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A B S T R A C T

Energy system optimization models (ESOMs) have been used extensively in providing insights to decision makers
on issues related to climate and energy policy. However, there is a concern that the uncertainties inherent in the
model structures and input parameters are at best underplayed and at worst ignored. Compared to other types of
energy models, ESOMs tend to use scenarios to handle uncertainties or treat them as a marginal issue. Without
adequately addressing uncertainties, the model insights may be limited, lack robustness, and may mislead de-
cision makers. This paper provides an in-depth review of systematic techniques that address uncertainties for
ESOMs. We have identified four prevailing uncertainty approaches that have been applied to ESOM type models:
Monte Carlo analysis, stochastic programming, robust optimization, and modelling to generate alternatives. For
each method, we review the principles, techniques, and how they are utilized to improve the robustness of the
model results to provide extra policy insights. In the end, we provide a critical appraisal on the use of these
methods.

1. Introduction

Energy models can be categorized in various ways [1]. A compre-
hensive review by Jebaraj and Iniyan [2] on existing energy models in
2006 classifies energy models into energy planning models, energy
supply–demand models, forecasting models, renewable energy models,
emission reduction models, and optimization models. Gargiulo and Ó
Gallachóir [3] classify long term energy models based on underlying
methodology (simulation, optimisation, economic equilibrium), analy-
tical approach (top-down, bottom-up, hybrid [4]), and sectoral cov-
erage (energy system [5], power system [6]).

As an important branch of energy models, energy system optimi-
zation models (ESOMs) can be characterised as technology-rich, opti-
mization models covering an entire energy system. ESOMs have been
widely used to offer critical climate and energy policy insights at na-
tional, global, and regional scales [7]. These models provide an in-
tegrated, technology-rich representation of the whole energy system for
analysing energy dynamics over a long-term, multi-period time horizon.
Optimal solutions are computed using linear programming techniques.
The results are used to explore the least cost energy system pathways

for an energy secure and low carbon future, offering insights on energy
transition, economic implications and environmental impacts. One of
the widely used ESOM model is the MARKAL/TIMES family of models
[8] developed and maintained by the Energy Technology Systems
Analysis Programme (ETSAP) under the aegis of the International En-
ergy Agency (IEA) since the 1970s. Other ESOM models include MES-
SAGE [9], ESME [10], OSeMOSYS [11] and TEMOA [12]. The sche-
matic of a typical ESOM model is shown in Fig. 1. The model inputs
including energy supply, energy demand and associated economic
parameters are shown on the sides, and the model outputs are shown on
the top and bottom.

While models are becoming increasingly more complex and so-
phisticated, projecting 50 or 100 years into the future is inherently
uncertain [13]. Edenhofer et al. [14] categorizes uncertainties into
parametric and structural. Parametric uncertainties arise due to lack of
knowledge about empirical values associated with model parameters,
and structural uncertainties refer to uncertainties in the model equations
that collectively define the model structure - examples of the latter
include the default ESOM formulation that ignores the heterogeneity
among decision makers in the energy system, the manner in which non-
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economic considerations factor into energy purchasing decisions, and
the role that politics, social norms, and culture play in shaping public
policy. Due to model complexity, computational intensity, and the time
pressure to produce relevant policy, many ESOMs have been used in a
deterministic fashion with limited attention paid to uncertainty. A re-
view of energy system models by Pfenninger points out that assessing
uncertainties has become one of the major challenges of ESOMs [15].
When formalizing best practices for using ESOMs, DeCarolis et al. [16]
highlight the importance of quantifying uncertainties. Ignoring un-
certainty is problematic as many of the issues that ESOM analyses
consider are deeply uncertain. They can be described as belonging to
the area of “post-normal science” [17], where both the uncertainties
and the decision stakes inherent in these issues are high. As Lempert
[18] points out, the long-term policy analysis conducted with ESOMs
requires decision making under deep uncertainty, where analysts and
decision makers do not know or agree on (1) the appropriate conceptual
models that describe the relationships among the key driving forces that
will shape the long-term future, (2) the probability distributions used to
represent uncertainty about key variables and parameters in the
mathematical representations of these conceptual models, and/or (3)
how to value the desirability of alternative outcomes (i.e. as they cor-
respond to different policy objectives). This underlines the importance
of modelers carrying out uncertainty analysis in a more systematic way
to improve the robustness of model outputs and their use for providing
policy insights. By systematic, we mean analysis that applies a formal
approach to a broad range of uncertainties, and which explicitly ad-
dresses the three aspects of deep uncertainty in order to provide addi-
tional policy insights beyond simple scenario analysis.

