
In-Cache Query Co-Processing on Coupled CPU-GPU
Architectures

Jiong He Shuhao Zhang Bingsheng He
Nanyang Technological University

ABSTRACT
Recently, there have been some emerging processor designs
that the CPU and the GPU (Graphics Processing Unit)
are integrated in a single chip and share Last Level Cache
(LLC). However, the main memory bandwidth of such cou-
pled CPU-GPU architectures can be much lower than that
of a discrete GPU. As a result, current GPU query co-
processing paradigms can severely suffer from memory stalls.
In this paper, we propose a novel in-cache query co-processing
paradigm for main memory On-Line Analytical Process-
ing (OLAP) databases on coupled CPU-GPU architectures.
Specifically, we adapt CPU-assisted prefetching to minimize
cache misses in GPU query co-processing and CPU-assisted
decompression to improve query execution performance. Fur-
thermore, we develop a cost model guided adaptation mech-
anism for distributing the workload of prefetching, decom-
pression, and query execution between CPU and GPU. We
implement a system prototype and evaluate it on two recent
AMD APUs A8 and A10. The experimental results show
that 1) in-cache query co-processing can effectively improve
the performance of the state-of-the-art GPU co-processing
paradigm by up to 30% and 33% on A8 and A10, respec-
tively, and 2) our workload distribution adaption mechanism
can significantly improve the query performance by up to
36% and 40% on A8 and A10, respectively.

1. INTRODUCTION
Query co-processing paradigm on GPUs has been an ef-

fective means to improve the performance of main memory
databases for OLAP (e.g., [15, 17, 22, 28, 25, 13, 30, 29]).
Currently, most systems are based on discrete CPU-GPU ar-
chitectures, where the CPU and the GPU are connected via
the relatively slow PCI-e bus. Recently, some emerging pro-
cessor designs that the CPU and the GPU are integrated in
a single chip and share LLC. For example, the AMD Accel-
erated Processing Unit (APU) architecture integrates CPU
and GPU in a single chip, and Intel released their latest gen-
eration Ivy Bridge processor in late April 2012. On those

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 4
Copyright 2014 VLDB Endowment 2150-8097/14/12.

emerging heterogeneous architectures, the low speed of PCI-
e is no longer an issue. Coupled CPU-GPU architectures call
for new data processing mechanisms. There have been stud-
ies on more collaborative and fine-grained schemes for query
co-processing [19, 38] and other data processing workloads
(e.g., key-value stores [21] and MapReduce [7]).

Despite the effectiveness of previous studies on query co-
processing on coupled architectures, both CPU and GPU
execute homogeneous workloads in previous studies [19, 7,
38, 21]. However, due to the unique architectural design of
coupled CPU-GPU architectures, such homogeneous work-
load distribution schemes can hinder query co-processing
performance on the GPU. On the one hand, the GPU in the
coupled architecture is usually less powerful than the one
in the discrete architecture. On the other hand, the GPU
in the coupled architecture accesses main memory (usually
DDR3), which has a much lower bandwidth than the dis-
crete GPU memory (usually GDDR5). These two factors
lead to severe underutilization of the GPU in the coupled
architecture because of memory stalls. The inherent GPU
design of Single Program Multiple Data (SPMD) execution
model and the in-order nature of GPU cores make the GPU
in the coupled architecture more sensitive to memory stalls.
In this paper, we investigate how to reduce memory stalls
suffered by the GPU and further improve the performance of
query co-processing on the coupled CPU-GPU architecture.

On the recent coupled CPU-GPU architectures, the com-
putational capability of the GPU is still much higher than
that of the CPU. For example, the GPU can have 5 and
6 times higher Giga Floating Point Operations per Second
(GFLOPS) than the CPU on AMD APUs A8 and A10, re-
spectively. The superb raw computational capability of the
GPU leads to a very similar speedup if the input data is
in cache. However, due to the above-mentioned impact of
memory stalls on the GPU co-processing, the speedup is as
low as 2 when the data cannot fit into cache (more detailed
results can be found in Section 3.1). Thus, the natural ques-
tion is whether we can and how to ensure that the working
set of query co-processing can fit in the cache as much as
possible to fully unleash the GPU power.

In this paper, we propose a novel in-cache query co-processing
paradigm for main memory databases on coupled CPU-GPU
architectures. Specifically, we adapt CPU-assisted prefetch-
ing to minimize the cache misses from the GPU and CPU-
assisted decompression schemes to improve query execution
performance. No matter whether or not the decompres-
sion is involved, our scheme ensures that the input data
to the GPU query co-processing has been prefetched. Thus,

the GPU executions are mostly on in-cache data, without
suffering from memory stalls. Specifically, unlike homoge-
neous workload distributions in previous query co-processing
paradigms [19, 7], our workload distribution is heteroge-
neous: a CPU core can now perform memory prefetching,
decompression, and even query processing, and the GPU
can now perform decompression and query processing. We
further develop a cost model guided adaptation mechanism
for distributing the workload of prefetching, decompression,
and query evaluations between the CPU and the GPU. Fine-
grained resource allocation is achieved by device fission that
divides the CPU or the GPU into smaller scheduling units
(either by OpenCL runtime or our software-based approaches).

We implement a system prototype and evaluate it on two
recent AMD APUs A8 and A10. The experimental results
show that 1) in-cache query co-processing is able to effec-
tively improve the performance of GPU query co-processing
by up to 30% and 33% on A8 and A10, respectively, and 2)
our cost model can effectively predict a suitable workload
distribution, and our distribution adaption mechanisms sig-
nificantly improve the query performance by 36-40%.

The remainder of this paper is organized as follows. In
Section 2, we introduce the background and preliminary on
coupled architectures and OpenCL. In Section 3, we elab-
orate the design and implementation of in-cache query co-
processing, followed by the cost model in Section 4. We
present the experimental results in Section 5. We review
the related work in Section 6 and conclude in Section 7.

2. PRELIMINARIES AND BACKGROUND
This section introduces the background and preliminary

on coupled architectures and OpenCL.

2.1 Heterogeneous System Architectures
Heterogeneous architectural designs are emerging in the

field of computer architecture. Researchers have been propos-
ing different heterogeneous designs in the modern/future
processors, which attempt to improve the performance, re-
duce the energy consumption or both [2, 26]. This paper
focuses on the coupled CPU-GPU architecture.

The design of the coupled architecture is illustrated in
Figure 1. Both the CPU and the GPU are integrated in the
same chip which removes the PCI-e bus. Besides, the CPU
and the GPU share the L2 cache in this study, which enables
the possibility of data reuse between them. In current AMD
APUs, all data accesses should go through a unified north
bridge (UNB) that connects the CPU, the GPU, and the
main memory. Table 1 presents the hardware configurations
of two generations of AMD APUs (i.e., A8-3870K and A10-
7850K). For comparison, we also list the configuration of the
latest Radeon R9 270 as an example of discrete GPU. The
GPU in the coupled architecture has a much smaller number
of cores at lower clock frequency because of chip area con-
straints. In the previous AMD APUs like A8 3870K, mem-
ory sharing is achieved by a relatively small zero-copy buffer.
The latest Kaveri APUs like A10-7850K support Shared Vir-
tual Memory (SVM) which extends memory sharing to the
entire main memory space [23]. The memory bandwidth
is relatively low (29.8GB/s), because DDR3 is specially de-
signed for memory latency sensitive applications. For dis-
crete GPUs, GDDR5 can provide up to 264GB/s bandwidth.
As a matter of fact, a customized architecture design im-
plemented in PlayStation 4 uses GDDR5 as main memory,

Table 1: Configuration of AMD Fusion A10-7850K.

