Journal of King Saud University - Computer and Information Sciences xxx (2018) XxX—-XXx

agesudloldl
King Saud University

@ Journal of King Saud University -

Contents lists available at ScienceDirect
Journal of

King Saud University -
Computer and.
Information Sciences

Computer and Information Sciences

journal homepage: www.sciencedirect.com

Android data storage security: A review

Haya Altuwaijri, Sanaa Ghouzali ™

Department of Information Technology, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

ARTICLE INFO ABSTRACT

Article history:

The broad adoption of smartphones has superseded the desktop computers and laptops as a primary

Received 3 February 2018 computing platform, due to mobility, constant connectivity and application diversity. Mobile devices
Revised 29 June 2018 encompass storage of extensive information including sensitive ones such as authentication credentials,

Accepted 10 July 2018
Available online xxxx

pictures, videos, personal data, work information, and many more. Thus, securing data stored on mobile
devices becomes a critical issue. In this review, we investigate the security of Android storage model

Keywords:

Android security
Android data storage
Physical threats

between 2013 and 2018. Several threats are found in the literature that can be categorized as physical
or software threats. Additionally, the existing solutions for each category are highlighted. Although
Android provides valuable encryption systems including full disk encryption and keychain to enhance
the data storage security, the encryption key, which is stored in the device, is still vulnerable to physical

Software threats threats.
Android encryption © 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

B R U o T L Tot o o) 1 [PP 00
2. Android data storage MOlttt e e e e e e e e e e e e 00
3. Android data storage threat MOdel. ottt e et e e e e e e e e 00
3.1, PRYSICAl LRIEatS . . o ottt e e e e e e e e e e 00
301, Cold BOOt AttaCK . . o . ettt e et e e e e e e e e 00

3120 Evilmaid attacko e e e e 00

3.1.30 ROWHAMMIET Qttackottt et e et et et et et et e et e et e e e e e e e e e 00

3.2, SOfEWATE TRIALSottt t ettt e e e e e e e e e e e e e e e, 00
32,10 MalWare attack.ottt e e e e 00

3.2.2. Poor application development EXPIOIitationttt ettt et et e e e 00

3.2.3. Attacks based on device public information.ttt e 00

3.24. ROOUING the QeVICE . . .o\ttt e ettt e e e et et et et e e e e et et e e e e 00

3.3. Flawed factory reset and FemMOte WiDingottt ittt e et ettt et e e e et e e 00

4, Solutions for Android data StOTage thIeats.ottt et ettt e e e e e e e e 00
4.1. Physical threat SOIULIONS.ottt ettt et e ettt e e e e e ettt e e et e e e e e e e e 00
410, CleanOs. . ..ottt e e e e e e e 00

4120 TINMADN . Lottt et e e e e e e e e 00

L TR V<) 1 L 1 00

414, ATINOTEA . . ottt ettt e e e e e e e e e e e 00

415, Deadbolt . . . e 00

* Corresponding author.
E-mail address: sghouzali@ksu.edu.sa (S. Ghouzali).

Peer review under responsibility of King Saud University.

ELSEVIER

Production and hosting by Elsevier

https://doi.org/10.1016/j.jksuci.2018.07.004
1319-1578/© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: Altuwaijri, H., Ghouzali, S. Android data storage security: A review. Journal of King Saud University - Computer and
Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.07.004

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2018.07.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sghouzali@ksu.edu.sa
https://doi.org/10.1016/j.jksuci.2018.07.004
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com
https://doi.org/10.1016/j.jksuci.2018.07.004

2 H. Altuwaijri, S. Ghouzali/Journal of King Saud University - Computer and Information Sciences xxx (2018) xXx-xxx

41.6. Droidvault........ ...
4.1.7. Replay protected memory Block (RPMB) partition. . . .
R € I P
4.1.9. ARMOR

4.2. Software threat solutionsccivviivna..
Android encryption systems
Other solutions.oviinnnnenenn.
4.3, SUMMALY oottt ettt et e e e e et e ettt e
5. ConClUSION ...ttt e
RefEIeNCES . .ottt e

4.2.1.
4.2.2.

1. Introduction

According to “Mobile Security Project” under “The Open Web
Application Security Project (OWASP)” (“OWASP Mobile Security
Project - OWASP”, Owasp.org, 2016), insecure data storage is one
of the leading top 10 security issues in smartphones since sensitive
information can be revealed if it is not protected carefully. Unskilled
Developers assume that access to the internal memory stores can-
not be gained, but an attacker who accesses the device physically
can attach the phone to a computer and retrieve sensitive personal
information. Moreover, malware applications (apps) and legitimate
vulnerable apps can be a threat to sensitive information leakage. A
Trojan horse hidden behind legitimate app can perform impercepti-
ble activities with the aim to steal user’s information. Furthermore,
attackers who want to access the data might exploit vulnerable
apps, such as apps with over-privileged permissions.

Smartphone security has been subjected to intensive research
work in the past years. Existing review papers presents the state
of the art of popular smartphone operating systems (Khan et al.,
2015) (Ahvanooey et al., 2017) (Zaidi et al., 2016). Khan et al.
showed that mobile malware, similar to Personal Computer (PC)
malware, can cause system corruption or reveal private user infor-
mation (Khan et al., 2015). Also, they demonstrated vital points to
ensure mobile security based on restricting malicious activities at
several levels; application developer level, application’s store level,
and operating system level. Different types of mobile operating
systems and software attacks have been discussed in (Ahvanooey
et al.,, 2017). The authors provided a comprehensive overview of
mobile threats, vulnerabilities, and countermeasures by reviewing
published papers during the period 2011-2017. Authors in (Zaidi
et al., 2016) studied smartphone security within 2010-2015. The
authors categorized attacks into old and new attacks and presented
possible solutions for each category. Moreover, they showed an
estimation of mobile malware growth in 2020.

Android is the most used mobile operating system in the world
that dominates the smartphone market with a share of 82.8% in
2015 (“IDC: Smartphone OS Market Share”, www.idc.com, 2016).
The literature exposes a set of threats to Android data storage that
can be exploited to perform attacks. For example, an unreliable fac-
tory reset in some Android devices is a significant threat to the secu-
rity and privacy of the stored data since the data is not erased
correctly. Several techniques are used to protect data stored in a
mobile device, mainly based on password-based data encryption.
Authors in (Faruki et al., 2014) provided a survey of general Android
security issues and defenses. They focused on Android malware
growth within a specific timeline (2010-2013) and the suggested
solution. They categorized the suggested solutions based on the
goal, methodology to achieve this goal and deployment of the solu-
tion. They concluded that no single solution could efficiently
address each issue. Rashidi et al. presented another survey that
reviewed and discussed Android security threats and solutions
between 2010 and 2015 (Faruki et al., 2014). They surveyed tech-
niques (e.g., based on static and dynamic code analysis) to deal with

malware on mobile devices and investigate strengths and weak-
nesses of each technique. Moreover, Sufatrio et al. introduced a sur-
vey on Android security and provided a taxonomy of mitigation
solutions with five main categories based on app’s deployment
stages (app development, app availability in the market, app instal-
lation on a device, app execution on a device, and app security set-
ting modification on a device) (Rashidi and Fung, 2015). They
classified existing work into those five categories and thereby com-
paratively studied them and highlighted the limitation of each.
Additionally, a general overview of Android security issues has been
presented in (Sufatrio et al., 2015) without any categorization.

