
Accepted Manuscript

Entropy-based Pruning for Learning Bayesian Networks using BIC

Cassio P. de Campos, Mauro Scanagatta, Giorgio Corani, Marco Zaffalon

PII: S0004-3702(18)30167-X
DOI: https://doi.org/10.1016/j.artint.2018.04.002
Reference: ARTINT 3068

To appear in: Artificial Intelligence

Received date: 21 July 2017
Revised date: 19 March 2018
Accepted date: 13 April 2018

Please cite this article in press as: C.P. de Campos et al., Entropy-based Pruning for Learning Bayesian Networks using BIC, Artif. Intell.
(2018), https://doi.org/10.1016/j.artint.2018.04.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.artint.2018.04.002


Entropy-based Pruning for Learning Bayesian Networks
using BIC

Cassio P. de Camposa,b,∗, Mauro Scanagattac, Giorgio Coranic, Marco Zaffalonc

aUtrecht University, The Netherlands
bQueen’s University Belfast, United Kingdom

cIstituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland

Abstract

For decomposable score-based structure learning of Bayesian networks, existing approaches first
compute a collection of candidate parent sets for each variable and then optimize over this collec-
tion by choosing one parent set for each variable without creating directed cycles while maximizing
the total score. We target the task of constructing the collection of candidate parent sets when
the score of choice is the Bayesian Information Criterion (BIC). We provide new non-trivial results
that can be used to prune the search space of candidate parent sets of each node. We analyze
how these new results relate to previous ideas in the literature both theoretically and empirically.
We show in experiments with UCI data sets that gains can be significant. Since the new pruning
rules are easy to implement and have low computational costs, they can be promptly integrated
into all state-of-the-art methods for structure learning of Bayesian networks.
Keywords: Structure learning; Bayesian networks; BIC; Parent set pruning.

1. Introduction

A Bayesian network [1] is a well-known probabilistic graphical model with applications in
a variety of fields. It is composed of (i) an acyclic directed graph (DAG) where each node is
associated to a random variable and arcs represent dependencies between the variables entailing
the Markov condition: every variable is conditionally independent of its non-descendant variables
given its parents; and (ii) a set of conditional probability mass functions defined for each variable
given its parents in the graph. Their graphical nature makes Bayesian networks excellent models
for representing the complex probabilistic relationships existing in many real problems ranging
from bioinformatics to law, from image processing to economic risk analysis.

Learning the structure (that is, the graph) of a Bayesian network from complete data is an
NP-hard task [2]. We are interested in score-based learning, namely finding the structure which
maximizes a score that depends on the data [3]. A typical first step of methods for this purpose
is to build a list of suitable candidate parent sets for each one of the n variables of the domain.
Later an optimization is run to find one element from each such list in a way that maximizes the
total score and does not create directed cycles. This work concerns pruning ideas in order to build
those lists. The problem is unlikely to admit a polynomial-time (in n) algorithm, since it is proven
to be LOGSNP-hard [4]. Because of that, usually one forces a maximum in-degree (number of
parents per node) k and then simply computes the score of all parent sets that contain up to k
parents. A worth-mention exception is the greedy search of the K2 algorithm [5].

A high in-degree implies a large search space for the optimization and thus increases the
possibility of finding better structures. On the other hand, it requires higher computational time,
since there are Θ(nk) candidate parent sets for a bound of k if an exhaustive search is performed.
Our contribution is to provide new rules for pruning sub-optimal parent sets when dealing with the
Bayesian Information Criterion score [6], one of the most used score functions in the literature. We

∗Corresponding author

Preprint submitted to Artificial Intelligence April 17, 2018



devise new theoretical bounds that can be used in conjunction with currently published ones [7].
The new results provide tighter bounds on the maximum number of parents of each variable in
the optimal graph, as well as new pruning techniques that can be used to skip large portions of
the search space without any loss of optimality. Moreover, the bounds can be efficiently computed
and are easy to implement, so they can be promptly integrated into existing software for learning
Bayesian networks and imply immediate computational gains.

The paper is divided as follows. Section 2 presents the problem, some background and notation.
Section 3 describes the existing results in the literature, and Section 4 contains the theoretical
developments for the new bounds and pruning rules. Section 5 shows empirical results comparing
the new results against previous ones, and finally some conclusions are given in Section 6.

2. Structure learning of Bayesian networks

Consider the problem of learning the structure of a Bayesian Network from a complete data set
of N ≥ 2 instances D = {D1, ..., DN}. The set of n ≥ 2 categorical random variables is denoted by
X = {X1, ..., Xn} (each variable has at least two categories). The state space of Xi is denoted ΩXi

and a joint space for X1 ⊆ X is denoted by ΩX1 = ×X∈X1ΩX (and with a slight abuse |Ω∅| = 1
containing a null element). The goal is to find the best DAG G = (V,E), where V is the collection
of nodes (associated one-to-one with the variables in X ) and E is the collection of arcs. E can be
represented by the (possibly empty) set of parents Π1, ...,Πn of each node/variable.

