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A B S T R A C T

In Bioinformatics Protein Fold Recognition (PFR) and Structural Class Prediction (SCP) is a significant problem
in predicting protein with a three dimensional structure. Extraction of valuable features of protein that consists
of 20 amino acids to acquire more desirable classifiers is fundamental to this PFR and SCP. Feature extraction
technique predominantly exploits Forward Consecutive Search Scheme (FCS) that supplements syntactical-
based, evolutionary-based and physicochemical-based information. In this research work, a classifier known as
Enhanced Artificial Neural Network (ANN) is employed as it is more efficient than Forward Consecutive Search
scheme in order to improve the performance of PFR and SCP. The Enhanced ANN algorithm is an improved
version of Artificial Neural Network when compared with various existing algorithms such as Support Vector
Machine (SVM), ANN, K-Nearest Neighbor (KNN) and the Bayesian. The experiments are conducted on four
datasets namely DD, EDD, TG and RDD. Ultimately, the statistical imputation of Enhanced ANN algorithm
hypothesizes gives better results than other algorithms to improve the performance of PFR and SCP.

1. Introduction

Proteins are the components which play important roles in the ac-
tivities of organisms. Protein's function depends on the interactions
with other proteins and its folding. Mismatch protein folding usually
leads to changing in properties of the protein, which causes some dis-
eases (Hashemi et al., 2009). To acquire knowledge about the protein
function, interactions and regulations the prediction of protein struc-
tural classes is extremely useful (Jian-Yi Yang et al., 2010). To Increase
the prediction accuracy of secondary structure and also to reduce the
testimony of hunting scope in three dimensional structure predictions,
the mastery of the structural class is helpful (Mohammad and
AliYaghoubi, 2016). The SCP has become one of the most important
features for characterizing the overall folding type of a protein in pro-
tein research. The first definition of protein structural class was in-
troduced by Levitt and Chothia in 1976 and the globular proteins are
normally classified into four structural classes such as (i) the all-α class
consists of only little amount of strands, (ii) the all-β class consists of
only little amount of helices, (iii) the α/β class consists of helices and
almost all parallel strands, and α+ β class consists of helices and almost
all anti-parallel strands (Levitt and Chothia, 1976). Basically, the

structural class of protein prediction from 20 amino acids is a sig-
nificant task in the field of molecular biology.

Proteins with unique length and similarities to be a part of the same
fold having the identical significant protein secondary structure in the
identical arrangement with the identical topology certainly they have a
regular origin of evolutionary (Yang et al., 2011). PFR is used to model
the proteins which have the similar fold as proteins of known structure,
but do not have homologous proteins with known protein structure.
PFR is the acquiring of three dimensional structure of the protein se-
quences independent from the sequence identities (Ding and Dubchak,
2001). PFR and SCP are prohibited as a transitional step for identifying
the protein three dimensional structures. The PFR and SCP consist of
two main concepts such as feature extraction techniques and classifi-
cation techniques. The main goal of PFR and SCP is to allocate the novel
protein sequence to a particular fold type and to a particular class type.
Computational approaches considered more attention over the years
due to the expense and the time involved in identifying the three di-
mensional structure of protein by using X-ray crystallography and Nu-
clear Magnetic Resonance (NMR) (Ibrahim and Abadeh, 2017).

Many feature extraction techniques have been developed for protein
Structural Class Prediction such as syntactical and physicochemical
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based features (Dehzangi et al., 2013a, 2013b; Dubchak et al., 1997;
Huang and Tian, 2006), Pairwise frequency (PF) carried out by (Yang
et al., 2011), PF1 and PF2 (Ghanty and Pal, 2009), Bigram feature
(Hayat et al., 2014a, 2014b; Sharma et al., 2013; Saini et al., 2014),
Trigram (Lyons et al., 2016; Paliwal et al., 2014a), Separated dimmers
(Saini et al., 2015), Pseudo-Amino Acid Composition (Chou, 2001),
feature selection techniques such as syntactical, evolutionary and
physicochemical-based features (Guyon and Elisseeff, 2003; Sharma
et al., 2012, 2012b, 2013; Raicar et al., 2016; Cormen et al., 1990;
Dehzangi and Phon-Amnuaisuk, 2011). Also several computational
classifiers are used for protein Structural Class Prediction such as SVM
(Hae-Jin et al., 2004), KNN (Shen and Chou, 2006; Ding and Zhang,
2013), ANN (Raicar et al., 2016), Bayesian classifiers (Chinnasamy
et al., 2005), Hidden Markov Model (Bouchaffra and Tan, 2006), En-
semble classifiers (Dehzangi et al., 2009, 2010a, 2010b, Dehzangi and
Karamizadeh, 2011; Shen and Chou, 2006; Yang et al., 2011), Hier-
archical classification (Sharma et al., 2016) and Bayesian decision rule
(Wang and Yuan, 2000) for both PFR and SCP. These techniques have
many disadvantages such as poor performance when the dataset is large
and sometimes may lead to over fitting and data loss or complexity,
difficulties in debug and complex optimal design.

