby, security threats may include direct controller attacks or vul-

nerability exploitations in the communication between the controller and the

data plane. In the former, the most prominent threat is Distributed Denial

of Service (DDoS), which generates malicious requests to overwhelm the con-

troller, consequently hindering the SDN’s operation. In the latter, Man in the

Middle is a potential attack in which the adversary may break the link between

the controller and its switches. To summarize, in the absence of a secure and

robust controller, attackers have opportunities to change the behavior of the

underlying network by modifying the controller operations.

Thus, it is necessary to adapt the current management model(s) to ensure

reliability, resiliency, and network availability. Therefore, it is necessary that

network traffic behavior be constantly monitored, aimed at early detection of

normal behavior divergences. This allows for rapid decision-making and ac-

tion against the identified issue. However, conducting an analysis and perform-

ing complete monitoring of large-scale network systems are impractical manual

tasks for a network administrator. Thus, a traffic monitoring system to detect

anomalies should operate in an autonomic manner, aiming to achieve proactive

network management.

In this light, the major contribution of this paper is to present an ecosystem

able to automatize the task of the administrator in managing SDN networks,

performing real-time anomaly detection and mitigation. This particular charac-

teristic ensures reduction of errors and effort arising from human intervention.

Our proposal includes routines that perform constant traffic monitoring and
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control using traffic analysis of packet flows. Such routines are divided into four

complementary stages. The first corresponds to the collection and storage of

flows through the OpenFlow protocol, which has been widely used to collect net-

work flow statistics passively or actively measure latency by packages injection

traffic analysis. The second phase profiles the normal traffic behavior to create

a traffic profile or digital signature of the analyzed segments. Current traffic

is compared with the previously established traffic profile in order to identify

suspicious traffic events. Mitigation of anomaly effects on the network, e.g., neu-

tralization of the detected anomalies composes the third phase. Finally, reports

of identified attacks are generated in the last phase to validate and audit system

results. We assess the feasibility and the effectiveness of the anomaly detection

scheme and mitigation routines in terms of accuracy and system resources usage

(CPU usage, flow table size).

The remainder of this paper is organized as follows. Section 2 discusses

related work. In Section 3, we present the system design principles. Section 4

describes the results and performance of the system. Finally, Section 5 concludes

the paper.

2. Related Work

Although Software-defined Networking (SDN) enables new network applica-

tions and more flexible control in dynamic network environments, security is still

an important concern as it is not yet a built-in feature in the SDN architecture.

Increasingly, it is expected that current security schemes will operate in near

real time to face a spectrum of threats, inspecting large volumes of traffic, and

providing efficient identification of various network anomalies. Thus, we present

some previous SDN-related anomaly detection efforts to meet this demand.

Aleroud & Alsmadi (2016) classified the anomalous events that potentially

compromise the SDN architecture into three categories: (i) attacks on the con-

trol plane, (ii) compromising of communication between the control and data

planes, and (iii) threats designed to attack the data plane equipment. A flood
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attack can directly or indirectly cover these three categories because of the vol-

ume of traffic and the increasing number of connection requests. Excessive use

of these network resources can overload the controller as well as occupy all the

forwarding table entries of the devices in the data plane with flows from illegit-

imate connections. In this manner, despite the extensive work in SDN security,

most of the approaches have been designed to contain flood attacks (e.g., DDoS

attacks).

Early work on DDoS detection in the SDN environment was reported by

Braga et al. (2010). The presented system continuously observed the statisti-

cal features of the flows to identify any anomalous activity. The authors used

Self-Organizing Maps (SOM) with the topological neighborhood described by a

Gaussian function to classify each packet as benign or abnormal. Kreutz et al.

(2013) also focused on exploiting the benefits of SDN to defend the same type

of anomaly. However, their target victims reside in the traditional network en-

vironment, which makes their solutions unsuitable for SDN. Ha et al. (2016)

stated that identifying flood attacks requires detailed processing and inspec-

tion of a large volume of traffic. In that light, the authors presented a traffic

sampling strategy for SDN networks that maintains the total aggregate volume

sampled below the processing capacity of an Intrusion Detection System (IDS).

Mousavi & St-Hilaire (2015) proposed an entropy-based mechanism to detect a

DDoS attack. In case of an attack, the entropy decreases by evaluating the ran-

domness of incoming packets’ destination IP addresses. In Xiao et al. (2015) an

effective detection approach based on traffic classification with correlation anal-

ysis (CKNN) was proposed. Although the detection rate of known anomalous

events is high, such methods become incapable of recognizing variations of the

same attack, because signature-based detection is used. For this same reason,

the techniques must/should be trained with a large labeled dataset, which is

not always possible to obtain. The ecosystem proposed in this paper overcomes

these limitations because the detection adapts automatically to changing traffic

patterns.

Several studies employ alterations in the SDN infrastructure to conduct
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anomaly detection. Wang et al. (2013) proposed NetFuse as a mechanism to

protect against traffic overload in OpenFlow-based data center networks. In

order to guard the network against the effects of malicious traffic, NetFuse sits

between network devices and network controller as an additional layer. Joldzic

et al. (2016) presented an alternative solution based on an SDN network topol-

ogy consisting of three layers to place the IDS. The outermost, located at the

network gateway, contains an OpenFlow switch responsible for dividing the in-

coming traffic and forwarding the generated parts to the intermediate layer.

The second layer is composed of several devices called processors, which per-

form the detection of an attack. In the third layer, the traffic generated by

the processors is aggregated and sent to the interior of the network through an

OpenFlow switch. Two disadvantages are observed in this approach. First, it

assumes that the network is anomaly-free, which can become a problem when

anomalies are launched by the internal network itself that make the SDN con-

troller unavailable. The second disadvantage is the division of traffic among the

processors, which might lead to the masking of attacks, as due to load balancing,

each processor can analyze disconnected parts of the same anomaly. Chen et al.