Different score functions can be used to assess the quality of a DAG. This paper regards
the Bayesian Information Criterion (or simply BIC) [6], which asymptotically approximates the
posterior probability of the DAG. The BIC score is decomposable, that is, it can be written as a
sum of the scores of each variable and its parent set:

BIC(G) =
n∑

i=1

BIC(Xi|Πi) =

n∑
i=1

(LL(Xi|Πi) + Pen(Xi|Πi)) ,

where LL(Xi|Πi) denotes the log-likelihood of Xi and its parent set:

LL(Xi|Πi) =
∑

π∈ΩΠi

∑
x∈ΩXi

Nx,π logb θ̂x|π ,

where the base b ≥ 2 is usually taken as natural or 2. We will make it clear when the result depends
on such base. Moreover, θ̂x|π is the maximum likelihood estimate of the conditional probability
P (Xi = x|Πi = π), that is, Nx,π/Nπ; Nπ and Nx,π represents, respectively, the number of times
(Πi = π) and (Xi = x∧Πi = π) appear in the data set (if π is null, then Nπ = N and Nx,π = Nx).
In the case with no parents, we use the notation LL(Xi) = LL(Xi|∅). Pen(Xi|Πi) is the complexity
penalization for Xi and its parent set:

Pen(Xi|Πi) = − logb N

2
(|ΩXi

| − 1)|ΩΠi
| ,

again with the notation Pen(Xi) = Pen(Xi|∅).
For completeness, we present the definition of (conditional) mutual information. Let X1, X2,

X3 be pairwise disjoint subsets of X . Then
I(X1,X2|X3) = H(X1|X3)−H(X1|X2 ∪ X3)

(unconditional version is obtained with X3 = ∅), and (the sample estimate of) entropy is defined
as usual: H(X1|X2) = H(X1 ∪ X2)−H(X2) and

H(X1) = −
∑

x∈ΩX1

Nx

N
logb

(
Nx

N

)
.

2



(x runs over the configurations of X1.) Since θ̂x = Nx/N , it is clear that N · H(X1|X2) =
−LL(X1|X2) for any disjoint subsets X1,X2 ⊆ X .

The ultimate goal is to find G∗ ∈ argmaxG BIC(G) (we avoid equality because there might be
multiple optima). We assume that if two DAGs G1 and G2 have the same score, then we prefer the
graph with fewer arcs. The usual first step to achieve such goal is the task of finding the candidate
parent sets for a given variable Xi (obviously a candidate parent set cannot contain Xi itself). This
task regards constructing the list Li of parent sets Πi for Xi alongside their scores BIC(Xi|Πi).
Without any restriction, there are 2n−1 possible parent sets, since every subset of X \ {Xi} is a
candidate. Each score computation costs Θ(N · (1+ |Πi|)), and the number of score computations
becomes quickly prohibitive with the increase of n. In order to avoid losing global optimality, we
must guarantee that Li contains candidate parent sets that cover those in an optimal DAG. For
instance, if we apply a bound k on the number of parents that a variable can have, then the size
of

Li = {〈Πi,BIC(Xi|Πi)〉 | |Πi| ≤ k}
is Θ(nk), but we might lose global optimality (this is the case if any optimal DAG would have
more than k parents for Xi). Irrespective of that, this pruning is not enough if n is large. Bounds
greater than 2 can already become prohibitive. For instance, a bound of k = 2 is adopted in
[8] when dealing with its largest data set (diabetes), which contains 413 variables. One way of
circumventing the problem is to apply pruning rules which allow us to discard/ignore elements of
Li in such a way that an optimal parent set is never discarded/ignored.

3. Pruning rules

The simplest pruning rule one finds in the literature states that if a candidate subset has better
score than a candidate set, then such candidate set can be safely ignored, since the candidate subset
will never yield directed cycles if the candidate set itself does not yield cycles [9, 10]. By safely
ignoring/discarding a candidate set we mean that we are still able to find an optimal DAG (so no
accuracy is lost) even if such parent set is never used. This is formalized as follows.

Lemma 1. (Theorem 1 in [7], but also found elsewhere [9].) Let Π∗ be a candidate parent set
for the node X ∈ X . Suppose there exists a parent set Π such that Π ⊂ Π∗ and BIC(X|Π) ≥
BIC(X|Π∗). Then Π∗ can be safely discarded from the list of candidate parent sets of X.

This result can be also written in terms of the list of candidate parent sets. In order to find
an optimal DAG for the structure learning problem, it is sufficient to work with

Li = {〈Πi,BIC(Xi|Πi)〉 | ∀Π′
i ⊂ Πi : BIC(Xi|Πi) > BIC(Xi|Π′

i)}.
Unfortunately there is no way of applying Lemma 1 without computing the scores of all candidate
sets, and hence it provides no speed up for building the list (it is nevertheless useful for later
optimizations, but that is not the focus of this work).

There are however pruning rules that can reduce the computation time for finding Li and that
are still safe.

Lemma 2. Let Π ⊂ Π′ be candidate parent sets for X ∈ X . Then LL(X|Π) ≤ LL(X|Π′),
H(X|Π) ≥ H(X|Π′) and Pen(X|Π) > Pen(X|Π′).