To overcome the drawbacks of the existing classification technique
a new approach called Enhanced ANN have been developed. This ap-
proach focuses on improving the performance of PFR and SCP ac-
curacies using physico-chemical properties of amino acids, which
overcome the drawback of classification techniques. Hence our pro-
posed algorithm finds the overlapping communities and works with
weighted network. To evaluate the performance of the proposed algo-
rithm with the existing techniques four benchmark datasets namely, DD
(Murzin et al., 1995; Ding and Dubchak, 2001; Alok Sharma, 2013),
EDD (Dong et al., 2009; Alok Sharma, 2013), TG (Taguchi and

Gromiha, 2007; Alok Sharma, 2013) and RDD (Xia et al., 2017) are
used.

In this paper, the input for our proposed algorithm have been de-
rived from the feature extraction technique, namely Forward
Consecutive Search scheme (FCS) that combines physico-chemical
based feature by syntactical based or evolutionary based feature. Then
the proposed algorithm, namely Enhanced Artificial Neural Network is
compared with four other popular classification algorithms, namely
SVM, KNN, ANN and Bayesian for same datasets. Finally, the results are
compared using the performance metrics to measure the performance of
the proposed algorithm that indicates that it performs very efficiently
for both PFR and SCP with high accuracy when compared to the other
algorithms. The remaining sections of the paper are organized as fol-
lows. Section 2 describes the related works of the existing techniques.
The methodology has been explained in the Section 3. Section 4 shows
the experimental results and discussion. The biological significance is
given in Section 5. Finally the conclusion and future is given in Section
6.

2. Related work

FCS is used to select physico-chemical attributes for PFR and SCP
(Raicar et al., 2016). A novel mixture of physico-chemical and evolu-
tionary based feature extraction methods that depend on the concepts
of segmented distribution and density is developed (Dehzangi et al.,
2014b). The Hidden Markov- Support Vector Machines (HM-SVMs)
classifier is introduced to predict the residues that participate in a beta
sheet with hydrogen bonds between adjacent sheets in structural class
(Blaise Gassend et al., 2006). The feature extraction techniques named
tri-grams, computed directly from Position Specific Scoring Matrices
have a problem of time complexity due to its iterative process (Paliwal

Fig. 1. Generalized flow chart of enhanced ANN.
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et al., 2014a). The Multi Dimensional-Successive Feature Selection
(MD-SFS) method is generated (Alok Sharma, 2013) to select physico-
chemical attributes of the amino acids for Protein Fold Recognition
determination.

The bi-gram based feature extraction is calculated from Position
Specific Scoring Matrices directly for Protein Fold Recognition and it
has a problem of limited accuracy (Sharma et al., 2013). The feature
selection method is recommended (Ghanty and Pal, 2009) to select few

features named as trio AACs and trio potential for protein fold and
structural class determination. SVM is projected as a base classifier
(Dubchak et al., 2001) for multi-class Protein Fold Recognition based
on two new methods named as unique one-against-others and the all-
against-all (Wang and Liu, 2004) proposed kernel method-SVM classi-
fier for protein fold and structural class recognition. This kernel model
was quite sensitive and high complexity.

Protein Fold Recognition is solved by multi-class support vector

Fig. 2. Flow chart of enhanced ANN.
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machine classifier (Minh et al., 2003) based on sequence-derived fea-
tures and having the difficulty in optimal design. The SVM classifier
applied to feature extraction method based on the physical and physico-
chemical properties of amino acids for PFR and SCP having a problem
of over fitting (Dehzangi and Phon-Amnuaisuk, 2011). A Probabilistic
Neural Network Ensemble (PNNE) model is developed by (Chen et al.,
2007) for multi-class PFR problem. It is evaluated by two datasets
containing 27 SCOP folds, but it would computationally intensify to
train on very large datasets. The Kohonen's self–organizing neural
network is recommended to predict the structural classes of proteins
that have difficulties in debugging (Cai and Zhou, 2000).

In (Baldi and Pollastri, 2003) the new approach is introduced,
namely Recurrent and Recursive Artificial Neural Networks (RNNs).
The architectures for large-scale applications that are derived from the
state-of-the-art predictors for protein structural features such as sec-
ondary structure (1D) still have an issue of high processing time. The
pair of neural network-based algorithms are given to predict tertiary
structural class and the secondary structure presented with non-
homologous protein (Chandonia and Karplus, 1995). Protein Structural
class is predicted by neural network classifier with amino acid com-
position and hydrophobic pattern frequency information as input to
derive the Structural Class Prediction that has a poor performance for
small datasets (Metfessel and Saurugger, 1993). An Optimized Evidence
Theoretic K -Nearest Neighbor (OET-KNN) classifier is discovered by
(Shen and Chou, 2005) which is combined through a weighted voting of
features to give a final determination for classifying a query protein for
recognition with poor performance when the datasets is large.

