
A buffer-sizing Algorithm for Networks on Chip using
TDMA and credit-based end-to-end Flow Control

Martijn Coenen1

1Philips Research
Eindhoven, The Netherlands

martijn.coenen@philips.com

Srinivasan Murali2
2CSL, Stanford University

Stanford, USA
smurali@stanford.edu

Andrei Rădulescu1 &
Kees Goossens1

andrei.radulescu@philips.com
kees.goossens@philips.com

Giovanni De Micheli3
3LSI, EPFL
Switzerland

giovanni.demicheli@epfl.ch

ABSTRACT
When designing a System-on-Chip (SoC) using a Network-
on-Chip (NoC), silicon area and power consumption are two
key elements to optimize. A dominant part of the NoC area
and power consumption is due to the buffers in the Network
Interfaces (NIs) needed to decouple computation from com-
munication. Having such a decoupling prevents stalling of
IP blocks due to the communication interconnect. The size
of these buffers is especially important in real-time systems,
as there they should be big enough to obtain predictable
performance. To ensure that buffers do not overflow, end-
to-end flow-control is needed. One form of end-to-end flow-
control used in NoCs is credit-based flow-control. This form
places additional requirements on the buffer sizes, because
the flow-control delays need to be taken into account. In
this work, we present an algorithm to find the minimal de-
coupling buffer sizes for a NoC using TDMA and credit-
based end-to-end flow-control, subject to the performance
constraints of the applications running on the SoC. Our ex-
periments show that our method results in a 84% reduction
of the total NoC buffer area when compared to the state-of-
the art buffer-sizing methods. Moreover, our method has a
low run-time complexity, producing results in the order of
minutes for our experiments, enabling quick design cycles
for large SoC designs. Finally, our method can take into
account multiple usecases running on the same SoC.

Categories and Subject Descriptors: B.4.3 Input /
Output and Data Communications: Interconnections

General Terms: Algorithms, Verification

Keywords: Systems-on-Chip, Networks-on-Chip, Area,
Buffers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

1. INTRODUCTION
To effectively tackle the increasing design complexity of

SoCs, the computation architecture needs to be decoupled
from the communication architecture [16]. By such decou-
pling, the computation and the communication architectures
can be designed independently, thereby speeding up the en-
tire design process and hence reducing the time-to-market
of SoCs. NoCs can offer such decoupling with decoupling
buffers between the computational blocks and the commu-
nication blocks, thereby hiding the differences between the
operating speeds and burstiness of the cores and the NoC.
This allows the cores to execute their transactions without
noticing the presence or impact of an interconnect, for ex-
ample they will not stall if the NoC is busy with another
core.

Methods to find the minimum size of the NoC decoupling
buffers for the set of applications that are run on the SoC
is an important problem for two reasons. First, the decou-
pling buffers take up a significant amount of the NoC area
and power consumption, thus finding the minimum buffering
requirements is key to achieve an efficient NoC implemen-
tation. Second, for a predictable system behavior, we need
to compute the minimum buffering that still satisfies the
application requirements.

Moreover, some NoCs employ credit-based end-to-end flow
control mechanisms to provide guaranteed system opera-
tion and to remove message-dependent deadlocks in the sys-
tem [1]. In this case, additional buffering is required to hide
the end-to-end latency for the flow control mechanism and
to provide full throughput operation. If the buffers are too
small, then the throughput and latency are affected and no
end-to-end guarantees can be given.

In this paper we address the problem of computing the
minimum size of the decoupling buffers of the NoC. We
present an application-specific design method for determin-
ing the minimal buffer sizes for the Guaranteed Throughput
(GT) connections of the Æthereal NoC architecture [15]. We
model the application traffic behavior and the network be-
havior to determine the exact bounds on buffer-sizing. In
our method, we also consider the buffering requirements due
to the use of credit-based end-to-end flow control.

We apply our method to several SoC designs, which show



Slave

consumer

producer
NoC

REQ

RESP

REQ

RESP
NI NI

forward channel

reverse channel

Master

producer

consumer

βF,M βF,S

βR,SβR,M

connection

Figure 1: The buffers for a connection

that the proposed method leads to a large reduction in the
total NoC buffer area (84% on average) and power consump-
tion when compared to an analytical method. Our method
has a low run-time complexity and is therefore applicable
to complex SoC designs too. The method can be applied
for designs with multiple usecases, by taking the maximum
required buffer size over all usecases for each buffer. Fi-
nally, the method is also integrated into our fully automatic
design flow, enabling fast design cycles over a SoC design.
Although the algorithmic method is presented for the Æthe-
real architecture, it can be applied to any NoC for which the
behavior of both the IP cores and the network is periodic,
such as aSoc [5] and Nostrum [6].