A8 3870K A10 7850K Radeon
R9 270

Core type CPU GPU CPU GPU GPU
Cores 4 400 4 512 1280
Core frequency(MHz) 3000 600 4000 720 925
Shared memory (GB) 0.5 32(whole) N/A
Peak memory band-
width (GB/s)

5.6 24.5 7.8 28.9 179.2

Cache size(MB) 4 4 N/A

Main Memory

L2 Cache

CPU GPU

Figure 1: Overview of the coupled CPU-GPU architecture.

mainly for improving the graphics performance [33]. In this
paper, we focus on coupled CPU-GPU architectures using
DDR3 as main memory, which is more common in the cur-
rent commodity market.

2.2 Unified Programming Interface
Open Computing Language (OpenCL) is a unified pro-

gramming language for heterogeneous architectures. OpenCL
programs can be coded once and run on any OpenCL-compatible
devices. Existing studies [11, 34] have shown that programs
in OpenCL can achieve very close performance to those
in platform-specific languages such as CUDA for NVIDIA
GPUs and OpenMP for CPUs. For example, Fang et al.
[11] demonstrate that the CUDA-based implementations are
at most 30% better than OpenCL-based implementations
on NVIDIA GPUs. On CPUs, OpenCL even outperforms
OpenMP in many scenarios [34].

All OpenCL-compatible devices are mapped to the same
logical architecture, namely compute device. Each compute
device consists of a number of Compute Units (CUs). Fur-
thermore, each CU contains multiple processing elements
running in the SPMD style. On the APU, the CPU and the
GPU are programmed as two compute devices. Each CPU
core is mapped as one CU, and each GPU CU is equivalent
to one multi-processor. The piece of code executed by a
specific device is called a kernel. A kernel employs multiple
work groups for the execution, and each work group contains
a number of work items. A work group is mapped to a CU,
and multiple work items are executed concurrently on the
CU. The execution of a work group on the target architec-
ture is vendor specific. For instance, AMD usually executes
64 work items in a wavefront and NVIDIA with 32 work
items in a warp. In this paper, we use AMD’s terminology.
All the work items in the same wavefront run in the Single
Instruction Multiple Data (SIMD) manner.

Device fission is a new feature of OpenCL to support di-
viding a single device into multiple subdevices. With this
feature, two different tasks can run on the same device con-
currently. Thus, hardware resources on the same device
can be shared among multiple tasks to achieve fine-grained
resource allocation. Currently, device fission is fully sup-
ported on most OpenCL-compatible CPU devices. However,
OpenCL does not support device fission on GPU devices.

0

0.5

1

1.5

2

2.5

3

CPU(A8) GPU(A8) CPU(A10) GPU(A10)

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Processor types

in-cache out-of-cache

(a) In-cache processing benefit

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Fetch Write

P
e

rc
e

n
ta

g
e

 o
f

st
a

ll
e

d
 t

im
e

Memory access type

GPU (A8 3870K) GPU (A10 7850K) GPU(Radeon R9 270)

(b) Memory stalls on GPUs

0

5

10

15

20

25

30

35

0 1 8 16 32 48 64

E
la

p
se

d
 t

im
e

 (
m

s)

Number of delayed work-items in each wavefront

(c) Wavefront efficiency

Figure 2: Motivations for in-cache query co-processing on APUs.

Thus, we develop a software-based approach to emulate de-
vice fission on the GPU (Subsection 3.2.3).

3. DESIGN AND IMPLEMENTATION
In this section, we first present the motivation for devel-

oping the in-cache query co-processing paradigm. We ex-
perimentally evaluate the memory performance of the GPU
on two recent AMD APUs. The detailed experimental setup
can be found in Section 5. Basically, we consider the follow-
ing scenario: all the relations and indexes of databases are
stored in the main memory. As the previous studies [14, 15],
queries (mainly OLAP queries) can be executed on the CPU
or the GPU in part or entirely. We aim at improving the effi-
ciency of query co-processing of a single query on the coupled
architecture, as the previous studies on query co-processing.
We conduct the motivating experiments with the basic op-
erations in databases running on the two APUs. On both
platforms, we have made a number of common observations,
which motivate in-cache query co-processing on the coupled
architecture. Next, we present the detailed design and im-
plementation of our proposed query co-processing paradigm.
The cost model of guiding the workload adaptation is pre-
sented in Section 4.

3.1 Motivations
Our design of in-cache query co-processing is motivated

by the following observations.
Observation 1: The in-cache processing performance of

the GPU is much higher than that of the CPU. Figure 2a
demonstrates the benefits gained from the cache for the CPU
and the GPU. The experiment measures the throughput of
performing many simple sequential scans on the same rela-
tion (we run 100 scans, but exclude the impact of compul-
sory misses in the first scan). The relation is initially stored
in the memory. The cases for “in-cache” and “out-of-cache”
represent the tables with sizes of 1MB and 16MB, respec-
tively. In comparison with the CPU, the GPU has a much
sharper jump after the relation size exceeds the L2 cache
size. Therefore, the GPU can gain more performance bene-
fits from the cache than the CPU, if the data resides in the
L2 cache.

Observation 2: The memory bandwidth of the GPU in the
coupled architecture is much lower than that of the GPU in
the discrete architecture. Figure 2b shows the percentage
of memory stalled time obtained from the AMD CodeXL
profiler when the table scan runs on the coupled GPU and
the discrete GPU in Table 1. In the coupled system, the
memory bandwidth is more limited and more memory ac-
cesses are stalled. The GPU in the coupled architecture is
more memory-bound than that in the discrete architecture.
This result inspires us to find a way to reduce the size of

data accesses from the main memory for the GPU in a more
aggressive manner.

Observation 3: The SPMD execution model and in-order
core design of the GPU can severely degrade the GPU query
co-processing performance. All work items in a work group
are grouped and executed in a wavefront in a lock-step fash-
ion on the GPU. Even if only one work item is delayed by a
memory access, the entire work group is delayed. Figure 2c
shows the performance of a table scan with random accesses
on the GPU when the number of work items that is delayed
due to L2 cache miss increases from 0 to 64. 0 means all
the input data are in the cache, and 64 means all the work
items in a work group have cache misses. When no work
item is delayed, the elapsed time is quite short. However,
the performance degrades sharply as long as delayed work
items exist.

These observations challenge existing query co-processing
paradigms. The state-of-the-art query co-processing paradigm
[19] as well as other similar data co-processing paradigms [7,
21] on coupled CPU-GPU architectures fail to capture those
features. Particularly, all previous studies assign homoge-
neous workloads to the CPU and the GPU. From these
observations, the GPU is severely degraded by the mem-
ory stalls, which are usually a major performance factor
for databases [27, 19]. Homogeneous workload distribution
still causes excessive memory stalls on the GPU, despite the
fine-grained and collaborative improvements in the previous
studies [19, 38, 21, 7]. The performance degradation caused
by memory stalls on the GPU is much more severe than
that on the CPU. An ideal query co-processing performance
should exploit the advantages of the GPU (i.e., much higher
in-cache data processing performance) as much as possible.

3.2 Design and Implementation
We design and develop in-cache query co-processing by ex-

tending our OpenCL-based query processor OmniDB [38].
The system is designed to support OLAP and focuses on
read-only queries. It does not support on-line updates. In-
stead, it rebuilds a relation for batch updates. Figure 3
shows the architectural overview, specifically designed for
coupled CPU-GPU architectures (this study focuses on AMD
APUs). Queries are processed by the query plan generator
using a Selinger-style optimizer [31]. The APU-aware cost
model captures the features of the coupled architecture and
produces the predicted workload assignment plan and exe-
cution time for the query. We abstract three common func-
tional modules in the in-cache query processing paradigm:
prefetching (P), decompression (D, optional), and the ac-
tual query execution (E). Each CU can work on any unit
of P/D/E. These functional modules are scheduled by the
workload scheduler to available CUs. Our in-cache query

Query

plan generator

APU-aware

cost model

Workload

scheduler
Query P/D/E

configuration

Figure 3: An overview of the system architecture.