Adaptive Fuzzy r-Nearest Neighbor (AFK-NN) method is used to
predict enzyme subfamily class without overlap that is not suitable for
large datasets (Wen-Lin Huang et al., 2007). The new method, namely
Tree-Augmented Bayesian Networks (TAN) based on the theory of
learning Bayesian networks structure probabilities determines the sig-
nificance of each feature for each class that helped in protein structure
with data complexity (Chinnasamy et al., 2005). A novel method called
Hierarchical Ensemble of Bayesian Classifiers (HensBC) is deployed to
predict protein subcellular location used only for small datasets
(Bulashevska and Eils, 2006). The Bayesian model was introduced (Li
et al., 2014) based on the knob-socket model of protein packing in
secondary structures that have a limitation of data loss. From the lit-
erature review, it is observed that many feature extraction and

classification techniques can be used for the PFR and SCP problems.
Especially for SCP some of the feature extraction techniques are

handled such as tri-grams (Tao et al., 2015), Primary and Secondary
sequences (Nanni et al., 2014), Chaos Game Representation (CGR)
(Zhang et al., 2016), overlapping segmented distribution and auto
correlation-based (Dehzangi et al., 2013a, 2013b), Segmented dis-
tribution and segmented auto covariance (Dehzangi et al., 2014a),
Hybrid feature spaces of Bayes of multi profile and probability of bi-
gram (Hayat et al., 2014a, 2014b), Chou's pseudo amino acid compo-
sition and wavelet denoising (PseAAC-WD) (Yu et al., 2017), 11- di-
mensional feature vector (Liu and Jia, 2010), Evolutionary collocation
based sequence representation (Chen et al., 2008) and classification
algorithms such as, Ensemble classifiers (Nanni et al., 2014, Nanni,
2006) and SCPRED (Kurgan et al., 2008).

Particularly for PFR part of feature extraction techniques pre-owned
such as Hidden Markov Model by Dynamic Programming (PHMM-DP)
(Lyons et al., 2016), k-Amino Acid Pair (k-AAP) (Paliwal et al., 2014b),
Hydrophobicity and pair-wise amino acids (Pal and Chakraborty,
2003), amino acid alignment feature extraction method is computed
based on Kernalized dynamic time warping (Lyons et al., 2014) and
Classification techniques namely Sparse representation based classifi-
cation (SRC) (Yan et al., 2017), Random forest (Dehzangi et al., 2010a,
2010b), Heterogeneous classifier (Dehzangi and Karamizadeh, 2011),
Ensemble classifiers (Dehzangi et al., 2009), Single probabilistic multi-
class multikernel machine (Damoulas and Girolami, 2008).

3. Methodology

In this research the existing algorithms such as SVM, ANN, KNN,
Bayesian and the proposed approach, namely Enhanced Artificial
Neural Network algorithm are compared to predict the PFR and SCP.
From the results it is inferred that the Enhanced ANN algorithm pro-
vides better results than the existing algorithms.

3.1. Syntactical and evolutionary based features

Occurrence (O) is the frequency of amino acids in a protein se-
quence that produce 20 features

= … …n n n nn ( , , , , , )i i i ij i1 2 20 (1)

Fig. 3. Pseudo code for Enhanced ANN algorithm.
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where n i constitutes the number of amino acids of each type in i th
protein (Taguchi and Gromiha, 2007).

Pairwise frequency (PF1) is the frequency of pairs of amino acids
separated by one residue in a protein sequence that produce 400 fea-
tures (Ghanty and Pal, 2009)

∑= = …
= = = +

+
PP

R
e1 (a, b) 1 , a, b 1, 2, ,20

x a x b j i, , 2i j

h xi h xj
M

( ) ( )

(2)

where a and b represent two residues; h (a) is the hydrophobicity of
residue a and M is a constant; the role of M is to scale the value of
hydrophobicity so that numerical overflow is avoided; R is a normal-
izing constant computed by.
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where (XTr) is the entire training set.

A prefix of PSSM+before a (O, PF1) indicates that the feature was
extracted from consensus protein sequences rather than the raw protein
sequences with the amino acids in the PSSM consist of high probability
(Raicar et al., 2016).

The Bigram feature is based on PSSM matrix that represents the
transitional probabilities from one amino acid to another and also
produces 400 features.

∑= ≤ ≤ ≤ ≤
=

−
+ where m and nB p p , 1 20 1 20m n i

L
i m, 1

1
, i 1,n (4)

where B indicate the bigram occurrence matrix; P is the matrix of a
given protein that represents PSSM with L rows and 20 columns; L is the
length of the primary sequence and also an element at ith-row and jth-
column is denoted by pi, j which is the relative probability of the pri-
mary protein sequences (Sharma et al., 2013). The feature vector for
bigram is computed by

= … … … …F [B , B , , B , B , , B , , B , , B ]T
1,1 1,2 1,20 2,1 2,20 20,1 20,20 (5)

Fig. 4. Sensitivity of all feature sets for PFR and SCP on DD, EDD, TG and RDD datasets.
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where F determines as bigram feature vector, B is the bigram occur-
rence matrix and T indicates the transpose of the vector.

Trigram is based on PSSM matrix that represents the transitional
probabilities with triplets from one amino acids to another and also
produces 8000 features (Paliwal et al., 2014a, 2014b).