This paper aims to complement previous reviews about inse-
cure data storage on Android smartphones by expanding the cov-
erage of security threats and solutions. We believe an in-depth
examination of Android data storage model is required. Therefore,
we review Android attacks, threats, and their solutions over the
period of 2013-2018. Additionally, we propose a distinctive cate-
gorization of Android data storage threats model based on physical
and software threats and review a few works of each class. More-
over, mitigation solutions for each category are investigated.

The paper is organized as follows. Section 2 introduces the
Android data storage model. Section 3 presents the Android data
storage threat model. It contains two main subsections, which
are, Physical threats and Software threats. Section 4 outlines the
solutions found in the literature to enhance data storage security
and emphasizes on Android encryption system as a critical feature
for protecting data. Finally, the conclusion and future work are
drawn in Section 5.

2. Android data storage model

Android is an open source mobile operating system that was
initially developed by Android Inc. and financially backed and later
bought by Google. In November 2007, the initial beta version of
Android was released, then the first stable version 1.0 followed
in September 2008. Android is primarily designed for touchscreen
devices such as smartphones and tablets, and it is currently devel-
oped under Android Open Source Project (AOSP) that is promoted
by the Open Handset Alliance (OHA), led by Google (Faruki et al.,
2014). Android is based on the Linux Kernel, and its apps are writ-
ten in Java. However, the native code and shared libraries are
developed in C/C++ (Faruki et al., 2014). In the Android framework,
there are unique storage alternatives, which as indicated by their
access control components, can be divided into three classes: sys-
tem, application-specific, and public as shown in Fig. 1. The system
storage is the catalog where the entire Android OS is located and is
secured by the Linux access control component. The application
specific storage is a spot that is under control of a particular appli-
cation and can only be read and written by that app, generally
mounted on /data/. It hosts apps private directories that are com-
monly used to store sensitive information such as login credentials.
The other storage alternative is shared public storage (internal pri-
mary SD card), that is mounted on /sdcard/ or /mnt/sdcard/, which

Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.07.004

Please cite this article in press as: Altuwaijri, H., Ghouzali, S. Android data storage security: A review. Journal of King Saud University - Computer and

https://doi.org/10.1016/j.jksuci.2018.07.004

H. Altuwaijri, S. Ghouzali/Journal of King Saud University — Computer and Information Sciences xxx (2018) xXx-xxx 3

System «—— J
& — Protected by DAC
Built-in Flash App Specific «— /data
memory
/ /SDcard(0)
Public — Protected by permission
External haaa s /SDcard(1)
SD card

Fig. 1. Android storage model options and security.

is utilized to share information among applications. It is mainly threats and software threats. Flawed factory reset can be catego-

used to store multimedia files made with the camera and micro- rized in both software and physical threat.

phone; besides, it is exposed to a computer connected via USB as

downloaded documents, videos, images, and so on. Moreover, 3.1. Physical threats

some Android devices contain external, removable SD card that is

categorized under public shared storage (Mohini et al., 2013). It Sets of researchers focus on Android smartphones physical

provides the same functionality as the internal SD card but can threats since confidential data may exist in memory on mobile

be physically removed and inserted by the user. It is called the sec- devices for a long time after being used. Thus, on the stolen device,

ondary SD card. However, the primary and secondary SD cards are the retrieval of sensitive information is possible and becomes a

sometimes referred to as external storage (Mohini et al., 2013). growing concern. The attacker who gains physical access to the
To protect these storage partitions, Android relies on device can quickly get the memory content (“javax.crypto—Andro

Discretionary Access Control (DAC) mechanism provided by the id Developers,” Developer.android.com, 2016). Researchers in

underlying Linux file system to implement access control for the (Xia et al., 2015) studied data exposure issue in Android to empha-

system and app-specific storage. For shared public storage, there size that it is a real problem. They analyzed 14 favorite Android

is no fine-grained access control, it is protected by READ and apps and found that they could retrieve sensitive data (e.g.,

WRITE permissions only, and therefore any app can read or write passwords) by dumping either Random Access Memory (RAM) or

any folder in the shared public storage once it has acquired related internal storage in 13 apps after 10 min.

permissions (Simon and Anderson, 2015). Android provides More specifically, the literature exposes two types of attacks,

encryption algorithms that permit the developer to encrypt data Cold boot attack and Evil maid attack, which can be done against

in their applications to improve security. Android provides javax.- Android devices when the attacker gains physical access.

cipher package that offers the classes and interfaces for crypto-

graphic applications implementing algorithms for encryption, 3.1.1. Cold boot attack

decryption, and key agreement (Liu et al., 2015). Cold boot attack depends on the fact that RAM retains data for a

period after a computer is turned off. The amount of time relies on
RAM chip’s temperature, and it can be increased as much as the

3. Android data storage threat model RAM is cold. Thus, the RAM can be re-plugged to another computer
to get its content such as encryption keys. This attack can be made

This section demonstrates an assessment of Android Data stor- against all software-based encryption technologies. In (Tang et al.,
age threat model illustrated in Fig. 2. It identifies possible threats 2012) researchers examined if this type of attack can be done

and vulnerabilities in Android Data storage, divided into physical against Android Full disk encryption (FDE) (described in

[Android Data Storage]

Threat Model

[Physical Threats] { Software Threats

v

Evil Cold RowHam Flawed Factory Malware Poor App Attacks based Rooi
Maid Boot —_— Reset and attack Development on device public ooting
attack attack Remote wiping Exploitation information

Fig. 2. Android data storage threat model.

Please cite this article in press as: Altuwaijri, H., Ghouzali, S. Android data storage security: A review. Journal of King Saud University - Computer and
Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.07.004

https://doi.org/10.1016/j.jksuci.2018.07.004

4 H. Altuwaijri, S. Ghouzali/Journal of King Saud University - Computer and Information Sciences xxx (2018) xXx-xxx

Section 4.2.1.1). They built Frost tool, which is a recovery image
tool. After gaining physical access to the smartphone, the tool is
installed in the recovery partition. Using Frost, encryption keys
from RAM can be retrieved and then break the FDE encryption.
Frost requires an unlocked bootloader! to break the FDE since the
unlocking process wipes all user data. Therefore, recovering encryp-
tion keys from RAM is not possible. However, Frost can also be used
to take the memory of the phone and analyze it offline. Researchers
were able to access recent emails, pictures, and browser’s history
from physical RAM dumps.

3.1.2. Evil maid attack

Any software-based encryption needs a part of the disk unen-
crypted; in Android, this is the entire system partition. A study in
(Miiller et al., 2013) proved that evil maid attacks could be made
against smartphones because Android leaves the Master Boot
Record and entire system partition unencrypted. In Evil maid
attack, the attacker who has physical access can substitute the
entire Android system with a modified Android that includes key-
stroke logging. Authors present an EvilDroid tool that shows that
even with an encrypted device, the Android system partition can
be altered with keylogging. The tool previews a modified PIN
request interface that stores the PIN in unencrypted cache parti-
tion, thus, all data on the device can be accessed after acquiring
the PIN. Researchers affirm that performing evil maid attacks
against Android devices is possible. Additionally, the study shows
that countermeasures are seemingly tricky. Manufacturers should
consider this issue. The bootloaders need to be locked and wipe
the user partition before unlocking.

3.1.3. RowHammer attack

RowHammer attacks rely on memory management weakness in
the deep layers. It allows flipping memory bits by repeated access
(hammers) memory cells causing unauthorized changes and cor-
rupting sensitive memory regions (Gotzfried and Miiller, 2014).
This complex vulnerability has been exploited in Android by
implementing Drammer, a deterministic RowHammer-based
attack (Gotzfried and Miiller, 2014). Authors showed that Drammer
could obtain a privilege escalation to acquire root privileges and
can be launched by any Android app with no special permission
and without relying on any software vulnerability. Moreover, the
authors highlighted that this type of attack could not be mitigated
by current defenses.