(2016) applied specialized software boxes to improve the scalability of ingress

SDN switches to adjust the control plane’s workload during DDoS attacks.

Regarding attack mitigation in SDN, existing solutions limit the rate of

requests to the controller excluding those considered surpluses, which also entails

the elimination of legitimate requests. To overcome this issue, Wei & Fung

(2015) proposed FlowRanger, a controller prioritization buffer to handle routing

requests based on their attack probability derived from a trust value of the

requestor source. Based on the trust value, FlowRanger sorts the requests into

multiple queues of buffers with different priorities. In this manner, a low priority

is assigned to potentially malicious requests. (Hommes et al., 2014) introduced a

centralized monitoring application that uses variations in the logical topology of

the network to detect flood attacks and a basic mitigation rule to react against

large traffic bursts. Zaalouk et al. (2014) proposed OrchSec, an orchestrator that

utilizes network monitoring and SDN control to develop security applications.
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This architecture can mitigate some attacks; those that do not require a deep

inspection of packets contents. In (Wang et al., 2015), a protection mechanism

that relies on a public cloud provider was proposed to detect and mitigate DDoS

attacks in SDN. Giotis et al. (2014) implemented a mitigation mechanism that

drops the packets involved in the anomaly. In the mechanism proposed by Cui

et al. (2016), once a DDoS attack is detected, the mitigation module inserts

flow entries with the highest priority into the flow table of the switch which is

marked as the attack source switch. The intent is to block malicious traffic by

dropping packets that match the destination address and the ingress port used

in the attack. In (Nunes et al., 2017), a multi-agent application was proposed

to address resilience of SDNs against DDoS attack. Agents may have goals that

they are committed to achieving and execute actions (plans) to achieve them.

Thus, the plan with the maximum utility to meet the safety of the network is

applied. Nevertheless, when a selected plan fails to achieve a goal, the agent

delegates the goal to other agents. The authors argue that although the plans are

simple, they provide agent coordination, and it is the interplay among decoupled

agent parts (rules and plans) that provides the emergent behavior.

In this paper, we focus specifically on the SDN environment, in which the

controller is able to collect and analyze traffic statistics reports from switches.

Our proposed ecosystem is different from previous work because it does not

require any change to the SDN infrastructure and can detect and classify a

variety of anomalies in order to choose the correct mitigation strategy. Also,

the method provides reports to the network administrator regarding the details

of detected anomalies and the efficiency of countermeasures taken against these

issues.

3. Overall Architecture and Design Principles

The design of the presented ecosystem for anomaly detection and mitigation

in SDN-specific environments is based on the following properties:

• Autonomic approach: The proposal enables automation in both network
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monitoring and detection of anomalous traffic events.

• Modular design: Although tasks such as traffic statistics collection, anomaly

detection, mitigation of the attacks, and report generation are complemen-

tary in our approach, they are designed so that they can be decoupled. It

allows any task to be modified without causing interference in another.

• Efficient use of control plane: A controller handles the forwarding table

of network equipment, installing flow rules in accordance with the classi-

fication assigned to each flow.

• Two monitoring phases: Unlike methods that analyze the entire aggre-

gate network traffic, our approach monitors the behavior of flows on each

switch. The first phase consists of observing and comparing the traffic

behavior in relation to what is expected, i.e., its normal profile. If a

behavioral deviation is detected, the second phase launches an ostensi-

ble monitoring performed at multiple time-windows to identify either the

attacker or the targets under attack.

Figure 1 shows the parts of the ecosystem and how they are related. In

an SDN, the data plane consists of various forwarding devices (e.g., switches),

which transmit information to its destination by following rules defined by the

controller. Request, installation, and update of forwarding rules occur by ex-

changing messages between the controller and the data plane. In addition, the

controller can use some applications implemented by the administrator to man-

age forwarding rules on the network. Using this feature, we define a set of rou-

tines regarding anomaly detection and mitigation. They are grouped into four

modules: data collection, anomaly detection, mitigation, and reporting. The

figure depicts the iterations among these modules and the activities performed

by them.

The controller periodically sends OpenFlow flow-stats request messages to

the devices in the data plane to request traffic statistics. Consequently, the

devices respond with chunks of content from the flow table. Each chunk contains
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Figure 1: Overall ecosystem architecture.

a portion of the flow-entries (e.g., IP addresses, ports, protocols) along with

the packet and bit counters of each flow. After obtaining the response, the

controller forwards the messages to the traffic statistics collection module. The

next step is to extract the data needed for network monitoring and pre-process

this data before passing it to the detection module. In the detection module, it is

ascertained whether the newly collected traffic differs from what was expected.

If an anomaly is detected, the event type, as well as the switches, IP addresses,

and ports involved in the suspected malicious communication are reported to the

mitigation module. IP addresses and port information are used to compose the

messages sent to the data plane for application of the mitigation routines, where
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the event type determines the choice of an appropriate mitigation routine. In our

approach, mitigation routines include discarding packets from a particular flow

or source IP address, or modifying flow-entries to change the routing of packets

belonging to a particular flow. Finally, the report module stores information

about detected threats, mitigation policies triggered, and addresses and ports

involved. Each module is detailed in the following subsections.

Throughout this paper, all vectors are assumed to be column vectors. Lower

case boldface letters denote vectors and x = [x1, . . . , xn] is a column vector.

Uppercase boldface letters are used to denote matrices.