Separated dimers consist of amino acid dimers with probabilistic
expressions that have spatial separations from k=1,2, …,K, where K,
denoted as the upper bound of k that produces 400×k features

= … …kF( ) [F (k), F (k), , F (k), F (k), F (k)]1,1 1,2 1,20 2,1 20,20 (6)

where k depicts the spatial distance between the dimers; P determines
the PSSM matrix representation of a protein sequence and also it con-
sists of L (where L is the length of the protein sequence) rows with 20
columns. The mth amino acid (1≤m≤ 20) to nth amino acid
(1≤ n≤ 20) of probabilistic expression can be computed using Eq. (7)
(Saini et al., 2015)

∑=
=

−

+P PF (k)m n
i

L k

i m i k n,
0

, ,
(7)

where F(k) computes as the feature sets for probabilistic occurrence of
amino acid dimers with different values of k.

3.2. Physico-chemical based features

In order to improve the performance of PFR and SCP the physico-
chemical based feature are used to preserve more judicious information
from the amino acids of protein sequences and is examined by

∑= − −
=

−

+A f μ f μ1
L

( )( )i
m

L

m m
1

i

i
(8)

where i consists of the values 1 to 20 that is fabricated for each protein
sequences with 20 autocorrelation features, L is the length of

Fig. 5. Specificity of all feature sets for PFR and SCP on DD, EDD, TG and RDD datasets.
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probabilistic residues, fm determines the probabilistic residue value of
protein sequence with mth amino acid and the average value of L is
depicted by μ (Raicar et al., 2016).

3.3. Forward consecutive search scheme

The FCS (Forward Consecutive Search Scheme) is a scheme that is
basically used to combine physico-chemical based features with the
existing syntactical and evolutionary based features to improve the
performance of prediction of structural class as well as protein fold.
This can be derived from Eq. (1). The main aim of FCS is relatively

simple and its implementation is, therefore, straight forward for solving
feature extraction problem (Raicar et al., 2016).

= … ≠= … −max α F F FΩ arg ({Feature, S , S , , S }), j Ω , Ω ΩS j r j S1,2, Ω1 Ω2 1 2, , 1

(9)

where ΩS is a physico-chemical attribute, selected at a given level S;S
means total number of levels, j determines maximum number of phy-
sico-chemical attributes; α is a baseline accuracy; Feature consists of
any one of the syntactical based and evolutionary based features; SFΩ1&
SFΩ2 are the previous level successive features and SFj means successive
features.

Fig. 6. Precision of all feature sets for PFR and SCP on DD, EDD, TG and RDD datasets.
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3.4. The proposed approach: Enhanced Artificial Neural Network

The proposed algorithm is designed to predict the 27 protein fold
type and protein structural class such as all-α, all-β, α/β and α+ β
from extracted features using physico-chemical properties based on
artificial neurons and nearest neighbor. This is performed by
Normalization, Euclidean distance, nearest neighbor and Sigmoid ac-
tivation function. The generalized flow chart of Enhanced ANN is given
in Fig. 1.

3.4.1. Normalization

= − −E E ENorm e /min max min (10)

where e determines data; Emin indicates the minimum values in each
column; Emax determines the maximum values in each column. Fig. 2(b)
illustrates the normalization step.

3.4.2. Euclidean distance

∑= −
=

P Pd ( )
i

v

i i
1

1 2
2

(11)

where d indicates distance; v determines the length of amino acids in
protein sequences; P1i and P2i are the two points (i.e. Euclidean vec-
tors). The weight calculation of protein sequence depicted in Fig. 2(c).

3.4.3. Nearest neighbor
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d r r
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j ij j

j j

1
K 2

1
K 2

(12)

where ui determines the membership values in the ith class; r is the
current residue that is assigned to membership values and rj indicates
the neighbor residue of r; d means the distance between the residues; K
is the count of nearest neighbor determined in Fig. 2(d).

Instead of picking all the weight with low and high, Eq. (12) is used
to pick only minimum nearest neighbor based on k value that provides
the results in an efficient manner when compared with existing classi-
fier. The flow chart of Enhanced ANN with its input values is given in
Fig. 2.

3.4.4. Sigmoidal activation function

= + −esig (x) 1/(1 )Z (13)

where e−z is an exponential function that is mainly used to compute
activation function with small range of real number such as (−1 to
+1). Fig. 2(e) and Fig. 2(f) constitutes the Summation process and
Activation function. The pseudo code of Enhanced ANN is shown in
Fig. 3.

Algorithm 1. Pseudo code of Enhanced ANN algorithm.

1. Read and normalize datasets using Eq. (10) //input layer 
2. Distinguishing training and test data //input layer 
3. Weight is calculated based on distance using Eq. (11) //hidden layer 
     (a) Setting value for parameter k 

     (b) Estimating the distance between input data and training data 

     (c) Sorting distances in an ascending pattern 

     (d) Choosing the best k neighbour using Eq.  (12) 

     (e) Repeating steps 2-4 until the algorithm is over 

     (f) Weight matrix is saved as result 

4. Simulation involves using Eq. (13) //hidden layer 
5. Saving results 
6. Retrieving MLP model 
     (a) Setting values for number of input, output and hidden layers 