P

CPU CUs GPU CUs

E

(a) PE

P D E

CPU CUs GPU CUs

(b) cPDE-c

P D E

CPU CUs GPU CUs

(c) cPDE-b

P D E

CPU CUs GPU CUs

(d) cPDE-g

Figure 4: Four optimized execution configurations.

co-processing paradigm can be applicable to databases with
or without compression [12]. If the data is compressed, de-
compression may be required before query executions. If
not, data can be processed by query executions directly.
Prefetching is exploited to hide the memory latency inside
database operators, inspired by previous studies [8, 39].

Depending on how to assign the functional modules to all
available CUs, we have four different execution configura-
tions, as depicted in Figure 4.

In Figure 4a (PE), almost all CUs on the CPU and the
GPU are assigned to query executions, leaving only one CPU
CU to do prefetching. This is suitable for scenarios when
the data is stored without compression, or query executions
can be directly performed on compressed data. When de-
compression is required, there are three possible execution
configurations, cPDE-c, cPDE-b, and cPDE-g. We define
the DE boundary as the dividing position between the D
and E functional modules. The value of DE boundary rep-
resents the number of CUs assigned to D, shifting from the
CPU side to the GPU side. Figure 4b represents the case
where the DE boundary is on the CPU, while Figure 4c
and Figure 4d represent that the DE boundary is right on
the boundary between the CPU and the GPU, and on the
GPU, respectively. Additionally, we implement the state-of-
the-art method [19] to achieve fine-grained workload distri-
bution when E is put across two devices. Specifically, the
query execution can be divided into steps (one step is an
operator in a query or more fine-grained processing in an
operator). Because query executions are performed on some
CPU CUs and the entire GPU in PE and cPDE-c, each step
can be scheduled onto two devices with different amounts of
workload to achieve balanced and optimal performance on
the two sides.

In this paper, we use two common and fundamental database
operations as examples for illustration purposes (i.e., selec-
tion and hash join). Without indexes, the selection is imple-
mented using the filter primitive with the predicate as the
filter function [15]. Hash join is a quite complex operation.
Even after various memory optimizations [19, 3], memory
stalls can seriously hurt the join performance. We adopted

the state-of-the-art hash join [19]. Each phase of the hash
join (partition, build, probe) is divided into a number of
steps. In the following, we present more implementation
details of each component.

3.2.1 Prefetching
Previous studies [8, 39] have demonstrated the effective-

ness of memory prefetching in hiding the memory stall with
useful computation in databases. In the context of in-cache
query co-processing on the coupled architecture, we revisit
the impact of prefetching with special consideration on our
four execution configurations.

Our prefetching structure is based on prefetching tech-
nique proposed by Zhou et al. [39] and is adapted to mas-
sively parallel architecture like GPUs. The work-ahead set
(WAS) structure is used to temporarily store the prefetched
data. There are many threads working concurrently on the
GPU and they can issue many memory accesses at the same
time. Thus, we insert memory accesses into WAS in a
batch manner. When decompression is necessary, we use
two work-ahead sets to form an execution pipeline of two
data producer-consumer pairs: one is used to prefetch the
data from the compressed input for decompression, and the
other one is to store the decompressed data as input to the
query executions. Another important issue is that a proper
size of WAS may contribute to the overall performance. If
the size is too small, the helper thread may not have enough
time to load the requested cache lines. If the size is too large,
the helper thread may evict out those data that may be still
useful. Ideally, it should be smaller than the cache capac-
ity. Since the main thread may have other cache-resident
data that are still being used, the threshold value should be
further lower in order to avoid conflict misses. The other
two functional modules (D and E) access the data only if
they have been prefetched. Thus, they are less unlikely to
suffer from cache misses. This mechanism depends on many
factors such as the compression ratio and the assigned CUs.
We present an analytical model to address this problem in
Section 4.

We adapt prefetching techniques in a more fine-grained
way. Operators have to be divided into steps to enable
prefetching. As selection has only one step as the defini-
tion, the step can be defined along the dimension of data.
Specifically, we assume the number of work items working on
selection is NDRange. The operations on the data within
the range from 0 to NDRange-1 is considered as the first
step. For the work item i, the data to be fetched next is at
the position (i+NDRange). The definition of steps follows
our previous study [19]. The next memory position to be
used can be obtained from the current step.

We fix prefetching on one CPU CU in practice for two
reasons. Firstly, a wavefront of the GPU adopts the SIMD
execution pattern. Thus, if any work item is blocked, all
other work items within that wavefront need to wait for the
blocked one, making GPUs inefficient in prefetching that
involves many cache misses. Secondly, since one GPU CU is
a multi-processor, using one entire GPU CU on prefetching
is wasteful.

3.2.2 Data Compression
Database compression is an effective approach to improv-

ing query co-processing on the GPU [12]. It can increase

the bandwidth utilization and resolve the memory stalls of
the APU.

We select typical compression algorithms introduced in
previous work [12], including NS, NSV, DICT, RLE, Delta,
Scale, and FOR. NS, NSV, DICT and RLE are the main
compression schemes that can be used independently, whereas
others are auxiliary in the sense that they can only be used
with the main schemes to further improve the compres-
sion ratio. We briefly describe those compression schemes.
More implementation details can be found at the previous
study [12]. NS and NSV delete the leading zeros at the
most significant bits in the bit representation of each ele-
ment. RLE represents values in each run by a pair (value,
run length) stored in two arrays, each of which can be fur-
ther compressed. For auxiliary schemes, Delta encodes each
value by the difference from the value at the preceding po-
sition. The first value is stored in the catalog for decom-
pression. Scale converts floating point values into integers
in cases where the integer format is precise enough for the
application. FOR encodes each value in a column to an off-
set from the base value. The base value is usually selected
as the smallest value of that column.

We adapt the compression planner used in [12] to obtain
the optimal compression plan candidates. The major issues
are to integrate the APU performance profile into the plan-
ner, and to incorporate software prefetching and in-cache
query co-processing into the cost estimation. The cost anal-
ysis is captured by our cost model.

Though decompression can be avoided in cases with sin-
gle main compression algorithms (such as NS and NSV), the
cascaded compression plan generated by the compression
planner [12] often necessitates decompression (or at least
partial decompression). To have a thorough insight on how
the performance of query co-processing can be impacted by
decompression, we investigate both cases where decompres-
sion is needed or not. The detailed results are introduced in
Section 5.

When decompression is necessary, the decompression fetches
one compressed data block and decompresses it into the re-
quired format. Combined with prefetching, two WAS buffers
are used. Each work item working on decompression inserts
the next data position into the first WAS buffer for prefetch-
ing. The output of decompression is stored in an interme-
diate buffer that serves as the input for query execution.
To coordinate the progress of D and E, a shared flag is set
to indicate that decompression on specific compressed data
block has been finished, and E can move onto processing
those decompressed data.

3.2.3 Device Fission
As shown in Figure 4, two functional modules may be ex-

ecuted on the same device. Each functional module consists
of one or more OpenCL kernels. Device fission is required
to divide a single device into multiple subdevices. Each sub-
device can execute a kernel from some functional modules.
Thus, the same device can be shared among functional mod-
ules. Currently, device fission is fully supported on CPUs,
and is not supported on current GPUs.

We adopt a simple yet effective software-based approach
to achieve device fission on the GPU. To support two OpenCL
kernels running concurrently on the GPU, we have to “merge”
them into one kernel and then launch it on the GPU. The
original two kernels are differentiated by if -else conditional

statement. Algorithm 1 depicts how to merge two ker-
nels K1 and K2 into a single kernel K. Suppose K invokes
NDRangeSize work items in total. A tuning parameter
NDRangeSize1 is used to adjust the device fission on the
GPU, so that NDRangeSize1 work items are launched for
K1, and (NDRangeSize−NDRangeSize1) work items are
launched for K2. All indices in K2 need to be updated
according to the dimension information. We ensure that
NDRangeSize1 is an integral multiple of the work group
size (i.e., the number of work items within that work group).
Thus, no additional branch divergence is imposed on the
merged kernel. This takes advantage of the OpenCL feature
that the workload scheduling unit is one work group in the
OpenCL runtime.

