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Abstract

In recent years graph pattern mining took a prominent role in knowledge dis-
covery in many scientific fields. From Web advertising to biology and finance,
graph data is ubiquitous making pattern-based graph tools increasingly im-
portant. When it comes to financial settings, data is very complex and al-
though many successfully approaches have been proposed often they neglect
the intertwined economic risk factors, which seriously affects the goodness
of predictions. In this paper, we posit that financial risk analysis can be
leveraged if structure can be taken into account by discovering financial mo-
tifs. We look at this problem from a graph-based perspective in two ways, by
considering the structure in the inputs, the graphs themselves, and by taking
into account the graph embedded structure of the data. In the first, we use
gBoost combined with a substructure mining algorithm. In the second, we
take a subspace learning graph embedded approach. In our experiments two
datasets are used: a qualitative bankruptcy data benchmark and a real-world
French database of corporate companies. Furthermore, we propose a graph
construction algorithm to extract graph structure from feature vector data.
Finally, we empirically show that in both graph-based approaches the finan-
cial motifs are crucial for the classification, thereby enhancing the prediction
results.
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1. Introduction

Nowadays, data is naturally structured in form of trees or graphs, which
are structures that may convey important information. A graph is a general
and powerful data representation formalism, which found widespread appli-
cation in many scientific fields. Finding subgraphs capable of compressing
data by abstracting instances of the substructures and identifying interesting
patterns is thus crucial.

The awareness of big data together with the poor understanding of the
processes that generate data has enforced techniques to extract frequent
structural patterns from such data [27]. Graph mining techniques are sought
for a class of problems lying on the crossroads of several research topics
including graph theory, data sensing, data mining and data visualization.

Graphs are very important mathematical structures that can represent
information in many real world domains such as chemistry, biology and, web
and text processing. Examples are protein interactions, phylogenetic trees,
and molecular graphs [5], computer networks [18], hypertextual and XML
documents, social networks, mobile call networks, to name a few [32].

Pattern mining takes essentially two approaches: statistical learning and
structural. In the statistical learning, patterns are represented by feature
vectors x = (x1, · · · , xn) ∈ IRn of n measurements. It has two main draw-
backs: first, the vectors uphold a predefined set of features, despite the size
and complexity of the objects they represent; second, the binary relation-
ships among (parts of) objects cannot be captured. The above pitfalls, size
constraints and lack of ability to represent relationships, might prevent to
expose better models. In the structural approach, patterns are represented
by graphs that can overcome above limitations with their inherent structure.
Yet the complexity increases, for instance, it takes exponential time for find-
ing the isomorphism between two graphs while linear time is needed for the
similarity of two features vectors [6].

In this paper, in the settings of financial risk analysis we take two ap-
proaches for graph-based pattern mining. In the first, subgraph mining is
employed based on an isomorphism search between two graphs, while, in
the second, the goal is to learn a low-dimensional subspace spanned by pro-
jected vectors, which are dominant for preserving the intrinsic data structure.
With respect to the first approach, we propose a graph construction algo-
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rithm on the basis of a qualitative data set of financial statements to gain
further insights on the data structure, and then a graph-based model for
pattern mining is generated via gBoost [31], a frequent subgraph discovery
technique on the grounds of mathematical programming and gSpan algo-
rithm [36]. This pattern-growth method uses Depth-First Search (DFS) and
is able to find financial motifs in the graph data rendering the risk estima-
tion very successful. We empirically show that the performance evaluation
is competitive to the statistical learning algorithms such as Artificial Neural
Networks (ANN), Decision Trees (DT) and Support Vector Machines (SVM)
when unstructured dimensional feature vectors are used. Our case study
encompasses a graph-based methodology that enables to unravel structural
subtleties otherwise hidden in the data. The last aspect is related to the
second approach, which by taking an embedded graph learning technique
we successfully take into account the data structure. Thus, we look at how
good the models are either by using structural components, such as graphs,
as inputs - the graph mining approach - or by using structure embedded on
the data - the embedded graph learning approach.

In the next section we will review the related work in financial credit risk
and graph-based pattern mining. In Section 3 we present the background
for the gBoost classifier, propose an algorithm for graph construction and
describe the graph-based embedded learning approach based on spectral data
matrix decomposition. In the context of financial credit risk, we present in
Section 4 the experiments considering two financial datasets, a qualitative
bankruptcy benchmark and a real-world data set of French financial ratios.
We describe the research design for both graph-based approaches, pointing
out their properties for the financial settings and discuss the results. The
paper will end with the conclusions and future work in Section 5.