Traditionally, simulation (or trace) based approaches such
as [12] are used to compute the buffering requirements in sys-
tems. While they provide an optimal bound for the given
trace, there is no guarantee that the derived buffer sizes
will satisfy different traces. Hence, they cannot be used
to build predictable systems. Analytical methods for siz-
ing buffers based on jitter-constrained periodic behavior are
known, such as the ones presented in [2, 3]. These methods
are usually too pessimistic and can result in larger buffers
than required for the design. We quantify this in Section 5.
Stochastic approaches based on queuing theory are shown
in [7]. Such stochastic models can only approximate the
actual traffic characteristics of the application, and hence
system behavior cannot be guaranteed.

A general mathematical theory, network calculus [8], has
been established to model network behavior.It allows com-
puting bounds on delays and back-logs in networks. The
foundations of our proposed algorithmic approach to buffer-
sizing are based on the models of network calculus.

Synchronous Data Flow (SDF) graphs to model signal
processing and multimedia applications have been presented
by several researchers [9]. Using SDF models to minimize
buffering requirements of processors has been presented in
[10]. The use of SDFs to model NoCs has been presented
in [11]. The SDF models however assume a uniform data
production and consumption to compute the buffering re-
quirements. In NoCs that provide throughput guarantees,
the TDMA slots allocated to a traffic stream need not be
uniformly spread over time. Thus, SDF models can not
model the network in such detail as shown here, and the
results are hence less optimal.

2. THE Æthereal NOC
The Æthereal NoC architecture uses the notion of con-

nections to represent communication streams between IP
cores [15]. Such connections are needed in order to allocate
resources such as TDMA slots and buffers for real-time be-
havior. A connection consists of two channels, a forward
channel and a reverse channel (see Fig. 1). On the for-

ward channel requests may be sent from a master to a slave,
and on the reverse channel a response can be sent (in case
of a read transaction for example). On the forward chan-
nel therefore the master is the producer and the slave is a
consumer; on the reverse channel these roles are reversed.

Each connection has four buffers in the Network Interfaces
(NIs) connecting the IP cores to the network: βF,M and
βF,S , indicating the buffers in the master and slave NIs for
the forward channel, and βR,S , βR,M for the reverse chan-
nel. The buffers in the NI are needed to compensate for the
differences in operating speed and burst sizes between the IP
cores and the NoC. The reason for each connection to have
its own queues is that if connections would share a single
queue, dependencies between these connections would arise.
If on one connection data is not consumed, it will block the
other connections, which in turn could lead to not meeting
timing requirements or even deadlock [1].

The NoC provides throughput and latency guarantees by
using TDMA [14]. This is implemented by means of slot
tables in the NIs, where each slot represents an equal amount
of time. Each connection is then assigned a number of slots
to match its bandwidth and latency requirements [4]. In
every slot a fixed number of words can be sent into the
network. The first word is always a packet header, unless
the previous slot was occupied by the same connection.

Once data leaves the NI, the NoC guarantees a contention-
free path to the target NI [14]. This is achieved by reserving
time-aligned slots for each router link. The calculation of the
slots and the corresponding contention-free paths through
the router network is currently done at design time [4]. Hav-
ing a contention-free path results in minimal buffers in the
routers, because no packet ever has to wait. It is necessary
though that data from the routers is always accepted by the
NIs, otherwise, if the consumer is slow or does not respond
at all, the NI buffers would fill up, finally spilling over in the
network. This would break the contention-free routing and
guarantees.

In order to avoid this, the Æthereal NoC employs end-to-
end flow-control using a credit-based mechanism [17]. Local
counters in the NI keep track of the amount of space in
buffers of the remote NIs for each connection. Whenever
a word leaves a NI, the counter is decremented by one. If
the counter reaches zero, the NI is not allowed to send data
into the network. Whenever a word is consumed at the
consumer NI, a credit is generated and sent back over the
network when a time-slot is available for the connection.