Proof. The inequalities follow directly from the definitions of log-likelihood, entropy and penal-
ization.

Lemma 3. (Theorem 4 in [7].1) Let X ∈ X be a node with Π ⊂ Π∗ two candidate parent sets,
such that BIC(X|Π) ≥ Pen(X|Π∗). Then Π∗ and all its supersets can be safely ignored when
building the list of candidate parent sets for X.

1There is an imprecision in the Theorem 4 of [7], since ti as defined there does not account for the constant of
BIC/AIC while in fact it should. In spite of that, their desired result is clear. We present a proof for completeness.

3



Proof. Let Π′ ⊇ Π∗. By Lemma 2, we have Pen(X|Π∗) ≥ Pen(X|Π′) (equality only if Π∗ =
Π′). Then BIC(X|Π) ≥ Pen(X|Π∗) ⇒ BIC(X|Π) ≥ Pen(X|Π′) ⇒ BIC(X|Π) − BIC(X|Π′) ≥
−LL(X|Π′), and we have −LL(X|Π′) ≥ 0, so Lemma 1 suffices to conclude the proof.

Note that BIC(X|Π) ≥ Pen(X|Π∗) can as well be written as LL(X|Π) ≥ Pen(X|Π∗) −
Pen(X|Π), and if Π∗ = Π ∪ {Y } for some Y /∈ Π, then it can be written also as LL(X|Π) ≥
(|ΩY | − 1)Pen(X|Π). The reasoning behind Lemma 3 is that the maximum improvement that we
can have in BIC score by inserting new parents into Π would be achieved if LL(X|Π), which is
a non-positive value, grew all the way to zero, since the penalization only gets worse with more
parents. If LL(X|Π) is already close enough to zero, then the loss in the penalty part cannot be
compensated by the gain of likelihood. The result holds for every superset because both likelihood
and penalty are monotone with respect to increasing the number of parents.

4. Novel pruning rules

In this section we devise novel pruning rules by exploiting the empirical entropy of variables.
We later demonstrate that such rules are useful to ignore elements while building the list Li that
cannot be ignored by Lemma 3, hence tightening the pruning results available in the literature.
In order to achieve our main theorem, we need some intermediate results.

Lemma 4. Let Π = Π′ ∪ {Y } for Y /∈ Π′, with Π,Π′ candidate parent sets for X ∈ X . Then
LL(X|Π)− LL(X|Π′) ≤ N ·min{H(X|Π′); H(Y |Π′)}.
Proof. This comes from simple manipulations and known bounds to the value of conditional mutual
information.

LL(X|Π)− LL(X|Π′) = N · (H(X|Π′)−H(X|Π)) ≤ N ·H(X|Π′) .
LL(X|Π)− LL(X|Π′) = N · I(X,Y |Π′)

= N · (H(Y |Π′)−H(Y |Π′ ∪ {X})) ≤ N ·H(Y |Π′) .

Theorem 1. Let X ∈ X , and Π∗ be a parent set for X. Let Y ∈ X \ Π∗ such that N ·
min{H(X|Π∗); H(Y |Π∗)} ≤ (1 − |ΩY |)Pen(X|Π∗). Then the parent set Π = Π∗ ∪ {Y } and all
its supersets can be safely ignored when building the list of candidate parents sets for X.

Proof. We have that

BIC(X|Π) = LL(X|Π) + Pen(X|Π)

≤ LL(X|Π∗) +N ·min{H(X|Π∗); H(Y |Π∗)}+ Pen(X|Π)

≤ LL(X|Π∗) + (1− |ΩY |)Pen(X|Π∗) + Pen(X|Π)

= LL(X|Π∗) + Pen(X|Π∗)− Pen(X|Π) + Pen(X|Π) = BIC(X|Π∗) .

First step is the definition of BIC, second step uses Lemma 4 and third step uses the assumption
of this theorem. Therefore, Π can be safely ignored (Lemma 1). Now take any Π′ ⊃ Π. Let
Π′′ = Π′ \ {Y }. It is immediate that N · min{H(X|Π∗); H(Y |Π∗)} ≤ (1 − |ΩY |)Pen(X|Π∗) ⇒
N ·min{H(X|Π′′); H(Y |Π′′)} ≤ (1 − |ΩY |)Pen(X|Π′′), since Π∗ ⊂ Π′′ and hence −Pen(X|Π′′) >
−Pen(X|Π∗). The theorem follows by the same arguments as before, applied to Π′ and Π′′.

The rationale behind Theorem 1 is that if the data do not have entropy in amount enough to
beat the penalty function, then there is no reason to continue expanding the parent set candidates.
Theorem 1 can be used for pruning the search space of candidate parent sets without having to
compute their BIC scores. However, we must have available the conditional entropies H(X|Π∗)
and H(Y |Π∗). The former is usually available, since −N ·H(X|Π∗) = LL(X|Π∗), which is used to
compute BIC(X|Π∗) (and it is natural to assume that such score has been already computed at

4



the moment Theorem 1 is checked). Actually, this bound amounts exactly to the previous result
in the literature (see for example [7]):

N ·H(X|Π∗) ≤ (1− |ΩY |)Pen(X|Π∗) ⇐⇒
LL(X|Π∗) ≥ Pen(X|Π∗ ∪ {Y })− Pen(X|Π∗) ⇐⇒
BIC(X|Π∗) ≥ Pen(X|Π∗ ∪ {Y }) .