3.2. Software threats

This section illustrates some software-based threats that
include malware attack, poor application development, and root-
ing the device.

3.2.1. Malware attack

A study in (van der Veen et al., 2016) underlined the problem of
stealing personal information from memory in Android devices.
They analyzed 26 Android applications to check how these applica-
tions handle data in memory that is currently or has recently been
manipulated. In the analysis, a full memory dump of the system is
done both while using the application and after its termination,
and the result showed that most of the applications analyzed keep
sensitive and personal data in clear text within the memory. This
analysis motivated the researchers to build Trojan horse that
would hide behind a legitimate app that just let the user take pic-
tures and share them, while in the background, it will monitor

1 A bootloader is the first part that runs when booting Android device, and it
handles instructions to boot the operating system.

active processes, and dump the memory sectors when the process
is running. The malware app was able to exploit vulnerabilities in
the targeted apps and retrieve login credentials. The user behavior
and the poor practices when developing mobile applications are
the causes of introducing vulnerabilities. Moreover, the user did
not notice this attack, both regarding visibility and mobile phone
performance. This study presents a memory attack that doesn’t
require physical access.

3.2.2. Poor application development Exploitation

Developers influence the security of the data by building vul-
nerable apps such as building over-privileged applications, misuse
of cryptographic application programming interface (API), and sav-
ing non-sensitive but non-shared data on public storage.

3.2.2.1. Over-privileged applications. Android permissions system is
a way of ensuring a level of security and privacy by restricting
application access to resources unless the user accepts the access
permission. The app developers identify the required permission
in the code, and when installing the app, there is no control if
the permission is related to the app or not (Stirparo et al., 2013).
Android permissions are criticized as coarse-grained (Tiwari
et al., 2015), many applications gain more permissions than neces-
sary; for example, if Flipkart shopping app requests internet per-
mission, it can send and receive files from any other websites,
not just Flipkart.com (Stirparo et al., 2013). Because of coarse-
grained permissions, the poor practices of Android developers,
incompetent permission administration, and insufficient permis-
sion documentation provided by Google, there are many apps with
unnecessary permissions. These apps violate the principle of least
privilege (Stirparo et al., 2013) and may be used to access sensitive
resources. A systematic review of Android permissions issues and
countermeasures have been done in (Tiwari et al., 2015). The study
stated that the over-privileged applications is probably the most
severe threat to Android security, which violates user privacy
and security, and leads to personal information disclosure. The
main reasons for building over-privileged apps are as following:
developers may copy the code and apply it without understanding
it, may request permissions that they thought it is mandatory and
related to the functionalities they design but it is not (Tiwari et al.,
2015).

3.2.2.2. Misuse of cryptographic APl Android Provides Crypto-
graphic APIs that allow developers to secure sensitive data such
as passwords and personal information on mobile devices.
Researchers in (Fang et al., 2014) investigated whether developers
correctly use these cryptographic APIs to achieve the required level
of security. Following static analysis approach, researchers build a
lightweight tool called “CryptoLint” to measure cryptographic mis-
use. This tool analyzes the application’s code and checks for com-
mon flaws. A large-scale experiment was done by analyzing
11,748 Android applications and found that 88% of them misuse
cryptography. The evaluation of applications was based on a set
of defined rules that affect the required security, and if any appli-
cation violates one of the rules, it is then considered as insecure. In
the end, the final result shows that there are more than 10,000 vul-
nerable apps that are considered as secure apps since they are
using cryptographic API, but actually, they are not using it
appropriately.

3.2.2.3. Saving non-sensitive but non-shared data on public stor-
age. General data can be classified into three groups: sensitive data
such as passwords, public data to be shared with other apps such
as date and time, and non-sensitive data not to be shared with
others such as user’s virtual-world identifiers, including the
account name and profile photos. In Android, the first two types

Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.07.004

Please cite this article in press as: Altuwaijri, H., Ghouzali, S. Android data storage security: A review. Journal of King Saud University - Computer and

https://doi.org/10.1016/j.jksuci.2018.07.004

H. Altuwaijri, S. Ghouzali/Journal of King Saud University — Computer and Information Sciences xxx (2018) xXx-xxx 5

gain significant care in its storage model. However, for the third
type, Android encourages the developer to save this type of data
in the public storage partition. This practice can be considered an
enormous problem in Android’s current storage model since all
non-sensitive data will be saved in shared storage that any app
can access. Moreover, the problem occurs if the developer could
not identify all sensitive data, which leads to information leakage
(Simon and Anderson, 2015). A study in (Simon and Anderson,
2015) investigated the occurrence of the mentioned problem in
real applications, by choosing 17 favorite Android apps and
checked whether they store the data correctly. The result showed
that 13 apps leave user’s private information on shared storage.
Thus, it is possible to extract much information about the users
that violate their privacy. The developer influences the security
of user’s data by identifying data group and then handling it cor-
rectly. The study suggests two solutions; first, use cryptographic
API properly to encrypt data before saving it on public storage. Sec-
ond, save data in the app-specific partition (/data) in the internal
storage, since each app can access its partition only.

3.2.3. Attacks based on device public information

Device public information in Android refers to any information
that can be accessed by apps after obtaining the required permis-
sion. This information includes Android_ID, Google account email,
phone number, Wi-Fi MAC address, etc. and is used by the app to
identify users (Egele et al., 2013). Currently, many apps rely on
communication with a remote backend service to perform func-
tions, which require authentication mechanism. A study in (Egele
et al.,, 2013) investigated vulnerabilities of using device public
information in apps for user authentication. Authors successfully
exploited this vulnerability and performed identity-transfer attack
since all the information needed to authenticate the user was
available and could be accessed by any app. The offense consists
of a malicious app which steals all device public information from
victim’s device and then sends it to the attacker device without any
user interaction. Afterward, the attacker installs the vulnerable
app, in which it will log into the victim’s account directly since
the needed information is available. This type of attack can be
applied to any app that depends on device public information to
authenticate users. Besides, the authors presented a comprehen-
sive dynamic analysis to assess 1000 of the most favorite apps
available in Google Play. The result shows that 41 of them was cat-
egorized as vulnerable. Two of them was the top-rated messaging
apps, WhatsApp and Viber.

3.2.4. Rooting the device

The risk of insecure data storage increases more if the device
has been “rooted”. Rooting the device bypasses the confinements
and limitations that are placed by the producer and gives the
Android user privileged access to the device’s subsystems to install
unapproved (by Google) apps, to update the OS to the latest ver-
sion of Android if the device is outdated and no longer updated
by the manufacturer, to use custom themes, and so on (Bianchi
et al., 2017). The result is that the device is left vulnerable to
attacks and other security issues such as data leakage flaws
(Kaspersky Lab, 2017). The process of gaining root access breaks
most of the Android’s security layers and requires to switch the
device from Security-On to Security-Off (Casati and Visconti,
2018).

3.3. Flawed factory reset and remote wiping

Android provides built-in “Factory Reset” to erase data on the
device; this can be done either remotely or by accessing the device
directly. In the case of lost or stolen device, users can use “Android
device manager” to find the device location, lock the device with

passcode remotely and erase the data by performing a remote fac-
tory reset, which removes all data from the device except what is
saved in the external storage (Poonguzhali et al., 2016).