Because the credits do not arrive instantaneously, a pro-
ducer does not immediately know when its data has been
consumed. To avoid stalling of the producer if the NI runs
out of credits, we must account for the end-to-end flow con-
trol in our buffer calculation as well. This affects the buffer-
ing calculations both on the forward and the reverse channel.
On the forward channel, flow control credits for the reverse
channel are sent. On the reverse channel, flow control cred-
its for the forward channel are sent.

The flow control credits are sent in the packet header [14].
As a result, the available payload bandwidth is independent
of the credit bandwidth. Within one connection the forward
and reverse channels can also be computed independently of
eachother. Finally, since each connection has its own buffers
in the NIs, the other connections cannot interfere, and we
can look at each connection in isolation when considering
the size of the buffers in the NI. These independencies re-



Figure 2: Periodic (left) and Aperiodic (right)

sult in compositionality; connections can be removed and
added without affecting the others, thereby making verifi-
cation easier, and real-time guarantees can easily be main-
tained. This also allows for simpler and incremental algo-
rithms, such as the buffering algorithm described in this
paper, which can calculate the buffering requirements for
each connection in isolation.

We describe the buffer-sizing algorithm for the forward
and reverse channels. Before this, we need to characterize
the application behavior.

3. APPLICATION BEHAVIOR
In order to compute the sizes of the decoupling buffers in

the NI, we need to characterize the application behavior of
the IP cores. We consider three types of production patterns
for the IP cores. First, the periodic production pattern, in
which a producer produces a burst of fixed size at the same
time in each period. An example of the periodic producer
pattern with burst size Di and period Ti is shown on the
left in Figure 2.

Second, the aperiodic production pattern, in which a pro-
ducer produces a burst of fixed size, but the bursts can ap-
pear anywhere within the period. Such a model is charac-
teristic of applications with some uncertainty in the time
at which the bursts are generated. Most traffic patterns
of video processing applications are periodic and bursty in
nature [13] and can be modeled by the periodic or the ape-
riodic production patterns. An example of the aperiodic
production pattern is shown on the right in Figure 2.

Finally, the multi-periodic production pattern, in which
a producer produces multiple bursts, with different burst
sizes and time between the bursts. As an example, in video
display systems the bursts of data for each horizontal scan
line have a fixed burst size, with a fixed blanking (quiet)
period between two scan lines. However, after a full set of
horizontal scans, there is a bigger blanking period for the
vertical scan.

Even if a certain producer behavior does not fit in one of
these three production types, several methods can be used
to transform it to one of them. Worst-case specifications
could be used to compute the period and burst size, for
example obtained from analytical estimates or from several
experimental runs of the application.

4. COMPUTING THE NI BUFFER SIZES
In order to compute the buffer sizes in the NIs, we want

to compute the maximum difference between the number of
words produced and the number of words consumed at any
point in time. We first describe the problem of buffer sizing
for a general producer and consumer.

We introduce two arrays input and output representing
the production patterns of a producer and a consumer, where:

Definition 1. input[t] has value ’1’ if the producer pro-

Figure 3: The flow of data and algorithm variables

duces one value at time t, otherwise it has value ’0’

Definition 2. output[t] has value ’1’ if the consumer is
ready to consume exactly one value at time t, otherwise
value ’0’

Note that output describes the availability of the consumer
to remove data from the buffer. The buffer may contain
data, or may be empty. We define input.t to be the number
of data items produced in the [0..t):

input.t =
X

0≤i<t

input[i] (1)

Similarly we define output.t to denote the number of data
items consumed in the interval [0..t). Recall that the output
array only indicates whether the consumer is ready to con-
sume a value, not that a value is actually consumed, because
that depends on the availability of data in the buffer. To
match the definition of output.t with the array output we
therefore need to include an additional condition to check
whether there is currently data in the buffer. Data is avail-
able at time-point j, when the number of words produced in
the interval [0..j] exceeds the number of words consumed in
the interval [0..j), input.(j + 1) > output.j .

output.t =
X

0≤j<t∧input.(j+1)>output.j

output[j] (2)

Using Equation (1) and Equation (2) the specification of
the minimum required buffer size is the maximum difference
between the number of words produced and consumed in an
interval of length T:

maxbuffer = max0≤t<T{input .t − output .t} (3)

To compute this, producer and consumer traces for an inter-
val can be used to compute the required buffer size in that
interval. There is of course no guarantee that a value derived
from one trace satisfies the trace of any other, nor that the
buffer will be big enough for any data produced outside the
interval. In the next section we show how having periodic
producer and consumer behavior allows us to compute the
buffering requirements for an infinite amount of time.