     (b) Primary weighing of existing neurons in input, output and hidden layers 

     (c) Calculating the output (y) for each neuron in output layer 

     (d) Updating MLP parameters 

     (e) Repeating steps 3-4 until the algorithm is over 

7. Saving results 
8. End of hybrid model 
9. Displaying results 
10. End 

Where MLP – Multi Layer perceptron

3.5. Datasets

In this research work, the proposed algorithm is inspected with the
well-known benchmark datasets for analyzing the execution of the al-
gorithm based on the strength. The benchmark datasets used in this
research work are DD, EDD, TG and RDD. The DD dataset consists of
311 protein sequences presented in DD training datasets with similarity
of< 35% along with 384 protein sequences presented in testing data-
sets with similarity lower than 40% (Ding and Dubchak, 2001; Murzin
et al., 1995). The EDD dataset consists of 2082 protein sequences in
training and 1336 protein sequences in testing. Totally it consists of
3418 protein sequences with similarity of< 40% (Dong et al., 2009).
The TG dataset consists of 1010 protein sequences in training as well as
602 protein sequences in testing dataset. Totally it consists of 1612
protein sequences with similarity< 25%, which belongs to 30 fold
types that represents all the major structural class. The training sets are
mostly used to find out physico-chemical attributes (Taguchi and
Gromiha, 2007). The RDD dataset consists of 311 protein sequences in
training datasets and 380 protein sequences in testing datasets with
similarity lower than 37% (Xia et al., 2017).

3.6. Performance measures

This research focuses on the performance measures such as preci-
sion, sensitivity and specificity in order to produce various statistical
consequence in order to successfully bring out results.

3.6.1. Specificity
Specificity measures the negative proportion that is identified cor-

rectly to the whole number of test samples that are rejected and is
premeditated by using Eq. (14).

=
+

Specificity T N
TN FP (14)

where TN depicts true negative and FP denotes false positive samples.

3.6.2. Sensitivity
Sensitivity measures the positive proportion that is correctly
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identified among the test samples which is correctly classified and de-
liberated by using Eq. (15).

=
+

Sensitivity TP
TP FN (15)

where TP represents true positive and FN denotes false negative sam-
ples.

3.6.3. Precision
Precision refers to how related number of TP is identified to the

whole number of positive predictions and is denoted by using Eq. (16).

=
+

Precision TP
TP FP (16)

where TP determines true positive and FP constitutes false positive
samples. The specificity, sensitivity and precision are evaluated for both
PFR and SCP with seven features such as O, PF1, PSSM+O,
PSSM+PF1, Bigram, Trigram and Separated dimers by using an En-
hanced ANN algorithm.

Fig. 4(a), (b), (c) and (d) depicts the performance of Sensitivity for
DD, EDD,TG and RDD datasets for proposed algorithm.

Fig.5(a), (b), (c) and (d) shows the performance of Sensitivity for
DD, EDD,TG and RDD datasets for proposed algorithm.

Fig. 6 (a), (b), (c) and (d) shows the performance of Sensitivity for
DD, EDD, TG and RDD dataset for proposed algorithms. However, when
compared with all the datasets Sensitivity and precision are quite varied
for both PFR and SCP.

4. Implementation and discussion

In addition, the public presentation of the enhanced algorithm has
been gauged by comparison with many classification techniques,
namely SVM, ANN, KNN and Bayesian classifier. From Figs. 7–10 is
evidence that classifications of syntactical, evolutionary based features
and physico-chemical based features have improved the performance of
PFR and SCP that displayed better prediction accuracy when compared
with both existing and proposed algorithms. From these results, it is
inferred that the proposed Enhanced ANN classification algorithm has
given better results than the other existing algorithms such as SVM,
ANN, KNN and Bayesian for the syntactical and evolutionary based
features such as PF1, PSSM+PF1, O, PSSM+O, Bigram, Trigram and
Separated dimmers. Furthermore, the classification test was conducted

Fig. 7. Comparison of prediction accuracy for the existing and proposed algo-
rithms on DD dataset.

Fig. 8. Comparison of prediction accuracy for the existing and proposed algo-
rithms on EDD dataset.

Fig. 9. Comparison of prediction accuracy for the existing and proposed algo-
rithms on TG dataset.

Fig. 10. Comparison of prediction accuracy for the existing and proposed al-
gorithms on RDD dataset.
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for both PFR and SCP by using various datasets such as DD, EDD, TG
and RDD.

For the prediction accuracy shown in Table 1 and Fig. 7, it is de-
termined that the Enhanced ANN algorithm performed 73.3%, 73.0%,
79.9%, 80.0%,83.3%, 86.6% and 90.0% better for PFR and also per-
formed 73.6%,76.6%,76.6%,83.3%,86.6%,93.0% and 93.3% better for
SCP for PF1,PSSM+PF1,O,PSSM+O,Bigram and separated dimers on
DD dataset compared to other existing algorithms. From the Table 2
and Fig. 8, it is hypothesized that the Enhanced ANN algorithm per-
formed 76.0%, 76.0%, 80.0%, 83.3%, 86.6%, 87.3% and 93.0% better
for PFR and also performed 79.9%, 80.0%, 79.9%, 86.6%, 90.0%,

93.0% and 96.0% better for SCP for PF1, PSSM+PF1, O, PSSM+O,
Bigram and separated dimers on EDD dataset compared to other ex-
isting algorithms.

