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Highlights 

 Novel algorithms are proposed to accelerate the computation process in the

big data environment.

 An easy algorithm is developed to divide the large scale DMUs into small

scale and identify all strongly efficient DMUs.

 We only need to select two reference points as the sample in the situation of

just one input and one output.

 A variant of the algorithm is then presented to handle cases with multiple

inputs or multiple outputs.
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Abstract 

Data envelopment analysis (DEA) is a self-evaluation method which assesses the 

relative efficiency of a particular decision making unit (DMU) within a group of 

DMUs. It has been widely applied in real-world scenarios, and traditional DEA 

models with a limited number of variables and linear constraints can be computed

easily. However, DEA using big data involves huge numbers of DMUs, which may 

increase the computational load to beyond what is practical with traditional DEA 

methods. In this paper, we propose novel algorithms to accelerate the computation 

process in the big data environment. Specifically, we firstly use an algorithm to divide 

the large scale DMUs into small scale and identify all strongly efficient DMUs. If the 

strongly efficient DMU set is not too large, we can use the efficient DMUs as a 

sample set to evaluate the efficiency of inefficient DMUs. Otherwise, we can identify 

two reference points as the sample in the situation of just one input and one output.

Furthermore, a variant of the algorithm is presented to handle cases with multiple 

inputs or multiple outputs, in which some of the strongly efficient DMUs are 

reselected as a reduced-size sample set to precisely measure the efficiency of 

inefficient DMUs. Last, we test the proposed methods on simulated data in various 

scenarios. 

Keywords: Data envelopment analysis; Decision making unit; Large-scale 

computation; Big data. 
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1. Introduction

Data envelopment analysis (DEA), developed by Charnes et al. [10], is a non-

parametric mathematical method used to measure relative efficiency within a group of 

homogenous decision making units (DMUs), particularly a group with multiple inputs

and multiple outputs (see, e.g., [6, 14, 26, 31]). As a nonparametric technique, DEA is

not limited by any functional form, and does not require the numerous assumptions 

that arise from the use of statistical methods for function estimation and efficiency 

measurement, yet it can evaluate efficiency well (see, e.g., [27, 32, 3, 24]). To date, 

DEA has been extensively applied in the performance evaluation of hospitals (see, [23, 

15]), universities (see, [25, 21]), banks (see, [29, 30]), supply chains (see, [5]), and in

many other situations (see, e.g., [19, 28, 33, 35]). 

DEA measures relative efficiency for a DMU against its peer n-1 DMUs, 

supposing there are n DMUs in the evaluation system. Traditional DEA models 

require the solution of a linear programming problem with n+1 variables and m+s 

constraints, where m and s are the numbers of inputs and outputs, respectively. The 

traditional DEA models can be solved by using standard linear programming

techniques, thus, are theoretically considered computationally easy. However, in 

practice, the solution time increases significantly for large cases [12]. Emerging in 

1980s, the concept of “big data” has become a hot issue in the computer industry and 

financial businesses. Wu et al. [34] indicated that big data has rapidly expanded in all 

science and engineering domains, including physical, biological and biomedical

sciences. The emergence of the big data paradigm over the past few years, with its

five major features (volume, velocity, variety, veracity, and valorization), has created

a new set of problems and challenges [36, 8]. For example, Chen et al. [11]

highlighted that we can obtain new science, discovery, and insights from the

overwhelming amount of web-based, mobile, and sensor-generated data arriving at a 

terabyte and even exabyte scale. Michael and Miller [22] indicated that the 

development of big data could bring comprehensive analyses to support the 

development of improved policy regime-based systems. In the DEA field, big data has 
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brought many problems for researchers. For example, the larger scale number of 

DMUs in the big data context is the biggest issue since it may take an impractical

amount of time to finish the evaluation of all DMU efficiencies. Therefore, methods

for reducing solution time for DEA problems are practically beneficial, especially in

the big data environment.  

The literature on DEA computation for larger scale number of DMUs is mainly 

based on the idea of reducing the size of individual linear programming models [1, 2],

to be precise, through reducing the number of variables or DMUs. Barr and 

Durchholz [7] proposed a new problem decomposition procedure that dramatically 

expedites the solution of these computationally intense problems and fully exploits 

parallel processing environments. Dulá and Thrall [16] introduced a new 

computational framework for DEA that reduces computation times and increases 

flexibility in application over multiple models and orientations. The process is based

on the minimal subsets of the data needed to describe the models. Korhonen and 

Siitari [20] also proposed lexicographic parametric programming to decompose the

dimensions to reduce the computational costs when identifying the efficient DMUs. 

Dulá and López [17] collect, organize, analyze, implement, test, and compare a 

comprehensive list of ideas for preprocessors for entity classification in DEA. The 

technique of preprocessing in DEA provides tools that will reduce the computational

burden, especially in large scale applications. Dulá [18] presented an algorithm for 

DEA based on a two-phase procedure. The first phase identifies the efficient DMUs.