By Theorem 1 we know that Π∗ ∪ {Y } and any superset can be safely ignored, which is the very
same condition as in Lemma 3. The novelty in Theorem 1 comes from the term H(Y |Π∗). If such
term is already computed (or if it needs to be computed irrespective of this bound computation,
and thus we do not lose time computing it for this purpose only), then we get (almost) for free
a new manner to prune parent sets. In case this computation of H(Y |Π∗) is not considered
worthwhile, or if we simply want a faster approach to prune parent sets, we can resort to a more
general version of Theorem 1, as given by Theorem 2.

Theorem 2. Let X ∈ X , and Π∗,Π′ be parent sets for X with Π′ ⊆ Π∗. Let Y ∈ X \ Π∗ such
that N ·min{H(X|Π′); H(Y |Π′)} ≤ (1− |ΩY |)Pen(X|Π∗). Then the parent set Π = Π∗ ∪ {Y } and
all its supersets can be safely ignored when building the list of candidate parents sets for X.

Proof. It is well-known (see Lemma 2) that H(X|Π∗) ≤ H(X|Π′) and H(Y |Π∗) ≤ H(Y |Π′) for any
X,Y ,Π′ ⊆ Π∗ as defined in this theorem, so the result follows from Theorem 1.

An important property of Theorem 2 when compared to Theorem 1 is that all entropy values
regard subsets of the current parent set at our own choice. For instance, we can choose Π′ = ∅

and so they become entropies of single variables, which can be precomputed efficiently in total
time O(N ·n). Another option at this point, if we do not want to compute H(Y |Π∗) and assuming
the cache of Y has been already created, would be to quickly inspect the cache of Y to find the
most suitable subset of Π∗ to plug into Theorem 2. Moreover, with Theorem 2, we can prune the
search space of a variable X without evaluating the likelihood of parent sets for X (just by using
the entropies), and so it could be used to guide the search even before any heavy computation is
done. The main novelty in Theorems 1 and 2 is to make use of the (conditional) entropy of Y .

This new pruning approach is not trivially achievable by previous existing bounds for BIC. It
is worth noting the relation with previous work. The restriction of Theorem 2 can be rewritten
as:

N ·min{H(X|Π′); H(Y |Π′)} ≤ (1− |ΩY |)Pen(X|Π∗) ⇐⇒
N ·min{H(X|Π′); H(Y |Π′)}+ LL(X|Π∗) ≤ −Pen(X|Π∗ ∪ {Y }) + BIC(X|Π∗).

Note that the condition for Lemma 3 (known from literature) is exactly −Pen(X|Π∗ ∪ {Y }) +
BIC(X|Π∗) ≥ 0. Hence, Theorem 2 will be effective (while the previous rule in Lemma 3 will not)
when −Pen(X|Π∗∪{Y })+BIC(X|Π∗) < 0, and so when N ·min{H(X|Π′); H(Y |Π′)}+LL(X|Π∗) <
0. Intuitively, the new bound of Theorem 2 might be more useful when the parent set being
evaluated is poor (hence LL(X|Π∗) is low) while the result in Lemma 3 plays an important role
when the parent set being evaluated is good (and so LL(X|Π∗) is high).

The result of Theorem 2 can also be used to bound the maximum number of parents in any
given candidate parent set. While the asymptotic result is already implied by previous work [7, 12],
we obtain the finer and interesting result of Theorem 3.

Theorem 3. There is an optimal structure such that variable X ∈ X has at most

max
Y ∈X\{X}

⌈
1 + log2

(
min{H(X); H(Y )}

(|ΩX | − 1)(|ΩY | − 1)

)
+ log2 N − log2 logb N

⌉+

parents, where �·�+ denotes the smallest natural number greater than or equal to its argument.

5



Proof. If Π = ∅ is the optimal parent for X, then the result trivially follows since |Π| = 0. Now
take Π such that Y ∈ Π and Π∗ = Π \ {Y }. Since |Π| = |Π∗| + 1 and |ΩΠ∗ | ≥ 2|Π

∗|, we have
|Π| ≤ log2 |ΩΠ∗ |+ 1. Now, if

log2 |ΩΠ∗ | ≥ 1 + log2

(
min{H(X); H(Y )}

(|ΩX | − 1)(|ΩY | − 1)

)
+ log2 N − log2 logb N ⇐⇒

log2 |ΩΠ∗ | ≥ log2

(
2min{H(X); H(Y )}
(|ΩX | − 1)(|ΩY | − 1)

· N

logb N

)
⇐⇒

N ·min{H(X); H(Y )} ≤ logb N

2
· |ΩΠ∗ |(|ΩX | − 1)(|ΩY | − 1) ⇐⇒

N ·min{H(X); H(Y )} ≤ (1− |ΩY |) · Pen(X|Π∗) ,

then by Theorem 2 (used with Π′ = ∅) every superset of Π∗ containing Y can be safely ignored,
and so it would be Π. Therefore,

|Π| ≤ 1 + log2 |ΩΠ∗ | < 1 + 1 + log2

(
min{H(X); H(Y )}

(|ΩX | − 1)(|ΩY | − 1)

)
+ log2 N − log2 logb N ,

and since |Π| is a natural number, the result follows by applying the same reasoning for every
Y ∈ X \ {X}.