It is informative to survey the types of methods available for un-
dertaking uncertainty assessments in different types of energy,
economy, environment, and engineering (E4) models, for which a
number of reviews have been undertaken. Energy models are designed
with different end uses and research problems in mind. Due to the
differences in model paradigm and analytical approach across various
models, the uncertainty techniques available for each type of model
vary. Several existing reviews focus on certain types of models, such as
integrated assessment models [19–21], optimization models [22],
power systems models [23], environmental models [24], or energy
related issues such as climate change [25] and sustainable energy
planning [26].

Given an expectation of increased global efforts to limit global
warming to well below 2° after the adoption of the Paris Agreement,
ESOM models are likely to become critical tools that can supply an
evidence base for governments, research institutions and international
organizations exploring future pathways to deep decarbonization of
energy systems. Therefore, it is necessary to target specifically on

ESOMs and undertake a comprehensive review of the literature to
identify the application of uncertainty methods. The review was done
systematically, using a pre-defined search strategy. We identified four
main techniques that have been applied, including Monte Carlo analysis
(MCA), Stochastic Programming (SP), Robust Optimization (RO), and
modelling to generate alternatives (MGA). Besides introducing the
principles and formulations of each technique, the paper focuses on
discussing how the different techniques are applied to provide addi-
tional policy insights that cannot easily be obtained from deterministic
scenario runs. We also provide an appraisal and recommendations on
the choice of uncertainty techniques according to the policy issue and
the types of uncertainty in question. This paper is organized as follows.
In Section 2, we present the literature search methodology carried out.
Section 3 thoroughly reviews the four uncertainty techniques. Section 4
provides a brief discussion and concluding remarks.

2. Literature search

To capture the relevant literature on uncertainty analysis in ESOMs
we carried out a systematic literature search using a three-phase search
strategy based on the techniques described in [28].

The first phase was a broad literature search for all primary studies
possibly relevant to the research question using the electronic database
engines Scopus and ScienceDirect. The search terms used were grouped
into two lists as shown in Table 1. The first list includes keywords as-
sociated with ESOMs, and the second list includes those related to
uncertainty. The actual search strings applied were obtained by con-
necting two keywords from both lists with the Boolean “AND”. The
search terms contained both generic search terms and specific terms.
Generic terms such as “uncertainty”, “stochastic” and “energy model-
ling” ensured a wide set of result coverage without missing key studies.
More specific search terms were identified from previous search results
and included model names such as “MARKAL” and “ESME”, as well as
uncertainty techniques like “Monte Carlo analysis” and “stochastic

Fig. 1. Schematic of TIMES model [27].

Table 1
Search term lists for literature search.

Energy Model Related Uncertainty Related

Energy system model Uncertainty
Energy systems Stochastic
Energy modelling Sensitivity analysis
Energy modeling Monte Carlo analysis
MARKAL MGA
TIAM Stochastic programming
ESME Robust optimization
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programming”. Combining the two search term lists resulted in 42
search strings (e.g. “uncertainty and energy modelling”, “Monte Carlo
Analysis and MARKAL”). Search strings were searched for in titles,
keywords, and abstracts. The aggregated number of results from both
electronic databases totalled over 2100.

The second phase was to apply a filter on the initial search results to
exclude studies unrelated to ESOM type models i.e. comprehensive pan-
sectoral tools which address trade-offs through time and the transfor-
mation of whole energy systems towards sustainability. The search
terms we applied are relatively generic and have been used extensively
in many subject areas. For example, the term “energy system”may refer
to specific sectoral models exploring building systems, power trans-
mission systems or energy distribution systems (e.g. gas networks). We
filtered the results based on a case-by-case review of individual titles
and abstracts to rule out studies unrelated to ESOM models.

In the third phase, we closely examined the remaining studies, and
selected studies under review according to the following criteria:

i. First, the study explicitly addresses uncertainty as a core part of
analysis.

ii. Second, the energy system model used is an ESOM model covering
the entire energy system, and simulation models like LEAP [29] and
power systems models like PLEXOS [30] were excluded.

ii Third, the uncertainty analysis is carried out in a systematic manner
using formal techniques that are documented by the authors.

As the electronic databases used in our initial search may not have
covered all relevant studies, we also searched the reference lists from
relevant papers to look for publications that could have been missed by
the academic search engines.

As shown in Fig. 2, from the literature search, we found over 100
studies that featured scenario analysis using deterministic scenarios,
and only 34 studies applying formal uncertainty techniques, including
MCA (9 studies), stochastic programming (18 studies), robust optimi-
zation (3 studies), and modelling to generate alternatives (4 studies).