From Table 3 and Fig. 9, it is concluded that the Enhanced ANN
algorithm performed 70.0%, 70.0%, 79.0%, 80.0%, 83.0%, 79.0% and
90.0% better for PFR and also performs 73.3%, 73.0%, 73.0%, 83.3%,
86.6%, 86.7% and 93.0% better for SCP for PF1, PSSM+PF1, O,
PSSM+O, Bigram and separated dimers on TG dataset compared to
other existing algorithms. Table 4 and Fig. 10 shows that the Enhanced
ANN algorithm performed 64.9%, 66.9%, 67.7%, 69.9%, 70.0%, 70.5%
and 75.4% better for PFR and also performs 60%, 63.3%, 70.0%.

Table 1
Comparison of accuracy prediction for the existing and the proposed algorithm for the DD dataset.

Features KNN
(Nanni, 2006)

Bayesian
(Chinnasamy et al., 2005)

ANN
(Cai and Zhou, 2000)

SVM
(Chen et al., 2006)

Enhanced ANN
(Proposed)

PFR PF1 (Ghanty and Pal, 2009) 40.0 43.3 53.3 60.0 73.3
PSSM+PF1 (Raicar et al., 2016) 43.0 46.0 60.0 66.6 73.0
O (Taguchi and Gromiha, 2007) 50.0 56.0 63.3 70.0 79.9
PSSM+O (Raicar et al., 2016) 53.0 60.0 66.0 70.0 80.0
Bigram (Sharma et al., 2013) 56.0 63.3 70.0 79.3 83.3
Trigram (Lyons et al., 2016) 60.0 60.0 72.8 80.0 86.6
Separated dimers (Saini et al., 2015) 63.0 66.0 73.0 86.3 90.0

SCP PF1 (Raicar et al., 2016) 43.3 46.6 56.6 63.3 73.6
PSSM+PF1 (Lyons et al., 2016) 46.0 50.0 63.0 66.6 76.6
O (Raicar et al., 2016) 53.0 60.0 66.6 73.0 76.6
PSSM+O (Lyons et al., 2016) 56.0 63.0 70.0 73.3 83.3
Bigram (Saini et al., 2014) 60.0 66.6 73.3 80.0 86.6
Trigram (Paliwal et al., 2014a) 62.0 63.3 73.3 86.0 93.0
Separated dimers (Saini et al., 2015) 63.0 70.0 76.6 89.0 93.3

Table 2
Comparison of accuracy prediction for the existing and the proposed algorithm for the EDD dataset.

Features KNN
(Nanni, 2006)

Bayesian
(Chinnasamy et al., 2005)

ANN
(Cai and Zhou, 2000)

SVM
(Chen et al., 2006)

Enhanced ANN
(Proposed)

PFR PF1 (Ghanty and Pal, 2009) 50.0 56.3 60.0 63.0 76.0
PSSM+PF1 (Raicar et al., 2016) 53.0 60.0 63.3 66.0 76.0
O (Taguchi and Gromiha, 2007) 56.0 62.0 66.0 70.0 80.0
PSSM+O (Raicar et al., 2016) 63.0 66.0 70.0 73.0 83.3
Bigram (Sharma et al., 2013) 63.3 70.0 73.3 79.9 86.6
Trigram (Lyons et al., 2016) 66.0 75.4 76.7 80.0 87.3
Separated dimers (Saini et al., 2015) 70.0 76.0 80.0 90.0 93.0

SCP PF1 (Raicar et al., 2016) 53.3 60.3 63.3 66.0 79.9
PSSM+PF1 (Lyons et al., 2016) 56.0 63.0 66.0 70.0 80.0
O (Raicar et al., 2016) 60.0 66.0 70.0 73.0 79.9
PSSM+O (Lyons et al., 2016) 63.0 70.0 73.0 76.0 86.6
Bigram (Saini et al., 2014) 66.0 73.3 76.6 80.0 90.0
Trigram (Paliwal et al., 2014a) 70.0 80.0 80.0 83.0 93.0
Separated dimers (Saini et al., 2015) 73.3 80.0 83.0 93.0 96.0

Table 3
Comparison of accuracy prediction for the existing and the proposed algorithm for the TG dataset.

Features KNN
(Nanni, 2006)

Bayesian
(Chinnasamy et al., 2005)

ANN
(Cai and Zhou, 2000)

SVM
(Chen et al., 2006)

Enhanced ANN
(Proposed)

PFR PF1 (Ghanty and Pal, 2009) 43.3 46.0 56.6 56.0 70.0
PSSM+PF1 (Raicar et al., 2016) 50.0 50.0 60.0 60.0 70.0
O (Taguchi and Gromiha, 2007) 53.0 56.0 63.0 63.0 79.0
PSSM+O (Raicar et al., 2016) 56.0 60.0 66.0 66.0 80.0
Bigram (Sharma et al., 2013) 60.3 60.0 70.0 79.0 83.0
Trigram (Lyons et al., 2016) 60.1 63.0 70.0 75.0 79.0
Separated dimers (Saini et al., 2015) 63.0 63.0 73.0 86.0 90.0

SCP PF1 (Raicar et al., 2016) 46.6 50.0 60.0 60.0 73.3
PSSM+PF1 (Lyons et al., 2016) 53.0 53.3 63.3 63.3 73.0
O (Raicar et al., 2016) 56.6 60.0 66.0 63.0 73.0
PSSM+O (Lyons et al., 2016) 60.0 60.0 70.0 70.0 83.3
Bigram (Saini et al., 2014) 63.3 63.0 73.0 80.0 86.6
Trigram (Paliwal et al., 2014a) 62.0 61.0 73.0 80.0 86.7
Separated dimers (Saini et al., 2015) 63.0 63.0 76.0 86.0 93.0
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Table 4
Comparison of accuracy prediction for the existing and the proposed algorithm for the RDD dataset.