Those efficient DMUs are then used as a sample set in a second phase to score the rest

of the inefficient DMUs. Chen and Cho [12] proposed an accelerating procedure that

properly identifies a few “similar” critical DMUs to compute DMUs’ efficiency 

values. Chen and Lai [13] proposed a new algorithm for determining radial efficiency 

scores with a large data set by using small-size linear programs. Instead of trying to

reduce the number of variables in individual linear programs, their proposed 

algorithm tries to repeated select some variables for controlling the variables of 

individual linear programs.  

Surveying the existing studies on DEA based on larger data sets, we find that
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they are either based on finding all of the efficient DMUs that are the possible 

benchmarks for scoring or based on selecting a sample as the virtual conference 

points for all DMUs. Firstly, they use the traditional method to identify all efficient 

DMUs and hence it may still take lots of time. In addition, the method of selecting a 

sample as the virtual conference can still be complex since it does not choose the

sample from efficient DMUs. In this paper, we firstly propose an easy algorithm by 

dividing all DMUs into groups to identify all strongly efficient DMUs in order to

further reduce the larger scale computational burdens of assessing all DMUs. Then 

considering the scale of strongly efficient DMUs (i.e. the size of the set of such

DMUs), we propose two methods to measure the efficiency values of the remaining 

inefficient DMUs. More specifically, if the number of strongly efficient DMUs is not 

too large, then we can use those identified strongly efficient DMUs as the sample set 

for efficiency evaluation. However, if the number of strongly efficient DMUs is also 

impractically large, we consider how to select as few strongly efficient DMUs as

possible while maintaining sufficient accuracy in the efficiency evaluation. Two cases

are considered. One is the case with a single input and single output and the other is

the case with multiple inputs and/or multiple outputs. In the single input and output 

case, we propose an easy method to find only two reference points to further 

accelerate the computational process for all inefficient DMUs. In the case of multiple

inputs and/or multiple outputs, following Chen and Lai [13] we propose an algorithm 

to reselect a small sample from among the strongly efficient DMUs to evaluate the 

efficiency values. Last, the proposed methods are tested for effectiveness through 

simulated data in various scenarios.  

The rest of this paper is organized as follows. In Section 2, we introduce the

traditional DEA models. Section 3 then proposes an algorithm to identify the strongly 

efficient DMUs. In Section 4, we further propose methods to accelerate the 

computations in the situations of one-input-one-output and multiple inputs or multiple 

outputs. Section 5 demonstrates the effectiveness of the proposed methods. Finally, 

conclusions are given in Section 6.  
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2. Data envelopment analysis 

Suppose that we have n DMUs and each of them consumes varying amounts of 

m different inputs to produce s different outputs. Specifically, DMUj ( 1, ,j n ) 

consumes amount ijx  of input i to produce amount rjy
 
of output r. Define 

1 2( , , , )T

j j j mjx x x x  and 1 2( , , , )T

j j j sjy y y y  as the respective input and output 

vectors of DMUj. A popular DEA model for evaluating the efficiency value is the 

input-oriented and output-oriented BCC (Banker-Charnes-Cooper) models proposed 

by Banker et al. [6], shown as the following models (1) and (2). 
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In models (1) and (2), the subscript 0 denotes the DMU under evaluation. Values 

ru  and iv  are the input and output multipliers/weights, respectively. In models (1) 

and (2), each DMU0 ( 0 1, ,n ) chooses its own optimal weights ru
 and iv

 to 

maximize its BCC efficiency while maintaining all DMU efficiencies at no more than 
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1. The variable 0u  added in the numerator of models (1) and (2) reflects the variable 

returns to scale (VRS) assumption. If we set 0 0u  , models (1) and (2) become the 

traditional CCR (Charnes-Cooper-Rhodes) model (see, [10]). 

Models (1) and (2) are non-linear programs which can be transformed into the 

following linear models (3) and (4) via the Charnes-Cooper transformation (see, [9]). 
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The following models (5) and (6) considering slack variables are equivalent to 

the dual of models (3) and (4), respectively.  
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where   is a so-called non-Archimedean element defined to be smaller than any 

positive real number. The is 
 and rs 

 are slack variables used to bring inefficient 

DMUs to efficiency. From a different point of view of models (1) and (2), model 

(5)/(6) attempts to proportionately minimize/maximize usage of 

0 , ( 1, , )ix i m / 0 , ( 1, , )ry r s  by 0  while maintaining at least the same 

output/input level. In the output-oriented BCC model (6), benchmarking information 

can be obtained for eliminating inefficiency, through equal and proportionate output 

expansion, while keeping the input fixed at the current level. An optimal 

benchmarking point 0

1 1

( , )
n n

j ij io i j rj ro r

j j

x x s y y s      

 

      should be within the 

production possibility set (PPS) constructed by all DMUs, where the superscript   



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

denotes an optimal value of model (6). That is, 
1 1

( , )
n n

j ij j rj

j j

x y  

 

   represents the 

“virtual DMU” composed of the peers for DMU0. DMUj ( 0, 1, ,j j n   ) is called 

the reference point, or simply the reference of DMU0. In addition, these DMUs with 

0, 1, ,j j n    are strongly efficient. The optimal solution 0, 1, ,j j n    

indicates that DMUj does not contribute to the virtual DMU and cannot affect the 

efficiency value for DMU0.  

Definition 1 (Strongly DEA efficient). The performance of DMU0 is strongly/fully 

efficient if and only if both (1) 
0 1    and (2) all slacks 0i rs s   . 