Algorithm 1 Software-based device fission between two
OpenCL kernels K1 and K2 on the GPU.

K(NDRangeSize,NDRangeSize1)
{
/* index represents work item ID in K */
if index < NDRangeSize1; then
Execute K1;

else
if index < NDRangeSize then

/* Update the index to make it start from 0 for K2*/
index← index−NDRangeSize1;
Execute K2;

}

4. COST MODEL
Choosing the optimal configuration for various tuning pa-

rameters is an important task, especially in OpenCL that
targets heterogeneous computing devices. In this section,
we develop a cost model to estimate the execution time of
query co-processing of the four execution configurations on
the coupled architecture, and then use the cost model to
determine the suitable values for the tuning parameters to
achieve the lowest estimated execution time.

Though there has been plenty of existing work on build-
ing a cost model for applications either on the CPU or on
the GPU, the architectural evolution of the APU brings new
challenges. Firstly, the co-processing paradigm requires that
our model should consider different characteristics of two
processors within heterogeneous architectures. Secondly,
functional modules run concurrently, and D and E can be de-
ployed onto two devices simultaneously, which makes it more
difficult to accurately predict the performance. Thirdly,
prefetching can change the number of cache misses, and de-
compression can change the size of data accessed by each
functional module. All these factors need to be considered
in the estimation.

Because OpenCL has provided an abstraction for all OpenCL-
compatible devices, we treat the CPU or the GPU as a pro-
cessor with identical architecture, differentiated by compu-
tational capability and memory bandwidth. We profile each
task on the CPU and the GPU independently and derive
the cost on a single CU. Besides, we divide the total cost
of a database operation into two major components: com-
putation cost and memory cost. The computation cost is
derived based on the theoretical peak Instruction Per Cycle
(IPC) and the number of instructions. The memory cost
considers prefetching and decompression. In the remainder
of this section, we first present the abstract model, and next

use two operators (selection and hash join) as examples of
instantiating the abstract model.

4.1 The Abstract Model
We have presented four paradigms to achieve co-processing,

PE, cPDE-c, cPDE-b, and cPDE-g as illustrated in Figure
4. We focus on how to build the cost model for cases where
prefetching and decompression are integrated.

We have the following four key designs to make the model
accurately find the configuration. Firstly, as the query exe-
cutions (E) is optimized in the fine-grained method, opera-
tors need to be staged into steps. It is difficult to determine
the optimal ratios among all steps to get the optimal total
time. Therefore, we have adopted the cost model by He et
al. [19] to address this problem. Secondly, the cache effect
must be included. Ideally, all working data of D and E can
be accessed directly from the cache, and only P suffers from
cache misses, which can be hidden by the computation of D
and E. If cache misses appear in D or E, the penalty needs to
be considered in the cost model. Thirdly, the device fission
divides one device into multiple subdevices with different
tasks running on them. In that scenario, the cost model can
estimate the execution time accurately when different DE
boundaries are applied. Fourthly, functional modules work
in a pipelined manner, which can cause delay (i.e., inappro-
priate CU assignment to P/D/E). For execution, the delay
occurs when the output of D cannot satisfy the input for E
in time. In cases where data is not correctly preloaded into
the L2 cache, both D and E are delayed.

Table 2 lists the notations in our cost model.

Table 2: Notations in the cost model.

Notation Description
XPU CPU or GPU
N The input size (of D) in bytes
|C| The number of CPU CUs
|G| The number of GPU CUs

BXPU The peak bandwidth (GB/s) of XPU to the shared
main memory area

S The preset data size to be prefetched
F F ∈ {P,D,E}
TF The actual execution time of F

compXPU
F The computation time of F on XPU

MXPU
F Memory access time of F

CF , GF The number of CPU and GPU CUs assigned to F

#IFXPU The number of instructions of F on XPU
cr Compression ratio

LXPU
M The access latency between XPU and main memory

LXPU
C The access latency between XPU and L2 cache
RF The output throughput of F in bytes

IPCXPU The theoretical peak instruction per cycle on XPU

Prefetching is performed on a CPU CU. The major work-
load of that CPU CU is on memory fetch instructions. We
denote the data size to be prefetched in getting prefetch-
ing throughput as S. To guarantee the real execution of
prefetching, light-weight computation is involved. Thus, the
throughput of prefetching can be calculated by the band-
width and the computational capability of the CPU CU(s).

RP =
|S|

|S|
BCPU

+
IP
CPU

IPCCPU

(1)

The execution time of D can be calculated in two compo-
nents: the computation time and the memory access time.

For computation time, we count the number of instructions
running on device(s) with OpenCL profiler such as CodeXL
or AMD APP Profiler, and calculate the total computa-
tion time of instructions according to the theoretical peak
instructions per cycle (IPC) of the processor for each de-
compression algorithm. To achieve optimal compression ra-
tio on each column, different plans are applied. Hence, the
number of instructions for decompression is not constant
among columns. We choose the compression plan based on
the model proposed by Fang et al. [12]. We perform bench-
marking before the query execution to obtain the instruction
number of decompression of each column on any processor,
namely, IDXPU . According to the numbers of CPU CUs and
GPU CUs assigned to decompression, we can obtain the
amount of instruction execution time on each device. The
total execution time of decompression depends on the longer
execution time of two devices, as shown in Eq. 2.

compXPU
D = max(compCPU

D , compGPU
D)

= max(
#IDCPU × CD

|C|

IPCCPU
,

#IDGPU × GD
|G|

IPCGPU
)

(2)

The memory access time consists of time of accesses from
the main memory and L2 data cache. If N

compXPU
D

> RP ,

an amount of (N − compXPU
D ×RP) data in bytes has to be

accessed from main memory. Thus, we have the following
memory access time.

MXPU
D = (N − compXPU

D ×RP)× LXPU
M

+ (compXPU
D ×RP)× LXPU

C

(3)

Otherwise, the input data have been perfectly prefetched
into cache before use, and we have Eq. 4.

MXPU
D = N × LXPU

C , (4)

We can derive the actual execution time of D to be,

TD = compXPU
D + MXPU

D (5)

Similarly, we perform the estimation for E: the compu-
tation time (compXPU

E) as Eq. 2 and memory access time
(MXPU

E) as Eq. 3 ∼ Eq. 4. We define the sum of compXPU
E

and MXPU
E as the assumptive execution time of E (T ′

E)
based on the assumption that the output of D can satisfy the
input of E in time. However, as D and E form a producer-
consumer chain in the real execution, E may have to wait
for D if inappropriate CU assignment is adopted. The delay
is the difference between TD and T ′

E . If TD ≤ T ′
E , D can

feed E in time. Thus, we have the following estimation.

TE = T ′
E (6)

Otherwise, the processing time of E is limited by D. Thus,
we have the following estimation.

TE = TD (7)

The number of CUs assigned to all functional modules
should be within the limit of available CUs. Therefore, the
following conditions should also be satisfied.

0 ≤ CP + CD + CE ≤ |C| (8)

0 ≤ GD + GE ≤ |G| (9)

The goal of our cost model is to find the optimal plan that
can minimize the total execution time as Eq. 10. Because

the number of CUs in the CPU and the GPU are relatively
small and P is fixed on one CPU CU, we simply iterate all
the possible combinations to find the optimal plan.

Minimize(max(TD, TE)) (10)

4.2 Model Instantiation
We use hash joins and selections to illustrate how we use

the cost model. Models for other operators can be developed
in the same way.