Features KNN (Nanni, 2006) Bayesian (Chinnasamy et al.,
2005)

ANN (Cai and Zhou,
2000)

SVM (Chen et al.,
2006)

Enhanced ANN (Proposed)

PFR PF1 (Ghanty and Pal, 2009) 54.6 50.0 50.2 53.3 64.9
PSSM+PF1 (Raicar et al., 2016) 54.0 53.3 56.5 56.6 66.9
O (Taguchi and Gromiha, 2007) 56.6 56.0 60.0 63.3 67.7
PSSM+O (Raicar et al., 2016) 60.0 60.2 63.3 66.6 69.9
Bigram (Sharma et al., 2013) 63.3 63.7 66.6 59.6 70.0
Trigram (Lyons et al., 2016) 63.0 63.3 66.0 60.0 70.5
Separated dimers (Saini et al.,
2015)

65.3 63.3 70.0 72.1 75.4

SCP PF1 (Raicar et al., 2016) 50.0 53.3 53.3 56.6 60.0
PSSM+PF1 (Lyons et al., 2016) 53.3 56.6 60.0 60.4 63.3
O (Raicar et al., 2016) 56.6 60.0 63.3 66.6 70.0
PSSM+O (Lyons et al., 2016) 63.3 63.0 63.3 63.0 68.0
Bigram (Saini et al., 2014) 63.0 62.3 64.9 67.0 70.5
Trigram (Paliwal et al., 2014a) 64.1 62.5 66.0 69.4 72.3
Separated dimers (Saini et al.,
2015)

70.0 66.6 73.3 77.3 81.3

Fig. 11. Statistical significance of proposed and existing algorithms for DD
dataset.

Fig. 12. Statistical significance of proposed and existing algorithms for EDD
dataset.

Fig. 13. Statistical significance of proposed and existing algorithms for TG
dataset.

Fig. 14. Statistical significance of proposed and existing algorithms for RDD
dataset.
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68.0%, 70.5%, 72.3% and 81.3% better for SCP for PF1, PSSM+PF1, O,
PSSM+O, Bigram and separated dimers on TG dataset compared to
other existing algorithms.

The X-axis in Figs. 7–10 and Figs. 11–14 are represented as follows,
Where,
1-PF1.
2-PSSM+PF1.
3-O
4-PSSM+O.
5-Bigram.
6-Trigram.
7-Separated dimers.

4.1. Statistical analysis

For the statistical metric given in Table 5 and Fig. 11, it is inferred
that for both PFR and SCP the Enhanced ANN algorithm performed
30.0% and 32.48% better than KNN, 26.67% and 24.98% better than
Bayesian, 18.89% and 17.9% better than ANN and also 4.12% and
4.61% better than SVM for the separated dimers feature on DD dataset.
For the dataset EDD, for both PFR and SCP the Table 6 and Fig. 12
deduced that Enhanced ANN algorithm performed 24.74% and 23.65
better than KNN, 18.28% and 16.67% better than Bayesian, 13.98%
and 13.55% better than ANN and also 3.23% and 3.13% better than
SVM for the separated dimers feature. For the dataset TG, Table 7 and
Fig. 13 it is concluded for both PFR and SCP that the Enhanced ANN
algorithm performed 30.0% and 32.26% better than KNN, 30.0% and
32.26% better than Bayesian, 18.89% and 18.28% better than ANN and
also 4.45% and 7.53% better than SVM for separated dimers feature.
Finally, Table 8 and Fig. 14 shows the statistical improvements for both
PFR and SCP that the Enhanced ANN algorithm performed 13.4% and
13.4% better than KNN, 16.05% and 16.05% better than Bayesian,
7.17% and 7.17% better than ANN and also 4.4% and 4.93% better
than SVM for a separated dimers feature on the RDD dataset.

5. Biological significance

In computational biology, predicting the protein function from the
primary protein is a very decisive task. The homology of sequence with
secondary structure is helpful to predict protein function. The protein
sequences which consist of secondary structure that can be used to
identify several features of protein function like active site residues,
cellular location, interactions with ligands and other proteins (Tiwari
and Srivastava, 2014).

The Biological significance is conducted to analyze the performance
of the proposed Enhanced ANN. The testing is carried out by using the
Genome Motif tool. For testing three protein sequences from each
structural class were taken from all-α, all-β, α/β and α+ β. Totally 12
protein sequences are tested of which 1,2 and 3 protein sequences from
all-α, 4,5 and 6 protein sequences from all-β, 7,8 and 9 protein se-
quences from α/β and finally 10,11 and 12 protein sequences from
α+ β. The result of biological significance is shown in Table 9. The
protein sequences 1, 2,3 have a similar NCBI-CDD function ID such as
271265, 225223, 271289, 307346, 271305, 271308, 271306, 271304
and 271269 for all-α class. The protein sequences 4,5,6 have a similar
NCBI-CDD function ID such as 143185, 319275, 143181, 311561,
319330, 319287, 143307, 214650, 214653, 214652, 143183, 319326,
316449 and 197706 for all-β. The protein sequences 7, 8, 9 have a
similar NCBI-CDD function ID such as 307128 for α/β and finally the
protein sequences 10,11,12 have a similar NCBI-CDD function ID such
as 235193.