3.1. Traffic statistic collection module

This module is responsible for the acquisition of traffic data, which is fun-

damental to constant network monitoring and is a prerequisite to anomaly de-

tection. Information statistics gathering is accomplished using the OpenFlow

protocol. This provides a common interface to control how packets are for-

warded by accessing the data plane’s internal forwarding tables, configuration,

and statistics (Masoudi & Ghaffari, 2016). In addition, it uses the concept of

flows to identify network traffic based on pre-defined rules, programmed into the

SDN controller software. Flows are defined as a group of packets with one-way

transmission sessions that share features such as transport protocol, addresses,

and both source and destination ports. Flows are identified by common charac-

teristics, so they are often related to an application, a network device, or a user.

As a result, administrators or automated management systems may define how

traffic should flow through network devices.

Several studies in the literature explore detecting anomalies using traffic

analysis at fixed five-minute intervals (Amaral et al., 2017). However, due to

the continuous increase in transmission rates, monitoring this interval becomes

impractical. For example, a network that operates at 10 Gbps may have terabits

of information compromised during the five-minute interval. Thus, this proposal

deploys a time window of 30 s to request statistics from switches and send them

to the anomaly detection module. The choice of this value is to reduce the
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time response to anomalous traffic events, and triggering countermeasures in

near real-time. In this manner, the system ensures fast detection and attack

mitigation that otherwise would increase within this period. Once the anomaly

subsides, our approach cancels the mitigation to avoid harming legitimate traffic.

The controller periodically sends statistic requests for collection of all flow-

entries in the switches, along with their corresponding counters. Upon receiving

this request, each switch responds using OpenFlow messages to the requesting

controller with chunks of the flow table contents. We define Ω = {ω1, ω2, . . . , ωn}
as the set of flow information sent by a switch to the controller, and each wi

contains the following properties: i) Received packets that measure the amount

of packets matching the flow they belong to; ii) Received bits representing the

total bits carried by a flow; iii) Source IP address; iv) Destination IP address; v)

Source port; vi) Destination port and vii) transport layer protocol. The system

processes the data collected on each switch apart from the information acquired

from other switches. Thus, the method for identifying the OpenFlow switch

affected by the anomaly is straightforward.

In our previous works (de Assis et al., 2017)(Fernandes Jr. et al., 2016),

we have conducted extensive statistical analysis to profile the normal patterns

of high-speed traffic links. As a result, we found that the observed nature of

networks traffic is dynamic and diverse, and also that the amount of informa-

tion transmitted and its composition changes with time and/or day. From this

diverse traffic mix, some traffic attributes were selected to study the behavioral

aspects. The selected attributes are extracted every time interval from the Ω

set, and they consist of six traffic features, F = {f1, f2, ..., f6}, as shown in

Table 1.

The bottom four traffic properties are qualitative metrics extracted from

the packet header of each ωi. These are relatively stable with time because at

any moment they hold intrinsic correlations among themselves. The benefits

of these qualitative attributes are twofold. First, they provide information to

recognize devices and applications operating suspiciously. Second, they become

sensitive indicators of traffic behavior changes when a statistical model is used
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Table 1: Extracted traffic features from the Ω set.

i Feature (fi) Description

1 bits Number of bits transmitted

2 packets Number of packets transmitted

3 H(srcIP) Source IP entropy

4 H(dstIP) Destination IP entropy

5 H(srcPort) Source Port entropy

6 H(dstPort) Destination Port entropy

to calculate their distribution.

For the purposes of this paper, each feature must be represented by a quan-

titative value. For bits and packets (volume attributes) it is assumed their

quantities are collected in each analyzed time window, and for IP addresses and

port features, we enable their use in traffic analysis by adopting the Shannon En-

tropy concept. Given a set of measurements of the attribute A = {a1, . . . , an},
in which ai represents the occurrences number of sample i, the entropy H for

the attribute A is defined as:

H(A) = −
n∑

i=1

pi log2 pi, (1)

where pi = ai/n is the occurrence probability of ai. On the one hand, when

sample distributions are concentrated, the entropy value is minimal, and is zero

when all samples are identical. On the other hand, when the dispersion increases

for a given traffic feature A, then H(A) ≤ log2 n holds with equality iff pi = 1/n

for all i.

Entropy calculation summarizes the information related to IP addresses and

ports over a time window, representing the dispersion or concentration degree

of each attribute with a quantitative value. Thus, under traffic anomalies, there

will be detectable changes on the distributional aspects of these chosen traffic

features. For example, during a DDoS attack, the source IP addresses distribu-
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tion may become dispersed due to many hosts triggering a flood attack. The

same occurs to destination ports when they are scanned to find vulnerabilities.

In contrast, when a particular source establishes a high number of connections,

the source IP distribution becomes concentrated.

3.2. Anomaly detection module

Our anomaly detection problem can be stated as follows. A stream of data

points x in Rk consists of a set of measurements {xt}Tt=1 regulated by a proba-

bility distribution P . Although all measures are consequences of specific events

within the space of events S, the mapping f : S → Rk may not be previously

known. Initially, one assumes that S can be divided into two or more subspaces

corresponding to normal and the anomalous network traffic conditions. Also, it

is necessary to infer the membership of a particular event in one of the subspaces

using the corresponding measurement. The former is accomplished by the traf-

fic characterization task and the latter by anomaly identification as described

in the following subsections.

3.2.1. Traffic characterization

Identification of unusual traffic patterns is an important activity in network

management and anomaly detection. Among different methodologies, the cre-

ation of the network behavior profile stands out for providing dynamic traffic

monitoring and detection. Accordingly, more attention has been focused on

these methods as they can identify even unknown types of anomalies (Bhuyan

et al., 2014)(Pena et al., 2017). With traffic profile knowledge, it is possible to

continuously monitor the network to spot time windows in which current traffic

appears to be anomalous.