In the next sections, we first consider the calculation for
the NI buffers connected to the producing IPs. Here the IPs
are the producer and the NoC is the consumer. Then, we
will look at the NI buffers connected to the consuming IPs,
where the NoC is the producer and the IPs are consumer. In
both cases we only consider the periodic production pattern.
In section 4.3, we will show how to extend the algorithm to
the other production patterns.

4.1 Producer NI buffer calculation
When considering the producer NI buffering for a con-

nection we need to calculate both the size of the forward



master buffer βF,M for the master who produces requests on
the forward channel, and the size of the reverse slave buffer
βR,S for the slave who produces response data on the re-
verse channel. Below we discuss only the forward channel,
because the same algorithm is used for the reverse channel.

The algorithm for calculating the producer NI buffer re-
quirements is a straightforward implementation of Equation
(3), where two array variables PIP (Producer IP) and PNI
(Producer NI) are used to capture the input/output pat-
terns of the IP and NI, and two running variables IPprod
and NoCCons are used to store the total number of words
produced by the IP and consumed by the NoC respectively,
reflecting the left-hand side of Equations (1) and (2) respec-
tively. We compute the consumer NI buffer in the same
algorithm, which is explained in detail in the next section.
We have visualized the variables in Figure 3, where both
the IPs and the NIs are shown. Counter variables such as
IPProd, NoCCons are indicated by square boxes, whereas
the array variables are shown in the IPs and NIs with brack-
ets behind them.

Now let Ti be the period of the IP block producing data.
The consumer in this case is the NI connected to the pro-
ducer IP, the“producer NI”. Because of the slot table, the
producer NI is also periodic with a period of To, equal to
the number of slots multiplied by the time duration of one
slot. Additionally in each period both the producer IP and
producer NI produce/consume a fixed number of words, Di

and Do, respectively. Di corresponds to the burst of the
producer, and Do is equal to the total number of words al-
located for the connection in one slot table revolution.

With this information, we can fill the arrays ’PIP’ (Pro-
ducer IP) and ’PNI’ (Producer NI). Because of the peri-
odicity the arrays need only be as long as their respective
periods. The PIP array is constructed as follows for a pe-
riodic producer:

PIP [t] =


1 if 0 ≤ t < Di;
0 if Di ≤ t < Ti.

The PNI array is constructed according to the known slot
table allocation for the corresponding NI:

PNI[t] =


1 if consumer is ready to consume at time t;
0 otherwise.

As mentioned in Section 4, we do not have to simulate for
an infinite period of time to compute the maximum, because
the behavior of both producer and consumer is periodic. The
crucial observation is that the behavior of two periodic inter-
vals repeats itself after the least common multiple (lcm) of
the two periods. This leads us to calculate the least common
multiple of Ti and To, Tlcm. After Tlcm the producer and
consumer will be realigned and the pattern repeats itself.

We present Algorithm 1 for calculating the producer buffer
requirements. Lines 1 through 7 initialize. Note that on line
1 we also need to take the period of the consumer into the
calculation of the lcm, when considering the consumer NI
buffering in the next section. Line 8 shows the time loop
which has lcm iterations, in order to compute the maxi-
mum difference between producer and consumer in the time-
interval [0..lcm). In line 9, the number of words produced
until time n is updated by adding PIP [n%Ti] to IPProd.

Line 10 checks whether there are currently words in the
producer NI buffer. If there are, in line 11 the NoCCons
variable is updated by adding PNI[n%To] (which is one if

the NI can send data at that point and zero if not). In line
12, the NocArriving variable is updated to indicate whether
a word of data will arrive at the consumer NI TFwd (the
time it takes to traverse the network) time from now. This
variable is used to capture the production pattern at the
consumer NI, and will be explained in more detail in the next
section. Finally in line 14, we see if the current difference
between the number of words produced and the number of
words consumed is bigger than the current maximum, and
if so we replace it in line 15. Lines 17 to 29 are used for the
consumer NI buffer calculation and will be explained in the
next section.