Hash join consists of three stages: partition, build, and
probe. Each stage can be divided into several steps. To
demonstrate how a hash join can be mapped to the cost
model, we use the build stage for illustration. The build
stage can be divided into four steps (b1, b2, b3, b4) as de-
fined in the previous paper [19]. Before step b1 starts, each
work item i needs to write the memory address that will be
accessed immediately in step b1 into the WAS buffer that
exclusively serves E (assume prefetching distance is 1). In
the next move, if work item i has finished operations in
the current step, the next memory address is calculated and
written into the WAS buffer before it proceeds. Ideally, the
operations in the current step can hide the memory latency
before the next data can be prefetched into cache.

Assume the number of CPU CUs and GPU CUs assigned
to hash join is CE and GE , respectively. The computation
time can be derived in the same way as Eq. 2. We compare
this computation time with that of prefetching to obtain the
memory access time including the cache misses impacts as
Eq. 3. One issue to be handled is that the size of memory
consumed by hash join is 1

cr
times as large as that of D, if

the data is decompressed into the original format. In this
way, we obtain the memory access time and computation
time of hash join with specified preset configuration. In
decompression, steps are defined in a different way from hash
join. As introduced in Subsection 3.2.2, operations on each
small compressed data block are defined as one step. With
prefetching distance of 1, the same position in the next data
block is written into the WAS buffer for prefetching. Next,
we compare the estimated time of D with E to obtain the
real execution time according to Eq. 6 and Eq. 7 as they
form a producer-consumer chain.

In this way, we can obtain the estimated execution time
of hash join with one specified configuration plan. To obtain
the optimal configuration plan, we search the whole config-
uration space within the resource constraints (e.g., |C| = 4
and |G| = 5 on A8) to get the minimal estimated execution
time (Eq. 10). Thus, we can get the minimal total cost of
hash join as well as the optimal configuration plan.

The estimation on selection is similar to that of hash join,
except that the step defined in the selection is a batch of op-
erations that all work items perform scan over input tuples
one by one.

5. EXPERIMENTAL EVALUATION
The evaluations are categorized in two groups, whether

query processing is without decompression (Section 5.2) or
with decompression (from Section 5.3 to 5.4).

5.1 Experimental Setup
Hardware configuration. Our experiments are con-

ducted on two workstations. One is equipped with AMD
A8-3870K (A8) and 8 GB DRAM. The other is equipped

with A10-7850K (A10) and 32GB DRAM. The configura-
tions of A8 and A10 have been presented in Table 1. We fol-
low the experimental methodology in the previous study [19]
to study the comparison with discrete CPU-GPU architec-
tures. We observe consistent results as the previous study [19].
In general, removing the PCI-e data transfer overhead, the
APU architecture outperforms the discrete architecture with
the same configuration. Since the focus of this study is to
further improve the performance of query co-processing on
coupled CPU-GPU architectures, we have omitted the de-
tailed results on discrete architectures.

Data sets. We select four queries (i.e., Q3, Q6, Q9, and
Q14) from TPC-H with different complexities. Q6 is a rel-
atively simple selection query, whereas Q9 involves a rather
complicated subquery. Q3 has two join operations and Q14
has a single join operation. Those queries also have other
common operators such as group-by and order-by. TPC-H
query experiments are conducted based on the data gener-
ated from the TPC-H data generator. The maximum scale
factors are set as 5 and 10 on A8 and A10 machines, generat-
ing approximately 5GB and 10 GB databases, respectively.

We use column stores for query processing as OmniDB
[38]. Furthermore, to study in-cache query co-processing
in more details, we evaluate our executions for two core
operators in databases (i.e., selection and hash join). In
the evaluations of individual operators, the original data set
contains 16M pairs <key, record-id> in each relation. Both
keys and payloads are 8 bytes long as in existing work [4,
24]. To investigate the situation when the query process di-
rectly on the compressed data, we intentionally study the
performance of individual operators on the data with spe-
cific compression algorithm, which is not optimal according
to our evaluation.

We choose the CPU-only counterpart of each execution
configuration as the baseline and demonstrate the perfor-
mance impact of our proposal by showing the normalized
speedup (t

t′ , where t and t′ are the execution times of the
CPU-only execution and the studied execution configura-
tion, respectively). Specifically, without decompression, the
baseline implementation processes queries only on the CPU
(i.e., E-CPU). While decompression is necessary, the base-
line implementation is to perform the D/E functional mod-
ules on the CPU only (namely cDE-CPU). Additionally, we
have two variants by adopting our cost model to the CPU
only: cPDE-CPU and PE-CPU for the CPU-only executions
with and without decompression, respectively.

5.2 Operators and Queries Evaluation with-
out Decompression

We first investigate the performance of schemes without
decompression (i.e., E and PE) on uncompressed and com-
pressed data, respectively. Note, E and PE involve both
the CPU and the GPU. We vary the WAS size from small
(128KB) to large (16MB). Figure 5 shows the results for
operators on uncompressed data. We find that prefetching
performance depends on the WAS size, and 1MB is chosen
as the optimal setting. The performance improvement of
PE over the latest co-processing method E [19] is 24% and
22% on the selection and the hash join, respectively.

To study prefetching for query processing on compressed
data without decompression, we apply single compression al-
gorithm (i.e., NS) so that the operators can process the data
without decompression, as shown in Figure 6. The compres-

0

0.5

1

1.5

2

PE-CPU

(1MB)

E PE

(128KB)

PE

(1MB)

PE

(16MB)

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

(a) Selection

0

0.5

1

1.5

2

PE-CPU

(1MB)

E PE

(128KB)

PE

(1MB)

PE

(16MB)

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

(b) Hash Join

Figure 5: The normalized speedup to E-CPU of prefetching
on selection and hash join on uncompressed data on A10.

0

0.5

1

1.5

2

2.5

PE-CPU

(1MB)

E PE

(128KB)

PE

(1MB)

PE

(16MB)

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

(a) Selection

0

0.5

1

1.5

2

2.5

PE-CPU

(1MB)

E PE

(128KB)

PE

(1MB)

PE

(16MB)

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

(b) Hash Join

Figure 6: The normalized speedup to E-CPU of prefetch-
ing on selection and hash join on compressed data without
decompression on A10.

sion ratio (defined as the data size after compression to the
data size without compression) is 25% for the input rela-
tions. As expected, the execution time of each operator is
reduced compared to the one on uncompressed data. We
observed similar performance improvement by prefetching
on direct query executions without decompression. We also
studied other compression schemes. Generally, PE outper-
forms E with similar performance improvement.

Next, we evaluate the TPC-H query performance on the
uncompressed data. Figure 7 depicts the performance com-
parisons on A8 and A10. Compared with the CPU-only
approach, both E and PE achieve over 1.5 times speedup.
Prefetching can reduce the query processing time of all queries
by up to 19% on A8, and up to 20% on A10, respectively.
The significant improvement in the query processing perfor-
mance shows the effectiveness of in-cache query processing
in reducing the effects of memory latency.

5.3 Operators with Decompression
Impact of prefetching: When the data is compressed

with cascaded compression, D may be required for query
executions. The results on A10 are presented in Figure 8.

0

0.5

1

1.5

2

2.5

3

Q3 Q6 Q9 Q14

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

E PE

(a) A8

0

0.5

1

1.5

2

2.5

3

Q3 Q6 Q9 Q14

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

E PE

(b) A10

Figure 7: The normalized speedup to E-CPU of prefetching
on TPC-H queries on uncompressed data.

0

0.5

1

1.5

2

2.5

3

3.5

cPDE-CPU cDE-b cPDE-g

(128KB)

cPDE-g

(1MB)

cPDE-g

(16MB)

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

(a) Selection

0

0.5

1

1.5

2

cPDE-CPU cDE-b cPDE-b

(128KB)

cPDE-b

(1MB)

cPDE-b

(16MB)

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

(b) Hash Join

Figure 8: The normalized speedup to cDE-CPU of prefetch-
ing on selection and hash join on compressed data with de-
compression on A10.