The traffic characterization module performs a characterization of each Open-

Flow switch to extract common events represented in the historical traffic mea-

surements. Such process is accomplished for all collected features presented in

Table 1, and its outcome is a normal traffic profile represented by matrix D with

dimensions n × |F |, where n is the total time window of a day and |F | is the
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data dimensionality, or the number of traffic features. Therefore, dij indicates

the expected value of the j-th feature at time interval i. In this paper, D is

also referred as the Digital Signature of Network Segment using Flow analysis

(DSNSF) (Proença et al., 2004). Subsequently, the normal traffic profile is com-

pared to the current traffic so that actions are triggered to prevent propagation

of anomalies according to their type (e.g., one of the subspaces of S). It is

important to note that network monitoring and traffic characterization are con-

current, because measurements of recent past time windows are automatically

embedded in the historical traffic for later processing.

After ensuring that all collected traffic features are represented by quantita-

tive values, the extraction of normal behavior begins. The traffic profile creation

is built upon our previous clustering technique that provides a basis for anomaly

detection. This technique is named Ant Colony Optimization for Digital Signa-

ture (ACODS) (Carvalho et al., 2016). It is a modification of traditional ACO

metaheuristic, and clusters the traffic to discover sensible organization of each

historical traffic time window. According to Jiang & Papavassiliou (2006), the

ants’ habit of living in groups is essentially similar to the grouping of data. Al-

gorithms based on ant behavior have natural advantages in the application of

cluster analysis, such as self-organization, flexibility, robustness, absence of need

for prior information, and decentralization. In addition to the previous benefits,

we advocate the use of ACODS because it is a supervised learning technique,

which allows the characterization of traffic to occur in an autonomic way. Also,

it leverages the construction of solutions not given by local optima, which is an

existing problem in some clustering algorithms.

In ACODS, the simulation of foraging behavior of ants combined with the

ability to find the shortest path between their colony and food is used to find the

cluster set. Initially, the analyzed attributes are given by a six-tuple composed

of bits and packet counters followed by the entropy calculated for the source

IP, destination IP, and source and destination port. Ants, using statistics and

probabilities, travel through the search space represented by a graph G(V, E),

in which V is a finite set of all nodes and E is the edges set. We assume that
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the paths are formed between the center of a cluster (centroid) and each six-

tuple that will be clustered. Ants are attracted to paths that lead to the most

promising cluster solutions. In ACODS, a better solution minimizes the intra-

cluster distance, i.e., the sum of the distance between objects and the centroid

of the cluster they belong to, given by:

J =
k∑

j=1

∑

xi∈Cj

dist
(
xi, x̄

(j)
)2
, (2)

where k is the number of clusters, xi is the i-th six-tuple, x̄(j) is the center of

cluster Cj , dist
(
xi, andx̄

(j)
)

is the Euclidean distance between xi and x̄(j).

The activities carried out at each iteration for DSNSF creation are classified

into three categories:

Build solution: Ants move from one node to another by assigning each object

to a certain cluster.

Local search: It tests and validates a solution created by ants. A local search

may be applied to assist in building good solutions. In our design, local searches

are used to change an unpromising portion of solutions (paths that lead to poor

solutions).

Pheromone update: The ants deposit pheromone as they walk through the

graph and, as a consequence, paths frequently used for the solution construction

contain a higher concentration of pheromone. The increased concentration of

pheromone is an essential factor in the algorithm implementation because it di-

rects ants to seek new paths more prone to acquire a near-optimal solution. On

the other hand, less promising paths are slowly forgotten through evaporation

of the pheromone. This pheromone decreasing technique facilitates acceptable

convergence time and contributes to the construction of non-premature solu-

tions.

After clustering, the traffic collected in an interval is separated into groups,

where each six-tuple is more similar to the data of its group than any other.

Owing to the high similarity of network traffic, most information represents

similar behavior and some dense regions in the research space are formed. As
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previous works have pointed out (Ahmed et al., 2016), in a clustering with

clusters of various sizes, the smaller and sparser clusters can be considered

anomalous and the thicker ones are considered normal. Instances belonging

to clusters with sizes below a threshold are considered unusual, and they are

discarded from normal traffic patterns.

Assume the output of the traffic profiling, matrix D represents the expected

traffic behavior for an entire day, and vector dt = [d1, d2, . . . , d|F |] defines the

expected normal behavior of the six analyzed features at a given time instant t.

The traffic sampled at t is given by Ft and it is acquired from periodic statistic

requests sent to the switches, as discussed in Section 3.1. In this manner, a

suspicious event is detected by deviation of ongoing monitored traffic Ft in

relation to the normal expected profile dt.

3.2.2. Anomaly identification

Although alarms are generated when normality deviation occurs in any one

of the six analyzed attributes, a general alarm is triggered when observing any

anomalous traffic as summarized in Table 2. The table lists anomalies commonly

found in backbone traffic and their effects on flow measurements. An index k

is assigned to each anomaly which our system can recognize. The symbol “+”

indicates that traffic feature measurement increases during the anomaly, “−”

represents decreasing traffic, and features with notation “n.c.” do not change

with the threat occurrence.

Table 2: Anomalies and their effects on traffic features. Adapted from Carvalho et al. (2016).

k Anomaly Affected Traffic Features

Bits Packets H(srcIP) H(dstIP) H(srcPort) H(dstPort)

1 DDoS n.c. + n.c. − + −
2 Portscan n.c. + − − + +

3 Flash Crowd + + + − − −

In Table 2, each anomalous event has its own effect on traffic attributes. The
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relevance of each of these attributes for the correct identification of an attack

should be assigned. Regression models are suitable candidates for weighing the

traffic changes that lead to the detection of an event. In a simple or multiple

linear regression model, the dependent variable Y is a continuous random vari-

able. However, in some situations, the dependent variable is qualitative and is

expressed by two or more categories, admitting two or more values. Because

of this, the least squares method does not provide feasible estimators, while

logistic regression allows the use of a regression model to calculate or predict

the probability of an event.