Algorithm 1 Calculates the buffer requirement in producer
and consumer NIs for a periodic producer and consumer

Require: Arrays PIP[0..Ti], PNI[0..To], CNI[0..To] and
CIP[0..Tc]

1: lcm ⇐ the least common multiple of Ti, To and Tc

2: IPProd ⇐ 0
3: NoCCons ⇐ 0
4: NoCProd ⇐ 0
5: IPCons ⇐ 0
6: maxprodbuffer ⇐ 0
7: maxconsbuffer ⇐ 0
8: for n = 0 to lcm− 1 do
9: IPProd ⇐ IPProd + PIP [n%Ti]
10: if IPProd−NoCCons > 0 then
11: NoCCons ⇐ NoCCons + PNI[n%To]
12: NoCArriving[n + TFwd] ⇐ PNI[n%To]
13: end if
14: if IPProd−NoCCons > maxprodbuffer then
15: maxprodbuffer ⇐ IPProd −NoCCons
16: end if
17: NoCProd ⇐ NoCProd + NocArriving[n]
18: if NoCProd− IPCons > 0 then
19: IPCons ⇐ IPCons + CIP [n%Tc]
20: credit ⇐ credit + CIP [n%Tc]
21: end if
22: if CNI[n%To] ∧ credit > 0 then
23: creditArriving[n + TRev] ⇐ credit
24: credit ⇐ 0
25: end if
26: CreditsReceived ⇐ CreditsReceived

+creditArriving[n]
27: if NoCProd − CreditsReceived > maxconsbuffer

then
28: maxconsbuffer ⇐ NoCProd − CreditsReceived
29: end if
30: end for

Note that the computation of IPProd is only dependent
on the producer itself, but the number of words actually
consumed (NoCCons) also depends on the availability of
flow-control credits. We will deal with flow control in the
consumer NI buffering, and make sure that the consumer NI
buffer is big enough (and hence enough credits are available
to the producer NI) to sustain the required throughput.

4.2 Consumer NI buffering
When data is sent from the producer NI, it arrives at the

consumer NI after TFwd time. We assume that we can char-
acterize the behavior of the consumer similar to that of the
producer: the consumer is periodic with a period Tc and



consumes bursts of size Dc at the beginning of each period
Tc. We store this information in the array CIP . The to-
tal number of words produced and consumed by the NI and
the IP are stored in NoCProd and IPCons respectively.
Once the consumer consumes data, it produces a credit as
shown in Figure 3. The credits are sent back in the first
slot that is available for the connection in the consumer NI
(the slot table of the consumer NI is contained in the CNI
array). Whenever the credits are sent out, they still take
the constant network delay TRev before the producer NI re-
ceives them, and there the total number of received credits
is stored in a variable CreditsReceived. The producer NI
hence does not get credits as soon as data has been con-
sumed but only after a delay, and in the meantime a new
burst of data from the producer may arrive. Since in the
producer NI buffering we assumed there were enough cred-
its available (in order to avoid stalls), we have to make sure
the consumer NI buffer is big enough to receive additional
words of data while the credits are underway. This leads us
to compute the maximum difference between the number of
words produced by the network and the number of credits
received by the producer NI (instead of the number of words
consumed by the consumer).

Lines 17 to 29 of Algorithm 1 are used to calculate the
required size of the consumer NI buffer. Line 17 updates
the variable NoCProd to reflect the number of words the
network has produced until time n, by adding the NoC-
Arriving[n] variable to it. This variable is set to 1 whenever
the producer NI produces a word TFwd time earlier in line 12.
In line 18 the current filling of the consumer NI buffer is de-
termined. If the difference is greater than zero, CIP [n%Tc]
(indicating if the consumer IP consumes at time n) is added
to IPCons in line 19. In order to model the credit mecha-
nism, we also add CIP [n%Tc] to the credit variable, which
effectively adds a credit whenever the consumer consumes a
word. Credits are sent back to the producer NI once there
is a slot available, which is checked in line 22. If a slot is
available, in line 23 the creditArriving array is updated to
reflect the arrival of a credit in the producer NI at time
n + TRev. Line 24 resets the credit counter after credits
have been sent. In line 26 the number of credits that are
due to arrive at the producer NI are added to the variable
CreditsReceived. Finally, the difference between the num-
ber of words produced by the network and the number of
credits received is calculated and the maximum is stored.