3. Systematic review

The literature search shows that only a minority of ESOM-based
studies apply systematic formal approaches to address uncertainties in
long-term energy pathways. The majority of ESOM studies use small-
ensemble scenario analysis and simple sensitivity analysis to handle
uncertainties, where a base case scenario is created, and then the im-
pacts of uncertain policy instruments or exogenous conditions are

analyzed through alternative scenarios with additional constraints and
assumptions. For example, Cabal et al. [31], Calderón et al. [32], and
Føyn et al. [33] applied additional climate policy constraints in emis-
sion targets and carbon taxes. Comodi et al. [34], Grah et al. [35] made
alternative technological assumptions in technology efficiencies and
technology costs. Gracceva and Zeniewski [36] constrained resource
potential on the supply side. Chiodi et al. [37] compared a number of
sustainable bioenergy scenarios. Czyrnek-Delêtre M.et al. [38] assessed
the impacts of including indirect land use change on mitigation path-
ways. Balash et al. [39], Borjesson et al. [40], Densing et al. [41],
Gritsevskyi and Schrattenholzer [42], and Fortes et al. [43] constructed
alternative scenarios by varying assumptions in different aspects of the
model. The alternative scenarios are sometimes accompanied with
sensitivity analysis in a “one-factor-at-a-time” (OAT) fashion, where
certain parameters are varied a few times while the other assumptions
are held constant. For example, sensitivity scenarios across a range of
studies are carried out by varying EV battery costs [44], emission
constraints [45,46], and discount rate [47]. The above examples are
typical of the kind of approaches to uncertainty analysis that are
commonly found in the ESOM literature.

As a simple method to implement and communicate, scenario ana-
lysis with a small-ensemble of cases has played a significant role in
providing policy insights in future years through exploring a spread of
narrative-based what-if scenarios, and has been critical in informing
policies to date on cost effective pathways towards an energy secure
[48] and low carbon [49] [50] future. On the other hand, due to a
number of limitations, this simple approach has received many criti-
cisms. Usher and Strachan [51] argued that deterministic methodology
is not suitable for complex and multi-faceted problems with inherent
uncertainties. Trutnevyte et al. [52] pointed out that simple determi-
nistic approaches to modelling often do not anticipate real world de-
velopments in the energy system. Morgan and Keith [53] argued that
scenarios with detailed storylines underestimate the range of possible
outcomes and lead to cognitive bias, which make them appear more
probable and plausible than they are in actuality. To improve the use of
scenarios for tackling uncertainties and informing decision making,
many authors have suggested innovative techniques [52,54–57], for
example designing scenarios to capture a wide range of uncertainties
while subsequently selecting a small subset of policy relevant scenarios.

3.1. Monte Carlo analysis

3.1.1. Principle
Compared to scenario and sensitivity analysis, Monte-Carlo Analysis

Fig. 2. Number of ESOM studies that address uncertainties based on our literature search in 2017.
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(MCA) is a more systematic way to address parametric uncertainties.
The principle of MCA is to propagate uncertainties by simultaneously
perturbing multiple uncertain input parameters represented by prob-
ability distributions. The collection of model outputs can be evaluated
statistically using a global sensitivity analysis (GSA) approach [58,59],
which can be defined as how uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources of
uncertainty in the model input. Saltelli and Annoni [60] proves the
statistical inadequacy of the “OAT” approach with a geometric ap-
proach and point out that GSA is a better practice in sensitivity analysis.

Carrying out a Monte Carlo simulation generally requires the fol-
lowing steps.

1. Assign probability distributions to multiple exogenous variables
2. Generate a sample of random values
3. Feed the sample into the model to compute a set of outputs
4. Iterate the procedure N times and collect N samples of model out-

puts
5. Evaluate sets of outputs using statistical techniques

The probability distributions are usually obtained through modelers'
judgement or expert elicitations. For example, in some studies [61] and
[62] the uncertain parameters are assumed to vary within a certain
range across the deterministic values in the base case scenarios. In
another [63], the results from expert elicitations are aggregated to
determine input range and probability distributions. In addition, the
interdependencies between inputs can be defined by covariance [64].

Once probability distributions are assigned to inputs, the model is
then run multiple times using one set of inputs for each run. Typically,
one hundred to several hundred runs are considered sufficient, but the
number could also be determined statistically. Generally, the number of
runs required is independent of the number of uncertain parameters,
and mainly depends on the level of confidence. For example, in [65]
Alzbutas and Norvaisa applied Wilks' formulas [66], and determined
that 93 runs are required to ensure an observation has a 95% prob-
ability (u =95%) to fall within the two sided 95% confidence interval
(v =95%) of output distribution, where n1 and n2 are the required
number of runs for one-sided and two sided tolerance limits respec-
tively:

≥ −n v uln(1 )/ln( )1

≥ − − + −n v ln n u n u(ln(1 ) (( / ) 1 ))/ln( )2 2 2

Morgan's formula [67] is used by Pye et al. [68], where c is the
deviation enclosing the 95% confidence interval, s is the sample stan-
dard deviation, and w is the requisite confidence interval width. The
calculation showed that 475 runs are required to estimate the sample
mean with less than 1% error:

>⎛
⎝

⎞
⎠

n 2cs
w

2

3.1.2. Applications
In our literature search, we found 9 studies that perform uncertainty

analysis through MCA. The research question, assumptions and key
insights gained in each study are summarized in Table 3, As a com-
putational intensive method, MCA method did not become widely
feasible for ESOM models until the rapid development of computing
power in the early 2000s. Seebregts et al. [69] first proposed its ap-
plication for use with ESOMs, and De Feber et al. [70] later demon-
strated its feasibility in MARKAL. The key policy insights delivered by
an MCA may include the likelihood in reaching a particular policy
target, which technologies are more robust in an uncertain future, and
insights into the relationships between the model inputs and outputs.

One such application explored how system uncertainties might af-
fect whether a specific carbon price level may or may not deliver

emission reductions in the longer term. With the stochastic UK energy
system model ESME, Pye et al. [68] found that 42% of runs failed to
deliver the 80% carbon reduction target in 2050 at the reference carbon
price of £421/t CO2. The uncertainty can be mitigated by increasing the
carbon price. A £30/tCO2 increase in carbon price ensures a 100%
probability in reaching the 2030 target, while controlling the prob-
ability to meet the 2050 target requires much larger carbon price in-
creases.

The results can also be used to identify the most robust technologies
under uncertainty. High penetration over a wide range of outcomes is a
strong indication of robustness. A technology can then be categorized as
a “no hoper”, a “marginal contender” or a “no regret option” [10]. Yeh
et al. [71] analyzed the economic viability of hydrogen fuel cell ve-
hicles. By plotting histograms of output distributions, it was determined
that this technology is not viable in general as it has some level of
penetration only in 6.4% of all simulations. The characteristics of the
runs in which this technology is deployed demonstrated that this
technology can be viable if its cost is reduced and oil prices and com-
peting vehicle technology costs become higher. Lethtveer and Hedenus
[62] explored the role of nuclear technologies in climate mitigation cost
reduction. The histogram of MCA result shows that compared to con-
ventional nuclear technologies, investing in advanced nuclear is more
likely to achieve higher cost savings.

Linear optimization models like ESOMs are often criticized as
“black-box” due to their lack of transparency [63]. Characterization of
the relationships between inputs and outputs helps improve model
transparency and unpacks the model structure. The scatterplot is a good
starting point that provides visualization of the relationships between
inputs and outputs. In [61], Hedenus et al. analyzed changes in energy
supply and their effect on the deployment of transportation technolo-
gies. A scatterplot showed that battery cost strongly influences the
electrification of road transportation. Electricity is used in the transport
sector only if the battery cost is significantly reduced. However, it
should be noted that the scatterplot approach is qualitative in nature
(for interpretation of outputs) and requires human expertise to identify
relationships [72].

To quantify the input-output relationships, GSA can be carried out
using statistical methods such as regression analysis. For example,
Johnson et al. [72] calculated correlation coefficients, where large
correlation coefficients between a pair of inputs and outputs indicates a
strong linear relationship. Bosetti et al. [63] carried out GSA to identify
the key drivers of uncertainties and used the sign of change to de-
termine whether the variation of one input parameter causes an in-
crease or decrease in model output. Pye et al. [68] performed a mul-
tivariate linear regression and used standardized regression coefficients
to rank the uncertain input factors. Biomass availability, gas prices and
nuclear capital costs were identified as critical uncertainties for
achieving emission reduction targets. In an analysis on the small and
medium nuclear reactor viability in Lithuania, Alzbutas and Norvaisa
[65] ranked the contribution of input parameters using partial corre-
lation coefficients. The results showed that the discount rate has the
strongest influence on the total system costs. Opposite to the modeler's
expectation, the nuclear fuel price actually has the weakest influence on
total system costs.

Table 2
Commonly used acronyms for stochastic programming.