2. Related Work

2.1. Financial Credit Risk Assessment

The financial credit risk indicates the risk associated with financing, in
other words, a borrower cannot pay the lenders, or goes into default. Ac-
cordingly, financial credit risk assessment aims to predict the probability of
default of loans, and the likelihood of a firm’s going bankrupt. In our paper
our efforts are directed to the latter. The problem can be stated as follows:
given a number of companies labeled as bankrupt / healthy, and a set of
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financial variables that describe the situation of a company over a given pe-
riod, predict the probability that the company may belong to a high risk
group or become bankrupt during the following years. Over the last years,
some articles reviewed the literature of financial crisis prediction [8, 14] or
focused on advanced techniques [2, 11].

When dealing with real world financial credit risk problems, they are
usually characterized by large scale of data and high-dimensional represen-
tation. The key financial ratios comprise financial information (operational
performance, financial liquidity, risk return, sustainable growth etc.) and
non-financial information (government policy, economic environment mark-
ing reports, customers screening etc.) [30]. These performance key indicators
are well fit to establish the relationships between nodes of financial compa-
nies. Through a linear or nonlinear projection, dimensional reduction and
subspace learning demonstrated to be very effective to find a compact repre-
sentation in a low dimensional subspace of high dimensional data [29].

In the literature, a wide range of methods have been proposed for fi-
nancial risk assessment [21]. These methods can be divided into parametric
methods, semi-parametric methods, and non-parametric methods from the
viewpoint of model specification. Statistical methods are typically para-
metric and have been widely studied in literature for financial risk assess-
ment even with some limitations. A logit model [37] is developed in the
context of Belgian small and medium-sized enterprises, and achieved a sat-
isfactory accuracy of bankruptcy prediction. Most intelligent methods are
non-parametric that include Artificial Neural Networks (ANNs), Fuzzy Set
Theory (FST), Decision Trees (DTs), Case-Based Reasoning (CBR), Support
Vector Machines (SVMs), Rough Set Theory (RST) among others. Semi-
parametric methods [9, 17] define the modeled process with flexible struc-
ture, and have proved to be very successful when the fully parametric and
non-parametric do not perform well. Semi-parametric methods have more
flexibility in model structure although the modeled process is clearly inter-
preted. Recently semi-parametric methods have become a future trend of
bankruptcy prediction study. Some research results have demonstrated the
well-defined semi-parametric methods are possible to improve the prediction
accuracy of bankruptcy compared to the conventional parametric and non-
parametric methods [3, 13, 25].

Hybrid techniques aim to improve an individual learner using some heuris-
tics by refining the related instances, significant features, or optimal param-
eters [24]. Ensemble techniques construct a composite classifier that takes
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advantage of several learners which have high performance individually and
low intercorrelation [33].

2.2. Graph-based Pattern Mining

Although many successful approaches have been used rarely the structural
component has been endorsed in the literature review. It becomes important
to provide structural performance data mining techniques in financial domain
where a large-scale complex data is produced today. Graph-based pattern
mining intend to discover the hidden structures represented by graphs. The
main advantage of graph is that not only the nodes (instances) but also the
edges (relation) contribute to the representation of data [34].

Graph-based pattern mining took a new breed of approaches since the
introduction of frequent pattern mining in [1]. In particular, many subgraph
mining algorithms have been developed such as Apriori based methods like
AGM [19], FSG [23], or pattern-growth methods like gSpan [36] and Gas-
ton [28]. A major challenge in subgraph mining is the subgraph isomorphism,
which is an NP-complete problem [36]. In gSpan, Depth-First Search (DFS)
is employed to reduce the search space significantly making possible to check
whether between two graphs an isomorphism exists. Its purpose is to enumer-
ate all connected frequent subgraphs from graph representation of patterns.
gBoost [31] is an extension of boosting for graphs which uses gSpan. Apart
from the mathematical graph theory based approaches, a few other can be
considered for graph mining such as: greedy search-based approaches [16],
inductive programming logic [4] and inductive database approaches [22].