In (Mohini et al., 2013) researchers analyzed the effectiveness of
the factory reset in Android by studying 21 Android smartphones
from 5 vendors with Android versions from v2.3.x to v4.3. They
found that wiping the external storage can only be done if the user
chooses the additional option “External storage” in factory reset
setting in Android graphical user interface (GUI). However, if a user
resets his device with Recovery/Bootloader instead of using the
setting in GUI, external storage is not sanitized (see Fig. 3. Addi-
tionally, they discovered that all devices did not sanitize the exter-
nal storage properly. The study concludes with a set of critical
issues regarding factory reset, because of the flawed factory reset,
Android v2.3.x does not provide proper deletion of the data parti-
tion. Besides, Android does not provide appropriate removal of the
internal and external SD card in all versions. Furthermore, vendors
push incomplete upgrades to the devices, and newer devices lack
driver support for proper deletion that should be shipped by ven-
dors, which could affect the factory reset process. Android full disk
encryption has the potential to mitigate flawed factory reset prob-
lem. However, researchers found that encryption keys can be
recovered because of flawed factory reset. To mitigate this issue,
researchers recommend filling up the partition of interest with
random-byte files, to overwrite all unallocated space or overwrite
the entire partition “bit-by-bit” (Mohini et al., 2013).

To protect data in stolen devices, a user can use mobile anti-
virus (MAV) that provides “remote wipe” of the device and “re-
mote lock”. MAV requires Admin permission that should be
enabled by the user on the setting, if it is not enabled, MAV cannot
use the built-in wipe and lock features, also, cannot do reliable par-
tition overwriting bit-by-bit to sanitize data storage. A study in
(“Remotely ring, lock, or erase a lost device - Accounts Help”,
Support.google.com, 2016) examined top 10 MAV apps that pro-
vide remote wipe and lock functionalities to check their security
practices and implementations. Starting by installing these apps
on Android 2.3.5 device and then reviewing the apps’ code and
conducting a simple run-time analysis. The result showed that
MAV might be defective due to poor implementation skills,
Android API limitations and incorrect documentation that lead to
misuse the AP, also, vendor customizations that allow the attacker
to bypass MAV protection even if its functions are appropriately
implemented.

There are several issues regarding using MAV; there is incorrect
information given to users after a remote wipe and lock, for exam-
ple, even when the admin permission is disabled, MAV display
“successful wiping” when the user requests to wipe. Additionally,
using MAV web interface, users can access their data and perform
remote lock and wipe; however, the authentication process is
weak since there is no restriction on the password in most of
MAYV, for example, four letters as a password is accepted. More-
over, MAV relies on carrier network that might be insecure. The
study deduces that MAV remote wipe functions cannot be used
as an alternative to a flawed built-in Factory Reset.

4. Solutions for Android data storage threats
This section presents proposed solutions for the previously

mentioned threats which can also be divided into physical and
software solutions.

4.1. Physical threat solutions

A set of research papers present solutions to tackle physical
threat problem in Android devices. CleanOS, TinMan, Sentry,

Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.07.004

Please cite this article in press as: Altuwaijri, H., Ghouzali, S. Android data storage security: A review. Journal of King Saud University - Computer and

https://doi.org/10.1016/j.jksuci.2018.07.004

6 H. Altuwaijri, S. Ghouzali/Journal of King Saud University — Computer and Information Sciences xxx (2018) XxXx—xxx

= ull @ 6:59 PM
Privacy

Backup and restore

Back up my data

Backupa tion data, Wi-Fi

Personal data

Factory data reset

Erases all data on phone

(a) Factory Reset in Settings.

fndroid system recovery <3e>

Volume up/down to wmove highlight:
power button to select.

apply te trom

epply update froam /sdcard
wipe data/factory reset
wipe cache partition

(b) Factory Reset in Recovery.

Fig. 3. Factory reset provided by most devices (Mohini et al., 2013).

Armored, Deadbolt, DroidVault, Replay Protected Memory Block
(RPMB) partition, CATT, and ARMOR are different countermeasures
in several papers. A summary of these countermeasures is given in
Table 1.

4.1.1. CleanOS

In (Xia et al., 2015), researchers proposed a prototype of
“Clean0OS”, which is an Android-based operating system that identi-
fies sensitive data in RAM and internal storage that are unused for a
specific amount of time, encrypt them, and then save the encrypted
keys in the cloud. Thus, keep a clean environment in case of device
theft. However, CleanOS does not protect data in use; it intends to
minimize data exposure by protecting data that are not used for a
period. Besides, it is vulnerable to network attack, where the
attacker can sniff keys when they are sent to the cloud.

4.1.2. TinMan

In (“javax.crypto—Android Developers,” Developer.
android.com, 2016) researchers tried to mitigate data exposure
issue and protect in-memory confidential data by proposing
“TinMan” prototype system that uses offloading mechanism. It
separates credentials access from the rest of the functionalities of
the app and provides a trusted node to store those credentials.
They focus on confidential data such as password, bank account,
social security number, and credit card number, which are named
confidential record (cor). TinMan separates cor from regular private
data and enforces its protection (see Fig. 4). This mechanism aims
to avoid storing sensitive data on the device, so when the device is
lost or stolen, there is nothing to lose. The trusted node can be a
server inside a company or a virtual machine on a trusted cloud,
other than the device itself, so the applications need to access

the trusted node to get the confidential data. However, this solu-
tion has significant challenges since confidential data residue in
many places, and it is hard to identify them all. Also, it might
degrade app’s performance.

4.1.3. Sentry

Another solution to overcome the problem of data lodging in
RAM was proposed in (Colp et al., 2015). The study focuses on
securing the data only when the screen is locked because in
unlocked state attacker can access the data using the user inter-
face. The problem is when the device is locked, data remains in
RAM for a while, which makes it vulnerable to physical attack.
Hence for the proposed solution, is to encrypt memory pages of
the sensitive application when the screen is locked and decrypt
when the screen is unlocked. However, the main contribution is
to avoid storing encryption/decryption keys in RAM and use ARM
system-on-chip (SoC) instead. An ARM is an abbreviation for
Advanced RISC (reduced instruction set computer) Machines
Company which develops ARM processor based on the RISC archi-
tecture (“What is ARM processor - Definition from Whatls.com”,
Whatls.com, 2016). ARM SoC architecture is used by recent smart-
phones and tablets; it contains low capacity storage next to the
CPU. The paper presents “Sentry” prototype system that uses SoC
storage mechanisms to secure the cryptography keys, making
physical attacks more difficult to mount because they must target
the SoC to retrieve secrets, which is much more expensive. The
main limitation of Sentry is that it leads to lower performance.

4.1.4. Armored
In (Miiller et al., 2013) researchers provided a countermeasure
against physical attacks where they built “Armored” that stores

Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.07.004

Please cite this article in press as: Altuwaijri, H., Ghouzali, S. Android data storage security: A review. Journal of King Saud University — Computer and

https://doi.org/10.1016/j.jksuci.2018.07.004

H. Altuwaijri, S. Ghouzali/Journal of King Saud University — Computer and Information Sciences xxx (2018) xXx-xxx 7

Table 1
Summary of physical threat solutions.

Solution Pros Cons

CleanOS Encrypt sensitive data and Do not protect data in use.
save the keys in the cloud. Vulnerable to network attack.

TinMan Separate confidential data and Hard to identify confidential
save them in a trusted node. data which reside in many

places.
App’s performance
degradation.

Sentry Secure the encryption keys by Lead to lower performance.
preventing saving them in the
RAM.