Full Name Acronym

State of the world SOW
Minimax regret criterion MMR
Expected value of perfect information EVPI
The cost of ignoring uncertainty ECIU
Expected loss EL
value of the stochastic solution VSS
value of policy coordination VPC
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3.1.3. Limitations
Even though the MCA approach is not conceptually difficult and

does not require modifications in model structures or mathematical
formulations, performing MCA for ESOM models suffers computation-
ally from a heavy computational burden. ESOM models generally have
thousands of variables, and take much longer processing time compared
to simulation models. Typical MCA requires at least hundreds of runs to
guarantee uncertainty coverage, making it impractical for very large
and complex models. Sampling techniques can be used to reduce the
number of runs required for statistically significant results. For ex-
ample, the Latin Hypercube Sampling technique [73] evenly samples
from the probability distributions, and can be used to generate a rela-
tively small sample set that represents the real variability. Importance
sampling [74] techniques used by Bosetti et al. [63] sample from a
different distribution and renormalize back to the original one. In this
way, the areas of distributions with high interest but low probabilities
can be sufficiently covered.

Another challenge for MCA is to obtain reliable probability dis-
tributions for uncertain inputs. The results from MCA can be very
sensitive to distribution assumptions, and different distributions may
give very different results even if they have the same mean and variance
[75]. However, knowledge concerning the uncertainty of model inputs
is often limited. It is unreliable to derive distributions based on his-
torical data because many uncertainties in ESOM studies have a long
term, and low frequency, and do not tend to occur repeatedly. Expert
elicitation [76,77] can provide a foundation for assessing future un-
certainties to support decision-making. It is important that expert eli-
citations to be carried out in a rigorous way and address the choice of
expert, potential biases and overconfidence, convergence of different
opinions, and trustworthiness in the results [78,79].

3.2. Stochastic programming

MCA is able to provide additional insights compared to conven-
tional analysis, but each scenario is assumed equally likely and the
results do not suggest a single best course of action. In addition, the
model assumes that all future uncertainties are resolved at the current
time with perfect foresight. This “learn now then act” approach di-
verges with reality since policy makers need to make decisions with
uncertainties revealed only at a later time in an “act now then learn”
fashion Sequential decision making using stochastic programming
provides one single best course action that accounts for future un-
certainties. The acronyms used in this section are provided in Table 2.

3.2.1. Principle
Stochastic programming considers multiple unresolved future un-

certainties and determines optimal strategies by striking a compromise
between the consequences of multiple ways of “guessing wrong” [80].
The stochastic result represents a hedging strategy that provides one
single best course of “here and now” actions [81]. After the resolution
time at which the actual values of uncertain parameters are revealed,
the hedging strategy produces as many contingent strategies as the
number of possible outcomes [82]. Each strategy is a recourse against
the possible outcomes and the “wait and see” decisions can be made
accordingly.

The formulation of the widely used expected cost criterion [83] can
be illustrated in Fig. 3, which shows an event tree under uncertain
carbon mitigation targets and energy prices. The model time horizon is
divided into three time stages by two resolution times. The possible
future outcomes in each stage are represented by branches known as
“states of the worlds” (SOWs). The possible realizations of uncertain
parameters are defined over the SOWs, while the deterministic para-
meters remain the same across all SOWs. The likelihood for each SOW is
defined by the probability weightings shown along the branches. The
optimal strategy is calculated by minimizing the expected value of total
system cost over all SOWs using the formulation as shown below [83].

∑ ∑
∈ ∈

minimize C t s X t s p t s( , )* ( , )* ( , )
s S t t T( )

≥Subject to A t s X t s b t s( , )* ( , ) ( , )

• t =time period

• T= set of time periods

• s =SOW index

• S (t)= set of SOW index for time period t

• C(t,s) =cost row vector

• X(t,s) =decision variables

• p(t,s) =probability weightings

• A(t,s) = linear programming coefficient matrix

• b(t,s) =right hand side column vector

Anticipating a range of possible scenarios for analysis with sto-
chastic programming is often possible, but it is difficult to reach a
consensus on the likelihood of each outcome occurring. One common
way to carry out the analysis under ignorance about the probability of
future outcomes is to apply the Laplace expected cost criterion [80],
which simply assigns equal probability weightings at each stage. Al-
ternatively, the minimax regret criterion (MMR) can be applied [80].
The difference between the total system cost of the hedging strategy
solution and the cost of the corresponding perfect foresight scenario is
defined as the “regret”. The stochastic programming formulation under
MMR determines the hedging strategy by minimizing the total regret
between the hedging strategy and all perfect foresight scenarios.
Compared to the expected cost criterion, the results under MMR mainly
depend on the extreme SOWs with highest and lowest values. This
approach can thus be considered as a type of risk aversion technique.

Several metrics can be calculated to evaluate the uncertainties
quantitatively. For example, the expected value of perfect information
(EVPI) [51] represents the expected cost caused by uncertainty. It can
also be interpreted as the expected cost savings if all uncertainties are
removed and all future values are known with certainty right now. To
calculate EVPI, the weighted average cost of the deterministic perfect
foresight scenarios CostPFi is calculated. Then the cost of the hedging
strategy Costhedge is determined using SOWs corresponding to the de-
terministic scenarios with the same set of probability weightings pi. The
cost of the hedging strategy is always higher than the weighted average
cost of the deterministic scenarios since it poses one additional con-
straint, namely that only one pathway is allowed before the resolution
time. The difference in the hedging strategy and the expected cost of the
deterministic scenarios is the EVPI.

