
Accepted Manuscript

Efficiency evaluation based on data envelopment analysis in the big
data context

Qingyuan Zhu , Jie Wu , Malin Song

PII: S0305-0548(17)30155-7
DOI: 10.1016/j.cor.2017.06.017
Reference: CAOR 4272

To appear in: Computers and Operations Research

Received date: 6 August 2016
Revised date: 19 June 2017
Accepted date: 21 June 2017

Please cite this article as: Qingyuan Zhu , Jie Wu , Malin Song , Efficiency evaluation based on
data envelopment analysis in the big data context, Computers and Operations Research (2017), doi:
10.1016/j.cor.2017.06.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cor.2017.06.017
http://dx.doi.org/10.1016/j.cor.2017.06.017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

 Novel algorithms are proposed to accelerate the computation process in the

big data environment.

 An easy algorithm is developed to divide the large scale DMUs into small

scale and identify all strongly efficient DMUs.

 We only need to select two reference points as the sample in the situation of

just one input and one output.

 A variant of the algorithm is then presented to handle cases with multiple

inputs or multiple outputs.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Efficiency evaluation based on data envelopment

analysis in the big data context

Qingyuan Zhu
a b

; Jie Wu
a
; Malin Song

c*

a. School of Management, University of Science and Technology of China, Hefei,

Anhui Province, 230026, P. R. China

b Department of Business Administration, University of Illinois at Urbana-

Champaign, Champaign, Illinois, 61822, USA

c. School of Mathematics and Finance, Chuzhou University, Chuzhou, 239000, P. R.

China

Abstract

Data envelopment analysis (DEA) is a self-evaluation method which assesses the

relative efficiency of a particular decision making unit (DMU) within a group of

DMUs. It has been widely applied in real-world scenarios, and traditional DEA

models with a limited number of variables and linear constraints can be computed

easily. However, DEA using big data involves huge numbers of DMUs, which may

increase the computational load to beyond what is practical with traditional DEA

methods. In this paper, we propose novel algorithms to accelerate the computation

process in the big data environment. Specifically, we firstly use an algorithm to divide

the large scale DMUs into small scale and identify all strongly efficient DMUs. If the

strongly efficient DMU set is not too large, we can use the efficient DMUs as a

sample set to evaluate the efficiency of inefficient DMUs. Otherwise, we can identify

two reference points as the sample in the situation of just one input and one output.

Furthermore, a variant of the algorithm is presented to handle cases with multiple

inputs or multiple outputs, in which some of the strongly efficient DMUs are

reselected as a reduced-size sample set to precisely measure the efficiency of

inefficient DMUs. Last, we test the proposed methods on simulated data in various

scenarios.

Keywords: Data envelopment analysis; Decision making unit; Large-scale

computation; Big data.

*
Corresponding author. E-mail: Ma-Lin Song, songmartin@163.com

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

Data envelopment analysis (DEA), developed by Charnes et al. [10], is a non-

parametric mathematical method used to measure relative efficiency within a group of

homogenous decision making units (DMUs), particularly a group with multiple inputs

and multiple outputs (see, e.g., [6, 14, 26, 31]). As a nonparametric technique, DEA is

not limited by any functional form, and does not require the numerous assumptions

that arise from the use of statistical methods for function estimation and efficiency

measurement, yet it can evaluate efficiency well (see, e.g., [27, 32, 3, 24]). To date,

DEA has been extensively applied in the performance evaluation of hospitals (see, [23,

15]), universities (see, [25, 21]), banks (see, [29, 30]), supply chains (see, [5]), and in

many other situations (see, e.g., [19, 28, 33, 35]).

DEA measures relative efficiency for a DMU against its peer n-1 DMUs,

supposing there are n DMUs in the evaluation system. Traditional DEA models

require the solution of a linear programming problem with n+1 variables and m+s

constraints, where m and s are the numbers of inputs and outputs, respectively. The

traditional DEA models can be solved by using standard linear programming

techniques, thus, are theoretically considered computationally easy. However, in

practice, the solution time increases significantly for large cases [12]. Emerging in

1980s, the concept of “big data” has become a hot issue in the computer industry and

financial businesses. Wu et al. [34] indicated that big data has rapidly expanded in all

science and engineering domains, including physical, biological and biomedical

sciences. The emergence of the big data paradigm over the past few years, with its

five major features (volume, velocity, variety, veracity, and valorization), has created

a new set of problems and challenges [36, 8]. For example, Chen et al. [11]

highlighted that we can obtain new science, discovery, and insights from the

overwhelming amount of web-based, mobile, and sensor-generated data arriving at a

terabyte and even exabyte scale. Michael and Miller [22] indicated that the

development of big data could bring comprehensive analyses to support the

development of improved policy regime-based systems. In the DEA field, big data has

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

brought many problems for researchers. For example, the larger scale number of

DMUs in the big data context is the biggest issue since it may take an impractical

amount of time to finish the evaluation of all DMU efficiencies. Therefore, methods

for reducing solution time for DEA problems are practically beneficial, especially in

the big data environment.

The literature on DEA computation for larger scale number of DMUs is mainly

based on the idea of reducing the size of individual linear programming models [1, 2],

to be precise, through reducing the number of variables or DMUs. Barr and

Durchholz [7] proposed a new problem decomposition procedure that dramatically

expedites the solution of these computationally intense problems and fully exploits

parallel processing environments. Dulá and Thrall [16] introduced a new

computational framework for DEA that reduces computation times and increases

flexibility in application over multiple models and orientations. The process is based

on the minimal subsets of the data needed to describe the models. Korhonen and

Siitari [20] also proposed lexicographic parametric programming to decompose the

dimensions to reduce the computational costs when identifying the efficient DMUs.

Dulá and López [17] collect, organize, analyze, implement, test, and compare a

comprehensive list of ideas for preprocessors for entity classification in DEA. The

technique of preprocessing in DEA provides tools that will reduce the computational

burden, especially in large scale applications. Dulá [18] presented an algorithm for

DEA based on a two-phase procedure. The first phase identifies the efficient DMUs.

Those efficient DMUs are then used as a sample set in a second phase to score the rest

of the inefficient DMUs. Chen and Cho [12] proposed an accelerating procedure that

properly identifies a few “similar” critical DMUs to compute DMUs’ efficiency

values. Chen and Lai [13] proposed a new algorithm for determining radial efficiency

scores with a large data set by using small-size linear programs. Instead of trying to

reduce the number of variables in individual linear programs, their proposed

algorithm tries to repeated select some variables for controlling the variables of

individual linear programs.