3. Graph Learning

3.1. Graph Preliminaries

In this section the basic notation and graph concepts are introduced.

Definition 3.1. Graph. A graph g is defined as a pair of sets (Vg, Eg), where
Vg = {v1, v2, · · · , vn} is a set of ordered vertices and Eg = {(vi, vj), · · · , (vk, vl)}
is a set of pairs of vertices, the edges.

Definition 3.2. Graph Isomorphism. Two graphs g1 and g2 are isomorphic
if there is a bijective mapping such that every edge in E1 is mapped to a single
edge in E2 and vice-versa.
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Definition 3.3. Subgraph. A subgraph g2 = (V2, E2) of a graph g1 is a graph
for which V2 ⊆ V1, E2 = E1 ∩ (V2 × V1).

Definition 3.4. Subgraph Isomorphism. Given two graphs g1 and g2 the
problem of subgraph isomorphism is to find a isomorphism between g2 and a
subgraph of g1 that is to determine if g2 is included in g1.

Definition 3.5. Support of a subgraph g. Given a labeled dataset GD =
{g1, g2, · · · , gn}, support or frequency of a subgraph g is the percentage (or
number of graphs) in GD where g is a subgraph.

Definition 3.6. Frequent Subgraph. A frequent subgraph is a graph whose
support is not less than a minimum threshold.

3.2. gBoost Classifier

gBoost [31] is an extension of boosting for graphs and comprises a math-
ematical programming tool [12] that progressively collects “informative” fre-
quent patterns to use as features for classification and regression. Further-
more, this tool uses linear program (LP) approaches to boosting provid-
ing an efficient solution using LPBoost, a column generation based simplex
method [12]. The problem is formulated as if all possible weak hypotheses
had already been generated, where the labels produced by the weak hypothe-
ses become the new feature space of the problem. The boosting consists
of constructing a learning function in the label space that minimizes mis-
classification error and maximizes the soft margin. It is also considered a
frequent subgraph mining technique similar to gSpan in frequent subgraph
mining [36]. gBoost uses first gSpan method [36] which finds frequent sub-
graphs and constructs a canonical search space in the form of a Depth-First
Search (DFS). This algorithm is used for traversing or searching tree or graph
data structures. With the proviso that the tree structure and the DFS code
are available an optimal search can be constructed.

Let {gt}Tt=1 denote a set of frequent subgraphs generated from gSpan.
Given the learning graphs {(Gn, yn)}Nn=1 where Gn is a training graph and
yn ∈ {+1,−1} is the associated class label. Let T the set of all patterns
(subgraphs) included in at least one training graph. Each graph Gn can be
encoded as a | T | dimensional vector xn through an indicator function I(·)
as indicated below:

xn,t = I(t ⊆ Gn) ∀t ∈ T (1)
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The hypotheses or individual stumps are defined as:

h (xn, gt) =

{
+1 if gt ∈ xn
−1 if gt 6∈ xn

(2)

where we simplified the notation for xn. Given training data {(xn, yn)}Nn=1

directly solving the optimization problem is intractable. Therefore, the equiv-
alent dual problem below is solved instead which can be expressed as follows:

minimize
α,γ

γ

subject to
N∑

n=1

λnynh(xn, gt) ≤ γ s = 1, 2, · · · , T

N∑

n=1

λn = 1, 0 ≤ λn ≤ ∆ s = 1, 2, · · · , T,

(3)

where ∆ = 1
νN
, ν ∈ (0, 1) is the cost classification parameter controlling the

misclassification errors [31] [12] which has to be found using model selec-
tion techniques such as cross-validation. After solving the dual optimization
problem, the primal solution α is obtained from the Lagrange multipliers. It
has a limited number of variables and an intractably number of constraints.
Therefore, gBoost algorithm uses a methodology based on the column gen-
eration [26]. The algorithm sets up a maximum number of columns to add
at each iteration. Then rather than considering all the constraints, the sub-
graph gs whose corresponding constraint is violated the most is selected. At
the k iteration the constraints are formulated as

N∑

n=1

λ(k)n ynh(xn, gt) ≤ γ(k), t ∈ T (k) (4)

As defined above T gathers the index number of the selected subgraphs. At
the start of this procedure, T (0) is set to empty and αn(0) = 1