Table 3: Compression results on A10 for different compres-
sion plans on Selection.

Compression
plan

Compression
ratio

Decompression Time (ms)

(A):RLE 3.34% No 11.3
(B):NS 100% No 104.7
(C):RLE,[ε | NS] 2.76% No 10.1
(D):RLE,[[Delta,
NS] | NS]

2.55% Partial 37.7

(E):Delta, NS 25% Full 145.4

The speedup of the scheme with prefetching achieves 31%
and 25% over the original scheme cDE-b. By measuring the
L2 cache misses distribution, we find that the cache misses
are now limited to the CPU CU working on prefetching.
Another observation is that when the WAS size is not ap-
propriately set, prefetching performance degrades dramati-
cally. When the size is too large, the performance is even
worse than the original scheme without prefetching because
of cache pollution caused by excessive prefetching.

Impact of compression: To further reduce the data
footprint, cascaded compression is applied as in the pre-
vious study [12]. Table 3 lists the results of the selection
operator with five compression plans. We use the symbols
adopted in previous work [12]. Plans (A) and (B) contain
single compression algorithm and the compressed data can
be directly processed by the selection operator. Plans (C),
(D) and (E) apply two consecutive compressions onto the
input data in order to achieve better compression ratio.

The processing time without compression on the GPU is
101 ms. As the table shows, when the data compression
ratio is better and no decompression is needed, then the
selection time can be reduced by 90%. In Plan (C), when
cascaded compression is applied, the compression ratio can
be improved. However, the processing time is close to the
one with Plan (A), which indicates that better compression
ratio does not guarantee better query processing. In Plan
(D), the partial decompression policy can significantly re-
duce the overhead introduced by decompression compared
to full decompression in Plan (E). In Plan (E), the compres-
sion ratio is improved from 100% to 25% compared to Plan
(B), but the processing time increases from 11.3 ms to 145.4
ms. This is mainly because the decompression overhead
offsets the benefit gained from the smaller data size to be
transferred. We add the feature of APU into the cost model
[12]. Our evaluations find that the cost model is able to find
the optimal plan with the best performance accurately.

Impact of device fission: We statically assign the CPU
and the GPU CUs to three functional modules and study the

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

E
la

p
se

d
 t

im
e

 (
m

s)

The DE boundary

Selection

(a) Selection

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10

E
la

p
se

d
 t

im
e

 (
s)

The DE boundary

Hash Join

(b) Hash Join

Figure 9: The results of manually configured settings on
different operations on A10.

performance trend. Specifically, prefetching is fixed on the
first CPU CU, and the DE boundary is varied from 1 to 7 on
A8 and from 1 to 10 on A10. As the result on A8 is similar
to that on A10, we only show the result on A10 in Figure 9.

Figure 9a shows that the performance of selection can vary
significantly as the DE boundary increases. This is because
decompression is the most time-consuming component for
the selection operation. The fewer CPU CUs are assigned
to decompression, the more time the query execution has
to wait for the output from the decompression. In contrast,
Figure 9b shows that the hash join is relatively less sensitive
to the DE boundary. Compared with decompression, hash
join is a more time-consuming operation.

5.4 Queries with Decompression
Cost model validation: To validate the effectiveness

of our cost model, we compare the elapsed time and CU
assignment plans from measurements with those from the
cost model.

We use the notation for a CU assignment plan, (x1Cy1G,
x2Cy2G), to denote that x1 CPU CUs and y1 GPU CUs are
assigned to D, and x2 CPU CUs and y2 GPU CUs are as-
signed to E. Our model correctly predicts the optimal plan.
For example, the predicted optimal plan for Q9 and Q14 are
(2C0G, 1C5G) and (3C1G, 0C4G) respectively on A8, and
are (2C0G, 1C8G) and (3C2G, 0C6G) respectively on A10.
Thus, it matches the measured optimal configuration.

Figure 10 shows the measured and the estimated execu-
tion time for TPC-H queries on A8 and A10 as we vary the
DE boundary. Overall, our estimation approximates the
measurement well for TPC-H queries. It is able to produce
the optimal assignment plan and predict the trend of the
relative performance with the differences less than 9%.

Evaluation of TPC-H queries: In the previous work
[12], a compression planner is adopted to choose the opti-
mal compression plan delivering the best performance. For
completeness, we revisit the effectiveness of the planner for
coupled CPU-GPU architectures.

To obtain a comprehensive understanding on how our co-
processing paradigm can benefit from two generations of
APUs, we demonstrate the performance of query process-
ing on both A8 and A10 for Q9 and Q14 in Figures 11 to
12. The results for Q3 and Q6 on A10 is presented in Fig-
ure 13. On A8, similar results are observed on Q3 and Q6
compared with those on Q9 and Q14. From the results, we
can make the following three observations.

Firstly, by exploiting the power of both processors, cPDE-
b can outperform the baseline by more than 2.5 times. Query
co-processing with both the CPU and the GPU significantly
outperforms the CPU-only approach. Moreover, our in-

0

10

20

30

40

50

1 2 3 4 5 6 7

E
la

p
se

d
 t

im
e

 (
s)

The DE boundary

Measured Estimated

(a) Q9 on A8

0

5

10

15

20

25

1 2 3 4 5 6 7

E
la

p
se

d
 t

im
e

 (
s)

The DE boundary

Measured Estimated

(b) Q14 on A8

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10

E
la

p
se

d
 t

im
e

 (
s)

The DE boundary

Measured Estimated

(c) Q9 on A10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

E
la

p
se

d
 t

im
e

 (
s)

The DE boundary

Measured Estimated

(d) Q14 on A10

Figure 10: Model validation on the elapsed time on A8 and
A10 platforms.

0

0.5

1

1.5

2

2.5

cPDE-

CPU

E PE cPDE-c cPDE-b cPDE-g

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

Q9 (A8)

(a) Q9 results on A8

0

0.5

1

1.5

2

2.5

3

cPDE-

CPU

E PE cPDE-c cPDE-b cPDE-g

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

Q14 (A8)

(b) Q14 results on A8

Figure 11: The normalized speedup to cDE-CPU of different
schemes on TPC-H data set on A8.

0

0.5

1

1.5

2

2.5

cPDE-

CPU

E PE cPDE-c cPDE-b cPDE-g

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

Q9 (A10)

(a) Q9 results on A10

0

0.5

1

1.5

2

2.5

cPDE-

CPU

E PE cPDE-c cPDE-b cPDE-g

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

Q14 (A10)

(b) Q14 results on A10

Figure 12: The normalized speedup to cDE-CPU of different
schemes on TPC-H data set on A10.

0

0.5

1

1.5

2

2.5

cPDE-

CPU

E PE cPDE-c cPDE-b cPDE-g

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

Q3 (A10)

(a) Q3 results on A10

0

0.5

1

1.5

2

2.5

3

cPDE-

CPU

E PE cPDE-c cPDE-b cPDE-g

N
o

rm
a

li
ze

d
 s

p
e

e
d

u
p

Q6 (A10)

(b) Q6 results on A10

Figure 13: The normalized speedup to cDE-CPU of different
schemes on TPC-H data set on A10.

cache design has significantly reduced the memory stalls of
the GPU, and dynamically schedules the P/D/E functional
modules to their suitable numbers of CUs on both A8 and
10. In contrast, the performance of the CPU-only approach
of running P/D/E (cPDE-CPU) is similar to that of the
baseline, because all the CUs of the CPU-only approach are
homogeneous, and heterogeneous workload scheduling has
little impact. It might even slightly slow down the perfor-
mance due to runtime overhead of the advanced scheduling.