The multinomial logistic regression (MLR) model is a specific case of logistic

regression that is used for data in which the dependent variable is unordered or

polytomous, and independent variables are continuous or categorical predictors

(Wang, 2005). MLR designs a classifier capable of distinguishing K classes

using labeled training samples. In this study, MLR computes the importance

of variations in the traffic measurements to diagnose anomalies, and based on

this variation assigns a likelihood ratio for each state in the space of events S.

Given a set of r+ 1 independent variables denoted by X = {X0, X1, ..., Xr},
assuming values x = [x0, x1, ..., xr] with x0 = 1, and a random variable Y

that can assume values y ∈ {0, 1, ..., q}. Unlike a binary logistic model, in

which a dependent variable has only two choices (e.g., normal or anomalous),

the dependent variable in a multinomial logistic regression can have more than

two choices arranged categorically, where one of these categories represents the

reference category. In this paper, k = 0 (“normal”) is the reference category,

and k = 1 (“DDoS”), k = 2 (“portscan”) and k = 3 (“flash crowd”) are the

remaining categories. Given the aforementioned categories, one can describe the

logit function (or dependence) comparing Y = k and Y = 0 for k ∈ {1, ..., q}.
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The logit function is denoted by:

gk(x) = ln

[
P (Yi = k|x)

P (Yi = 0|x)

]

= bk0xk0 + bk1x1 + · · ·+ bkrxr

= x>bk, k ∈ {0, . . . , q},

(3)

where bk = [bk0, ..., bkr]
>

is a vector of unknown parameters, i.e., weights as-

signed to traffic features and xk0 = 1.

From eq. (3), one can apply logarithm properties to obtain:

exp [gk(x)] =
P (Yi = k|x)

P (Yi = 0|x)
, k ∈ {0, . . . , q}

P (Yi = k|x) = exp [gk(x)]P (Yi = 0|x). (4)

Using the fact that all q + 1 probabilities must sum to one, we find:

P (Yi = 0|x) = 1−
q∑

k=1

P (Yi = 0|x) exp[gk(x)] =
1

1 +
∑q

k=1 exp[gk(x)]
. (5)

Substituting eq. (5)in eq (4), we can determine the other probabilities:

πk =
exp[gk(x)]

1 +
∑q

k=1 exp[gk(x)]
, (6)

where πk denotes P (Yi = k|x).

After defining the normal behavior and how unusual events are identified,

we state the anomaly classification problem in mathematical fashion as follows:

Given a time bin t, an ongoing traffic measurement Ft is assigned to the class

k if

k = arg max
`

(π` (Θt)) , (7)
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were π`(.) is a likelihood ratio assigned to each anomaly `, which is properly

identified by the detection mechanism. The vector Θt is given by:

Θt = Λ−1|dt − Ft| (8)

in which dt is the expected profile, Ft corresponds to the current traffic measure-

ment, and Λ−1 is the inverse of a diagonal matrix whose elements are Ft. Each

value Θt =
[
θt1, θt2, . . . , θt|F |

]
denotes the relative error between the expected

and current traffic measurement for each traffic feature.

Although the approach can detect the anomalies shown in Table 2, there are

some legitimate network abnormalities which affect the traffic features in the

same manner as a malicious anomaly. To avoid interruption of benign traffic

events, the detection system maintains a whitelist to store IP addresses and

ports whose unusual behavior may actually be anomaly-free traffic. Thus, the

module first checks for anomaly-related IP addresses and ports in the whitelist

and then mitigation routines are applied if necessary. The whitelist can be

maintained by an automated procedure or set manually by the network manager.

We implemented the latter for simplicity.

When an anomaly is recognized, the system conducts more active analysis

over suspected flows and in suspected network regions, where IP addresses and

ports that compose an unusual scenario are inspected during multiple time

windows. Addresses identify hosts involved in the anomalous communication

while ports indicate services which may be compromised. The total packets

and bits sent and received by each of these hosts are monitored as well as the

number of connections established by them. If these values are contributing to

the deviation from the expected behavior of the switch, the mitigation module

takes countermeasures to return the network to its normal operation.

All the procedures required for anomaly identification are summarized in

Algorithm 1. Each step is arranged so that the MLR classifier can identify

anomalies in SDN network traffic after weight training. Once the anomaly

detection module receives the data from the traffic statistics collection module,
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Algorithm 1 Anomaly identification.

Input: current traffic measurements Ft, expected traffic measurements dt

Output: index of the anomaly k

1: Compute Θt using Ft and dt . eq. (8)

2: Compute the logit function using Θt . eq.(3)

3: Calculate the probability of Θt being the reference class . eq. (5)

4: Measure the probability of Θt being in anomaly class k ∈ {1, . . . , q} eq. .

(6)

5: Assign Θt to the anomaly class k with the highest calculated probability .

eq. (7)

6: return k

the relative error between the collected traffic Ft and the expected behavior dt

is calculated and stored in Θt. Then, the logit function is calculated using the

previously calculated error and the weights obtained from the MLR training.

In line 3 of the pseudocode, we obtain the probability of the collected traffic

belonging to the normal class, and the probability of the traffic being considered

a DDoS, portscan, or flash crowd class anomaly is computed. In line 5, the

algorithm assigns to the analyzed traffic the class with the highest degree of

pertinence and, finally, the label of the class is returned in line 6. The outcome

of the pseudocode for each time interval is shown in Figure 4(a), and according

to these outputs, the effectiveness of the detection method can be assessed as

shown in Figures 5 and 6.