Definition 2 (Weakly DEA efficient). The performance of DMU0 is weakly efficient 

if and only if both (1) 
0 1    and (2) all slacks 0is    and/or 0rs    for some i or r 

in some alternate optima.  

3. Algorithms for accelerating the evaluation procedure 

The concept of “big data”, emerging in the 1980s, has become a hot topic in 

many industries and has seen quick development in recent years. As a major 

characteristic of big data, “volume” has become a major challenge for efficiency 

evaluation. For example, the huge number of DMUs has brought a big problem in 

calculating. That is, traditional software cannot easily calculate each DMU’s 

efficiency; it may take too much time.  

When calculating BCC efficiency values using models (5) and (6), we need to 

solve many different linear programming problems when the number of DMUs is 

extremely large. Actually, models (5) and (6) both have 1n s m    variables and 

1s m   constraints, typically with 1 1n s m s m      in the big data 

environment. Having more variables must increase the burden of calculation. In 

addition, when there is a limit on the linear programming problems, e.g., the number 

of variables or constraints cannot be more than a fixed number, say  , the efficiency 
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values may be impossible to obtain. Therefore, we must reduce the number of 

variables or constraints to reduce the burdens or satisfy other requirements. We firstly 

propose the following Algorithm 1 to address these issues.  

Algorithm 1. 

Step I: Set 1k  . Denote the set of all the DMUs as  1 | 1, ,J j j n  . Then, 

equally divide the huge n DMUs into l+k groups. The set of DMUs in each group are 

denoted by 1 2 1, , , ,1 1 1 1l k l kJ J J J   . Note that the number of DMUs in each group 

cannot be bigger than the limit number  .  

Step II: Set 1k k  . Calculate the “virtual” efficiency values for each group of 

DMUs. Denote the strongly efficient DMU sets in each group as 

1 2 1, , , ,k k k k

l k l kE E E E  
. Let 

1 2 1

k k k k

k l k l kJ E E E E   . 

Step III: If 1k kJ J  , then the procedure stops, and we have found all the virtual 

strongly efficient DMUs, else go to Step I again.  

In Algorithm 1, we firstly divide all DMUs into disjoint groups. Then we 

calculate the virtual efficiency values for each group’s DMUs. Through repeatedly 

calculating each group of DMU’s virtual efficiency values we can obtain all “virtual” 

efficient DMUs in set 1J . Obviously, all actual strongly efficient DMUs are all also in 

set 1kJ   or kJ  and the DMUs in set kJ  must be reduced largely compared to J1. Last, 

we can calculate the small sample DMUs’ efficiency values in set kJ  to identify those 

actual strongly efficient DMUs. Denote the strongly efficient DMUs as the set J . 

Through dividing all DMUs into different groups for calculation, the number of 

variables was largely decreased which accelerates the calculation process. Note that, 

when calculating the DMUs’ virtual efficiency values in each of the l+k groups, we 

can use l+k computers in parallel to further save time. For example, suppose the 

numbers of DMUs is 20000 and suppose there are three inputs and three outputs, e.g., 

20000n  , 3m  , and 3s  . Finding the strongly efficient DMUs takes about forty 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

minutes using the traditional BCC model solved by Matlab R2014a, a commercial 

mathematical software package sold by MathWorks, on an Intel Core i3 CPU with 

8GB memory and a Windows 10 operating system. However, if the 20000 DMUs are 

divided into 20 groups, then each group with 1000 DMUs will take about 1 minute 

and therefore about twenty minutes for the total 20 groups. If the 20 group DMUs are 

calculated in parallel on 20 computers, then only 1 minute is needed. Although it may 

take several rounds to stop the algorithm, this still could save significant time. 

Therefore, our proposed Algorithm 1 is likely to needs little time to identify all 

efficient DMUs in a large set of DMUs compared to the traditional BCC model. 

Although, our Algorithm 1 can effectively obtain all efficient DMUs in a short 

time, we also need to calculate the efficiency values for the remaining inefficient 

DMUs. One possible solution is to use all strongly efficient DMUs in set J  as a 

sample to calculate the efficiency values of inefficient DMUs. Taking the output-

oriented BCC model as an example, we show the proposed model as follows. 
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                         (7) 

The “virtual DMU” composed of the peers for inefficient DMU0 is formed by 

those strongly efficient DMUs with 0, 1, ,j j n    in model (6). Therefore, in 

model (7) we just use the strongly efficient DMUs identified in Algorithm 1 as the 

sample DMUs to calculate the inefficient DMUs’ efficiency values. Suppose that we 

identify N  efficient DMUs in the larger set of n  DMUs. Therefore, model (7) has 

1N s m    variables and 1s m   constraints. Obviously, we have N n , hence 

model (7) can accelerate the calculation process for those inefficient DMUs.  
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4. Extensions 

In most real-world big data cases, where intuition tells us that few DMUs 

compared to the larger n DMUs are strongly efficient, our proposed Algorithm 1 can 

quickly obtain the strongly efficient DMUs and model (7) can further accelerate the 

calculation process for inefficient DMUs. However, if the number of strongly efficient 

DMUs N  is also large enough, that is, the number of variables 1N s m    in model 

(7) is relatively big, too much time may still be required to calculate the inefficient 

DMUs’ efficiency values.  