∑= −EVPI Cost p Costhedge
i

n

i PFi

The cost of ignoring uncertainty (ECIU) [81] estimates the cost of
“guessing wrong”. Suppose that the decision maker faces a number of J
possible future outcomes each with probability pj. Prior to the resolu-
tion time, the decision maker takes a naïve pathway, which simply
assumes certain deterministic values for uncertain parameters. At the
resolution time, the actual outcome j is revealed, and the decision
maker needs to adjust his decisions by re-optimizing the pathway. The
conditional cost of following the naive pathway and then adjusting the
strategy based on the jth outcome is Costj naive. The ECIU is the differ-
ence between the total weighted conditional cost and the hedging
strategy Costhedge.

∑= −
=

p Cost CostECIU
j

J

j j naive hedge
1

The ECIU is also referred to as the expected loss (EL) metric [84] if
the naïve strategy is to follow one of the J pathways from the begin-
ning. The EL of following the kth pathway until resolution is:
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∑= −
=

EL p Cost Costk
j

J

j j k hedge
1

Another metric similar to ECIU that measures the incremental cost
of the stochastic solution is the value of the stochastic solution (VSS)
[85], where the naïve strategy prior to the resolution date uses the
expected values of the range of deterministic scenarios.

3.2.2. Applications
Stochastic programming was originally proposed by Dantzig [86]

and later expanded by Wets [87] and Birge [85]. This approach has
been applied widely after being incorporated into an enhanced version
of MARKAL [87] and MESSAGE [89] in the 1990s and later in the
TIMES model [83]. We have reviewed 21 stochastic programming
studies with ESOMs, summarized in Table 4.

Besides providing a hedging strategy and recourse actions, most
stochastic programming studies compare the trend of the hedging
strategy and perfect foresight pathways, and conclude that the hedging
strategy differs from all perfect foresight pathways. In addition, the
hedging strategy does not represent the average or the interpolation of
perfect foresight strategies, and always performs better in terms of
system costs compared to a naïve approach that ignores future un-
certainty. This implies that stochastic programming provides insights
beyond deterministic scenarios.

Comparing hedging strategies and perfect foresight strategies also
helps identify “super-hedging” actions, which are robust technologies
that appear more in the hedging strategy than any of the perfect fore-
sight strategies. For example, Labriet [90] analyzed global climate
stabilization targets under uncertain GDP growth and temperature in-
crease limits. Natural gas was identified as the most significant hedging
strategy in China with 50% higher penetration in the hedging strategy
than perfect foresight scenarios. Implementing gas is a “middle-of-the-
road” pathway as it has moderate amount of emissions compared to
other fossil fuels and relatively low capital costs compared to low-
carbon options, and can be modified without severe economic con-
sequences.

With the quantitative metric EVPI, Usher and Strachan [51] eval-
uated the costs of uncertainties in fossil fuel prices and biomass avail-
abilities for the UK. The EVPI is very high under uncertain fossil fuel
prices, indicating a very high cost of uncertainty. The high EVPI is
mainly due to the difference in near-term actions chosen under the

perfect foresight and hedging strategies. The uncertainty cost can be
reduced by including novel mitigation options, which improves the
flexibility of the energy system against changes in fossil fuel prices. The
ECIU (or EL) is not as widely used as EVPI, but it quantifies the eco-
nomic value of the hedging strategy compared to the expected value
associated with a naïve approach. For example, Kanudia and Loulou
[91] performed a GHG abatement analysis of Quebec and Ontario and
calculated the EL for all four perfect foresight strategies, and concluded
that the high EL demonstrates the significance of cost savings in fol-
lowing the hedging strategy. Hu and Hobbs [81] used VSS to quantify
the cost of ignoring uncertainty in GHG policy, and advised energy
companies to consider GHG limits when making decisions. Another
closely related metric, the value of policy coordination (VPC), was also
calculated to measure the difference between a naïve strategy that as-
sumes no future policy change, and a strategy that expects future policy
modifications announced by policy makers. VPC showed that avoiding
unexpected policy changes and providing early information on CO2

caps and pollution laws would result in significant cost savings.

3.2.3. Limitations
Stochastic programming is able to provide a single hedging strategy

that is highly desirable by decision makers; however, this approach also
suffers from similar issues as MCA in terms of calculation burden and
the requirement of uncertainty-related information. The processing
time for MCA increases almost linearly with the number of iterations,
but does not increase with the number of uncertain parameters.