N
. Following,

the optimal solutions α
(k)
n and γ(k) for solving the restricted dual optimization

problem are updated iteratively. In the sequel, the subgraph that violates
the constraint the most (corresponding to the largest margin) is selected:

t∗ = arg maxt=1,2,··· ,T

N∑

n=1

λ(k)n ynh(xn, gt) (5)
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The set T (k) is updated by adding the new index number t∗ : T (k+1) =
T (k)∪{t∗}. The procedure iterates until the criteria based on the satisfaction
of all constraints are met. For a specific test graph x the prediction rule is a
convex combination of simple classification stumps h(x, gt):

y = sign


 ∑

t∈T (K)

αth(x, gt)


 (6)

A test graph is labeled in the positive class if y = 1 and in the negative class
if y = −1.

3.3. Graph Construction Algorithm

The algorithm to build the graph data takes feature vectors from the
data collection and constructs graphs to be used as inputs into the gBoost
classifier. The main focus is to set up the nodes and edges for the data, run-
ning over all the data samples in the dataset. Depending on the problem the
relationships between nodes should be taken into account for setting up the
edges to link the nodes among graph ’points’. The proposed algorithm 1 will
be used with the benchmark qualitative data. We have coded the algorithm
in Matlab for easiness of use with gBoost package1. With the Algorithm 1
we built the graphs to be used as inputs in gBoost. Thus each sample of
the data is a graph with a set of nodes corresponding to the features in the
feature dimensional space. The edges are assigned during graph construction
and represent the relationships between nodes. The graph samples are con-
nected, undirected and labeled graphs. The overall graph data samples were
further partitioned to find the training and test graphs for further use in the
gBoost classifier. More specifically, the algorithm cycles over the N rows of
the feature dimensional vectors matrix data, assigns the nodes of each graph
and updates the edges as shown in Algorithm 1.

3.4. Graph Embedded Learning

In this section we take rather into account the structure in the data by
building the graph weight matrix. Given a graph G with n nodes, each node
representing a data point, let W be a symmetric n× n matrix where Wij is

1The Mex Matlab wrappers from the Graph Boosting Toolbox for Matlab were down-
loaded from http://www.nowozin.net/sebastian/gboost/.
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Algorithm 1: Graph Construction from Feature Vector Data

Input: For each collection of data D, X = {x1, · · · ,xn} with labels
{yn ∈ {+1,−1} n = 1, 2, · · ·N}
/*Cycle over N rows*/
for all n← 1, · · · , N do

Initializations
/* Cycle over the first row */
for all j ← 1, · · · , NumNodes− 1 do

Detects the transition of weights
Update Edges

end for
Makes the connection with last element of index array
/* Find Dangling Nodes in the Graph */
if Dangling Nodes exist then

Find the node closest Weight Distance
Adjust Weight Connections

end if
/* Find disconnected Components in the graph */
if Subgraphs remain to be connected then

Connect subgraphs
end if

end for
Output: Get connected learning graphs {(Gn, yn)}Nn=1 where Gn is a training
graph and yn ∈ {+1,−1} is the associated class label

the connection weight between node i and j. Each node of the graph is repre-
sented as a low-dimensional vector and the similarities between pairs of data
(in the original high-dimensional space) are preserved. The corresponding
diagonal matrix and the Laplacian matrix [10] are defined as:

L = D −W,Dii =
∑

j 6=i
Wij ∀i (7)

where D is a diagonal matrix whose entries are sums of columns (or rows) of
the matrix W . Let y = [y1y2 · · · yn] be the low-dimensional embedding of the
nodes where the column yi vector is the embedding for the vertex xi. Direct
graph embedding [35] aims to maintain similarities among vertex pairs by
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following the graph preserving criterion (9):

y∗ = arg min
yTDy=1

∑

i 6=j
||yi − yj||2Wij (8)

= arg min
yTDy=1

(yTLy) = arg min
yTLy

yTDy
(9)

Using ( 7) the above optimization problem has the equivalent form:

y∗ = arg max yTWy = arg max
yTWy

yTDy
(10)

Let u be the transformation vector and yi = uTxi. Linear Graph Embedding
(LGE) finds the optimal u∗ which are the eigenvectors corresponding to the
maximum eigenvalues of the decomposition problem:

XWXTu = λXDXTu (11)

The Spatially Smooth Subspace learning (SSSL) [7] extends the LGE by
using the graph structure with the weight matrix W and solves the following
optimization problem:

XWXTu = λ((1− α)XDTX + α∆T∆)u (12)

where ∆ is a m×m matrix giving a discrete approximation for the Laplacian
and α is the parameter that controls the smoothness of the approximation.