In Section 2 we mentioned that in each slot a packet
header needs to be sent before any data, unless a connection
was granted the previous slot also. We also mentioned that
the flow control credits are stored in a reserved part of the
packet header with a size of 5 bits [14], allowing only for a
maximum of 32 credits to be sent in each slot. While not
shown in Algorithm 1 for simplicity, these issues are taken
into account in our implementation.

The producer, NoC and consumer periodic behavior need
not be aligned. Therefore we shift two of the three input ar-
rays to and rerun the algorithm for each combination. Thus
we compute the minimum buffer size for all possible align-
ments of the periodic intervals. The time complexity of this
algorithm is therefore O(Ti×To×(lcm(Ti, To, Tc))) and thus
polynomial.

4.3 Other production patterns
In Section 3 we mentioned two other production patterns,

Figure 4: Relative buffer sizes for various designs
.

Figure 5: Effect of burst size on buffer-sizing.

the aperiodic production pattern and the multi-periodic pro-
duction pattern. Both of them can easily be incorporated
in the presented algorithm. For the aperiodic pattern, we
consider the worst case that can occur: in any time-interval
with a length of 2 periods (essentially a sliding window), a
maximum of three bursts may arrive. We then model the
aperiodic pattern periodically by making the period twice as
large and the burst three times as big. This can be reflected
in the producer array easily. Whereas this might seem like
a lot of overhead, in practice the period of the NI is much
smaller than the period of the IPs. During one period of the
IP block the NI might have 10 periods in which it consumes
data half of the time, thus requiring a much smaller buffer.

For the multi-periodic production pattern, we can con-
sider the highest level at which the production pattern is
periodic. For the video display system mentioned in Section
3 this would be the frame period. We can then create a
producer array with the length of this period, and then fill
in each of the bursts by setting values to 1 whenever a word
of data is being transferred in this period.

5. RESULTS
We have compared the method described in this paper

with the analytical method in [2] and with simulations of
the applications. We benchmark the buffer-sizing methods
using two different in-house SoC designs, a set-top box SoC
(D1) and a multimedia SoC for phones (D2). Each of these
designs contains a large number of IP cores (10+) and a
large number of connections (20+). In addition to these
two designs, we have generated a large amount of synthetic
designs divided in two classes: designs with a bottleneck IP
core such as a memory (D3) and designs with evenly spread
communication (D4). We calculated the buffer sizes for each
of these designs, using algorithmic and analytical methods,
and compare them to the maximum buffer filling observed
during a simulation.



Figure 6: Buffer size for multiple usecases.

The result is shown in Figure 4. As can be seen, the
algorithmic method performs significantly better than the
analytical method, on average the buffers are 84% smaller.
The primary reason for this big difference is that the an-
alytical method does not take the periods of the producer
and consumer and their alignment into account, but uses a
worst-case buffer requirement equal to the sum of the burst
sizes of producer and consumer (Di + Do) [2].

The maxima achieved during simulation are on average
another 38% smaller. This is because the simulation is just
a single trace, and the worst case alignment that the algo-
rithm computes does not always occur. Relying on a single
trace/simulation for buffer-sizing may result in buffers that
are too small. Also, the added consumer buffering to hide
the end-to-end flow-control round-trip delay is not always
used, since data in the consumer buffer may have been con-
sumed before new data arrives.

Figure 5 shows how the burst size affects the buffer sizes.
We have generated 100 synthetic usecases for each burst
size, and calculated the buffer sizes for each them. The fig-
ure shows the average buffer size per connection for both the
analytical and algorithmic methods compared to the maxi-
mum observed during simulation. When the burst sizes are
very large (128 bytes and more), the algorithmic method
only adds 10% to the buffering observed during simulation.
This is because increasing the burst size while keeping the
bandwidth increases the period too. Typically then within
a period only a single burst needs to be buffered, and the
flow control credits can be back before the beginning of the
next period. When the burst size is small however, the extra
buffering in the consumer buffer for flow control is typically
large compared to the burst size.

Figure 6 shows the average buffer size per connection for
each of the 8 usecases of a single SoC. The NI buffer size for
the entire SoC is the maximum buffer size of all usecases,
for each connection. The ”full design” column shows the re-
sult. Because connection buffers may be largest in different
use cases, ”full design” is larger (by 27%) than the largest
usecase (uc7).

The run time is typically in the order of a few minutes,
except when a design has connections with low bandwidth
requirements (less than a megabyte/second). The large peri-
ods result in a big lcm. Optimizing the algorithm to perform
better for such connections is part of future work.