Secondly, our CPU-GPU co-processing paradigm is much
faster than the state-of-the-art approach on the APU [19].
For query processing on A8, the optimal scheme can outper-
form the fine-grained approach (i.e., E) by up to 36%. On
A10, the improvement can even achieve at 40%. Though
the fine-grained method has captured the workload prefer-
ence of different processors in the previous study [19], ex-
cessive memory stalls make the GPU underutilized in the
coupled CPU-GPU architecture. In contrast, our heteroge-
neous workload scheduling is able to exploit the advantages
of both the CPU and the GPU.

Thirdly, for schemes with prefetching and decompression,
the DE boundary can significantly affect the optimal per-
formance. On A8 and A10, the best scheme can outperform
the worst one by 21% and 17%. With suboptimal configu-
rations, the workload assigned to two devices is unbalanced.
Furthermore, if the producer-consumer chain is stalled due
to inappropriate configuration, more memory stalls are in-
curred which can further deteriorate the device efficiency
(especially for the GPU).

We further study the profiling results on the memory stalls
incurred in query processing. We only present the results of
Q9 and Q14, since we observe the same behavior on Q3 and
Q6. Figure 14 and 15 demonstrate the detailed time break-
down of memory units on both the CPU and the GPU for
Q9 and Q14, respectively. For simplicity, we show the re-
sults of E, PE, and the optimal one of the remaining three
schemes (denoted as opt). With prefetching enabled, the
CPU CU assigned with prefetching suffers much more L2
cache misses, resulting in high percentage of stalled mem-
ory instructions. As Figure 14a shows, when P and D are
not used, the average percentage of stalled memory instruc-
tions of each CPU CU is around 25% (C0 to C3). It reaches
nearly 38% on the GPU that can seriously degrade the GPU
efficiency. With prefetching enabled, the memory stalls suf-
fered by the CPU CU working on prefetching (i.e. C0) are
73% of the memory unit cycles. However, it drops to around
10% on other CPU CUs and the GPU. This is because most
cache misses have been shifted to prefetching CU. The ben-
efit is even more distinct in the opt scheme as the smaller
footprint and higher utilization of bandwidth can contribute
more to the reduction of memory stalls. That can release
the powerful computing strengths of the GPUs and enhance
the overall performance.

To study the impact of data sizes, we increase scale factor
(SF) from 1 to 10 on A10. The experiments are conducted in
the optimal scheme produced from the cost model (denoted
as opt). For comparison, results with fine-grained approach
[19] are also presented in Figure 16 (denoted as old). Both
opt and old schemes have good scalability with the increas-
ing scale factor.

5.5 Insights and Implications
Through the evaluations on operators and queries, we

0

10

20

30

40

50

60

1 2 4 6 8 10

E
la

p
se

d
 t

im
e

 (
s)

TPC-H SF

Q9 (opt) Q9 (old)

(a) Q9

0

5

10

15

20

25

30

1 2 4 6 8 10

E
la

p
se

d
 t

im
e

 (
s)

TPC-H SF

Q14 (opt) Q14 (old)

(b) Q14

Figure 16: TPC-H query performance on A10 with variable
scale factors.

have demonstrated that in-cache query co-processing can
further improve the state-of-the-art query co-processing on
coupled CPU-GPU architectures. Specifically, it can signif-
icantly reduce the memory stalls so that the efficiency of
both the CPU and the GPU can be highly improved. From
the experimental results, we can obtain some implications
that can guide the future architectural design and database
management systems.

Firstly, as Figures 14 and 15 show, though prefetching
has significantly mitigated the cache misses suffered by the
GPU, higher bandwidth and larger cache size on future ar-
chitectures can further increase the efficiency of our query
co-processing paradigm. That also means, memory opti-
mizations continue to be a key performance issue for databases
in future architectures.

Secondly, we argue that GPUs in coupled architectures
are more sensitive to cache misses than those in discrete
systems. Looking forward, more efficient cache design with
multi-level architecture can be potentially beneficial to the
GPU performance. Besides, replacing DDR3 with GDDR5
as main memory [33] can be an interesting approach to in-
creasing database performance. Also, a hardware prefetch-
ing engine for resolving the memory stalls on the GPU can
be very helpful.

Thirdly, modern databases require not only high compu-
tational capability, but also the capability to handle hetero-
geneous workload. This requirement necessitates a more so-
phisticated software system design to integrate various pro-
cessors. “One size does not fit all” still holds. The evolving
coupled CPU-GPU architectures will significantly impact
the database research, which may potentially impact the
architectural design of next-generation database systems.

6. RELATED WORK
We review the related work in the following categories:
Cache-optimized query processing on CPUs: Cache

optimizations to improve query processing performance have
been widely studied in database community. There are
two major categories along this study: cache-conscious [32]
and cache-oblivious [16]. Cache-conscious techniques uti-
lize cache parameters (such as cache capacities and cache
line sizes) to reduce the memory access latency to improve
the database performance. In contrast, cache-oblivious tech-
niques optimize cache performance without taking cache pa-
rameters as input. There has been much more existing work
on cache-conscious optimizations. Manegold et al. [5] pro-
posed a cost model that can estimate the execution time
of query processing. However, their model does not cover
prefetching or GPU co-processing. Recently, Pirk et al. [27]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C0 C1 C2 C3 GPU C0 C1 C2 C3 GPU C0 C1 C2 C3 GPU

T
im

e
 b

re
a

k
d

o
w

n
 o

f
m

e
m

o
ry

u
n

it
s

o
n

 t
w

o
 p

ro
ce

ss
o

rs

mem unit stalled mem unit not stalled

E PE opt

(a) Stall distribution of Q9 on A8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C0 C1 C2 C3 GPU C0 C1 C2 C3 GPU C0 C1 C2 C3 GPU

T
im

e
 b

re
a

k
d

o
w

n
 o

f
m

e
m

o
ry

u
n

it
s

o
n

 t
w

o
 p

ro
ce

ss
o

rs

mem unit stalled mem unit not stalled

E PE opt

(b) Stall distribution of Q14 on A8

Figure 14: Memory stall distribution of different schemes between each CPU CU and the GPU on A8.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C0 C1 C2 C3 GPU C0 C1 C2 C3 GPU C0 C1 C2 C3 GPU

T
im

e
 b

re
a

k
d

o
w

n
 o

f
m

e
m

o
ry

u
n

it
s

o
n

 t
w

o
 p

ro
ce

ss
o

rs

mem unit stalled mem unit not stalled

E PE opt

(a) Stall distribution of Q9 on A10

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C0 C1 C2 C3 GPU C0 C1 C2 C3 GPU C0 C1 C2 C3 GPU

T
im

e
 b

re
a

k
d

o
w

n
 o

f
m

e
m

o
ry

u
n

it
s

o
n

 t
w

o
 p

ro
ce

ss
o

rs

mem unit stalled mem unit not stalled

E PE opt

(b) Stall distribution of Q14 on A10

Figure 15: Memory stall distribution of different schemes between each CPU CU and the GPU on A10.

studied partial decomposition to save bandwidth without
sacrificing CPU cycles. Ross et al. [10] explored the ar-
chitectural features that can affect the overall performance
of aggregations and hash joins. Balkesen et al. [3] advo-
cated that additional performance can be obtained through
carefully tailoring algorithms to more efficiently utilize ar-
chitectural parameters such as cache sizes, TLB, and mem-
ory bandwidth. Another effective means to reduce the cache
misses is database compression (e.g., [9, 1]).

In comparison, our in-cache processing design exploits the
advantages of the shared cache design of the coupled CPU-
GPU architecture.