Actually, the optimal solution of the corresponding linear programming problem 

for the inefficient DMUs has at most s m  members of { ( 1, , )j j n  } in model (7) 

that are possibly non-zero and the remaining 1N   members must be zero [12]. This 

fact reveals that for a simple standard DEA computation, regardless of the number of 

variables, at most s m  DMUs are related to the efficiency values, and only the 

corresponding DMUs are needed for linear programming problem solving. Therefore, 

we want to select as few strongly DMUs as possible to construct the corresponding 

linear programming problem when calculating the efficiency values for inefficient 

DMUs. In the next two subsections, we will show two cases of how to select as few 

strongly efficient DMUs as possible. One is the case with only a single input and 

single output and the other is the case with multiple inputs or multiple outputs.  

4.1 Single input and single output case 

If there are just a single input and single output, at most two strongly efficient 

DMUs are needed to solve the linear programming problem for any inefficient DMUs. 

In addition, it is clear from Fig. 1, which shows a typical numerical example, that 

these two strongly efficient DMUs must be the nearest neighbors of the inefficient 

DMU0 from a certain direction, namely the horizontal direction for the output-

oriented model or vertical direction for the input-oriented model. Therefore, we just 

need to select two strongly efficient DMUs for any inefficient DMUs in the case of 

single input and single output to accelerate the calculation process.  
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As mentioned above, the selected two strongly efficient DMUs are the nearest 

neighbors that bracket the inefficient DMU from a certain direction, the horizontal 

direction for the output-oriented BCC model and the vertical direction for the input-

oriented BCC model. Taking the output-oriented BCC model (7) for example, we 

should firstly find the two strongly efficient DMUs that are nearest DMU0 in the 

direction of input x-axis. The horizontal distance between each strongly efficient 

DMU and inefficient DMU0 can be calculated as: 

0 1 10 , ( )j jD x x j J                                                 (8) 

Denote the strongly efficient DMUs that satisfy 
0 1 10 0, ( )j jD x x j J     as the 

set 1D  and the strongly efficient DMUs that satisfy 
0 1 10 0, ( )j jD x x j J     as the 

set 2D . In set 1D , choose one strongly efficient DMU denoted as DMUj1 that satisfies 

 0 11 min ,| jj D j D  when the set 1D  . Similarly, in set 2D  select one strongly 

efficient DMU denoted as DMUj2 that satisfies  0 22 max ,| jj D j D  when the set 

2D  . Obviously, we have 1 2D D  . Therefore, these must be at least one 

strongly efficient DMU or at most two strongly efficient DMUs as the reference 

points to measure the efficiency value for inefficient DMU0. The above model (7) can 

be changed to: 

0 0 1 1

1 1 1 2 1 2 1

1 1 1 2 1 2 1 0

1 2

1 2 1 1

( )

. . 1, , ;

1, , ;

1

, , , 0, 0 .

10

10

Output

j j

j j

k

E Max s s

s t x x s x i m

y y s y r s

s s j J ,i,r

 

 

  

 

  

 





 

  

   

   

 

   

                    (9) 

From the linear programming model (9), we know that when calculating the 

inefficient DMU0 efficiency value we need to consider only 3 constraints and at most 

5 variables, which can obviously accelerate the calculation process compared to using 

the standard BCC method with n variables.  

Consider a simple one-input one-output example that was shown in Chen and Lai 
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[13]. Table 1 gives the detailed input-output data. 

Table 1. Input-output data 

DMU 
Input Output 

x y 

A 1 1 

B 3 1 

C 2 3 

D 4 4 

E 5 4 

F 7 7 

G 10 7 

H 9 10 

K 7 5 

Using the proposed Algorithm 1, we can firstly identify DMUA, DMUC, and 

DMUH as the three strongly efficient DMUs and the remaining six DMUs as 

inefficient DMUs. The bold solid line of Fig. 1 corresponds to the strongly efficient 

frontier under the VRS assumption, and it consists of two segments, AC and CH. The 

weakly efficient frontier corresponds to the union between the strongly efficient 

frontier and the red dashed line.  

 

Fig. 1. Visualization of measuring the efficiency of inefficient DMUs 

In Fig. 1, we see that the two reference points for any inefficient DMU are must 

be its nearest neighbors in a certain orientation (x-axis direction or y-axis direction). 

Suppose, for example, that DMUK is under evaluation and we are using the output-

E 

A 

C D 

x 

y 

E 

B 

H 

G 

K 

DCK= -5 DHK=2 
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oriented BCC model. We firstly calculate 6AK A KD x x    , 5CK C KD x x     

and 2HK H KD x x   . Then, we have  1D DMUH  and  2 ,D DMUA DMUC . 

Last, we identify 
1jDMU DMUH  and 

2jDMU DMUC . Therefore, strongly 

efficient DMUC and DMUH are chosen as the two reference points to measure the 

efficiency of DMUK. Our proposed approach avoids choosing any inefficient DMUs 

as reference points and can quickly find the reference point among the strongly 

efficient DMUs, while Chen and Lai’s [13] method requires a more complicated 4-

step process to find the right sample among all the nine DMUs.  