Surveying the existing studies on DEA based on larger data sets, we find that

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

they are either based on finding all of the efficient DMUs that are the possible

benchmarks for scoring or based on selecting a sample as the virtual conference

points for all DMUs. Firstly, they use the traditional method to identify all efficient

DMUs and hence it may still take lots of time. In addition, the method of selecting a

sample as the virtual conference can still be complex since it does not choose the

sample from efficient DMUs. In this paper, we firstly propose an easy algorithm by

dividing all DMUs into groups to identify all strongly efficient DMUs in order to

further reduce the larger scale computational burdens of assessing all DMUs. Then

considering the scale of strongly efficient DMUs (i.e. the size of the set of such

DMUs), we propose two methods to measure the efficiency values of the remaining

inefficient DMUs. More specifically, if the number of strongly efficient DMUs is not

too large, then we can use those identified strongly efficient DMUs as the sample set

for efficiency evaluation. However, if the number of strongly efficient DMUs is also

impractically large, we consider how to select as few strongly efficient DMUs as

possible while maintaining sufficient accuracy in the efficiency evaluation. Two cases

are considered. One is the case with a single input and single output and the other is

the case with multiple inputs and/or multiple outputs. In the single input and output

case, we propose an easy method to find only two reference points to further

accelerate the computational process for all inefficient DMUs. In the case of multiple

inputs and/or multiple outputs, following Chen and Lai [13] we propose an algorithm

to reselect a small sample from among the strongly efficient DMUs to evaluate the

efficiency values. Last, the proposed methods are tested for effectiveness through

simulated data in various scenarios.

The rest of this paper is organized as follows. In Section 2, we introduce the

traditional DEA models. Section 3 then proposes an algorithm to identify the strongly

efficient DMUs. In Section 4, we further propose methods to accelerate the

computations in the situations of one-input-one-output and multiple inputs or multiple

outputs. Section 5 demonstrates the effectiveness of the proposed methods. Finally,

conclusions are given in Section 6.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2. Data envelopment analysis

Suppose that we have n DMUs and each of them consumes varying amounts of

m different inputs to produce s different outputs. Specifically, DMUj (1, ,j n)

consumes amount ijx of input i to produce amount rjy

of output r. Define

1 2(, , ,)T

j j j mjx x x x and 1 2(, , ,)T

j j j sjy y y y as the respective input and output

vectors of DMUj. A popular DEA model for evaluating the efficiency value is the

input-oriented and output-oriented BCC (Banker-Charnes-Cooper) models proposed

by Banker et al. [6], shown as the following models (1) and (2).

0 01
0

01

01

1

0

. . 1, 1, , ;

0, 1, , ;

0, 1, , ;

.

s

r rInput r

m

i ii

s

r rjr

m k

i iji

r

i

u y u
E Max

v x

u y u
s t j n

v x

u r s

v i m

u free in sign













 

 

 








 (1)

and

0 01
0

01

01

1

0

. . 1, 1, , ;

0, 1, , ;

0, 1, , ;

.

m

i iOutput i

s

r rr

m

i iji

s

r rjr

r

i

v x u
E Max

u y

v x u
s t j n

u y

u r s

v i m

u free in sign













 

 

 








 (2)

In models (1) and (2), the subscript 0 denotes the DMU under evaluation. Values

ru and iv are the input and output multipliers/weights, respectively. In models (1)

and (2), each DMU0 (0 1, ,n) chooses its own optimal weights ru
 and iv

 to

maximize its BCC efficiency while maintaining all DMU efficiencies at no more than

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. The variable 0u added in the numerator of models (1) and (2) reflects the variable

returns to scale (VRS) assumption. If we set 0 0u  , models (1) and (2) become the

traditional CCR (Charnes-Cooper-Rhodes) model (see, [10]).

Models (1) and (2) are non-linear programs which can be transformed into the

following linear models (3) and (4) via the Charnes-Cooper transformation (see, [9]).

0 0 0

1

0

1 1

0

1

0

. . 0, 1, , ;

1,

0, 1, , ;

0, 1, , ;

.

s
Input

r r

r

s m

r rj i ij

r i

m

i i

i

r

i

E Max u y u

s t u y v x u j n

v x

u r s

v i m

u free in sign



 



 

   



 

 



 


 (3)

and

0 0

1

0

1 1

0

1

0

. . 0, 1, , ;

1,

0, 1, , ;

0, 1, , ;

.

m
Output

i io

i

m s

i ij r rj

i r

s

r r

r

r

i

E Max v x u

s t v x u y u j n

u y

u r s

v i m

u free in sign



 



 

   



 

 



 


 (4)

The following models (5) and (6) considering slack variables are equivalent to

the dual of models (3) and (4), respectively.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 0

1 1

0

1

1

1

()

. . 1, , ;

1, , ;

1

, , 0, 0 .

o

m s
Input

i r

i r

n

j ij i i

j

n

j rj r ro

j

n

j

j

j i r

E Min s s

s t x s x i m

y s y r s

s s j,i,r

 

 





 

 

 











 

  

  

  



  

 







 (5)

and

0 0

1 1

1

0

1

1

()

. . 1, , ;

1, , ;

1

, , 0, 0 .

m s
Output

i r

i r

n

j ij i i

j

n

j rj r ro

j

n

j

j

j i r

E Max s s

s t x s x i m

y s y r s

s s j,i,r

 



 



 

 

 











 

  

  

  



  

 







o

 (6)

where  is a so-called non-Archimedean element defined to be smaller than any

positive real number. The is 
 and rs 

 are slack variables used to bring inefficient

DMUs to efficiency. From a different point of view of models (1) and (2), model

(5)/(6) attempts to proportionately minimize/maximize usage of

0 , (1, ,)ix i m / 0 , (1, ,)ry r s by 0 while maintaining at least the same

output/input level. In the output-oriented BCC model (6), benchmarking information

can be obtained for eliminating inefficiency, through equal and proportionate output

expansion, while keeping the input fixed at the current level. An optimal

benchmarking point 0

1 1

(,)
n n

j ij io i j rj ro r

j j

x x s y y s      

 

     should be within the

production possibility set (PPS) constructed by all DMUs, where the superscript 

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

denotes an optimal value of model (6). That is,
1 1

(,)
n n

j ij j rj

j j

x y  

 

  represents the

“virtual DMU” composed of the peers for DMU0. DMUj (0, 1, ,j j n  ) is called

the reference point, or simply the reference of DMU0. In addition, these DMUs with

0, 1, ,j j n   are strongly efficient. The optimal solution 0, 1, ,j j n  

indicates that DMUj does not contribute to the virtual DMU and cannot affect the

efficiency value for DMU0.