Corollary 1 is demonstrated for completeness, since it is implied by previous work (see for
instance [7]; a similar result is implied in [12], but the last passage is flawed there and the bound
seems slightly better). It is nevertheless presented here in more detailed terms and without an
asymptotic function.

Corollary 1. There is an optimal structure such that each variable has at most �1 + log2 N −
log2 logb N� parents.

Proof. By Theorem 3, we have that Π can be a parent of a node X only if

|Π| ≤ max
Y ∈X\{X}

⌈
1 + log2

(
min{H(X); H(Y )}

(|ΩX | − 1)(|ΩY | − 1)

)
+ log2 N − log2 logb N

⌉+

≤ max
Y ∈X\{X}

⌈
1 + log2

(
H(Y )

(|ΩX | − 1)(|ΩY | − 1)

)
+ log2 N − log2 logb N

⌉+

≤ max
Y ∈X\{X}

max

⌈
1 + log2

(
logb |ΩY |

(|ΩX | − 1)(|ΩY | − 1)

)
+ log2 N − log2 logb N

⌉+

≤
⌈
1 + log2

(
1

(|ΩX | − 1)

)
+ log2 N − log2 logb N

⌉+

≤ �1 + log2 N − log2 logb N�+
≤ �1 + log2 N − log2 logb N� ,

since it is assumed that N ≥ 2 and b ≥ 2.

Theorem 3 can be used to bound the number of parent sets per variable, even before computing
parent sets for them, with the low computation cost of computing the empirical entropy of each
variable once (hence overall cost of O(n · N) time). We point out that Theorem 3 can provide
effective bounds (considerably smaller than �1 + log2 N − log2 logb N�) on the number of parents
for specific variables, particularly when number of states is high and entropies are low, as we will
see in the next section.

6



5. Experiments

We run experiments using a collection of data sets from the UCI repository [11]. Table 1 shows
the data set names, number of variables n and number of data points N . In the same table,
we show the maximum number of parents that a node can have, according to the new result of
Theorem 3, as well as the old result from the literature (which we present in Corollary 1). The
old bound is global, so a single number is given in column 5, while the new result of Theorem 3
implies a different maximum number of parents per node. We use the notation bound (number of
times), with the bound followed by the number of nodes for which the new bound reached that
value, in parenthesis (so all numbers in parenthesis in a row should sum to n of that row). We see
that the gains with the new bounds are quite significant and can prune great parts of the search
space further than previous results.

Bound on number of parents
Dataset n N Theorem 3 Corollary 1

glass 8 214 6 (7), 3 (1) 6
diabetes 9 768 7 (9) 8
tic-tac-toe 10 958 6 (10) 8
cmc 10 1473 8 (3), 7 (7) 9
breast-cancer 10 286 6 (4), 5 (2), 4 (1), 3 (3) 7
solar-flare 12 1066 7 (4), 6 (1), 5 (5), 3 (1), 2 (1) 8
heart-h 12 294 6 (6), 5 (3), 4 (2), 3 (1) 7
vowel 14 990 8 (12), 4 (2) 8
zoo 17 101 5 (10), 4 (6), 2 (1) 5
vote 17 435 7 (15), 6 (2) 7
segment 17 2310 9 (16), 6 (1) 9
lymph 18 148 5 (8), 4 (8), 3 (2) 6
primary-tumor 18 339 6 (9), 5 (7), 4 (1), 2 (1) 7
vehicle 19 846 7 (18), 6 (1) 8
hepatitis 20 155 5 (18), 4 (2) 6
colic 23 368 6 (8), 5 (12), 4 (3) 7
autos 26 205 6 (16), 5 (3), 4 (1), 3 (5), 1 (1) 6
flags 29 194 6 (5), 5 (7), 4 (7), 3 (7), 2 (3) 6

Table 1: Maximum number of parents that nodes have using new (column 4) and previous bounds (column 5). In
column 4, we list the bound on number of parents followed by how many nodes have that bound in parenthesis (the
new theoretical results obtain a specific bound per node, while previous results obtain a single global bound).