4.2 Multiple inputs or multiple outputs case 

In the case of multiple inputs or multiple outputs, at most m s  strongly 

efficient DMUs are needed to solve the linear programming problem for any 

inefficient DMU. However, these m s  strongly efficient DMUs are no longer the 

nearest neighbors of the inefficient DMU0. Therefore, when the set of strongly 

efficient DMUs identified in Algorithm 1 is still quite large, we could follow Chen 

and Lai [13] and Chen and Cho [12] to set a small sample set S  such that S J  and 

S m s  . That is, S  is a sample set drawn from the strongly efficient DMU set J  

with a size no less than m s . For an inefficient DMUk 1( \ )k J J , define its 

associated linear programming problem ( )P S  based on output-oriented BCC model 

as: 

1 1

0

( , ) ( )

. . 1, , ;

1, , ;

1

, , 0, 0 .

m s
Output

k k i r

i r

j ij i ik

j S k

n

j rj r rk

j S k

n

j

j S k

j i r

E k S Max s s

s t x s x i m

y s y r s

s s j S k,i,r

 



 



 

 

 











 

  

  

  



   

 







                       (10) 
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Note that in order to assure the problem ( )P S  is feasible for any 1 \k J J  we 

keep j S k  in model (10). We have ( , )Output Output

k kE k S E  , where Output

kE   is the 

optimal value based on model (7) and also the actual efficiency value of DMU0, since 

S J . If and only if C S , where C  is the reference point set of DMU0, will we 

have ( , )Output Output

k kE k S E  . Identifying all reference points that could be in the 

sample S  may be costly, hence we prefer a “trial and error” approach (see, [13]) to 

address this problem. The “trial and error” approach reselects the strongly efficient 

DMUs to find another sample S  when C S  and continues reselecting until C S .  

 

Fig. 2. Algorithm 2: Pseudocode to identify a good sample set 

Fig. 2 shows the pseudocode of the proposed Algorithm 2 that will produce a 

solution for model (10). Four major steps are included in the algorithm. (i) Choose an 

initial DMU sample; (ii) solve model (10) based on this sample; (iii) check optimality; 

and (iv) if necessary, redefine the sample and repeat.  
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(i). Choosing an initial DMU sample S  

The selection of initial sample S  is an important process which can directly 

influence Algorithm 2’s performance. In other words, successfully selecting S  

containing reference points will terminate the algorithm and reduce the computational 

effort significantly. Therefore, we must choose a proper sample S  to place as many 

good reference points in set S  as possible.  

Chen and Cho [12] proposed placing into the initial sample set only DMUs that 

are “similar” to DMUk, believing that these are more likely to be the actual reference 

points needed. The similarity is defined based on the input-output values. Specifically, 

they firstly transform the input value vectors to a polar coordinate system, and then 

utilize the angular coordinate to define the similarity. In this paper, we suggest to use 

a more straightforward similarity measure proposed by Chen and Lai [13]. The new 

similarity measure is based on the improvement or moving direction of the inefficient 

DMUk under evaluation. In the work of Chen and Lai [13], their similarity measure is 

based on the input-oriented BCC model. Here, we extend it to the situation of output-

oriented BCC model. 

Maximizing ky  proportionately while keeping kx  the same means that ( , )k kx y  

must be on the improvement path without considering the feasibility of the linear 

programming problem, where max ( )k jy y j J   . Therefore, 

( , ) ( , ) ( , )k k k k k kx y x y 0 y y     is the moving direction of DMUk. For any DMUp 

( kp J ), ( , ) ( , )p p k kx y x y  is the vector from DMUk to DMUp. Formally, for any 

strongly efficient DMUp ( p J ), define its similarity with respect to the inefficient 

DMUk ( \ kk J J ) as follows: 

( ), ( )
( , ) cos

( ) ( )

k k p k p k

k k p k p k

0,y - y x - x ,y - y

0,y - y x - x ,y - y
p k ar

 
 
  
 

,                         (11) 

where ,  denotes the inner product of the two vectors, in this case ( )k k0,y - y  and 
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( )p k p kx - x ,y - y .  is the 2-norm of a vector g. ( , )p k  ( ( , ) 0p k  ) measures the 

angle between the two vectors ( )k k0,y - y  and ( )p k p kx - x ,y - y . The smaller the 

( , )p k , the more similarity exists between DMUp and DMUk. Therefore, we could 

select the top several strongly DMUs most similar to DMUk as the initial sample set 

S . Note that Chen and Lai’s [13] similarity measure selects from the whole DMU set, 

including efficient and inefficient DMUs, while our new similarity measure just 

chooses DMUs from among the strongly efficient DMUs, which can obviously save 

much time if there are relatively few strongly efficient DMUs.  

(iii). Checking optimality 

The proposed Algorithm 2 terminates if and only if C S . Therefore, we need 

an optimality checking mechanism, so we devise the following based on Chen and Lai 

[13] and Chen and Cho [12]. 

Denote the optimal solution for inefficient DMUk in model (10) by 

 , , ,k i r js s j S k       and the optimal solution of its dual by  0, ,r iu v u   . 