Armored Store the encryption keys and Impractical for end-users.
intermediate values of AES
inside the CPU registers of the
ARM microprocessor.

Deadbolt Protect the FDE keys by Vulnerable to offline password
securely overwriting the RAM. guessing attack on the stored

volume key.

Droidvault Utilize TrustZone to Difficult for applications to
manipulate the unencrypted have a clear-cut line between
data. secure and insecure data.

TrustZone is processor-
dependent and requires a
firmware update in the
existing devices.

RPMB Enforce authentication of all -
read and write commands
issued to the RPMB secure
storage partition. Therefore,
the memory replay attack can
be prevented.

CATT Protect existing vulnerable -
legacy systems against
RowHammer attack without
computational overhead.

ARMOR Detect all the possible Impose performance overhead

RowHammer errors with a
high level of confidence and
accuracy.

in case of a hammered-row in
the system.

encryption keys and intermediate values of Advanced Encryption
Standard (AES) inside CPU registers of the ARM microprocessor,
without involving main memory. A proof-of-concept implementa-
tion was done as follows, 1) connect the phone to the computer via
USB, 2) login as root, so it requires rooting the device, 3) write a
sequence of key bits into the CPU registers, and 4) Run a cleanup
procedure to erase all key residues from RAM. This implementation
is impractical for end-users; researchers suggest making Android’s

\ Encryption
' or deletion

/ General Data \

\ /
\ /

/

/ General Data \

password prompt repaired in a way that the encryption key is writ-
ten directly into CPU registers.

4.1.5. Deadbolt

“Deadbolt” prototype application has been developed in
(Skillen and Barrera, 2013) as another countermeasure against
physical attack, and as a complement to Android lock-screen and
FDE features. Since mobile phone is always-on and rarely shut-
down, the FDE keys remain in memory even when the device is
in locked screen state. Deadbolt protects the FDE keys while still
providing essential mobile functionality by (upon lock screen)
unmounting the encrypted data partition, and securely overwriting
key stored RAM. The main limitation of Deadbolt is that it is still
vulnerable to offline password guessing attack on the stored vol-
ume key.

4.1.6. Droidvault

DroidVault (Li et al., 2014) provides a secure data vault on
Android devices using the TrustZone. TrustZone technology pro-
vides trusted hardware that allows for developing a diverse set
of security services. Parallel to the OS, TrustZone is a separate envi-
ronment that can run security function isolated from kernel OS by
a hardware barrier (Zhao et al., 2014). Utilizing TrustZone, Droid-
Vault presents a secure storage platform on Android since the data
is stored in encrypted form on the filesystem and the unencrypted
data is manipulated only in the TrustZone. DroidVault is a promis-
ing solution based on (Li et al.,, 2014) evaluation. However, it
encompasses limitations. First, it is difficult for applications to have
a clear-cut line between secure and insecure data. Second, Trust-
Zone is processor-dependent, so it does not work for all the
devices. Third, it requires a firmware update in the existing
devices. Finally, the system has not been implemented on smart-
phones or tablets, but on a programmable board running the
Android operative system.

4.1.7. Replay protected memory Block (RPMB) partition

In rooted Android, user area partition can be quickly erased or
hacked using read/write system calls. Therefore, hackers can take
backup of this partition and restore it to another phone to access
data (Reddy et al.,, 2015). RPMB is a specific memory area in
Embedded MultiMediaCard (eMMC). It is a secure storage parti-
tion, in which, all read and write commands issued to the RPMB
must be authenticated. Authors in (Reddy et al, 2015)
implemented this hardware-based mechanism and developed

A
Offloading 1
©
€
N Private _8
(I Data b=
V c
o
o
g
/ General Data \ S

(a) No Protection

(b) Traditional Methods

(c) TinMan

Fig. 4. Tinman separates cor and protects it by applying offloading mechanism (“javax.crypto—Android Developers,” Developer.android.com, 2016).

Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.07.004

Please cite this article in press as: Altuwaijri, H., Ghouzali, S. Android data storage security: A review. Journal of King Saud University - Computer and

https://doi.org/10.1016/j.jksuci.2018.07.004

8 H. Altuwaijri, S. Ghouzali/Journal of King Saud University - Computer and Information Sciences xxx (2018) xXx-xxx

RPMB driver interface to provide secure data storage against phys-
ical attacks.

4.1.8. CATT

CATT is the first practical software-based defense against
RowHammer attack proposed in (Brasser et al, 2017). The
researchers presented the design and implementation of this mit-
igation scheme. The main idea of CATT is not to prevent bit flips,
but rather to limit the bit flips to memory pages that are already
in the address space of the malicious application. Hence, strong
isolation of user and kernel space is required to ensure that the
attacker cannot exploit RowHammer to flip the bit in kernel mem-
ory. CATT solution has been successfully and efficiently applied to
the Android operating system as it does not affect the run-time
performance nor the stability of the system.

4.1.9. ARMOR

ARMOR, A Run-time Memory Hot-Row Detector, is a hardware
defense against RowHammer attack developed in the University
of Manchester - The school of Computer Science - (Ghasempour
et al.,, 2015). ARMOR solution is based on monitoring number of
activations for each row in the DRAM and detects which specific
rows are at risk of being “hammered” at run-time. It can detect
all the possible RowHammer errors with a high level of confidence
and accuracy. Additionally, it is scalable and technology indepen-
dent (Ghasempour et al., 2015).

4.2. Software threat solutions

Software threat solutions are mainly based on encryption
schemes, which are one of the key security features for protecting
data on a device. Android provides several encryption systems that
can be used as a countermeasure for software-based threats.

4.2.1. Android encryption systems
There are two primary encryption systems provided by
Android; Full Disk Encryption (FDE) and KeyChain.

4.2.1.1. Full disk encryption. Since Android 4 (released in October
2011), Android developers provide FDE that encrypts Android
device to prevent data exposure and to protect users against data
theft (Miiller et al., 2013). However, Version 4.x does not necessar-
ily indicate that the device supports encryption, there are specific
4.0 devices, which do not support encryption (Hruska, 2016).

FDE uses the user’s password or PIN- lock screen to derive the
encryption key through password-based key derivation function
2 (PBKDF2) to encrypt the device. Other lock screens, such as the
pattern lock functionality cannot be used except in the latest ver-
sion of Android 5 where PIN, Passwords, and Patterns can be used
as encryption keys (“Full Disk Encryption | Android Open Source
Project”, Source.android.com, 2016). Thus, the power of the
encryption depends on the strength of the passcode (Teufl et al.,
2014). Moreover, requiring the user to type the encryption pass-
word every time he wants to unlock the screen, makes him even
less likely to choose a secure password. Also, there is an increased
chance that an attacker is shoulder surfing while user unlocks
screen, which will disclose encryption password as well. Also,
FDE is a lengthy process that makes the device unusable during
that time, depending on the device capabilities; FDE may degrade
the device performance. Once it is enabled, it cannot be reversed
without a factory reset of the device. If the user forgets the key,
there is no way to get the data back (Bianchi et al., 2017).

This encryption feature is disabled by default, and the user must
activate it manually, which raises a security risk. Furthermore, it
can only be activated if PIN- locks or passwords are in use
(Miiller et al., 2013). FDE does not encrypt whole disks, it encrypts

user partitions mounted at (/data) only, which host app’s private
directory. Each app has its own specific (/data) that it is hidden
from users and cannot be read or written by any other app. It is
usually used to store sensitive data such as configuration files,
saved games data, or any other types of files that the user should
not tamper with (“Remotely ring, lock, or erase a lost device -
Accounts Help”, Support.google.com, 2016); (“Storing Application
Data”, Google Developers, , 2016). Moreover, FDE never applies
for external storage (Bianchi et al., 2017).