3.4.1. Building the Affinity Graph Matrix

The affinity graph weight matrix W is built by assuming that each i-th
node corresponds to a given firm xi. It can be specified by means of weight
schemes as follows:

1. Binary weighting. Wij = 1 if and only if nodes i and j are connected
by an edge, otherwise Wij = 0.

2. Heat kernel weighting (with σ the kernel width). The scheme for as-
signing weights between nodes i and j is:

Wij =

{
e− ||xi−xj ||2

2σ2 , if xi and xj share the same class;
0, otherwise.

(13)

3. Dot-product weighting.

Wij =

{
xT
j xi

||xi||·||xj || , if xi and xj share the same class;

0, otherwise.
(14)
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4. Research Design

4.1. Datasets

Qualitatitive Bankruptcy. The QB dataset2 attributes and samples are de-
scribed in [20]. The sample size is 250 and has 6 attributes each corresponding
to qualitative parameters in bankruptcy: Industrial Risk, Management Risk,
Financial Flexibility, Credibility, Competitiveness, and Operating Risk. The
attribute value is nominal (Positive, Average, Negative) and there are two
classes (Bankrupt, Healthy) as described in Table 1. The dataset is unbal-
anced consisting of 143 samples in the Healthy class and 107 samples in
Bankrupt class. We assigned Bankrupt to the positive class and Healthy to
the negative class. In short, sample #1 = (Positive, Positive, Average, Av-
erage, Average, Positive) is assigned to class Bankrupt while sample #250
= ( Positive, Negative, Negative, Negative, Average, Average) is assigned to
the other. After running the Algorithm 1 we built the training data trainG

Table 1: Attributes (Positive, Average, Negative) and Class is (Bankrupt, Healthy).

Financial Indicators Qualitative Attributes

1. Industrial Risk {Positive,Average,Negative}
2. Management Risk {Positive,Average,Negative}
3. Financial Flexibility {Positive,Average,Negative}
4. Credibility {Positive,Average,Negative}
5. Competitiveness {Positive,Average,Negative}
6. Operating Risk {Positive,Average,Negative}
7. Class {Bankrupt,Healthy}

with 143 graphs for training and the test data testG with 107 graphs for test
with identical distribution of positive and negative samples as in the whole
original dataset. For easiness of handling the data we decided to assign a
weight corresponding to each qualitative value (for example, we assigned 2
to Positive, 1 to Average and 3 to Negative). We assigned the label (+1, −1)
to the positive (Bankrupt) class and negative (Healthy) class, respectively,
for use in the gBoost algorithm. According to the train and test partitions

2The Qualitative Bankruptcy (QB) dataset can be download from https://archive.

ics.uci.edu/ml/datasets/Qualitative_Bankruptcy.
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mentioned above, we built the vectors trainY and testY containing the graph
labels.
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Figure 1: Motifs for 6-node graphs financial samples.

In Figure 1 examples of data samples found in the qualitative data are
represented for better illustration of the financial motifs built by the graph
construction algorithm. These motifs are 6-node graphs (each node is an
attribute of the qualitative data illustrated in Table 1) that play a decision
role on the overall classification procedure influencing the classifier prediction.

diane Database. The database is composed of 107,389 French companies
and their foreign subsidiaries spanned over the years from 2002 to 2006. It
contains complete information about the financial ratios including financial
strength, liquidity, solvability, productivity of labor and capital, margins, net
profitability and return on investment (the financial ratios are described in
Table 2. In In the original database, 973 companies are labeled as distressed
in 2007 and the others are labeled as healthy. Due to the large number of
missing values existed in the companies (particularly in bankrupt companies),
we select 600 companies with at most 10 missing values from the bankrupt
group. It was known that the classification tends to favor the majority class
(non-default companies) under the highly skewed distribution of the original
database. We then sampled randomly 600 non-default companies in order
to generate a balanced data set for experiments. The outcome is a balanced
data set made up of 1200 French companies, 600 examples distressed in 2007,
and the remainder are healthy. We consider the financial ratios from both
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one year and up to three fiscal years before bankruptcy for constructing the
prediction models. Fig. 2 illustrates the graph financial motifs corresponding