Definition 1 (Strongly DEA efficient). The performance of DMU0 is strongly/fully

efficient if and only if both (1)
0 1   and (2) all slacks 0i rs s   .

Definition 2 (Weakly DEA efficient). The performance of DMU0 is weakly efficient

if and only if both (1)
0 1   and (2) all slacks 0is   and/or 0rs   for some i or r

in some alternate optima.

3. Algorithms for accelerating the evaluation procedure

The concept of “big data”, emerging in the 1980s, has become a hot topic in

many industries and has seen quick development in recent years. As a major

characteristic of big data, “volume” has become a major challenge for efficiency

evaluation. For example, the huge number of DMUs has brought a big problem in

calculating. That is, traditional software cannot easily calculate each DMU’s

efficiency; it may take too much time.

When calculating BCC efficiency values using models (5) and (6), we need to

solve many different linear programming problems when the number of DMUs is

extremely large. Actually, models (5) and (6) both have 1n s m   variables and

1s m  constraints, typically with 1 1n s m s m     in the big data

environment. Having more variables must increase the burden of calculation. In

addition, when there is a limit on the linear programming problems, e.g., the number

of variables or constraints cannot be more than a fixed number, say  , the efficiency

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

values may be impossible to obtain. Therefore, we must reduce the number of

variables or constraints to reduce the burdens or satisfy other requirements. We firstly

propose the following Algorithm 1 to address these issues.

Algorithm 1.

Step I: Set 1k  . Denote the set of all the DMUs as  1 | 1, ,J j j n  . Then,

equally divide the huge n DMUs into l+k groups. The set of DMUs in each group are

denoted by 1 2 1, , , ,1 1 1 1l k l kJ J J J   . Note that the number of DMUs in each group

cannot be bigger than the limit number  .

Step II: Set 1k k  . Calculate the “virtual” efficiency values for each group of

DMUs. Denote the strongly efficient DMU sets in each group as

1 2 1, , , ,k k k k

l k l kE E E E  
. Let

1 2 1

k k k k

k l k l kJ E E E E   .

Step III: If 1k kJ J  , then the procedure stops, and we have found all the virtual

strongly efficient DMUs, else go to Step I again.

In Algorithm 1, we firstly divide all DMUs into disjoint groups. Then we

calculate the virtual efficiency values for each group’s DMUs. Through repeatedly

calculating each group of DMU’s virtual efficiency values we can obtain all “virtual”

efficient DMUs in set 1J . Obviously, all actual strongly efficient DMUs are all also in

set 1kJ  or kJ and the DMUs in set kJ must be reduced largely compared to J1. Last,

we can calculate the small sample DMUs’ efficiency values in set kJ to identify those

actual strongly efficient DMUs. Denote the strongly efficient DMUs as the set J .

Through dividing all DMUs into different groups for calculation, the number of

variables was largely decreased which accelerates the calculation process. Note that,

when calculating the DMUs’ virtual efficiency values in each of the l+k groups, we

can use l+k computers in parallel to further save time. For example, suppose the

numbers of DMUs is 20000 and suppose there are three inputs and three outputs, e.g.,

20000n  , 3m  , and 3s  . Finding the strongly efficient DMUs takes about forty

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

minutes using the traditional BCC model solved by Matlab R2014a, a commercial

mathematical software package sold by MathWorks, on an Intel Core i3 CPU with

8GB memory and a Windows 10 operating system. However, if the 20000 DMUs are

divided into 20 groups, then each group with 1000 DMUs will take about 1 minute

and therefore about twenty minutes for the total 20 groups. If the 20 group DMUs are

calculated in parallel on 20 computers, then only 1 minute is needed. Although it may

take several rounds to stop the algorithm, this still could save significant time.

Therefore, our proposed Algorithm 1 is likely to needs little time to identify all

efficient DMUs in a large set of DMUs compared to the traditional BCC model.

Although, our Algorithm 1 can effectively obtain all efficient DMUs in a short

time, we also need to calculate the efficiency values for the remaining inefficient

DMUs. One possible solution is to use all strongly efficient DMUs in set J as a

sample to calculate the efficiency values of inefficient DMUs. Taking the output-

oriented BCC model as an example, we show the proposed model as follows.

0 0

1 1

0

()

. . 1, , ;

1, , ;

1

, , 0, 0 .

o

m s
Output

i r

i r

j ij i i

j J

n

j rj r ro

j J

n

j

j J

j i r

E Max s s

s t x s x i m

y s y r s

s s j J,i,r

 



 



 

 

 











 

  

  

  



   

 







 (7)

The “virtual DMU” composed of the peers for inefficient DMU0 is formed by

those strongly efficient DMUs with 0, 1, ,j j n   in model (6). Therefore, in

model (7) we just use the strongly efficient DMUs identified in Algorithm 1 as the

sample DMUs to calculate the inefficient DMUs’ efficiency values. Suppose that we

identify N efficient DMUs in the larger set of n DMUs. Therefore, model (7) has

1N s m   variables and 1s m  constraints. Obviously, we have N n , hence

model (7) can accelerate the calculation process for those inefficient DMUs.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4. Extensions

In most real-world big data cases, where intuition tells us that few DMUs

compared to the larger n DMUs are strongly efficient, our proposed Algorithm 1 can

quickly obtain the strongly efficient DMUs and model (7) can further accelerate the

calculation process for inefficient DMUs. However, if the number of strongly efficient

DMUs N is also large enough, that is, the number of variables 1N s m   in model

(7) is relatively big, too much time may still be required to calculate the inefficient

DMUs’ efficiency values.