Query co-processing on discrete GPUs: Because
discrete GPUs have much higher bandwidth and massive
thread parallelism from CPUs, they are ideal choice for
query processing. For a long time, the query co-processing
was achieved on the discrete CPU-GPU architecture [15, 17,
22, 6, 37, 28, 18]. Wu et al. [35] introduced a compiler and
infrastructure named Red Fox for OLAP queries. Zhang et
al. [38] and Heimel et al. [20] presented their findings in
designing a portable query co-processing engine across dif-
ferent devices by using OpenCL. As compression can benefit
the cache and save the bandwidth on the CPU, Fang et al.
[12] explored cascaded compression on discrete GPUs.

Though workload distributions on co-processing paradigms
targeting the discrete CPU-GPU architecture are also het-
erogeneous, they are not designed to exploit the architec-
tural features of coupled CPU-GPU designs to achieve fine-
grained workload scheduling. Our work focuses on both de-
vices but schedules the hardware-favored workload to each
of them in a fine-grained and heterogeneous manner.

Studies on coupled CPU-GPU architectures: There
have also been some studies (like MapReduce [7], key-value

stores [21] and hash joins [19]) on this architecture. Most
studies have demonstrated the performance advantage of the
coupled architecture over the CPU-only or the GPU-only
algorithm. Yang et al. [36] showed the effectiveness that
the CPU can assist the GPU through prefetching to highly
improve the performance of the GPU. Our study focuses on
database operations, and goes beyond the existing studies in
two major aspects. Firstly, different from the homogeneous
workload distribution among processors, our framework pro-
cesses a single query in databases including many operators
with varying and heterogeneous runtime features. Secondly,
we generalize the roles of various device resources for query
processing and highlight the efficiency of in-cache design for
GPU query co-processing.

7. CONCLUSIONS
In this paper, we have proposed an in-cache query co-

processing paradigm on coupled CPU-GPU architectures.
We have adapted CPU-assisted prefetching to minimize the
cache misses of GPU query co-processing, and CPU-assisted
decompression schemes to improve query execution perfor-
mance. Additionally, we have proposed a cost model to pre-
dict the execution time and choose the optimal core assign-
ment plan. As the experimental results show, the in-cache
co-processing paradigm can effectively reduce the impact of
memory stalls, thus improving the overall performance of
TPC-H queries by up to 36% and 40% over the state-of-the-
art fine-grained method on AMD A8 and A10, respectively.
Such improvements show that in-cache query co-processing
is promising on coupled CPU-GPU architectures. As for
future work, we are interested in extending our system to
row stores (e.g., by revisiting prefetching and data compres-

sion in the context of row stores) and in exploring the issues
discussed in Section 5.5.

8. ACKNOWLEDGEMENT
The authors would like to thank anonymous reviewers,

Mr. Saurabh Jha and Ms. Khasfariyati Binte Razikin for
their valuable comments. This work is supported by a MoE
AcRF Tier 2 grant (MOE2012-T2-2-067) in Singapore.

9. REFERENCES
[1] D. Abadi and et al. Integrating compression and

execution in column-oriented database systems. In
SIGMOD, 2006.

[2] ARM. big.little processing.
http://www.arm.com/products/processors/

technologies/biglittleprocessing.php.

[3] C. Balkesen and et al. Main-memory hash joins on
multi-core CPUs: tunning to the underlying hardware.
In ICDE, 2013.

[4] S. Blanas and et al. Design and evaluation of main
memory hash join algorithms for multi-core CPUs. In
SIGMOD, 2011.

[5] P. A. Boncz and et al. Database architecture
optimized for the new bottleneck: memory access. In
VLDB, 1999.

[6] S. Breßand G. Saake. Why it is time for a HyPE: A
hybrid query processing engine for efficient GPU
coprocessing in DBMS. PVLDB, 2013.

[7] L. Chen, X. Huo, and G. Agrawal. Accelerating
MapReduce on a coupled CPU-GPU architecture. In
SC, 2012.

[8] S. Chen and et al. Improving hash join performance
through prefetching. TODS, 2007.

[9] Z. Chen, J. Gehrke, and F. Korn. Query optimization
in compressed database systems. In SIGMOD, 2001.

[10] J. Cieslewicz, W. Mee, and K. A. Ross.
Cache-conscious buffering for database operators with
state. In DaMoN, 2009.

[11] J. Fang, A. L. Varbanescu, and H. Sips. A
comprehensive performance comparison of CUDA and
OpenCL. In ICPP, 2011.

[12] W. Fang, B. He, and Q. Luo. Database compression
on graphics processors. PVLDB, 2010.

[13] N. Govindaraju and et al. GPUTeraSort: high
performance graphics co-processor sorting for large
database management. In SIGMOD, 2006.

[14] N. K. Govindaraju and D. Manocha. Efficient
relational database management using graphics
processors. In DaMoN, 2005.

[15] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM TODS,
2009.

[16] B. He and Q. Luo. Cache-oblivious databases:
limitations and opportunities. ACM Trans. Database
Syst., 2008.

[17] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju,
Q. Luo, and P. Sander. Relational joins on graphics
processors. In SIGMOD, 2008.

[18] B. He and J. X. Yu. High-throughput transaction
executions on graphics processors. PVLDB, 2011.

[19] J. He, M. Lu, and B. He. Revisiting co-processing for
hash joins on the coupled CPU-GPU architecture.
PVLDB, 2013.

[20] M. Heimel and et al. Hardware-oblivious parallelism
for in-memory column-stores. In PVLDB, 2013.

[21] T. H. Hetherington and et al. Characterizing and
evaluating a key-value store application on
heterogeneous CPU-GPU systems. In ISPASS, 2012.

[22] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk.
GPU join processing revisited. In DaMoN, 2012.

[23] Khronos. The OpenCL specification. https://www.
khronos.org/registry/cl/specs/opencl-2.0.pdf.

[24] C. Kim and et al. Sort vs. hash revisited: Fast join
implementation on modern multi-core CPUs. PVLDB,
2009.

[25] C. Kim and et al. FAST: fast architecture sensitive
tree search on modern CPUs and GPUs. In SIGMOD,
2010.

[26] K. Lee, H. Lin, and W.-C. Feng. Performance
characterization of data-intensive kernels on AMD
fusion architectures. Comput. Sci., 2013.

[27] H. Pirk and et al. CPU and cache efficient
management of memory-resident databases. In ICDE,
2013.

[28] H. Pirk, S. Mnegold, and M. Kersten. Waste not...
efficient co-processing of relational data. In ICDE,
2014.

[29] N. Satish and et al. Fast sort on CPUs and GPUs: a
case for bandwidth oblivious SIMD sort. In SIGMOD,
2010.

[30] N. Satish, M. Harris, and M. Garland. Designing
efficient sorting algorithms for manycore GPUs. In
IPDPS, 2009.

[31] P. G. Selinger and et al. Access path selection in a
relational database management system. In SIGMOD,
1979.

[32] A. Shatdal, C. Kant, and J. F. Naughton. Cache
conscious algorithms for relational query processing.
In VLDB, 1994.

[33] Sony Computer Entertainment, Inc. Playstation 4
specifications. http:
//us.playstation.com/ps4/features/techspecs/.

[34] K. Thouti and S.R.Sathe. Comparison of OpenMP
and OpenCL parallel processing technologies.
IJACSA, 2012.

[35] H. Wu and et al. Red fox: an execution environment
for relational query processing on GPUs. In CGO,
2014.

[36] Y. Yang, P. Xiang, M. Mantor, and H. Zhou.
CPU-assisted GPGPU on fused CPU-GPU
architectures. In HPCA, 2012.

[37] Y. Yuan, R. Lee, and X. Zhang. The yin and yang of
processing data warehousing queries on GPU devices.
PVLDB, 2013.

[38] S. Zhang, J. He, B. He, and M. Lu. OmniDB: towards
portable and efficient query processing on parallel
CPU/GPU architectures. In VLDB (demo), 2013.

[39] J. Zhou and et al. Improving database performance on
simultaneous multithreading processors. In VLDB,
2005.