However, in a recent release of Android 6.0 (October 2015), the
full disk encryption is mandatory by default (Hruska, 2016). It
encrypts the application’s private data (/data partition), and the
application’s shared storage partition (/sdcard partition) also,
which is the internal non-removable SD card (“Android 6.0
Compatibility Definition”, 2016). It is stated in Android 6 Compat-
ibility Definition that the encryption must use AES with a key of
128-bits (or greater) and the key should be encrypted with lock
screen passcode before being stored. “The encryption key SHOULD
be AES encrypted with the lock screen passcode stretched using a
slow stretching algorithm (e.g., PBKDF2 or scrypt). If the user has
not specified a lock screen passcode or has disabled use of the pass-
code for encryption, the system SHOULD use a default passcode to
wrap the encryption key” (“Android 6.0 Compatibility Definition”,
2016).

Overall, FDE depends on the Android version and device manu-
facturer, since each manufacturer supplies their devices with cus-
tomized versions of the Android OS (Teufl et al., 2014). Table 2
demonstrates different FDE features based on Android version
and possible threats. None of these versions apply FDE to external
storage.

4.2.1.2. KeyChain. Android version 4.0 introduces KeyChain API that
allows developers to store user’s credentials used in an application
securely. It is separate from FDE since it can be used even when the
FDE system is not activated. This method of encryption depends on
the developer’s decision in using it for their applications to store
user’s credentials. Poor developer choices can lead to serious secu-
rity problems. Moreover, if the Android system is already
encrypted via FDE, there is no additional protection offered by
the Android KeyChain. As in FDE, the user’s passcode is utilized
to derive the cryptographic key that is used to encrypt a master
key, as this means that the user influences the security of the
KeyChain system by choosing the passcode for locking the Android
device. KeyChain uses the same passcode used in screen lock as in
FDE, and thus, if the passcode for the FDE system has already been
determined by applying brute-force attack, there is no need to
apply another attack for the KeyChain (Teufl et al., 2014).

4.2.2. Other solutions

Based on Android encryption systems issues discussed above,
Android secure storage application has been presented in (Xia
et al,, 2015). It prompts the user to store their data locally on the
device in a secure way without an extra requirement. The proposed
system provides an option to the user for encrypting specific files
rather than full encryption. Moreover, the files can be saved in
the unencrypted format without doing the factory reset as in
FDE. Users can choose to store files in the secure storage; then
these files will be encrypted using Password-Based Encryption
Standard mechanism. The mechanism generates two keys; a mas-
ter key that is generated from the user’s password and content pro-
tection key that is used to encrypt sensitive data, and it is
encrypted by the master key. The main drawback of the proposed
app is that it depends on the user’s password that can be stolen or
forgotten. In contrast to passwords, user’s biometrics cannot be
easily forged, duplicated, or shared. Google published Android 6.0
(released in October 2015) that includes Fingerprint API, which

Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.07.004

Please cite this article in press as: Altuwaijri, H., Ghouzali, S. Android data storage security: A review. Journal of King Saud University - Computer and

https://doi.org/10.1016/j.jksuci.2018.07.004

H. Altuwaijri, S. Ghouzali/Journal of King Saud University — Computer and Information Sciences xxx (2018) xXx-xxx 9

Table 2
FDE features and threats.

Android version - Encrypted partition Encryption Key Optional or Limitations and Threats
Release date Mandatory
Android 4 -Oct. 2011 Application partition (/data) PIN and Password Optional - Encryption must be activated manually.

Android 5 -Oct. 2014 Application partition (/data)

Patterns

Android 6 -Oct. 2015 Application partition (/data) and
internal non-removable SD card

partition (/sdcard)

Patterns

PIN, Password, and

PIN, Password, and

The security of the system depends on the strength
of the passcode.

- Susceptible to external brute-force attacks.
Optional - Encryption must be activated manually.

- The security of the system depends on the strength
of the passcode.
Susceptible to external brute-force attacks.
The security of the system depends on the strength
of the passcode.
Susceptible to external brute-force attacks.

Mandatory

can be employed by developers to include fingerprint recognition
in their apps. Goode Intelligence predicts that 3.4 billion users will
use biometric systems on their mobile devices by 2018 (Yldrm and
Varol, 2014). Mobile fingerprint technology has been used in differ-
ent mobile applications that mainly focus on authenticating users,
such as phone lock, mobile payment, and mobile banking (Yldrm
and Varol, 2014) (Gao et al., 2014). Fingerprint in mobile devices
encompasses several advantages; it is a fast authentication model,
it is entirely accepted in mobile devices, and it provides competi-
tive performance rate (Avila et al., 2014). However, deploying bio-
metrics in mobile devices faces several challenges such as limited
computation power, small storage capacity, and finite battery life.
The algorithm used in traditional biometrics systems needs to be
simplified to adapt to small CPU processing power of mobile
phones. The essential simplicity might reduce the accuracy and
security level, which will affect the performance of mobile-
enabled biometric techniques (Wang et al., 2011). Besides, authors
in (Bianchi et al., 2018) have shown how the inappropriate usage
patterns of the fingerprint API in most Android apps such as Google
Play Store and Square Cash can make these apps vulnerable to sev-
eral attacks. Another challenge is how to maintain safe storage of
biometrics data in the device. Growing biometrics databases carry
with them expanding worries about the likelihood of theft or mis-
use of individuals’ biometrics. To preserve the privacy of biometric
technology users, biometric data must be efficiently secured dur-
ing storage in a database (Krivokuca, 2015).

Other security solutions for saving sensitive data on Android
mobiles are cloud-based or remote server-based which require a
working network, as this makes the accessibility of the stored con-
tents depends on the network. Also, there is a possibility of user
data getting disclosed, if the cloud storage or the remote server
database gets compromised (Bianchi et al., 2017).

4.3. Summary

Table 3 summarizes the Android data storage threats and solu-
tions presented in this paper.

Table 3
Summary of Android Data Storage Threats and Solutions.
Attack Solution
Physical Cold boot attack Clean OS, TinMan, Sentry,
threats Armored, Deadbolt, DroidVault.
Evil maid attack -
RowHammer attack CATT, ARMOR
Software Flawed Factory Reset and -
threats Remote Wiping

Malware attack

Attacks based on device
public information
Rooting the Device -

Poor Application Android Encryption
Development Exploitation

Android Encryption
Android Encryption

5. Conclusion

The literature exposes a set of identified threats on Android data
storage, along with solutions to mitigate the risk and improve the
security. We can deduce that users can influence the security of the
data either by deciding to root the device, which is a risky process,
or by disabling the FDE option. Besides, the developer influences
the security of the data by building legitimate vulnerable apps,
or by building malware apps that can access sensitive data. Cryp-
tography is the primary defense against data disclosure; it is highly
recommended to encrypt data on the device. Android provides two
types of encryption systems, FDE and KeyChain that use password-
based encryption method and depend on user’s passcode. Choosing
a strong lock screen passcode is a critical issue, but requiring the
user to type encryption password every time to unlock the screen,
renders it unlikely to choose a secure password. Moreover, security
of conventional cryptographic techniques relies on the assumption
that only a legitimate user knows the cryptographic keys, hence,
maintaining the secrecy of keys is a big challenge. In the
password-based encryption method, the key is vulnerable to off-
line brute force attack when the encrypted key stored in the device
(Kaspersky Lab, 2017). An attacker who gains physical possession
of the smartphone can extract the data and mount an offline attack,
trying passcodes until one is found that produces a key, which
decrypts the data successfully (Bianchi et al., 2017). Moreover, it
is dangerous to depend on user’s passwords since it can be easily
lost, stolen, forgotten, or guessed. Thus, how to protect data on
mobile devices against software and physical attacks, is still a sig-
nificant and urgent problem. A promising solution would be to use
biometric cryptosystem to protect the storage of the encryption
key in the device. Biometric cryptosystem substitutes password-
based encryption method; the user is not prompting to enter a
password, s/he is requested to present his/her biometric template
instead. It can be used to secure data against software attacks since
data is encrypted, and against physical attacks because the crypto-
graphic key is never stored in the device, only an auxiliary data will
be stored (Kanade et al., 2012).