Table 2: Financial Ratios of diane Database

x1- Number of Employees x16- Cashflow/Turnover
x2- Capital Employed/Fixed Assets x17- Working Capital/Turnover days
x3- Financial Debt/Capital Employed x18- Net Current Assets/Turnover days
x4- Depreciation of Tangible Assets x19- Working Capital Needs/Turnover
x5- Working Capital/Current Assets x20- Export
x6- Current ratio x21- Added Value/Employee k eur)
x7- Liquidity Ratio x22- Total Assets Turnover
x8- Stock Turnover days x23- Operating Profit Margin
x9- Collection Period days x24- Net Profit Margin
x10- Credit Period days x25- Added Value Margin
x11- Turnover/Employee k eur x26- Part of Employees
x12- Interest/Turnover x27- Return on Capital Employed
x13- Debt Period days x28- Return on Total Assets
x14- Financial Debt/Equity x29- ebit Margin
x15- Financial Debt/Cashflow x30 - ebita Margin

to the bankrupt (and healthy) companies constructed with the heat kernel
(σ = 0.5) and (p-neighbors =5) in the supervised mode, i.e., with class label
information.

Figure 2: Motifs for a real world data set Diane of French companies.

4.2. Evaluation Metrics

In order to evaluate a binary decision task we first define a contingency
matrix representing the possible outcomes of the classification. Evaluation
measures are defined based on the contingency Table 3, such as, error rate

13
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( fp+fn
tp+fp+tn+fn

), and accuracy tp+tn
tp+fn+fp+tn

which measures the overall effective-

ness of a classifier and AUC (Area Under the Curve)1
2

(
tp

tp+fn
+ tn

tn+fp

)
which

captures the classifier’s capability to avoid false classification.

Table 3: Contingency matrix of prediction results

real class
predicted class

positive negative

positive tp fn
negative fp tn

positive: bad credit or bankrupt, negative: good
credit or healthy.

4.3. Empirical Analysis

4.3.1. Qualitative Bankruptcy data: gBoost Classifier

In this section for the sake of comparison with gBoost we present several
algorithms spanning over machine learning and data mining methods using
the open source weka Toolbox3.

Support Vector Machines (SVM) belong to the maximum margin classi-
fiers aiming to find an optimal separating hyperplane, which maximizes the
margin between two classes of data in kernel, induced feature space. SVM
use the structural risk minimization principle to avoid overfitting. Since
the introduction to the area of financial risk analysis, SVM have gained
wide popularity owing to the good generalization on a small amount of high-
dimensional data. Apart from SVM, we also used Neural Networks, Decision
Trees, fuzzy grid, and random committee for comparison. SimpleCART con-
structs a decision tree well adapted to the training data and implementing
minimal cost-complexity pruning to the tree structure to avoid over-fitting.
Multi-Level Perceptron (MLP) and Radial Basis Function (RBF) network
are artificial neural networks for machine learning. The former is a multi-
layer, feed-forward neural network, trained iteratively to adjust the connec-
tion weights via back-propagation algorithm. The latter has only one hidden
layer, each node of which implements a normalized Gaussian radial basis

3 http://www.cs.waikato.ac.nz/ml/weka/ [15]
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function with the center and width as parameters. Fuzzy grid method par-
titions the input and output data into grids and extracts the fuzzy rules
for data classification. Random committee builds an ensemble of random-
ized base decision tree classifiers to improve the classification accuracy. In

Table 4: Classifier Results: Performance Measures (%)

QB data (1) (2) (3) (4) (5)

Acc 96.52±10.25 94.88± 3.29 97.72± 2.77 98.08± 1.85 88.48±1.95

Precision 93.28±23.86 95.72± 5.32 100.00± 0.00 98.93± 2.29 97.10±1.68

Recall 92.68±23.81 92.52± 5.43 94.68± 6.44 96.61± 4.58 97.10±1.68

F1 92.95±23.77 93.92± 3.79 97.16± 3.49 97.67±.2.31 97.10±1.68

AUC 97.04±13.75 94.58± 3.35 99.62± 0.27 98.62± 2.32 98.53±0.84

Spec. 99.44± 1.30 96.64± 4.47 100.00± 0.00 99.17± 1.79 89.20±3.10

QB data (6) (7) (8) (9) (10)