Our second set of experiments compares the activation of Theorems 1, 2, and 3 in pruning the
search space for the construction of the list of candidate parent sets. Tables 2 to 4 (in the end
of this document) present the results as follows. Columns one to four contain, respectively, the
data set name, number of variables, number of data points and maximum in-degree (in-d) that
we impose (a maximum in-degree is imposed so as we can compare the obtained results among
different approaches). The fifth column, named |S|, presents the total number of parent sets
that need to be evaluated by the brute-force procedure (taking into consideration the imposed
maximum in-degree). Column 6 has the average time to run the algorithms (there is actually no
significant difference between the algorithms’ times in our experiments). Columns 7 to 13 present
the number of times that different pruning results are activated when exploring the whole search
space. Larger numbers means that more parent sets are ignored (even without being evaluated).
The naming convention for the pruning algorithms as used on those columns is:

Alg1 Application of Theorem 1 using H(X|Π∗) in the expression of the rule (instead of the min-
imization), where X is the variable for which we are building the list and Π is the current
parent set being explored. This is equivalent to the previous rule in the literature, as pre-
sented in this paper in Lemma 3.

7



1 1.5 2 2.5 3 3.5 4

in-d 3
in-d 4
in-d 5
in-d 6

Figure 1: Ratio between pruned candidates using Alg1+Alg2 (which theoretically subsumes Alg3 and Alg4) divided
by pruned candidates using prune approach Alg1 alone (since it was the previous literature result), for different
values of maximum in-degree. Greater than one means better than Alg1. Results over 18 data sets. Averages are
marked with a diamond. Whiskers are at min./max. and box has the 2nd and 3rd quartiles.

Alg2 Application of Theorem 1 using H(Y |Π∗) in the expression of the rule (instead of the min-
imization), where X is the variable for which we are building the list and Y is the variable
just to be inserted in the parent set Π∗ that is being explored. This is the new pruning rule
which makes most use of entropy, but it may be slower than the others (since conditional
entropies might need to be evaluated, if they were not yet).

Alg3 Application of Theorem 2 using H(X) in the formula, that is, with Π′ = ∅ (and instead of
the minimization). This is a slight improvement to the known rule in the literature regarding
the maximum number of parents of a variable and is very fast, since it does not depend on
evaluating any parent sets.

Alg4 Application of Theorem 2 using H(Y ) in the formula, that is, with Π′ = ∅ (and instead
of the minimization). This is a different improvement to the known rule in the literature
regarding the maximum number of parents of a variable and is very fast, since it does not
depend on evaluating any parent sets.

We also present the combined number of pruning obtained by some of these ideas when they
are applied together. Of particular interest is column 8 with Alg1+Alg2, as it shows the largest
amount of pruning that is possible, albeit more computationally costly because of the (possibly
required) computations for Alg2 (even though we have observed no significant computational time
difference within our experiments). This is also presented graphically in the boxplot of Figure 1,
where the values for the 18 data sets are summarized and the amount of pruning is divided by the
pruning of Alg1, and so a ratio above one shows (proportional) gain with respect to the previous
literature pruning rule.

Column 13 of Tables 2 to 4 have the pruning results (number of ignored candidates) for Alg1
and Alg4 together, since this represents the pruning obtained by the old rule plus the new rule
given by Theorem 2 in such a way that absolutely no extra computational cost takes place (and
moreover it subsumes approach Alg3, since Alg1 is theoretically superior to Alg3). Again, this is
summarized in the boxplot of Figure 2 over the 18 data sets and the values are divided by the
amount of pruning of Alg1 alone, so values above one show the (proportional) gain with respect
to the previous literature rule.

As we can see in more detail in Tables 2 to 4, the gains with the new pruning ideas are
significant in many circumstances. Moreover, there is no extra computational cost for applying
Alg3 and Alg4, so one should always apply those rules while deciding selectively whether to employ
prune Alg2 or not (we recall that one can tune that rule by exploiting the flexibility of Theorem 2
and searching for a subset that is already available in the computed lists, so a more sophisticated
pruning scheme is also possible – we experiment here with a simple idea that does not bring extra
computational time, and leave for future work the design of other strategies).

8



1 1.2 1.4 1.6 1.8 2 2.2

in-d 3
in-d 4
in-d 5
in-d 6

Figure 2: Ratio between pruned candidates using Alg1+Alg4 (which theoretically subsumes Alg3 and Alg4) divided
by pruned candidates using prune approach Alg1 alone, for different values of maximum in-degree. Greater than
one means better than Alg1. Results over 18 data sets. Averages are marked with a diamond. Whiskers are at
min./max. and box has the 2nd and 3rd quartiles.

6. Conclusions

This paper presents new non-trivial pruning rules to be used with the Bayesian Information
Criterion (BIC) score for learning the structure of Bayesian networks. The derived theoretical
bounds extend previous results in the literature and can be promptly integrated into existing
solvers with minimal effort and computational costs. They imply faster computations without
losing optimality. The very computationally efficient version of the new rules imply gains of around
20% with respect to previous work, according to our experiments, while the most computationally
demanding pruning achieves around 50% more pruning than before. Pruning rules for other widely
used scores such as the Bayesian Dirichlet equivalent uniform (BDeu) have been devised [13] and
some researchers conjecture that they cannot be improved. Similarly, we conjecture that further
bounds for the BIC score are unlikely to exist unless for some particular cases and situations. This
can be studied in a future work, as well as means to devise smart strategies to tune the theorem
parameters and improve their pruning capabilities.