Actually, the optimal solution of the corresponding linear programming problem

for the inefficient DMUs has at most s m members of { (1, ,)j j n  } in model (7)

that are possibly non-zero and the remaining 1N  members must be zero [12]. This

fact reveals that for a simple standard DEA computation, regardless of the number of

variables, at most s m DMUs are related to the efficiency values, and only the

corresponding DMUs are needed for linear programming problem solving. Therefore,

we want to select as few strongly DMUs as possible to construct the corresponding

linear programming problem when calculating the efficiency values for inefficient

DMUs. In the next two subsections, we will show two cases of how to select as few

strongly efficient DMUs as possible. One is the case with only a single input and

single output and the other is the case with multiple inputs or multiple outputs.

4.1 Single input and single output case

If there are just a single input and single output, at most two strongly efficient

DMUs are needed to solve the linear programming problem for any inefficient DMUs.

In addition, it is clear from Fig. 1, which shows a typical numerical example, that

these two strongly efficient DMUs must be the nearest neighbors of the inefficient

DMU0 from a certain direction, namely the horizontal direction for the output-

oriented model or vertical direction for the input-oriented model. Therefore, we just

need to select two strongly efficient DMUs for any inefficient DMUs in the case of

single input and single output to accelerate the calculation process.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

As mentioned above, the selected two strongly efficient DMUs are the nearest

neighbors that bracket the inefficient DMU from a certain direction, the horizontal

direction for the output-oriented BCC model and the vertical direction for the input-

oriented BCC model. Taking the output-oriented BCC model (7) for example, we

should firstly find the two strongly efficient DMUs that are nearest DMU0 in the

direction of input x-axis. The horizontal distance between each strongly efficient

DMU and inefficient DMU0 can be calculated as:

0 1 10 , ()j jD x x j J   (8)

Denote the strongly efficient DMUs that satisfy
0 1 10 0, ()j jD x x j J    as the

set 1D and the strongly efficient DMUs that satisfy
0 1 10 0, ()j jD x x j J    as the

set 2D . In set 1D , choose one strongly efficient DMU denoted as DMUj1 that satisfies

 0 11 min ,| jj D j D when the set 1D  . Similarly, in set 2D select one strongly

efficient DMU denoted as DMUj2 that satisfies  0 22 max ,| jj D j D when the set

2D  . Obviously, we have 1 2D D  . Therefore, these must be at least one

strongly efficient DMU or at most two strongly efficient DMUs as the reference

points to measure the efficiency value for inefficient DMU0. The above model (7) can

be changed to:

0 0 1 1

1 1 1 2 1 2 1

1 1 1 2 1 2 1 0

1 2

1 2 1 1

()

. . 1, , ;

1, , ;

1

, , , 0, 0 .

10

10

Output

j j

j j

k

E Max s s

s t x x s x i m

y y s y r s

s s j J ,i,r

 

 

  

 

  

 





 

  

   

   

 

   

 (9)

From the linear programming model (9), we know that when calculating the

inefficient DMU0 efficiency value we need to consider only 3 constraints and at most

5 variables, which can obviously accelerate the calculation process compared to using

the standard BCC method with n variables.

Consider a simple one-input one-output example that was shown in Chen and Lai

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[13]. Table 1 gives the detailed input-output data.

Table 1. Input-output data

DMU
Input Output

x y

A 1 1

B 3 1

C 2 3

D 4 4

E 5 4

F 7 7

G 10 7

H 9 10

K 7 5

Using the proposed Algorithm 1, we can firstly identify DMUA, DMUC, and

DMUH as the three strongly efficient DMUs and the remaining six DMUs as

inefficient DMUs. The bold solid line of Fig. 1 corresponds to the strongly efficient

frontier under the VRS assumption, and it consists of two segments, AC and CH. The

weakly efficient frontier corresponds to the union between the strongly efficient

frontier and the red dashed line.

Fig. 1. Visualization of measuring the efficiency of inefficient DMUs

In Fig. 1, we see that the two reference points for any inefficient DMU are must

be its nearest neighbors in a certain orientation (x-axis direction or y-axis direction).

Suppose, for example, that DMUK is under evaluation and we are using the output-

E

A

C D

x

y

E

B

H

G

K

DCK= -5 DHK=2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

oriented BCC model. We firstly calculate 6AK A KD x x    , 5CK C KD x x   

and 2HK H KD x x   . Then, we have  1D DMUH and  2 ,D DMUA DMUC .

Last, we identify
1jDMU DMUH and

2jDMU DMUC . Therefore, strongly

efficient DMUC and DMUH are chosen as the two reference points to measure the

efficiency of DMUK. Our proposed approach avoids choosing any inefficient DMUs

as reference points and can quickly find the reference point among the strongly

efficient DMUs, while Chen and Lai’s [13] method requires a more complicated 4-

step process to find the right sample among all the nine DMUs.

4.2 Multiple inputs or multiple outputs case

In the case of multiple inputs or multiple outputs, at most m s strongly

efficient DMUs are needed to solve the linear programming problem for any

inefficient DMU. However, these m s strongly efficient DMUs are no longer the

nearest neighbors of the inefficient DMU0. Therefore, when the set of strongly

efficient DMUs identified in Algorithm 1 is still quite large, we could follow Chen

and Lai [13] and Chen and Cho [12] to set a small sample set S such that S J and

S m s  . That is, S is a sample set drawn from the strongly efficient DMU set J

with a size no less than m s . For an inefficient DMUk 1(\)k J J , define its

associated linear programming problem ()P S based on output-oriented BCC model

as:

1 1

0

(,) ()

. . 1, , ;

1, , ;

1

, , 0, 0 .

m s
Output

k k i r

i r

j ij i ik

j S k

n

j rj r rk

j S k

n

j

j S k

j i r

E k S Max s s

s t x s x i m

y s y r s

s s j S k,i,r

 



 



 

 

 











 

  

  

  



   

 







 (10)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Note that in order to assure the problem ()P S is feasible for any 1 \k J J we

keep j S k in model (10). We have (,)Output Output

k kE k S E  , where Output

kE  is the

optimal value based on model (7) and also the actual efficiency value of DMU0, since

S J . If and only if C S , where C is the reference point set of DMU0, will we

have (,)Output Output

k kE k S E  . Identifying all reference points that could be in the

sample S may be costly, hence we prefer a “trial and error” approach (see, [13]) to

address this problem. The “trial and error” approach reselects the strongly efficient

DMUs to find another sample S when C S and continues reselecting until C S .