As a future work, we will investigate the threats and vulnerabili-
ties of using biometrics for authentication and data encryption on
Android. Besides, Android is continuously updated, and new versions
are published endlessly. New versions might prevent some of the
vulnerabilities discussed in this survey and open others. Thus,
Android security and its threats should continuously be investigated.

References

“Android 6.0 Compatibility Definition”, 2016. [Online]. Available: https://
static.googleusercontent.com/media/source.android.com/en//compatibility/
android-cdd.pdf (Accessed: 11.11.16).

“Full Disk Encryption | Android Open Source Project”, Source.android.com, 2016.
[Online]. Available: https://source.android.com/security/encryption/ (accessed:
13.11.15).

Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.07.004

Please cite this article in press as: Altuwaijri, H., Ghouzali, S. Android data storage security: A review. Journal of King Saud University - Computer and

https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
https://source.android.com/security/encryption/
https://doi.org/10.1016/j.jksuci.2018.07.004

10 H. Altuwaijri, S. Ghouzali/Journal of King Saud University - Computer and Information Sciences xxx (2018) xXx-xxx

“IDC: Smartphone OS Market Share”, www.idc.com, 2016. [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp (accessed:
11.11.15).

“OWASP Mobile Security Project - OWASP”, Owasp.org, 2016. [Online]. Available:
https://www.owasp.org/index.php/Mobile#tab=Top_10_Mobile_Risks
(accessed: 02.02.16).

“Remotely ring, lock, or erase a lost device - Accounts Help”, Support.google.com,
2016. [Online]. Available: https://support.google.com/accounts/answer/
6160500?hl=en (Accessed: 21.01.16).

“Storing Application Data”, Google Developers, Online Available: https://
developers.google.com/drive/web/appdata 2016 (accessed: 13.11.16).

“What is ARM processor? - Definition from Whatls.com”, Whatls.com, 2016.
[Online]. Available: http://whatis.techtarget.com/definition/ARM-processor
(accessed: 17.02.16).

“javax.crypto—Android Developers,” Developer.android.com, 2016. [Online].
Available: http://developer.android.com/reference/javax/
crypto/packagesummary.html (accessed: 23.02.16).

Ahvanooey, M., Li, Q., Rabbani, M., Rajput, A., 2017. A survey on smartphones
security: software vulnerabilities, malware, and attacks. Int. J. Adv. Comp. Sci.
Appl. 8 (10), 30-45.

Avila, C., Casanova, |., Baallestros, F., Garcia, L., Gomex, M., Sierra, D., Pozo, G., 2014.
State of the art of mobile biometrics, liveness and non-coercion detection. In:
Project FP7-610713 (PCAS), Public Deliverable, The European Union’s Seventh
Framework Programme for research, technological development and
demonstration.

Bianchi, A., Gustafson, E., Fratantonio, Y., Kruegel, C., Vigna, G., 2017 Exploitation
and mitigation of authentication schemes based on device-public information.
In: Proceedings of the 33rd Annual Computer Security Applications Conference
(ACSAC'17), Orlando, FL, USA, pp. 16-27.

Bianchi, A., Fratantonio, Y., Machiry, A., Kruegel, C., Vigna, G., Chung, P., Lee, W.,
Broken fingers: on the usage of the fingerprint API in android. In: Proceedings of
Network and Distributed System Security Symposium (NDSS'18), San Diego, CA,
USA.

Brasser, F., Davi, L., Gens, D., Liebchen, C., Sadeghi, A., 2017. CAn’t touch this:
software-only mitigation against Rowhammer attacks targeting kernel
memory. In: Proceedings of the 26th USENIX Security Symposium, Vancouver,
BC, Canada.

Casati, L., Visconti, A., 2018. The dangers of rooting: data leakage detection in
android applications. Mobile Inf. Syst. 2018, 6020461.

Colp, P., Zhang,]., Gleeson,]., Suneja, S., de Lara, E., Raj, H., Saroiu, S., Wolman, A.,
2015. Protecting data on smartphones and tablets from memory attacks. In:
Proceedings of the 20th International Conference on Architectural Support for
Programming Languages and Operating Systems, Istanbul, Turkey, pp. 177-189.

Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C., 2013. An empirical study of
cryptographic misuse in android applications. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security (CCS '13), Berlin,
Germany, pp. 73-84.

Fang, Z., Han, W.,, Li, Y., 2014. Permission based Android security: issues and
countermeasures. Comput. Secur. 43, 205-218.

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M., Conti, M., Rajarajan, M.,
2014. Android security: a survey of issues, malware penetration and defenses.
Commun. Surveys Tutorials 17 (2), 998-1022.

Gao, M., Hu, X, Cao, B., Li, D., 2014. Fingerprint sensors in mobile devices. In:
Proceedings of the 9th IEEE Conference on Industrial Electronics and
Applications, Hangzhou, China, pp. 1437-1440.

M. Ghasempour, M. Lujan, J. Garside, “ARMOR: A Run-time Memory Hot-Row
Detector,” 2015. [Online]. Available: http://apt.cs.manchester.ac.uk/projects/
ARMOR/RowHammer/ (accessed: 29.06.18).

Gotzfried, J., Miller, T., 2014. Analysing android’s full disk encryption feature. J.
Wireless Mobile Networks, Ubiquitous Comput. Dependable Appl. (JoWUA) 5
(1), 84-100.

J. Hruska, “Android 6.0 Marshmallow makes full-disk encryption mandatory for
most new devices | ExtremeTech”, ExtremeTech, 2016. [Online]. Available:
http://www.extremetech.com/mobile/216560-android-6-0-marshmallow-
makes-full-disk-encryption-mandatory-for-most-new-devices (accessed:
28.01.16).

Kanade, S., Petrovska-Delacrtaz, D., Dorizzi, B.,, 2012. Enhancing information
security and privacy by combining biometrics with cryptography. In:
Synthesis Lectures on Information Security, Privacy, and Trust, pp. 1-140.

Kaspersky Lab “Rooting your Android: advantages, disadvantages, and snags” 2017,
Online Available: https://www.kaspersky.com/blog/android-root-faq/17135/
(accessed: 25.04.18).

Khan, J., Abbas, H., AIMuhtadi, J., 2015. Survey on mobile user’s data privacy threats
and defense mechanisms. Procedia Comp. Sci. 56, 376-383.

Krivokuca, V., 2015. Fingerprint Template Protection using Compact Minutiae
Patterns Ph.D. thesis. The University of Auckland, New Zealand.

Li, X., Hu, H,, Bai, G, Jia, Y., Liang Z., Saxena, P., 2014. DroidVault: A trusted data
vault for android devices. In: Proceedings of the 19th International Conference
on Engineering of Complex Computer Systems, Tianjin, China, pp. 29-38.