6. CONCLUSIONS AND FUTURE WORK
NoCs that offer guaranteed services are critical for future

SoC design with real-time requirements. In order to pro-
vide these services to the IP cores, the NoC must contain
decoupling buffers to hide the difference in operating speed

between the IP core and the NoC. These buffers are the
dominant factor in NoC area and power. Minimizing buffers
while still matching the required application behavior is an
important problem.

In this paper we presented a novel design method for siz-
ing the decoupling buffers in the NIs of the Æthereal NoC.
The method exploits knowledge we have about the behav-
ior of the IP cores and the NoC and can reduce the buffer
area in designs on average by 84%, when compared to an
analytical worst-case method. The method also takes into
account the complicating effects of end-to-end credit-based
flow-control on the required buffer sizes. The method is fast
for all applications considered, and supports a wide variety
of application behavior. Finally, the method can take into
account multiple usecases for a single SoC design.

Future work includes research on the the effect of good
alignment between the IP cores and the NoC, therefore re-
ducing the buffering requirements even further.

7. REFERENCES
[1] A. Hansson et al.,Analysis of Message-Dependent Deadlock in

Network-Based Systems on Chip. In Philips Research
Technical Note 2006/00230

[2] O. P. Gangwal et al.,Building predictable systems on chip: An
analysis of guaranteed communication in the Æthereal network
on chip. In P. van der Stok, editor, Dynamic and Robust
Streaming In And Between Connected Consumer-Electronics
Devices, volume 3 of Philips Research Book Series, chapter 1,
pages 1–36. Springer, 2005.

[3] C. Hamann. On the quantitative specification of jitter
constrained periodic streams. In Proc. MASCOTS ’97, page
171, Washington, DC, USA, 1997. IEEE Computer Society.

[4] A. Hansson et al.,A unified approach to constrained mapping
and routing on network-on-chip architectures. In Proc.
CODES+ISSS, pages 75–80, Sept. 2005.

[5] J. Liang et al., aSOC: A scalable, single-chip communications
architecture. In Proc. PACT, 2000.

[6] M. Millberg et al.,Guaranteed bandwidth using looped
containers in temporally disjoint networks within the Nostrum
network on chip. In Proc. DATE, 2004.

[7] D. Gross, C. Harris Fundamentals of Queueing Theory
Wiley-Interscience, 1998.

[8] J. Boudec, P. Thiran Network Calculus : A Theory of
Deterministic Queuing Systems for the Internet Lecture Notes
in Computer Science, Springer, 2001.

[9] S. Bhattacharyya et al.,Software Synthesis from Dataflow
Graphs The International Series in Engineering and
Computer Science, Springer, 1996.

[10] M. Geilen, T. Basten, and S. Stuijk Minimising buffer
requirements of synchronous dataflow graphs with model
checking In Proc. DAC, 2005.

[11] P. Poplavko et al.,Task-level Timing Models for Guaranteed
Performance in Multiprocessor Networks-on-Chip In Proc.
International conference on Compilers, Architecture and
Synthesis for Embedded Systems, 2003.

[12] S. Murali and G. De Micheli. An application-specific design
methodology for STbus crossbar generation. In Proc. DATE,
2005.

[13] M. Krunzt, R. Sass, and H. Hughes Statistical characterisitics
and multiplexing of MPEG streams In Proc. Conference of the
IEEE Computer and Communications Societies, 1995.

[14] A. Rădulescu et al.,An efficient on-chip network interface
offering guaranteed services, shared-memory abstraction, and
flexible network programming. IEEE Transactions on CAD of
Integrated Circuits and Systems, 24(1):4–17, Jan. 2005.

[15] K. Goossens. et al., The Æthereal Network on Chip: Concepts,
Architectures, and Implementations. In IEEE Design and Test
of Computers, 22(5):21–31, 2005.

[16] M. Sgroi et al.,Addressing the system-on-a-chip interconnect
woes through communication-based design. In Proc. DAC,
pages 667–672, June 2001.

[17] I. Cidon and K. Goossens. Network and transport layers in
networks on chip. In G. De Micheli and L. Benini, editors,
Networks on Chips: Technology and Tools, The MK Series in
SoS, chapter 5, pages 147–202. Morgan Kaufmann, July 2006.