Acknowledgments

Work partially supported by the Swiss NSF grant n. 200021_146606 /1 and ns. IZKSZ2_162188.

References

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Morgan Kaufmann Publishers Inc., 1988.

[2] D. M. Chickering, D. Heckerman, C. Meek, Large-sample learning of Bayesian networks is
NP-hard, Journal of Machine Learning Resesearch 5 (2014) 1287–1330.

[3] D. Heckerman, D. Geiger, D. Chickering, Learning Bayesian networks: The combination of
knowledge and statistical data, Machine Learning 20 (1995) 197–243.

[4] M. Koivisto, Parent assignment is hard for the MDL, AIC, and NML costs, in: Proceedings
of the 19th Annual Conference on Learning Theory, Springer-Verlag, 2006, pp. 289–303.

[5] G. F. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic networks
from data, Machine Learning 9 (4) (1992) 309–347.

[6] G. Schwarz, Estimating the dimension of a model, The Annals of Statistics 6 (1978) 461–464.

[7] C. P. de Campos, Q. Ji, Efficient structure learning of Bayesian networks using constraints,
Journal of Machine Learning Research 12 (2011) 663–689.

[8] M. Bartlett, J. Cussens, Integer linear programming for the Bayesian network structure learn-
ing problem, Artificial Intelligence 24 (2017) 258–271.

9



[9] M. Teyssier, D. Koller, Ordering-based search: A simple and effective algorithm for learn-
ing Bayesian networks, in: Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence, 2005, pp. 584–590.

[10] C. P. de Campos, Z. Zeng, Q. Ji, Structure learning of Bayesian networks using constraints,
in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM,
2009, pp. 113–120.

[11] M. Lichman, UCI machine learning repository (2013).
URL http://archive.ics.uci.edu/ml

[12] J. Tian, A Branch-and-Bound Algorithm for MDL Learning Bayesian Networks, in Proceed-
ings of the 16th Conference on Uncertainty in Artificial Intelligence, 2000, pp. 580–588.

[13] C. P. de Campos, Q. Ji, Properties of Bayesian Dirichlet score to learn Bayesian network
structures, in: Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI
Press, 2010, pp. 431–436.

10



Dataset n N in-d |S| time(sec) Alg1 Alg2 Alg1 + Alg2 Alg3 Alg4 Alg3 + Alg4 Alg1 + Alg4

glass 8 214
3 504 1 0 0 0 0 0 0 0
4 784 1 114 66 154 0 0 0 114
5 952 1 240 192 280 105 126 126 240
6 1008 1 294 248 336 154 175 175 294
7 1016 2 302 256 344 162 183 183 302

diabetes 9 768
3 828 1 0 0 0 0 0 0 0
4 1458 2 0 0 0 0 0 0 0
5 1962 4 0 0 0 0 0 0 0
6 2214 6 0 0 0 0 0 0 0
7 2286 8 0 0 0 0 0 0 0

breast-cancer 10 286
3 1290 1 624 624 704 611 581 671 684
4 2550 4 1785 1804 1902 1765 1733 1855 1874
5 3810 14 3041 3061 3161 3017 2987 3109 3130
6 4650 30 3881 3901 4001 3857 3827 3949 3970
7 5010 48 4241 4261 4361 4217 4187 4309 4330

cmc 10 1473
3 1290 2 0 0 0 0 0 0 0
4 2550 9 30 81 106 7 27 34 53
5 3810 31 419 768 913 291 561 696 743
6 4650 53 1152 1592 1753 1002 1363 1520 1567
7 5010 91 1512 1952 2113 1362 1723 1880 1927

tic-tac-toe 10 958
3 1290 1 0 0 0 0 0 0 0
4 2550 5 0 0 0 0 0 0 0
5 3810 11 659 1114 1244 504 504 504 659
6 4650 23 1499 1954 2084 1344 1344 1344 1499
7 5010 39 1859 2314 2444 1704 1704 1704 1859

heart-h 12 294
3 2772 1 206 374 481 196 348 471 473
4 6732 5 1873 3016 3277 1696 2774 3156 3179
5 12276 16 6473 8404 8707 6250 8054 8506 8535
6 17820 45 11984 13947 14251 11709 13597 14050 14079
7 21780 123 15944 17907 18211 15669 17557 18010 18039

Table 2: Pruning results for multiple UCI data sets. Columns contain, respectively: data set name, number of variables, number of data points, maximum imposed in-degree,
size of search space, average time to run an algorithm (no significant different between them), followed by the number of pruned parent sets when considering (a combination
of) different pruning rules (see the list of pruning rules for more details).