Acc 98.12± 1.91 98.13±0.05 97.72± 2.67 86.92± 4.16 97.68±3.01

Precision 98.58± 2.58 97.53± 1.14 100.00±0.00 77.15± 5.20 100.00±0.00

Recall 97.87± 4.70 98.33± 0.01 94.67± 6.25 99.44±2.41 94.59±6.97

F1 97.73± 2.38 97.93±0.57 97.15± 3.47 86.80± 3.70 97.08±3.90

AUC 97.98± 2.00 99.81±0.05 97.33± 3.12 88.48± 3.84 97.30±3.49

Spec. 98.89± 2.04 96.81± 1.50 100.00±0.00 77.52± 6.75 100.00±0.00

Tested Classifiers (Weka)

(1) Multilayer Perceptron (2) SMO supportVector.PolyKernel (3) RBF Network

(4) Random Committee (5) Simple Fuzzy Grid (6) SimpleCART (7) gBoost

(8) LibSVM RBF Kernel (9) LibSVM Sigmoid Kernel (10) SMO supportVector.RBFKernel

Table 4 the performance measures of 30 runs with 5-fold cross validation
of machine learning methods including SVM, neural networks (Multi-Layer
Perceptron (MLP) and Radial Basis Functions (RBF)), fuzzy grid, and ran-
dom committee are illustrated. The performance metrics used to compare
the algorithms are often used in machine learning and easily deduced from
the confusion matrix illustrated in Table 3. We also added the specificity or
the true negative rate which gives an understanding of how good the model
is in complying with the negative examples.

The gBoost classifier results are in bold-type when it outperforms the
other algorithms in the performance measure of the respective row in Ta-
ble 4. The experimental results in weka show that all the variants of SVM
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are statistically significant with paired t test and 0.05 confidence in terms of
Accuracy, F1, and AUC compared with SimpleFuzzyGrid, MLP, RBF, Sim-
ple CART for the QB dataset. As it is shown, gBoost shows improvement
over SVM in the mean of Accuracy, F1 and AUC. Overall gBoost is better
than neural networks and rule-based algorithms while showing competitive
performance with random committee, decision trees and SVM with Gaussian
kernel. The test AUC obtained with gBoost was found 99.81% while for the
best SVM the test AUC was 97.33%.

In the prediction phase the algorithm takes a test graph x and outputs
a classification result as indicated in equation 6 by the convex combina-
tion of simple classification stumps h(x, gt). For gBoost, the maximum
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Figure 3: (a) Graph test data testG: subclassifier responses +1 (yellow); −1 (dark blue) ;
(b) ν parameter controlling training accuracy.

pattern size which in our case corresponds to the maximum number of
nodes in a subgraph was constrained to 6, since this is the number of at-
tributes defining the financial indicators. In order to characterize the influ-
ence of the regularization parameter ν, gBoost is applied to QB dataset with
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. The results from running gBoost are
illustrated in Figure 3. The left plot graph (a) represents an array of clas-
sifier responses for testG where (i, j) element encodes the response (+1,−1)
of a subclassifier j on a sample i. In the right graph plot (b) the perfor-
mance of gBoost is examined by varying ν parameter controlling training
accuracy. This parameter is used in the graph optimization process LPBoost
for finding frequent subgraphs [12]. When ν is low gBoost creates a complex
classification rule so that it can classify the training patterns completely. As
ν is decreased, the regularization works and the rule gets simpler thus con-
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trolling overfitting. The best testing result was obtained with ν = 0.15 and
ε = 0.001.

The convergence tolerance ε used in the runs was varied from 0.001 to
0.1. The bars in the plot indicate the train and test accuracies as well as the
AUC for solving the optimization problem with the two used tolerances. For
a short range of the parameter ν the results are encouraging and outperform
well-known classifier methods as illustrated in Table 4.

The classification algorithm gBoost takes into account the structure em-
bedded in the graphs proving that such information is advantageous as com-
pared to the traditional two-dimensional feature vectors framework. The ra-
tionale is that it incorporates relations among the nodes. As a consequence
extra knowledge allows better models, which fosters the goodness of predic-
tions. Overall, gBoost is competitive among the state-of-the-art methods
considered in the study.