Suppose  , , , , 0 \k i r j js s j S k j J S          and  0, ,r iu v u    are the optimal 

solutions of model (7) and its dual, respectively, for DMUk. Next, we need to check 

the Karush-Kuhn-Tucker (KKT) optimality condition associated with model (7) that 

holds for following conditions: 

Primal feasibility: 

\

\

\

1, , ; (12.1)

1, , ; (12.2)

1 (12.3)

, 0 ; 0, \ 0, (12.4)

j ij j ij i ik

j J S j S k

n n

j rj j rj r k ro

j J S j S k

n n

j j

j J S j S k

i r j j

x x s x i m

y y s y r s

s s i,r j J S and j S

 

  

 

 

  

 

   

 

 

 

   

   

   

 

       

 

 

 
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Dual feasibility: 

0

1 1

0

1 1

0

1

0, ; (12.5)

0, \ ; (12.6)

1; (12.7)

0, 0, . (12.8)

m s

i ij r rj

i r

m s

i ij r rj

i r

s

r r

r

r i

v x u y u j S k

v x u y u j J S

u y

u v r,i

  

 

  

 



   

   



  

 

 



 

Complementary slackness: 

\

\

0

1 1

0

1

0 1, , ; (12.9)

0 1, , ; (12.10)

0 ; (12.11)

i j ij j ij i ik

j J S j S k

n n

r j rj j rj r k ro

j J S j S k

m s

j i ij r rj

i r
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u y y s y r s
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v x u y u
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



   

 

    
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   



 
     

 

 
     

 

 
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 

 

 

 

 


1

0 \ ; (12.12)
m

i

j J S


 
  

 


 

Constraints (12.1) to (12.5) and (12.7) to (12.12) are all satisfied since 

0 \j j J S  . Hence, we only need to check constraint (12.6). If constraint (12.6) 

holds, the proposed solution set  , , , , 0 \k i r j js s j S k j J S          is optimal 

with model (7) for DMUk and we have ( , )Output Output

k kE k S E  .  

(iv). Redefining the sample S  

When constraint (12.6) is not satisfied, the sample S  needs to be redefined in 

Algorithm 2. That is, we need to reselect and place some other strongly efficient 

DMUs into the sample S , which requires dropping some existing strongly efficient 

DMUs from S  to satisfy the sample set size constraint.  

Let set   denote the DMUs to be added to the sample set S  and suppose 

c  . Let set   be the DMUs which will be dropped from S , so we must have 

c  . The potential strongly efficient DMUs which will be selected for inclusion in 
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  (i.e. for adding to S ) are those not satisfying the constraint (12.6), specifically, 

0

1 1

\ : 0
m s

i ij r rj

i r

j J S v x u y u  

 

 
      

 
  . The larger positive value of 

0

1 1

m s

i ij r rj

i r

v x u y u  

 

    indicates “more infeasible” with respect model (7) (see, e.g., 

[12, 13]). Therefore, calculate 0

1 1

m s

i ij r rj

i r

v x u y u  

 

    for \kj J S , and the most 

infeasible c  strongly efficient DMUs will be selected for inclusion into  . The 

potential DMUs that are need to drop from the sample S  are those satisfying 

constraint (12.6), specifically, 0

1 1

: 0
m s

i ij r rj

i r

j S v x u y u  

 

 
     

 
  , so 

 : 0jj S     from the complementary slackness. However, 0,j j S    does 

not mean j c , therefore following Chen and Lai [13], we can also drop the 

candidate from the first position of the list and to choose one from   to the last 

position of the list after storing the elements in sample S  in an ordered list.  

5. Case study 

5.1 Data set 

In this section, we will demonstrate the effectiveness and computational 

efficiency of our proposed approach by using simulated cases following Chen and 

Cho [12], Dulá and López [17], Dulá [18], and Chen and Lai [13]. We test the 

simulated data sets with sizes n = 2000, 5000, 10000, 15000 , 20000 , 30000 , and 

50000 . The data sets include five dimensions: simple one-input-one-output, two-

inputs-two-outputs, three-inputs-three-outputs, four-inputs-four-outputs, and five-

inputs-five-outputs, denoted as ( , ) (1,1), (2,2), (3,3), (4,4),m s   and (5,5) . 

Combining the seven cardinalities and five dimensions, we have 35 scenarios. Table 2 

below shows the descriptive statistical analysis for one example scenario of 

15000n   and ( , ) (3,3)m s  .  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2. Descriptive statistical analysis of the set of 15000 DMUs with three inputs 

and three outputs 

Variable 
Inputs  Outputs 

Input 1 Input 2 Input 3 Output 1 Output 2 Output 3 

Max 998 2000 2902 9716 4889 1499 

Min 102 501 1532 5112 3014 500 

Average 512.4 1376.8 2187.9 8014.8 4215.9 1024.8 

S.D. 321.6 1246.2 2654.5 6678.4 4412.4 921.6 

Median 661 1386 2098 7688 4214 966 

5.2 Effectiveness 

The proposed algorithms were implemented and the efficiency values calculated 

by using Matlab R2014a, performing the computation on an Intel Core i3 CPU with 

8GB memory and a Windows 10 operating system. In the application, we calculate 

the efficiency values based on the output-oriented BCC model. To avoid possible 

inaccuracy in only one-time calculation, each calculation process was done five times. 