Fig. 2. Algorithm 2: Pseudocode to identify a good sample set

Fig. 2 shows the pseudocode of the proposed Algorithm 2 that will produce a

solution for model (10). Four major steps are included in the algorithm. (i) Choose an

initial DMU sample; (ii) solve model (10) based on this sample; (iii) check optimality;

and (iv) if necessary, redefine the sample and repeat.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(i). Choosing an initial DMU sample S

The selection of initial sample S is an important process which can directly

influence Algorithm 2’s performance. In other words, successfully selecting S

containing reference points will terminate the algorithm and reduce the computational

effort significantly. Therefore, we must choose a proper sample S to place as many

good reference points in set S as possible.

Chen and Cho [12] proposed placing into the initial sample set only DMUs that

are “similar” to DMUk, believing that these are more likely to be the actual reference

points needed. The similarity is defined based on the input-output values. Specifically,

they firstly transform the input value vectors to a polar coordinate system, and then

utilize the angular coordinate to define the similarity. In this paper, we suggest to use

a more straightforward similarity measure proposed by Chen and Lai [13]. The new

similarity measure is based on the improvement or moving direction of the inefficient

DMUk under evaluation. In the work of Chen and Lai [13], their similarity measure is

based on the input-oriented BCC model. Here, we extend it to the situation of output-

oriented BCC model.

Maximizing ky proportionately while keeping kx the same means that (,)k kx y

must be on the improvement path without considering the feasibility of the linear

programming problem, where max ()k jy y j J   . Therefore,

(,) (,) (,)k k k k k kx y x y 0 y y    is the moving direction of DMUk. For any DMUp

(kp J), (,) (,)p p k kx y x y is the vector from DMUk to DMUp. Formally, for any

strongly efficient DMUp (p J), define its similarity with respect to the inefficient

DMUk (\ kk J J) as follows:

(), ()
(,) cos

() ()

k k p k p k

k k p k p k

0,y - y x - x ,y - y

0,y - y x - x ,y - y
p k ar

 
 
  
 

, (11)

where , denotes the inner product of the two vectors, in this case ()k k0,y - y and

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

()p k p kx - x ,y - y . is the 2-norm of a vector g. (,)p k ((,) 0p k ) measures the

angle between the two vectors ()k k0,y - y and ()p k p kx - x ,y - y . The smaller the

(,)p k , the more similarity exists between DMUp and DMUk. Therefore, we could

select the top several strongly DMUs most similar to DMUk as the initial sample set

S . Note that Chen and Lai’s [13] similarity measure selects from the whole DMU set,

including efficient and inefficient DMUs, while our new similarity measure just

chooses DMUs from among the strongly efficient DMUs, which can obviously save

much time if there are relatively few strongly efficient DMUs.

(iii). Checking optimality

The proposed Algorithm 2 terminates if and only if C S . Therefore, we need

an optimality checking mechanism, so we devise the following based on Chen and Lai

[13] and Chen and Cho [12].

Denote the optimal solution for inefficient DMUk in model (10) by

 , , ,k i r js s j S k      and the optimal solution of its dual by  0, ,r iu v u   .

Suppose  , , , , 0 \k i r j js s j S k j J S         and  0, ,r iu v u   are the optimal

solutions of model (7) and its dual, respectively, for DMUk. Next, we need to check

the Karush-Kuhn-Tucker (KKT) optimality condition associated with model (7) that

holds for following conditions:

Primal feasibility:

\

\

\

1, , ; (12.1)

1, , ; (12.2)

1 (12.3)

, 0 ; 0, \ 0, (12.4)

j ij j ij i ik

j J S j S k

n n

j rj j rj r k ro

j J S j S k

n n

j j

j J S j S k

i r j j

x x s x i m

y y s y r s

s s i,r j J S and j S

 

  

 

 

  

 

   

 

 

 

   

   

   

 

       

 

 

 

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Dual feasibility:

0

1 1

0

1 1

0

1

0, ; (12.5)

0, \ ; (12.6)

1; (12.7)

0, 0, . (12.8)

m s

i ij r rj

i r

m s

i ij r rj

i r

s

r r

r

r i

v x u y u j S k

v x u y u j J S

u y

u v r,i

  

 

  

 



   

   



  

 

 



Complementary slackness:

\

\

0

1 1

0

1

0 1, , ; (12.9)

0 1, , ; (12.10)

0 ; (12.11)

i j ij j ij i ik

j J S j S k

n n

r j rj j rj r k ro

j J S j S k

m s

j i ij r rj

i r

s

j i ij r rj

r

v x x s x i m

u y y s y r s

v x u y u j S k

v x u y u

 

  





   

 

    

 

   

 

   



 
     

 

 
     

 

 
    

 

 

 

 

 


1

0 \ ; (12.12)
m

i

j J S


 
  

 


Constraints (12.1) to (12.5) and (12.7) to (12.12) are all satisfied since

0 \j j J S  . Hence, we only need to check constraint (12.6). If constraint (12.6)

holds, the proposed solution set  , , , , 0 \k i r j js s j S k j J S         is optimal

with model (7) for DMUk and we have (,)Output Output

k kE k S E  .

(iv). Redefining the sample S

When constraint (12.6) is not satisfied, the sample S needs to be redefined in

Algorithm 2. That is, we need to reselect and place some other strongly efficient

DMUs into the sample S , which requires dropping some existing strongly efficient

DMUs from S to satisfy the sample set size constraint.

Let set  denote the DMUs to be added to the sample set S and suppose

c  . Let set  be the DMUs which will be dropped from S , so we must have

c  . The potential strongly efficient DMUs which will be selected for inclusion in

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 (i.e. for adding to S) are those not satisfying the constraint (12.6), specifically,

0

1 1

\ : 0
m s

i ij r rj

i r

j J S v x u y u  

 

 
      

 
  . The larger positive value of

0

1 1

m s

i ij r rj

i r

v x u y u  

 

   indicates “more infeasible” with respect model (7) (see, e.g.,

[12, 13]). Therefore, calculate 0

1 1

m s

i ij r rj

i r

v x u y u  

 

   for \kj J S , and the most

infeasible c strongly efficient DMUs will be selected for inclusion into  . The

potential DMUs that are need to drop from the sample S are those satisfying

constraint (12.6), specifically, 0

1 1

: 0
m s

i ij r rj

i r

j S v x u y u  

 

 
     

 
  , so

 : 0jj S    from the complementary slackness. However, 0,j j S   does

not mean j c , therefore following Chen and Lai [13], we can also drop the

candidate from the first position of the list and to choose one from  to the last

position of the list after storing the elements in sample S in an ordered list.