3.3. Mitigation module

Anomalies can harm network operation, so, countermeasures should be taken

to nullify any event that may affect the quality of services provided to cus-

tomers. The central points of a resiliency strategy are the management and the

reconfiguration of detection and restoration mechanisms, which function as au-

tonomous components in the network infrastructure (Nunes et al., 2017). While

anomaly detection efforts such as monitoring and traffic classification provide
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the recognition and categorization of attacks, repair mechanisms can be used

in the mitigation of these threats. In this manner, the proposed system imple-

ments routines for locating flows and equipment causing or being affected by

anomalies and new policies are applied to them.

Policies are a collection of rules that determine how present and future de-

cisions are taken. Policy actions are performed when specific events occur and

certain conditions are met. In this manner, policies are defined as an Event-

Condition-Action (ECA) model, which is suitable for dynamic policy manage-

ment (Sahay et al., 2017). Each Event refers to a specific attack or incident and

is associated with a set of rules. The rules are described as a set of Conditions

that match the context in which the attack or incident occurs. Finally, the

Action, is essentially a high-level action to be applied to the identified flows.

The use of policies can provide three benefits (Han & Lei, 2012). First,

administrators predefine policies and store them in a repository. When an

event occurs, the system requests and accesses these policies automatically,

without manual intervention. Second, the formal description of policies allows

autonomous analysis and verification of consistency to some extent. Third, by

using abstract technical details, policies can be inspected and changed at run-

time without modifying the system implementation.

A list of policies implemented is shown in Table 3. In short, our focus

is on enforcing the policy to mitigate anomalies once they are detected. For

this purpose, flow entries containing the IP address and port learned in the

anomaly detection module are inserted into the forwarding tables of switches

Table 3: List of implemented policies.

Policy Description

Block src IP Blocks the traffic of a misbehaving IP address

Block flow Drops packets that belong to a particular flow

Load balance Traffic is distributed to other servers during intensive network activity
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along with actions that must be performed on the new packets that match

these flows. The main actions include forward, drop, or modify packet fields

(ONF, 2009). The block src IP policy cuts off incoming traffic from a malicious

host (e.g., portscan attack) while block flow blocks the communication from a

certain host to a specific service in the destination IP address. The mitigation

module attaches a forwarding action in load balance to distribute network traffic

loading generated by a DDoS attack through multiple servers to avoid degrading

services performance. In order to promote failover of high-availability servers,

the network administrator can indicate which other servers can perform the

same task as an overwhelmed server. This policy uses a Round-Robin algorithm

to ensure that all servers used to balance the load will be visited in a loop,

determining which server to use according to the last selected one. After the

countermeasure is designed, the mitigation module pushes the policy to the

switch through the network controller using the OpenFlow protocol, which acts

directly in forwarding logic to the network equipment.

Flow entries corresponding to mitigation rules are assigned with higher exe-

cution priority than other active entries in the forwarding table. Furthermore,

it is assigned an amount of time (idle timeout) so that these flows remain active

when a match no longer occurs, allowing the mitigation to continue as long as

the anomaly is active.

3.4. Reporting module

According to Bhuyan et al. (2014), a weakness of profile-based detection is

that anomalies can be slowly introduced in usual patterns until they become a

legitimate event. The presented system offers the administrator relevant infor-

mation to help determine a solution to such issues. This information is arranged

in reports, and demonstrates the use of network resources at the moment an

anomaly is detected. If these anomalous events are identified and interrupted,

they will not be included in the historical dataset, and consequently, they will

not be included in the normal traffic profile (DSNSF). Furthermore, these re-

ports will assist the network administrator to develop new policies to reduce the
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impact on the services offered to end users.

4. Results

This section evaluates the effectiveness of the proposed system. First, we

demonstrate the ability to detect anomalies and their correct classification. The

analysis also compares the detection strategy with other well-known classifi-

cation techniques. Second, we analyze the results of the mitigation module

designed to disrupt the attacks that undermine the proper functioning of the

network.

4.1. Evaluation settings

To evaluate the performance of the proposed system, we conducted network

emulation scenarios using Mininet (Lantz et al., 2010), which creates a net-

work of virtual hosts, switches, controllers, and links. Applications developed

on Mininet can be moved to a real environment with minimal changes for real-

world deployment. The emulated environment created is a tree-like network

with depth two, as depicted in Figure 2. All switches are interconnected by

the root switch and each subnet (N1, N2, N3, and N4) is composed of twenty

hosts. In order to conduct the experiments, Open vSwitch was used for net-

work switches, as it can handle the required traffic and supports the OpenFlow

protocol. The system’s modules (statistic collection, anomaly detection, and

mitigation) implement all the necessary algorithms in the POX controller, a

Python-based platform for the development and prototyping of SDN applica-

tions.

The methodology assumed in this paper creates a normal network profile

based on the historical traffic. In this manner, we employed Scapy (Scapy,

2017), a programmable tool that sends packet sequences with arbitrary protocol

field values (e.g., IP address, ports, and content) to generate historical traffic.

The test scenario was built to mimic real environments, being as realistic and

reliable as possible by taking into account suggestions proposed by Cui et al.
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Figure 2: Tree-like topology emulated on Mininet.

(2016). The normal traffic transferred in the test was composed of 85% TCP

traffic, 10% UDP, and 5% ICMP. Meanwhile, the packet size and the rate of

generated traffic obey a uniform distribution.

Aiming to test the system effectiveness, two synthetic anomalies were gen-

erated to mimic certain attack behaviors. The overall analysis included mixing

diverse types of legitimate traffic and varying attack traffic parameters. The

malicious traffic was produced by hping3 (hping3, 2006), a TCP/IP packet as-

sembler and analyzer mainly used as a security tool. To emulate a DDoS attack,

hping3 sends synchronize (SYN) packets to a host from a random and constantly

changed set of source IP addresses and ports. The second anomaly corresponds

to a portscan attack, where a source sends packets to different ports of the des-

tination host, aiming to receive confirmation whether they are operative. Both

attacks were directed to a host in N4 whose IP was 10.0.0.78.