The average time is recorded as the final calculating time, barring the time for reading 

data file.  

We firstly consider the seven scenarios all with simple one-input and one-output, 

that is, 2000, 5000, 10000=n , 15000 , 20000 , 30000 , 50000  and ( , ) (1,1)m s  . 

Firstly, we use the traditional method (TM) to calculate the efficiency value for each 

DMU and record the time in each scenario. The corresponding results are shown in 

column 2 of the Table 3 below. Then, the proposed method was used to measure the 

efficiency value for each DMU and record the corresponding time in each scenario. 

Using our proposed Algorithm 1, in step 1 we divide the DMUs into 4, 10, 20, 30, 40, 

60, and 100 groups for the scenarios of 2000, 5000, 10000=n , 15000 , 20000 , 

30000 , and 50000 , respectively in order to have no more than 500 DMUs in each 

group. We record the times for two cases. Case 1 is that all groups of DMUs are 

calculated by using only one computer; Case 2 is that all groups DMUs are calculated 

in parallel by using ten computers for further saving of time. Through Algorithm 1, 
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we can identify all strongly efficient DMUs in each scenario and record the 

corresponding calculation time, which are shown in columns 3 and 8 of Table 3. After 

identifying all strongly efficient DMUs, we also need to calculate the efficiency 

values for the inefficient DMUs. Two methods are considered. Method 1 shown in 

model (7) is that we use all of the strongly efficient DMUs as the sample to measure 

the inefficient DMUs’ efficiency values. Method (2) shown in model (9) is that we 

just use two strongly efficient DMUs as the sample to evaluate the inefficient DMUs’ 

efficiencies. The corresponding calculation times are shown in columns 4 and 9 of 

Table 3. Columns 5 and 10 show the total time by using the proposed method.  

Table 3. Calculation time of different methods 

DMUs TM 

Proposed method 

Case 1 Case 2 

Algorit

hm 1 

Method 1 Method 2 
Algorit

hm 1 

Method 1 Method 2 

Model 

(7) 

Total 

time 

Model 

(9) 

Total 

time 

Model 

(7) 

Total 

time 

Model 

(9) 

Total 

time 

n=2000 108.2 61.4 38.1 99.5  30.6 92.0 34.6 38.1 72.7 30.6 65.2 

n=5000 297.5 198.6 69.2 267.8  51.3 249.9 48.3 69.2 117.5 51.3 99.6 

n=10000 684.4 485.7 116.6 602.3  82.4 568.1 57.4 116.6 174.0 82.4 139.8 

n=15000 1231.8 774.5 284.8 1059.3  235.6 1010.1 78.6 284.8 363.4 235.6 314.2 

n=20000 2053.1 1410.2 314.4 1724.6  252.8 1663.0 99.8 314.4 414.2 252.8 352.6 

n=30000 3941.9 2468.4 764.0 3232.4  685.1 3153.5 136.3 764.0 900.3 685.1 821.4 

n=50000 8540.8 4911.6 1921.0 6832.6  1750.2 6661.8 277.6 1921.0 2198.6 1750.2 2027.8 

From Table 3, we have the following conclusions. (i) It may take much time to 

calculate all DMU efficiency values by using traditional calculation method. As the 

number of DMUs increases, the time may increase more quickly than linearly. For 

example, when 2000=n  the average time is 108.2 seconds, while the 50000=n  

scenario (factor of increase = 25) requires 8540.8 seconds (factor of increase ~79) to 

finish the calculation process. (ii) In case 1, where only one computer is used, it also 

takes much time to identify all strongly efficient DMUs, while in case 2, where ten 

computers are used, much time was saved in finding the strongly efficient DMUs. For 

example, when 30000=n  2468.4 seconds are needed when using one computer, while 

it only takes 136.3 seconds using ten computers. (iii) After identifying all strongly 

efficient DMUs, we use just one computer to calculate the remaining inefficient 
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DMUs’ efficiency values. Therefore, this step takes the same time in the two cases as 

reflected in columns 4 and 9 containing the same calculation time, and columns 6 and 

11 also. (iv) Method 1 uses all strongly efficient DMUs as the sample to evaluate the 

inefficient DMUs’ efficiency values, while method 2 uses just two reference points as 

the sample. Therefore, method 2 saves time, as reflected in columns 4 and 6 or 

columns 9 and 11. For example, when 50000=n  it takes an average time of 1921 

seconds to finish the calculation for inefficient DMUs by using method 1, while using 

method 2 needs only 1750.2 seconds including the time required to identify the 

nearest neighbors. (v) To clearly compare the total time of the different methods, we 

graph the total time results in Fig. 2, including the total time of traditional method 

(TM), total time of method 1 (M1) in case 1 (C1), total time of method 2 (M2) in C1, 

total time of M1 in case 2 (C2), and total time of M2 in C2. Combining Table 3 and 

Fig. 2, we know that traditional method is the most costly, while the method 2 in case 

2 is the least costly. In all cases, our proposed methods saves much time, especially 

when the number of DMUs is extremely large. 