5. Case study

5.1 Data set

In this section, we will demonstrate the effectiveness and computational

efficiency of our proposed approach by using simulated cases following Chen and

Cho [12], Dulá and López [17], Dulá [18], and Chen and Lai [13]. We test the

simulated data sets with sizes n = 2000, 5000, 10000, 15000 , 20000 , 30000 , and

50000 . The data sets include five dimensions: simple one-input-one-output, two-

inputs-two-outputs, three-inputs-three-outputs, four-inputs-four-outputs, and five-

inputs-five-outputs, denoted as (,) (1,1), (2,2), (3,3), (4,4),m s  and (5,5) .

Combining the seven cardinalities and five dimensions, we have 35 scenarios. Table 2

below shows the descriptive statistical analysis for one example scenario of

15000n  and (,) (3,3)m s  .

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2. Descriptive statistical analysis of the set of 15000 DMUs with three inputs

and three outputs

Variable
Inputs Outputs

Input 1 Input 2 Input 3 Output 1 Output 2 Output 3

Max 998 2000 2902 9716 4889 1499

Min 102 501 1532 5112 3014 500

Average 512.4 1376.8 2187.9 8014.8 4215.9 1024.8

S.D. 321.6 1246.2 2654.5 6678.4 4412.4 921.6

Median 661 1386 2098 7688 4214 966

5.2 Effectiveness

The proposed algorithms were implemented and the efficiency values calculated

by using Matlab R2014a, performing the computation on an Intel Core i3 CPU with

8GB memory and a Windows 10 operating system. In the application, we calculate

the efficiency values based on the output-oriented BCC model. To avoid possible

inaccuracy in only one-time calculation, each calculation process was done five times.

The average time is recorded as the final calculating time, barring the time for reading

data file.

We firstly consider the seven scenarios all with simple one-input and one-output,

that is, 2000, 5000, 10000=n , 15000 , 20000 , 30000 , 50000 and (,) (1,1)m s  .

Firstly, we use the traditional method (TM) to calculate the efficiency value for each

DMU and record the time in each scenario. The corresponding results are shown in

column 2 of the Table 3 below. Then, the proposed method was used to measure the

efficiency value for each DMU and record the corresponding time in each scenario.

Using our proposed Algorithm 1, in step 1 we divide the DMUs into 4, 10, 20, 30, 40,

60, and 100 groups for the scenarios of 2000, 5000, 10000=n , 15000 , 20000 ,

30000 , and 50000 , respectively in order to have no more than 500 DMUs in each

group. We record the times for two cases. Case 1 is that all groups of DMUs are

calculated by using only one computer; Case 2 is that all groups DMUs are calculated

in parallel by using ten computers for further saving of time. Through Algorithm 1,

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

we can identify all strongly efficient DMUs in each scenario and record the

corresponding calculation time, which are shown in columns 3 and 8 of Table 3. After

identifying all strongly efficient DMUs, we also need to calculate the efficiency

values for the inefficient DMUs. Two methods are considered. Method 1 shown in

model (7) is that we use all of the strongly efficient DMUs as the sample to measure

the inefficient DMUs’ efficiency values. Method (2) shown in model (9) is that we

just use two strongly efficient DMUs as the sample to evaluate the inefficient DMUs’

efficiencies. The corresponding calculation times are shown in columns 4 and 9 of

Table 3. Columns 5 and 10 show the total time by using the proposed method.

Table 3. Calculation time of different methods

DMUs TM

Proposed method

Case 1 Case 2

Algorit

hm 1

Method 1 Method 2
Algorit

hm 1

Method 1 Method 2

Model

(7)

Total

time

Model

(9)

Total

time

Model

(7)

Total

time

Model

(9)

Total

time

n=2000 108.2 61.4 38.1 99.5 30.6 92.0 34.6 38.1 72.7 30.6 65.2

n=5000 297.5 198.6 69.2 267.8 51.3 249.9 48.3 69.2 117.5 51.3 99.6

n=10000 684.4 485.7 116.6 602.3 82.4 568.1 57.4 116.6 174.0 82.4 139.8

n=15000 1231.8 774.5 284.8 1059.3 235.6 1010.1 78.6 284.8 363.4 235.6 314.2

n=20000 2053.1 1410.2 314.4 1724.6 252.8 1663.0 99.8 314.4 414.2 252.8 352.6

n=30000 3941.9 2468.4 764.0 3232.4 685.1 3153.5 136.3 764.0 900.3 685.1 821.4

n=50000 8540.8 4911.6 1921.0 6832.6 1750.2 6661.8 277.6 1921.0 2198.6 1750.2 2027.8

From Table 3, we have the following conclusions. (i) It may take much time to

calculate all DMU efficiency values by using traditional calculation method. As the

number of DMUs increases, the time may increase more quickly than linearly. For

example, when 2000=n the average time is 108.2 seconds, while the 50000=n

scenario (factor of increase = 25) requires 8540.8 seconds (factor of increase ~79) to

finish the calculation process. (ii) In case 1, where only one computer is used, it also

takes much time to identify all strongly efficient DMUs, while in case 2, where ten

computers are used, much time was saved in finding the strongly efficient DMUs. For

example, when 30000=n 2468.4 seconds are needed when using one computer, while

it only takes 136.3 seconds using ten computers. (iii) After identifying all strongly

efficient DMUs, we use just one computer to calculate the remaining inefficient

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

DMUs’ efficiency values. Therefore, this step takes the same time in the two cases as

reflected in columns 4 and 9 containing the same calculation time, and columns 6 and

11 also. (iv) Method 1 uses all strongly efficient DMUs as the sample to evaluate the

inefficient DMUs’ efficiency values, while method 2 uses just two reference points as

the sample. Therefore, method 2 saves time, as reflected in columns 4 and 6 or

columns 9 and 11. For example, when 50000=n it takes an average time of 1921

seconds to finish the calculation for inefficient DMUs by using method 1, while using

method 2 needs only 1750.2 seconds including the time required to identify the

nearest neighbors. (v) To clearly compare the total time of the different methods, we

graph the total time results in Fig. 2, including the total time of traditional method

(TM), total time of method 1 (M1) in case 1 (C1), total time of method 2 (M2) in C1,

total time of M1 in case 2 (C2), and total time of M2 in C2. Combining Table 3 and

Fig. 2, we know that traditional method is the most costly, while the method 2 in case

2 is the least costly. In all cases, our proposed methods saves much time, especially

when the number of DMUs is extremely large.