In order to train the multinomial logistic regression classifier, samples of

attacks conducted in a real network were used (Hamamoto et al., 2018). Three

types of attacks have been created of varying intensity: DDoS, portscan, and

flash crowd. Each observation in the training set passed through all the stages of

multinomial logistic regression, and the proper weights bk = [b1, b2, . . . , b3] were

computed using a Limited-memory BroydenFletcherGoldfarbShanno (BFGS)

optimization algorithm. The feasibility of bk, from eq. (3) is calculated for each

observation x in the training data using a cost function. This function measures

the distance between the predicted class using the calculated weights and the
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actual target class. Adjusting bk is an iterative process and the optimization

procedure ends when the cost function value is negligible. The output after

training the multinomial logistic regression classifier are the calculated weights

that allowed correct classification of the samples of the training dataset.

4.2. Anomaly detection evaluation
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Figure 3: Traffic characterization using ACODS. The graphs show the normal traffic prediction

calculated for each analyzed attribute.

Figure 3 shows the data collected from switch S5 during the anomaly de-

tection strategy evaluation. The green area depicts the observed traffic and the

DSNSF generated for each attribute is represented by the red line. Two DDoS

and portscan traces were generated. The DDoS attacks are differentiated by

their intensity. The first attack, presented in the first time bins, caused an un-

usual increase in packet arrival of 70%, while the second (around time bin 40)

increased arrivals by approximately 55%. To achieve these values, 300 and 250

attackers were used in the first and second DDoS events, respectively. Regard-
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Figure 4: (a) Probability of each time interval being classified as class k. (b) Alarms triggered

by each anomaly detection scheme.

ing portscan anomalies (around time bins 70 and 80), only one attacker was

used to access ports 1 to 1024 of the victim host. The difference between the

attacks was the packet arrival interval, which was set as 0.03 and 0.05 for the

first and second portscan attacks, respectively.

4.3. Comparison with other anomaly detection approaches

To further validate our system, we compare our proposal with other anomaly

detection methods. The first is k-nearest neighbor (kNN) traffic classification
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with correlation analysis (CkNN) (Xiao et al., 2015), proposed to detect attacks

with high efficiency and low cost in data center networks. CkNN exploits cor-

relation information of training data to improve the anomaly flow classification

and reduce the overhead caused by the density of training data. In particular,

the k-nearest neighbor algorithm is used to group flows according to recognized

malicious events. The second method is based on the support vector machine

(SVM) classification technique (Phan et al., 2016) designed for flooding attacks

detection. To do so, a kernel function implicitly maps the input space to a

higher dimensional feature space to create a clearer separation between normal

and anomalous data.

Figure 4(a) presents the probability at each time interval that the compared

classifiers assign to each class. The classifiers assign the class with the high-

est confidence. Note that our proposed multinomial logistic regression (MLR)

classifier was the only approach that presented a high probability of correct

classification in the intervals where the portscan attacks were carried out. In

contrast, even when DDoS attacks reached values above 50% using MLR or

SVM, the probabilities of classifying the correct class were lower than obtained

by CkNN. Although the flash crowd anomaly was present only in the training

set, it is interesting to analyze the probability of classification of this event.

SVM assigned up to 10% and 6% probability of DDoS attacks being flash crowd

attacks. Similarly, MLR obtained lower probability while CkNN pointed out no

chance of Flash Crowd occurrence.

Figure 4(b) depicts the time bins in which each classification approach de-

tected anomalies. MLR recognized all the attack traces while SVM and CkNN

identified only the DDoS attacks. Once a robust classification model is devel-

oped, it is necessary to decide whether it is sufficient to detect the investigated

anomalies. A detailed analysis is presented in Figure 5, which presents the

performance metrics comparing the classification approaches. As can be seen,

MLR achieved a better overall performance compared to the other methods.

CkNN performed worse than SVM in precision and False-Positive (FP) rate.

By means of an in-depth analysis, it was possible to verify that these measures
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Figure 5: Anomaly detection comparison among MLR and two popular methods.

were related to the misinterpretation of the CkNN for traffic at the end of the

DDoS attacks. While the other two methods classified only the time intervals

when such anomalies were in effect, CkNN generated alarms after traffic had

already normalized. As expected, Recall was the measure with the lowest val-

ues because both CkNN and SVM methods were not able to recognize the time

bins where portscan anomalies occurred. It is worth noticing that even though

unable to identify the attacks during their entire duration, MLR and SVM did

not misclassify a non-anomalous interval.
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Figure 6: ROC curves of the compared approaches for anomaly detection.
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Figure 6 shows the receiver operating characteristic (ROC) curves for the

compared detection techniques. ROC curves are typically used in binary classi-

fication (i.e., normal or anomalous) to assess the output of a classifier. Macro-

averaging for true-positive and false-positive measures were used to extend ROC

curves to our multi-class scenario. This approach gives equal weight to the

classification of each class in a one-versus-all classifier. As expected, MLR per-

formed better because it achieved a larger rate of true-positives with fewer

false-positives than the other techniques. MLR could achieve 100% accuracy

with a false-positive rate of 31.2%.

4.4. Performance and mitigation evaluation

Once the anomaly detection algorithm has detected and identified a sus-

picious activity as a DDoS or a portscan attack, the mitigation module can

properly handle the corresponding anomalous traffic. Figure 7 depicts the traf-

fic network behavior when mitigation policies are applied in contrast with its

absence. The area comprises the traffic generated following the methodology

described in Section 4.2 along with the DDoS and portscan attacks previously

used in Figure 3. Note that when the attack is mitigated, the feature values

fall into their expected ranges, i.e., normal behavior. The blue line corresponds

to the block flow policy to mitigate the DDoS attack. We also performed tests

using the load balance policy, but it presented no significant changes in feature

values because it does not alter the rate of requests arriving at an attacked host.