 

Fig. 2. Total calculation time of different methods 

Above we have demonstrated the effectiveness of the proposed approach for the 
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single input and single output scenario. Next, we will show the results for other 

scenarios with multiple inputs or multiple outputs. Note that we also need our 

Algorithm 1 to identify strongly efficient DMUs first and we use ten computers to 

accelerate the computation. Then we select some candidates from the strongly 

efficient DMUs as the sample to form model (10) for inefficient DMUs. Here, we set 

the sample size 200=S . The following Table 4 shows the corresponding calculation 

time for the remaining four scenarios.  

Table 4. Calculation time for different scenarios 

DMUs 

( , ) (2,2)m s    ( , ) (3,3)m s   

TM 
Algorithm 

1 

Model 

(10) 

Total 

time 
TM 

Algorithm 

1 

Model 

(10) 

Total 

time 

n=2000 116.8 45.9 41.1 87.0 132.4 60.1 61.5 121.6 

n=5000 330.4 71.5 72.7 144.2 377.3 101.3 116.3 217.6 

n=10000 731.9 89.0 122.7 211.7 792.6 131.6 202.8 334.4 

n=15000 1327.6 131.3 325.0 456.3 1436.4 185.4 452.7 638.1 

n=20000 2162.4 161.1 363.1 524.2 2271.2 232.7 547.4 780.1 

n=30000 4127.1 214.8 847.3 1062.1 4244.6 297.2 1072.1 1369.3 

n=50000 8676.9 366.8 1930.8 2297.6 8781.3 454.9 2211.0 2665.9 

DMUs 

( , ) (4,4)m s   ( , ) (5,5)m s   

TM 
Algorithm 

1 

Model 

(10) 

Total 

time 
TM 

Algorithm 

1 

Model 

(10) 

Total 

time 

n=2000 155.4 75.7 88.4 164.1 186.5 94.5 118.6 213.1 

n=5000 432.7 126.8 159.9 286.7 493.8 153.1 211.2 364.3 

n=10000 869.8 167.8 268.5 436.3 944.9 204.6 342.6 547.2 

n=15000 1525.8 228.6 549.4 778.0 1617.4 271.8 675.1 946.9 

n=20000 2361.3 288.4 672.2 960.6 2462.6 343.7 848.1 1191.8 

n=30000 4346.1 365.9 1250.8 1616.7 4477.2 432.4 1462.2 1894.6 

n=50000 8913.4 534.3 2436.5 2970.8 9064.9 613.2 2721.8 3335.0 

From Table 4, we know that with the same cardinalities, that is, 2000=n , 5000, 

10000, 15000 , 20000 , 30000 , or 50000 , as the number of inputs or outputs 

increases, the total calculation time of TM and all varieties of the proposed method all 

increase. In order to clearly reflect the difference of total time in the different methods, 

we give the following Fig. 3, which includes four small pictures. Each picture is used 

to compare the total time of TM with the total time of M2 (with ten computers in 

identifying the strongly efficient DMUs in Algorithm 1) in each scenario of 

( , ) (2,2), (3,3), (4,4),m s   and (5,5) . Obviously, our proposed methods can save 
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more calculation time in different scenarios. Therefore, it is much more suitable for 

application in situations with massive DMU sets. 

  

  

Fig. 3. Total calculation time in different scenarios 

6. Conclusions 

DEA is an effective tool which has been widely applied in evaluating the 

efficiency of DMUs. Using a self-evaluation mode, it measures relative efficiency of a 

DMU by comparing it against a peer group. The traditional DEA models can be 

solved by using standard linear programming techniques, thus, are theoretically 

considered computationally easy. However, with big data envelopment, a great 

number of DMUs need to be evaluated. The large DMU set significantly increases the 

computation time in a nonlinear fashion and yields challenges for many applications.  
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To overcome these disadvantages of DEA in the big data environment, in this 

paper we present novel algorithms to accelerate the computation process. Firstly, 

Algorithm 1 is proposed to divide the large DMU set into groups with a small number 

of DMUs to reduce the computational burden and identify all strongly efficient DMUs 

quickly. Using only the strongly efficient DMUs as the sample for evaluating 

inefficient DMU efficiency can accelerate the computation and thereby save time. 

Furthermore, if the strongly efficient DMUs also form a large set, further saving of 

time can be obtained with the proposed algorithms. Two situations are considered: 

one-input-one-output and multiple-input-multiple-output. In the one-input-one-output 

situation, we quickly identify two reference points to evaluate the efficiency values 

for inefficient DMUs. In the situation of multiple inputs or multiple outputs, we use 

Algorithm 2 to reselect some strongly efficient DMUs as the sample for inefficient 

DMUs. Last, the proposed methods were tested for effectiveness using simulated data 

in various scenarios.  

Some further research directions can be drawn from our study. Firstly, our 

proposed method just considers the traditional input-oriented and output-oriented 

BCC models, and hence it can extend to other DEA models, e.g. SMB model. 

Secondly, the thoughts of divide the huge DMUs into groups in the proposed 

algorithms can also be used to solve other problems (e.g., resource allocation, 

environmental problems, etc.) in the context of big data. Finally, DEA can also be 

extended as a data mining tool to identify and excavate more meaningful information 

in the big data environment.  
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