Fig. 2. Total calculation time of different methods

Above we have demonstrated the effectiveness of the proposed approach for the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

single input and single output scenario. Next, we will show the results for other

scenarios with multiple inputs or multiple outputs. Note that we also need our

Algorithm 1 to identify strongly efficient DMUs first and we use ten computers to

accelerate the computation. Then we select some candidates from the strongly

efficient DMUs as the sample to form model (10) for inefficient DMUs. Here, we set

the sample size 200=S . The following Table 4 shows the corresponding calculation

time for the remaining four scenarios.

Table 4. Calculation time for different scenarios

DMUs

(,) (2,2)m s  (,) (3,3)m s 

TM
Algorithm

1

Model

(10)

Total

time
TM

Algorithm

1

Model

(10)

Total

time

n=2000 116.8 45.9 41.1 87.0 132.4 60.1 61.5 121.6

n=5000 330.4 71.5 72.7 144.2 377.3 101.3 116.3 217.6

n=10000 731.9 89.0 122.7 211.7 792.6 131.6 202.8 334.4

n=15000 1327.6 131.3 325.0 456.3 1436.4 185.4 452.7 638.1

n=20000 2162.4 161.1 363.1 524.2 2271.2 232.7 547.4 780.1

n=30000 4127.1 214.8 847.3 1062.1 4244.6 297.2 1072.1 1369.3

n=50000 8676.9 366.8 1930.8 2297.6 8781.3 454.9 2211.0 2665.9

DMUs

(,) (4,4)m s  (,) (5,5)m s 

TM
Algorithm

1

Model

(10)

Total

time
TM

Algorithm

1

Model

(10)

Total

time

n=2000 155.4 75.7 88.4 164.1 186.5 94.5 118.6 213.1

n=5000 432.7 126.8 159.9 286.7 493.8 153.1 211.2 364.3

n=10000 869.8 167.8 268.5 436.3 944.9 204.6 342.6 547.2

n=15000 1525.8 228.6 549.4 778.0 1617.4 271.8 675.1 946.9

n=20000 2361.3 288.4 672.2 960.6 2462.6 343.7 848.1 1191.8

n=30000 4346.1 365.9 1250.8 1616.7 4477.2 432.4 1462.2 1894.6

n=50000 8913.4 534.3 2436.5 2970.8 9064.9 613.2 2721.8 3335.0

From Table 4, we know that with the same cardinalities, that is, 2000=n , 5000,

10000, 15000 , 20000 , 30000 , or 50000 , as the number of inputs or outputs

increases, the total calculation time of TM and all varieties of the proposed method all

increase. In order to clearly reflect the difference of total time in the different methods,

we give the following Fig. 3, which includes four small pictures. Each picture is used

to compare the total time of TM with the total time of M2 (with ten computers in

identifying the strongly efficient DMUs in Algorithm 1) in each scenario of

(,) (2,2), (3,3), (4,4),m s  and (5,5) . Obviously, our proposed methods can save

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

more calculation time in different scenarios. Therefore, it is much more suitable for

application in situations with massive DMU sets.

Fig. 3. Total calculation time in different scenarios

6. Conclusions

DEA is an effective tool which has been widely applied in evaluating the

efficiency of DMUs. Using a self-evaluation mode, it measures relative efficiency of a

DMU by comparing it against a peer group. The traditional DEA models can be

solved by using standard linear programming techniques, thus, are theoretically

considered computationally easy. However, with big data envelopment, a great

number of DMUs need to be evaluated. The large DMU set significantly increases the

computation time in a nonlinear fashion and yields challenges for many applications.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

To overcome these disadvantages of DEA in the big data environment, in this

paper we present novel algorithms to accelerate the computation process. Firstly,

Algorithm 1 is proposed to divide the large DMU set into groups with a small number

of DMUs to reduce the computational burden and identify all strongly efficient DMUs

quickly. Using only the strongly efficient DMUs as the sample for evaluating

inefficient DMU efficiency can accelerate the computation and thereby save time.

Furthermore, if the strongly efficient DMUs also form a large set, further saving of

time can be obtained with the proposed algorithms. Two situations are considered:

one-input-one-output and multiple-input-multiple-output. In the one-input-one-output

situation, we quickly identify two reference points to evaluate the efficiency values

for inefficient DMUs. In the situation of multiple inputs or multiple outputs, we use

Algorithm 2 to reselect some strongly efficient DMUs as the sample for inefficient

DMUs. Last, the proposed methods were tested for effectiveness using simulated data

in various scenarios.

Some further research directions can be drawn from our study. Firstly, our

proposed method just considers the traditional input-oriented and output-oriented

BCC models, and hence it can extend to other DEA models, e.g. SMB model.

Secondly, the thoughts of divide the huge DMUs into groups in the proposed

algorithms can also be used to solve other problems (e.g., resource allocation,

environmental problems, etc.) in the context of big data. Finally, DEA can also be

extended as a data mining tool to identify and excavate more meaningful information

in the big data environment.

Acknowledgments

The research is supported by the National Natural Science Funds of China (Nos.

71222106, 71110107024, 71171001, 71471001, and 71501139), Research Fund for

the Doctoral Program of Higher Education of China (No. 20133402110028),

Foundation for the Authors of National Excellent Doctoral Dissertation of P. R. China

(No. 201279), Top-Notch Young Talents Program of China, and Internet of Things

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Industry Development Research Base Biding Project, Nanjing University of Posts and

Telecommunications (No. JDS215005). Qingyuan Zhu thanks the support of the State

Scholarship Fund by the Office of China Scholarship Council (No. 201606340054).

References

[1] Ali AI. Streamlined computation for data envelopment analysis. Eur J Oper Res

1993; 64(1): 61-67.

[2] Ali, AI. Computational aspects of DEA. In A. Charnes, W. W. Cooper, A. Lewin,

& L. M. Seiford (Eds.), Data envelopment analysis. Methodology and

applications: Theory (pp. 63–88). Netherlands: Springer; 1994.