4.3.2. Diane Database: Graph Embedded Learning

The results are obtained with the 30 financial ratios described in Table 2
and considering historical data three years before bankruptcy, therefore 90
financial attributes overall. The first step is to build the affinity weight
graph matrix W by incorporating geometric neighbourhood information of
the bankruptcy data set a described in section 3.4.1. While solving the prob-
lem with Kernel Locality Preserving Projections (KLPP) [7], the Laplacian
penalising functional together with the α regularization parameter control
the smoothness of the basis vectors approximation. Then the transformation
matrix is built mapping the data points to the data subspace. Once the
compact representations are obtained, we seek for a learning model where
classification can effectively be performed.

The procedure is as follows. First, the Euclidean distance which evaluates
the “closeness” between any two data points was chosen. Second, the Neigh-
borMode was set to construct the graph in two modes: K-Nearest Neighbor
(KNN) or Supervised mode (SUP). In KNN the number of p-nearest neigh-
bors is set to build a complete graph (p = 0) or if and only if two nodes are
among the nearest neighbors of each other (p > 0 ) we put an edge between
them. In SUP mode, an edge between two nodes is added if and only if they
belong to the same class (p = 0), or if they belong to same class and they are
among the (p > 0) nearest neighbors of each other. The Supervised mode
was selected (p = 5) because we have three years of historical financial data
and KNN can hardly handle this information. Third, to build the graph
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Figure 4: Top: Non-projected and Projected data with features x1 and x2 of diane
dataset; Bottom: Cross-Validation Performance Accuracy (%) of Diane database using an
SVM classifier with σ kernel width and α regularization parameter in KLPP.

weight matrix we have chosen the HeatKernel by setting up the kernel width
parameter. Finally, after projecting the data nicely into the data subspace
by the embedding graph learning, an SVM is used to perform classification.

In Figure 4 on top two representations of non-projected and projected
data with embedding graph structure are represented. In the bottom plot
the visualization of the 10-fold cross-validation (CV) accuracy of the SVM
classification by changing the the σ Gaussian kernel width and the α regu-
larization parameter is depicted. In all the experiments we decided to use
RBF kernel since it was shown to be the best in previous empirical results
running in the same data set [29]. The results are very good in particular for
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certain values of σ and α, in fact, those corresponding to the yellow-orange
area depicted in the surface (e.g. for the pair (σ, α) with values (0.6, 0.35),
the CV accuracy attains 99.59%). The choice of Laplacian penalty in SSSL
allows to incorporate the prior information that relate neighboring points
across the firms historical data.

5. Conclusion and Future Work

The combination of the formalism of graphs with a powerful frequent pat-
tern mining algorithm such as gBoost evidenced that the structure is able to
effectively capture knowledge essential to attain good predictions in finan-
cial settings. In this work we developed an algorithm for graph construction
on the grounds of the binary relationships found on qualitative data from
the financial credit risk problem. We used gBoost classifier to mine spe-
cific sampled graphs that are able to predict the samples category in either
bankrupt or non-bankrupt. Furthermore, when large-scale historical data is
available the data can be cast into an embedded graph. Once we obtain
compact representations of the firms behavior, the subspace learning pro-
cedure can effectively be performed in the lower dimensional subspace with
an SVM. Both methodologies can find the graph motifs in data which are
able to foster better predictions using as the experimental datasets respec-
tively a qualitative data benchmark from UCI Machine Learning Repository
and a real-world French database of corporate companies. The experimental
results empirically demonstrated by using structural approaches the perfor-
mance results can be enhanced in terms of prediction accuracy in particular
if graphs to cast data are carefully built. While most of the approaches
consider supplying known values of required input variables, in the pattern
mining approach the structural component is also taken into account making
the model effective and robust. It can partly be used herein to shed light on
how both approaches incorporate more knowledge through the graph com-
ponent for better exposure of credit risk financial problems. Another reason
for using graph pattern mining is the easiness of visualizing financial data in
the big data era. In summary, graph mining has promising advantages on
distributed graph algorithms, graph data visualization and easiness to deal
with big data.

Future work will study the scalability to large graph data possibly with
distributed approaches. Additionally the presented study is not limited to
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financial credit risk assessment problems. The structure pattern mining
methodology can be simply extended to other kind of data.
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