11



Dataset n N in-d |S| time(sec) Alg1 Alg2 Alg1 + Alg2 Alg3 Alg4 Alg3 + Alg4 Alg1 + Alg4

solar-flare 12 1066
3 2772 4 872 1476 1740 739 1295 1570 1626
4 6732 28 3817 5280 5634 3442 4929 5344 5426
5 12276 157 9150 10821 11178 8732 10461 10885 10967
6 17820 538 14692 16365 16722 14268 16005 16429 16511
7 21780 1389 18652 20325 20682 18228 19965 20389 20471

heart-h 12 294
3 2772 1 206 374 481 196 348 471 473
4 6732 5 1873 3016 3277 1696 2774 3156 3179
5 12276 16 6473 8404 8707 6250 8054 8506 8535
6 17820 45 11984 13947 14251 11709 13597 14050 14079
7 21780 123 15944 17907 18211 15669 17557 18010 18039

vowel 14 990
3 5278 4 288 500 614 132 132 264 400
4 15288 28 1718 2500 2854 1232 1232 1364 1830
5 33306 149 10257 13202 14247 8162 4994 9086 11161
6 57330 534 27608 31682 32727 24794 17930 27566 29641
7 81354 1491 47672 51746 52791 44066 37994 47630 49705

vote 17 435
3 11832 3 0 0 0 0 0 0 0
4 42772 17 0 0 0 0 0 0 0
5 117028 110 577 852 1429 0 0 0 577
6 253164 667 14939 39946 51968 0 0 0 14939
7 447644 3039 163532 234426 246448 11440 80080 91520 183677

segment 17 2310
3 11832 17 0 0 0 0 0 0 0
4 42772 112 201 309 506 0 0 0 201
5 117028 670 3983 7628 10674 0 0 0 3983
6 253164 2976 32679 69813 79254 0 0 0 32679
7 447644 11381 133330 226619 245782 0 0 0 133330

zoo 17 101
3 11832 2 1717 2396 2660 735 686 1337 2229
4 42772 12 14353 17076 20060 8015 9058 10437 14871
5 117028 58 76677 91222 94311 37226 50281 54663 81892
6 253164 215 212813 227358 230447 173362 186417 190799 218028
7 447644 539 407293 421838 424927 367842 380897 385279 412508

lymph 18 148
3 14994 3 3320 4680 5918 2892 3552 4874 5222
4 57834 28 34206 41374 45262 29982 35202 40208 42205
5 169218 187 140227 152420 156538 133806 144338 150656 153059
6 391986 1074 362942 375188 379306 355314 367101 373424 375827
7 742050 5016 713006 725252 729370 705378 717165 723488 725891

Table 3: Pruning results for multiple UCI data sets. Columns contain, respectively: data set name, number of variables, number of data points, maximum imposed in-degree,
size of search space, average time to run an algorithm (no significant different between them), followed by the number of pruned parent sets when considering (a combination
of) different pruning rules (see the list of pruning rules for more details).

12



Dataset n N in-d |S| time(sec) Alg1 Alg2 Alg1 + Alg2 Alg3 Alg4 Alg3 + Alg4 Alg1 + Alg4

primary-tumor 18 339
3 14994 5 2202 2648 3097 2177 2293 3034 3049
4 57834 65 14518 19410 21237 14207 18682 20552 20827
5 169218 425 69480 102175 110881 66935 89698 100427 101894
6 391986 2419 262650 322756 333064 241655 306499 320211 322604
7 742050 9748 610976 672820 683128 581423 656563 670275 672668

vehicle 19 846
3 18753 8 3 3 6 0 0 0 3
4 76893 65 697 1111 1764 0 0 0 697
5 239685 422 10863 23352 32440 0 0 0 10863
6 592401 3330 104254 215785 258003 0 0 0 104254
7 1197057 10803 474794 787023 846604 222768 31824 254592 501193

hepatitis 20 155
3 23180 3 0 0 0 0 0 0 0
4 100700 26 0 0 0 0 0 0 0
5 333260 183 21692 64380 81809 0 0 0 21692
6 875900 1024 444629 606978 624448 217056 529704 537096 562889
7 1883660 3208 1452389 1614738 1632208 1224816 1537464 1544856 1570649

colic 23 368
3 41239 21 3108 4622 5896 2362 3515 4536 5067
4 209484 273 96090 110871 124974 85987 94637 111045 116851
5 815166 2512 657339 691757 715181 629257 653090 687159 698902
6 2531265 28377 2367440 2407325 2431074 2337376 2365549 2401648 2413789

autos 26 205
3 68250 20 20751 23699 27655 18178 18413 23162 25555
4 397150 229 246272 269886 292669 192752 213929 245722 280668
5 1778530 3792 1450595 1560143 1607068 1333004 1395969 1469070 1544272
6 6383130 42555 5964376 6164743 6211668 5622016 5839681 5937534 6113490

flags 29 194
3 106720 46 62817 69264 75214 60196 62868 70472 71892
4 700495 1240 593809 623134 636559 577776 596922 619080 624253
5 3550586 23605 3393251 3458658 3475307 3338989 3408696 3434987 3445679

Table 4: Pruning results for multiple UCI data sets. Columns contain, respectively: data set name, number of variables, number of data points, maximum imposed in-degree,
size of search space, average time to run an algorithm (no significant different between them), followed by the number of pruned parent sets when considering (a combination
of) different pruning rules (see the list of pruning rules for more details).

13