[3] Ang S, Chen CM. Pitfalls of decomposition weights in the additive multi-stage

DEA model. Omega 2016; 58: 139-153.

[4] Azadeh A, Nazari T, Charkhand H. Optimisation of facility layout design problem

with safety and environmental factors by stochastic DEA and simulation

approach. Int J Prod Res 2015; 53(11): 3370-3389.

[5] Azadi M, Jafarian M, Saen RF, Mirhedayatian SM. A new fuzzy DEA model for

evaluation of efficiency and effectiveness of suppliers in sustainable supply chain

management context. Comput Oper Res 2015; 54: 274-285.

[6] Banker RD, Charnes A, Cooper WW. Some models for estimating technical and

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

scale inefficiencies in data envelopment analysis. Manag Sci 1984; 30(9): 1078-

1092.

[7] Barr RS, Durchholz ML. Parallel and hierarchical decomposition approaches for

solving large-scale data envelopment analysis models. Ann Oper Res 1997; 73:

339-372.

[8] Baru C, Bhandarkar M, Nambiar R, Poess M, Rabl T. Benchmarking big data

systems and the big data top100 list. Big Data 2013; 1(1): 60-64.

[9] Charnes A, Cooper WW. Programming with linear fractional functionals. Nav

Res Logist Q 1962;9(3‐4): 181-186.

[10] Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision making

units. Eur J Oper Res 1978; 2(6): 429-444.

[11] Chen H, Chiang RHL, Storey VC. Business Intelligence and Analytics: From Big

Data to Big Impact. MIS Quart 2012; 36(4): 1165-1188.

[12] Chen WC, Cho WJ. A procedure for large-scale DEA computations. Comput

Oper Res 2009; 36(6): 1813-1824.

[13] Chen WC, Lai SY. Determining radial efficiency with a large data set by solving

small-size linear programs. Ann Oper Res 2015. doi:10.1007/s10479-015-1968-4.

[14] Cook WD, Seiford LM. Data envelopment analysis (DEA)–Thirty years on. Eur J

Oper Res 2009; 192(1): 1-17.

[15] Du J, Wang J, Chen Y, Chou SY, Zhu J. Incorporating health outcomes in

Pennsylvania hospital efficiency: an additive super-efficiency DEA approach.

Ann Oper Res 2014; 221(1): 161-172.

[16] Dulá JH, Thrall RM. A computational framework for accelerating DEA. J Prod

Anal 2001; 16(1): 63-78.

[17] Dulá JH, López FJ. Preprocessing DEA. Comput Oper Res 2009; 36(4): 1204-

1220.

[18] Dulá JH. An algorithm for data envelopment analysis. INFORMS J Comput 2011;

23(2): 284-296.

[19] Fang L, Hecheng L. Duality and efficiency computations in the cost efficiency

model with price uncertainty. Comput Oper Res 2013; 40(2): 594-602.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[20] Korhonen PJ, Siitari PA. A dimensional decomposition approach to identifying

efficient units in large-scale DEA models. Comput Oper Res 2009; 36(1): 234-

244.

[21] López-Torres L, Prior D. Centralized allocation of human resources. An

application to public schools. Comput Oper Res 2016; 73: 104-114.

[22] Michael K, Miller KW. Big data: New opportunities and new challenges [guest

editors' introduction]. Computer 2013; 46(6): 22-24.

[23] Mitropoulos P, Mitropoulos I, Giannikos I. Combining DEA with location

analysis for the effective consolidation of services in the health sector. Comput

Oper Res 2013; 40(9): 2241-2250.

[24] Piran FAS, Lacerda DP, Camargo LFR, Viero CF, Dresch A, Cauchick-Miguel PA.

Product modularization and effects on efficiency: An analysis of a bus

manufacturer using data envelopment analysis (DEA). Int J Prod Econ 2016; 182:

1-13.

[25] Rahimian M, Soltanifar M. An application of DEA based Malmquist productivity

index in university performance analysis. Manag Sci Lett 2013; 3(1): 337-344.

[26] Shen WF, Zhang DQ, Liu WB, Yang GL. Increasing discrimination of DEA

evaluation by utilizing distances to anti-efficient DEA frontiers. Comput Oper

Res 2016; 75: 163-173.

[27] Song M, An Q, Zhang W, Wang Z, Wu J. Environmental efficiency evaluation

based on data envelopment analysis: A review. Renew Sust Energ Rev 2012;

16(7): 4465-4469.

[28] Song M, Tao J, Wang S. FDI, technology spillovers and green innovation in

China: analysis based on Data Envelopment Analysis. Ann Oper Res 2015;

228(1): 47-64.

[29] Tortosa-Ausina E, Armero C, Conesa D, Grifell-Tatjé E. Bootstrapping profit

change: An application to Spanish banks. Comput Oper Res 2012; 39(8): 1857-

1871.

[30] Wang K, Huang W, Wu J, Liu YN. Efficiency measures of the Chinese

commercial banking system using an additive two-stage DEA. Omega 2014; 44:

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5-20.

[31] Wanke P, Barros CP, Emrouznejad A. Assessing productive efficiency of banks

using integrated Fuzzy-DEA and bootstrapping: A case of Mozambican banks.

Eur J Oper Res 2016; 249(1): 378-389.

[32] Wu J, Zhu Q, Chu J, An Q, Liang L. A DEA-based approach for allocation of

emission reduction tasks. Int J Prod Res 2016; 54(18): 5618-5633.

[33] Wu J, Zhu Q, Ji X, Chu J, Liang L. Two-stage network processes with shared

resources and resources recovered from undesirable outputs. Eur J Oper Res 2016;

251(1): 182-197.

[34] Wu X, Zhu X, Wu GQ, Ding W. Data mining with big data. IEEE T Knowl Data

En 2014; 26(1): 97-107.

[35] Zha Y, Zhao L, Bian Y. Measuring regional efficiency of energy and carbon

dioxide emissions in China: A chance constrained DEA approach. Comput Oper

Res 2016; 66: 351-361.

[36] Zhu Q, Wu J, Li X, Xiong B. China's regional natural resource allocation and

utilization: a DEA-based approach in a big data environment. J Clean Prod 2016;

142: 809-818.