By contrast, stochastic programming suffers from the infamous
“curse of dimensionality” [92], where the number of SOWs increase
exponentially with the number of uncertain parameters and the number
of stages. Since the implementation of stochastic programming is based
on directly solving equivalent deterministic problems, only a small
subset of uncertain parameters can be analyzed. For example, stochastic
MARKAL limits the number of stages to two and number of scenarios to
nine [85], and the stochastic version of the TIMES model is in practice
limited to a small number of scenarios [83]. All studies we reviewed
have 2 or 3 time stages and most of them have no more than 10 SOWs.

3.3. Robust optimization

3.3.1. Principle
An alternative approach called “Robust Optimization” can be used

Fig. 3. Example of a three-stage Event Tree.
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to avoid the computational burden and consider a large set of uncertain
parameters while remaining numerically tractable. The uncertain
parameters have set-based definitions and require minimal uncertainty
information. Only the range of variation is required for each parameter
and no probability distribution is needed. The principle of robust op-
timization is “immunizing a solution against adverse realizations of
uncertain parameters within a given uncertainty set.” [93] The for-
mulation of robust optimization may take a few different forms. Below
is the formulation used by Labriet and et al. [93] based on Bertsimas'
[94] approach:

Consider the linear problem,

�

⎧
⎨
⎩

≤
∈ +

c x
s t Ax b

x

min
. .

T

The constraint coefficients matrix A represent the exogenous model
parameters such as energy prices and investment costs. It is assumed
that only the coefficients ∈ ∈a i I j J( , )i j, in matrix A are affected by

uncertainty. By setting = + ˆa a z a zi j i j i j i j i j, , , , , , −z ε [ 1, 1],i j, the nominal

value ai j, of the coefficient ai j, is allowed to vary symmetrically byˆai j, .
The linear problem incorporates these uncertain coefficients and re-
formulates into another linear problem called the equivalent robust
counterpart as shown below.
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Γ is the budget of uncertainty that controls the total number of para-
meters that are allowed to vary. When =Γ 0 the constraints are
equivalent to that of the nominal problem without uncertainties, and

= +Γ I J represents the worst case problem where all uncertain
parameters take extreme values. By setting different Γ values the
modeler is able to control the level of pessimism, where the most pes-
simistic case equals the worst-case scenario.

3.3.2. Applications
The robust optimization technique was first developed Soyster [95]

and was subject to numerous subsequent development [94,96,97].
Babonneau et al. [98] first proposed the use of this method in en-
vironment and energy optimization models. We reviewed 3 studies that
applied this technique to ESOMs. The main policy insights include the
cost to hedge against uncertainties, key hedging technologies, and
quantification of uncertainty source importance.

Lourne [99] used robust optimization to analyse the impact of en-
ergy technology cost uncertainty for the French transport sector in the
MIRET model, which was developed as an instance of the TIMES model.
The cost deviation was set to 15% and the cost budget Γ was varied
from 0% to 50%. The results show that with increasing uncertainty
budgets, the model choose technologies with less cost uncertainty, and
therefore result in a more diversified technology mix and a rise in total
system costs to hedge against uncertainties.

A related study Labriet et al. [93] analyzed the impacts of un-
certainties in investment costs and primary energy costs, including
fossil fuels and biomass on carbon mitigation under the same modeling
framework. It was assumed that 120 uncertain parameters can rise by
10% and a sensitivity analysis was performed on the cost budget. The
results showed that the total system cost increased by up to 11%
compared to scenarios without uncertainty considerations. The cost
increase can be interpreted as the cost of robustness to hedge against
uncertainties in technology costs. Scenarios with higher uncertainties
have a more diversified fuel usage, which proves that diversification is a
good hedging strategy. Technologies like biofuel have higherTa
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penetration in scenarios with higher uncertainty budgets. These tech-
nologies can be considered robust hedging technologies against cost
uncertainties. The shadow values of the robust counterpart measure the
impacts of uncertain parameters on the optimum objective function,
and quantify the relative importance of uncertain sources. The costs of
primary energy were found to be the most critical uncertainty sources.

In a methodologically oriented paper, Babonneau et al. [100] de-
monstrated the approach in an energy security analysis of Europe with
the TIAM-world model. The formulation specifies the desired level of
diversification in energy supply, import dependency, and the reliability
target representing the probability to guarantee energy security. A key
policy insight is that with an extra 0.7% of total energy cost, near 100%
reliability of EU energy supply could be guaranteed. The reliability
improvement is achieved mainly through shifts from imports to in-
digenous resources; a relatively small contribution comes from ex-
panding the capacity of energy import channels. In addition, four
quantitative metrics were used to show that increasing reliability sig-
nificantly reduces the concentration of supply sources. The contribution
from expanding the capacities of energy import channel to reliability is
relatively small.