Liu, X., Zhou, Z., Diao, W., Li, Z., Zhang, K., 2015. An empirical study on android for
saving non-shared data on public storage. In: Federrath, H., Gollmann, D. (Eds.),
ICT Systems Security and Privacy Protection, IFIP Advances in Information and
Communication Technology. Springer, Cham, pp. 542-556.

Mohini, T., Kumar, S., Nitesh, G., 2013. Review on Android and Smartphone Security.
Res. J. Comput. Inf. Technol. Sci. 1 (6), 12-19.

Miiller, T., Spreitzenbarth, M., 2013. FROST. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (Eds.), Applied Cryptography and Network Security (ACNS
2013), Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 373-
388.

Poonguzhali, P., Dhanokar, P., Chaithanya, M., Patil, M.U., 2016. Secure storage of
data on android based devices. Int. J. Eng. Technol. (IJET) 8, 177-182.

Rashidi, B., Fung, C., 2015. A survey of android security threats and defenses. J.
Wireless Mobile Networks, Ubiquitous Comput. Dependable Appl. (JoWUA) 6
(3), 3-35.

Reddy, AK. Paramasivam, P., Vemula, P.B., 2015. Mobile secure data protection
using eMMC RPMB partition, In: Proceedings of the International Conference on
Computing and Network Communications (CoCoNet), Trivandrum, India, pp.
946-950.

Simon, L., Anderson, R., 2015. Security analysis of android factory resets. In:
Proceedings of the 3rd Mobile Security Technologies Workshop (MoST), San
Jose, CA, USA.

Skillen, A., Barrera, D., van Oorschot, P., 2013. Deadbolt: locking down android disk
encryption. In: Proceedings of the 3rd ACM workshop on Security and privacy in
smartphones & mobile devices (SPSM’13), Berlin, Germany, pp. 3-14.

Stirparo, P., Fovino, LN., Taddeo, M., Kounelis, 1., 2013. In-memory credentials
robbery on android phones. In: Proceedings of 2013 World Congress on Internet
Security (WorldCIS), London, UK, pp. 88-93.

Sufatrio, D.J.J., Tan, T.-W., Chua, V.L.L,, 2015. Thing, “Securing android: a survey,
taxonomy, and challenges. ACM Comput. Surveys 47, (4) 58.

Tang, Y., Ames, P., Bhamidipati, S., Bijlani, A., Geambasu, R., Sarda, N., 2012. Cleanos:
Limiting Mobile Data Exposure with Idle Eviction. Hollywood, CA, USA, pp. 77—
91.

Teufl, P., Fitzek, A., Hein, D., Marsalek, A., Oprisnik, A., Zefferer, T., 2014. Android
encryption systems. In: Proceedings of the International Conference on Privacy
and Security in Mobile Systems (PRISMS), Aalborg, Denmark, pp. 1-8.

Tiwari, P., Singh, U., 2015. Android users security via permission based analysis. In:
Abawajy,]., Mukherjea, S., Thampi, S., Ruiz-Martinez, A. (Eds.), Security in
Computing and Communications (SSCC 2015), Communications in Computer
and Information Science. Springer, Cham, pp. 496-505.

van der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss, D., Maurice, C., Vigna, G., Bos,
H., Razavi, K., Giuffrida, C., 2016. Drammer: Deterministic Rowhammer Attacks
on Mobile Platforms. Vienna, Austria, pp. 1675-1689.

Wang, S., Liu, J., 2011. Biometrics on mobile phone. In: Yang, J. (Ed.), Recent
Application in Biometrics. IntechOpen, Rijeka, Croatia, pp. 3-22.

Xia, Y., Liy, Y., Tan, C., Ma, M., Guan, H., Zang, B., Chen, H., 2015. TinMan: Eliminating
Confidential Mobile Data Exposure with Security Oriented Offloading.
Bordeaux, France.

Yldrm, N., Varol, A., 2014. Mobile biometric security systems for today and future.
In: Proceedings of the 2nd International Symposium on Digital Forensics and
Security (ISDFS'14), Houston, TX, USA, pp. 86-91.

Zaidi, S., Shah, M., Kamran, M., Javiad, Q., Zhang, S., 2016. A survey on security for
smartphone device. Int. J. Adv. Comp. Sci. Appl. 7 (4), 206-219.

Zhao, S., Zhang, Q., Hu, G., Qin, Y., Feng, D., 2014. Providing root of trust for ARM
TrustZone using on-chip SRAM. In: Proceedings of the 4th International
Workshop on Trustworthy Embedded Devices (TrustED'14), Scottsdale, AZ,
USA, pp. 25-36.

Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.07.004

Please cite this article in press as: Altuwaijri, H., Ghouzali, S. Android data storage security: A review. Journal of King Saud University - Computer and

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.owasp.org/index.php/Mobile#tab=Top_10_Mobile_Risks
https://support.google.com/accounts/answer/6160500?hl=en
https://support.google.com/accounts/answer/6160500?hl=en
https://developers.google.com/drive/web/appdata
https://developers.google.com/drive/web/appdata
http://whatis.techtarget.com/definition/ARM-processor
http://developer.android.com/reference/javax/crypto/packagesummary.html
http://developer.android.com/reference/javax/crypto/packagesummary.html
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0045
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0045
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0045
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0070
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0070
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0085
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0085
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0090
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0090
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0090
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0105
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0105
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0105
http://www.extremetech.com/mobile/216560-android-6-0-marshmallow-makes-full-disk-encryption-mandatory-for-most-new-devices
http://www.extremetech.com/mobile/216560-android-6-0-marshmallow-makes-full-disk-encryption-mandatory-for-most-new-devices
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0115
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0115
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0115
https://www.kaspersky.com/blog/android-root-faq/17135/
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0120
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0120
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0125
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0125
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0140
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0140
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0140
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0140
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0145
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0145
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0150
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0150
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0150
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0150
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0155
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0155
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0160
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0160
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0160
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0185
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0185
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0190
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0190
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0190
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0200
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0200
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0200
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0200
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0205
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0205
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0205
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0210
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0210
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0215
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0215
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0215
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0225
http://refhub.elsevier.com/S1319-1578(18)30104-6/h0225
https://doi.org/10.1016/j.jksuci.2018.07.004

	Android data storage security: A review
	1 Introduction
	2 Android data storage model
	3 Android data storage threat model
	3.1 Physical threats
	3.1.1 Cold boot attack
	3.1.2 Evil maid attack
	3.1.3 RowHammer attack

	3.2 Software threats
	3.2.1 Malware attack
	3.2.2 Poor application development Exploitation
	3.2.2.1 Over-privileged applications
	3.2.2.2 Misuse of cryptographic API
	3.2.2.3 Saving non-sensitive but non-shared data on public storage

	3.2.3 Attacks based on device public information
	3.2.4 Rooting the device

	3.3 Flawed factory reset and remote wiping

	4 Solutions for Android data storage threats
	4.1 Physical threat solutions
	4.1.1 CleanOS
	4.1.2 TinMan
	4.1.3 Sentry
	4.1.4 Armored
	4.1.5 Deadbolt
	4.1.6 Droidvault
	4.1.7 Replay protected memory Block (RPMB) partition
	4.1.8 CATT
	4.1.9 ARMOR

	4.2 Software threat solutions
	4.2.1 Android encryption systems
	4.2.1.1 Full disk encryption
	4.2.1.2 KeyChain

	4.2.2 Other solutions

	4.3 Summary

	5 Conclusion
	References