Table 5
Statistical significance of proposed and existing algorithms for DD dataset.

Features KNN Bayesian ANN SVM

PFR PF1 45.43 40.93 27.29 18.15
PSSM+PF1 41.1 36.99 17.81 8.77
O 37.43 29.92 20.78 12.4
PSSM+O 33.75 25.0 17.5 12.5
Bigram 32.78 24.01 15.97 4.81
Trigram 30.72 30.72 15.36 7.63
Separated dimers 30.0 26.67 18.89 4.12

SCP PF1 41.17 36.69 23.1 14
PSSM+PF1 39.95 34.73 17.76 13.06
O 30.81 21.68 13.06 4.7
PSSM+O 32.78 24.37 15.97 12.01
Bigram 30.72 23.1 15.97 7.63
Trigram 26.2 24.65 12.74 7.53
Separated dimers 32.48 24.98 17.9 4.61

Table 6
Statistical significance of proposed and existing algorithms for EDD dataset.

Features KNN Bayesian ANN SVM

PFR PF1 34.22 25.93 21.06 17.11
PSSM+PF1 30.27 21.06 16.72 13.16
O 30.0 22.5 17.5 12.5
PSSM+O 24.37 20.77 15.97 12.37
Bigram 26.91 19.17 15.36 9.74
Trigram 24.4 13.64 12.15 8.4
Separated dimers 24.74 18.28 13.98 3.23

SCP PF1 34.22 20.54 20.78 17.4
PSSM+PF1 30.0 21.25 17.5 12.5
O 24.91 17.4 12.4 8.64
PSSM+O 27.26 19.17 15.71 12.25
Bigram 26.67 18.56 14.89 11.12
Trigram 24.74 13.98 13.98 10.76
Separated dimers 23.65 16.67 13.55 3.13

Table 7
Statistical significance of proposed and existing algorithms for TG dataset.

Features KNN Bayesian ANN SVM

PFR PF1 38.15 34.29 19.15 20.0
PSSM+PF1 28.58 28.58 14.29 14.29
O 32.92 29.12 20.26 20.26
PSSM+O 30.0 25.0 17.5 17.50
Bigram 27.35 27.72 15.67 4.82
Trigram 23.93 20.26 11.4 5.07
Separated dimers 30.0 30.0 18.89 4.45

SCP PF1 36.43 31.79 18.15 18.15
PSSM+PF1 27.40 26.99 13.29 13.29
O 22.47 17.81 9.59 13.7
PSSM+O 27.98 27.98 15.97 15.97
Bigram 26.91 26.91 15.71 7.63
Trigram 28.49 29.65 15.81 7.73
Separated dimers 32.26 32.26 18.28 7.53

Table 8
Statistical significance of proposed and existing algorithms for RDD dataset.

Features KNN Bayesian ANN SVM

PFR PF1 15.88 22.96 22.66 17.88
PSSM+PF1 19.29 20.33 15.55 15.4
O 16.4 17.29 9.45 6.5
PSSM+O 14.17 13.88 9.45 4.73
Bigram 9.58 9.0 4.86 14.86
Trigram 10.64 10.22 6.39 14.9
Separated dimers 13.4 16.05 7.17 4.4

SCP PF1 16.67 22.96 22.66 17.88
PSSM+PF1 19.29 20.33 15.55 15.4
O 16.4 17.29 11.38 6.5
PSSM+O 14.17 13.88 9.45 7.36
Bigram 9.58 9.0 4.86 14.86
Trigram 10.64 10.08 6.39 14.9
Separated dimers 13.4 16.05 7.17 4.93
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6. Conclusion

In Structural Bioinformatics the prediction of three dimensional
structure of protein without using these PFR and SCP becomes a very
difficult task. Sometimes not correctly folded or structured proteins
produce many diseases in living organisms. Predicting the protein
structure is mainly used to avoid the diseases that arise in the living
cells. Several methods have been introduced to overcome this problem
but still some issues persist.

In this research work, to improve the performance of PFR and SCP
the existing feature extraction techniques such as syntactical-based in-
formation and evolutionary-based information are not sufficient. In
addition, here we are extracting the features from protein sequence by
combining existing techniques with physico-chemical based informa-
tion using FCS. To classify these extracted features efficiently the
Enhanced Artificial Neural Network Algorithm has been introduced.
The real protein sequences with unique length are used to test the en-
hanced algorithm. The results are compared with four existing algo-
rithms such as DD, EDD, TG and RDD. The Enhanced Artificial Neural
Network provides higher accuracy than others.

In future, classification can be done with the more syntactical and
evolutionary features and a new feature extraction method can be in-
troduced to supplement existing feature techniques efficiently.
Divergent objectives may be advanced to find better solutions for PFR
and SCP.
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