Therefore, the result obtained by such policy is similar to traffic without mitiga-

tion. However, with regard to network resilience, the load balance effects can be

decisive by adoption of this policy. Regarding portscan attacks, the system ap-

plied the block src IP policy. As can be observed, its mitigation required fewer

time bins because recognition of the malicious source IP affecting the attacked

host is simpler than identifying misbehaving hosts during a distributed attack

such as DDoS.

After evaluating the detection and mitigation capacities, the proposed sys-

tem’s overall performance is addressed. Figure 8 shows the amount of time
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Figure 7: Traffic feature values during DDoS and Portscan attacks with and without the

mitigation mechanism.
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spent to execute the system’s routines according to the detected anomaly and

mitigation policies taken. In the figure, the preprocessing procedure aggregates

statistic collection and entropy calculation tasks. Mitigation corresponds to the

time spent to assign source(s) and destination(s) of a detected anomaly and to

push policies to affected switches through the network controller. It is important

to note that the communication time between the switches and the controller is

not taken into account.
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Figure 8: Time spent on each task performed by the system.

The anomaly module exhibited similar execution time in all analyzed sit-

uations. Once the MLR is trained, the traffic assessment and classification is

straightforward. The more significant variation of the time period spent by this

module is related to the discovery of the IP addresses and ports involved in the

anomalous event. Regarding the mitigation module, a determinant time factor

is the number of flows that must be inserted in the switches flow table for policy

compliance, either by blocking the communication or applying load balancing.

The latter takes longer to perform due to the need for determining which server

requests will be forwarded and to which alternate servers traffic will be diverted
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Figure 9: System performance evaluated according to the type of threat and the mitigation

policy. A time bin represents a 30s time interval.

to. The preprocessing phase consumed much of the system’s processing time in

all analyzed situations, and this value is highly dependent on the intensity of

an attack.

We investigate the results of the mitigation module in relation to controller

central processing unit (CPU) usage and number of flow-entries in the switches.

Both values can be used to measure the system operation. CPU usage indicates

the performance of the control plane, while the number of flow entries in the

table of a switch can affect the forwarding capability because every incoming

packet is matched against flow table entries (Yuan et al., 2017). The three

graphics at the top of Figure 9 represent the controller’s CPU usage. These

measurements were taken every second for a period of five minutes. Each graph

refers to a policy applied to contain an attack, and the red circles indicate the

exact moment when such policies were pushed from the controller to the switches

affected by the attacks. The three graphs at the bottom of the figure indicate

the number of flow entries contained in switch S5 during the attacks.

Figure 9(a) reveals that the block flow policy required three time bins to

restrain the DDoS attack. After inserting flows with the action of discarding
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malicious packets (time bin 5), it was necessary to add new mitigation flows

with the IP addresses of the new incoming attackers (time bin 6). Around time

bin 8 the flows began decreasing, and traffic returned to normal as expected.

In Figure 9(b) it is possible to observe a peak in CPU usage around 90s. This

peak is caused by the detection and mitigation module’s activity for DDoS

identification and implementation of the load balance policy. From then on, the

CPU was required to perform load balancing so that its use remained higher

than usual throughout the anomalous event. Finally, CPU usage in Figure 9(c)

depicts a peak when the portscan attack is encountered. As the block src ip

policy only needs to discover a misbehaving source IP cut off its communication

by inserting a single flow-entry in the switches, the peak lasts less than those

observed in the detection of DDoS attacks. Accordingly, the flows in S5 decrease

drastically as a consequence of the mitigation action.

5. Conclusion

This work presented an ecosystem designed to detect and mitigate network

threats in an SDN environment. The system autonomously monitors the traffic

and implements countermeasures on affected devices to maintain the availability

of the network’s services. To this end, the system employs a multi-feature

traffic analysis to profile normal network usage. Thereafter, the resulting normal

profile is used to identify unusual traffic patterns, and a mitigation policy is

chosen according to the recognized anomalies.

The ecosystem was evaluated using a testbed simulating DDoS and port

scan attacks. Compared to other anomaly detection approaches, our detection

mechanism proved outstanding in terms of accuracy and low false-positive rate.

The system locates interfaces that attackers have compromised. The mitiga-

tion module uses this information to begin mitigation routines at the affected

switches and, therefore, restores proper network functionality. Regarding perfor-

mance, we evaluated our proposed system’s performance concerning execution

time and system resources usage (controller’s CPU and switches flow table size).
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This analysis demonstrated that the detection strategy did not vary significantly

concerning the type of recognized anomaly as there is no need to retrain if we

apply the MLR approach. In contrast, the more intense the attack, the more

time was spent to execute the mitigation and preprocessing routines. However,

even under high attack intensity, the modules remain operative, and they per-

form in milliseconds. By evaluating the controller’s CPU usage and the number

of active flows in the switches, it was possible to observe the effectiveness of the

policies for preventing the attacks from spreading. The results indicated that

the proposed mechanism could quickly start the attack detection and prescribe

countermeasures to the switches, although it requires some time to recognize a

DDoS attack.

The ecosystem presents a modular design, as statistic collection, anomaly

detection, mitigation, and report tasks are decoupled and can conveniently be

adapted to address new security issues. In this manner, in future work, we intend

to study and incorporate into our ecosystem for SDN networks new anomaly

detection techniques as well as corresponding mitigation policies. We will also

extend this work to consider zero-day attacks that may compromise proper SDN

operations.
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