3.3.3. Limitations
Robust optimization overcomes some of the shortcomings of MCA

and stochastic programming approaches by offering a parsimonious
way of calculating risk-averse solutions However, it loses some of the
merits that the other two approaches could bring. Robust optimization
can identify which strategies are more robust under uncertainties, but it
fails to provide a unified hedging strategy like stochastic programming.
It also contributes to the better understanding of which uncertainty
sources have greater impacts on the model results; however, when
probability distributions and covariance among inputs can be de-
termined, the additional information related to uncertainty can be po-
tentially better captured by MCA.

3.4. Modelling to generate alternatives

3.4.1. Principle
The uncertainty techniques we discussed in previous sections, in-

cluding sensitivity analysis, MCA, stochastic programming and robust
optimization, can only address parametric uncertainties. Analysts have
repeatedly called for more focus on structural uncertainties in ESOMs
[12,52,68], though efforts have been minimal. Modelling to generate
alternatives (MGA) is a technique that can help address structural un-
certainties.

Conventional ways to reduce structural uncertainty include using
larger and more complex models to better represent real world dy-
namics, comparing different models [101], and subjecting model re-
lationships to expert review [102]. DeCarolis [103] noted that in-
creasing model complexity does not eliminate structural uncertainties.
Since ESOMs attempt to model a highly complex reality under deep
uncertainty, structural uncertainties and unmodeled objectives will al-
ways be present. As a result, model solutions lying within the feasible,
near optimal region may be more desirable than the optimal solution
when unmodelled considerations, such as unforeseen or unmodelled
risks, are brought to bear on the scenario.

The principle of MGA is to relax the optimal solution, and use a
modified model formulation to search the near-optimal solution space
for alternative solutions that are maximally different in decision space.
MGA can be broadly interpreted as any method used to systematically
search the near optimal solution space for alternative solutions. The
Hop-Skip-Jump (HSJ) method, proposed by Brill et al. [104], represents
one such MGA approach:

Step 1. Solve the original problem to obtain an initial optimal so-
lution.
Step 2. Obtain an alternative solution using the formulation:

∑minimize X
kεK

k

⇀ ≤ ∀Subject tof x T j( )j j

⇀ ∈x X

Where

K =set of indices of the decision variables that are nonzero in all
previous solutions
X =set of feasible solutions based on the "technical" constraints of
the model.⇀ ∈x X implies that the constraints of the original pro-
blem hold for the alternative solution

⇀f x( )j = jth objective function in the original formulation
Tj =Target value for the jth modeled objective

This new formulation is designed to search for highly different so-
lutions in decision space by minimizing the weighted sum of the deci-
sion variables that appeared in previous solutions. Each target value Tj
is calculated by adding a specified amount of slack to the objective
function value obtained from Step 1. Applying the adjusted objective
function as a constraint ensures that the alternative solution is within a
prescribed inferior region near the original optimal solution.

Step 3. Iterate the reformulated optimization in Step 2 to generate a
series of alternative solutions that are different from all previous
ones. The new objective function minimizes the sum of all nonzero
variables in all previous solutions.
Step 4. Terminate when no significant changes to decision variables
are observed.

The MGA algorithm should be adapted to suit the analysis at hand,
and should consider the form of the revised objective function, the
updating procedure for objective function coefficients, and the chosen
slack value. The MGA-based results should be screened for plausibility
and interpreted carefully in light of the study objectives.

The alternative solutions produced by MGA reveal possible future
options that may be otherwise overlooked. As decision makers may be
concerned with factors outside of the modelling scope, such as political
tractability or equity, the alternative strategies may be preferable and
more policy relevant than the optimal solution in the base case. In
addition, as the alternative solutions are generated by a computer al-
gorithm, MGA alleviates the cognitive bias issues associated with sce-
nario analysis, whereby detailed storylines underlying different sce-
narios can appear cognitively compelling despite the underlying
uncertainty [53]. Finally, MGA can help unmask “knife edge” solutions
in the base case, where slight perturbations to input assumptions can
produce very different solutions.

3.4.2. Applications
MGA is an emerging and innovative method for ESOMs and we have

reviewed four related studies. DeCarolis [103] first introduced this
method for energy models, then later applied it to the TEMOA model
[105] to explore alternative energy futures in the US electric and light
duty transport sectors. Four sets of MGA runs with slack values re-
presenting 1%, 2%, 5% and 10% energy supply cost were performed,
and the total energy output of technologies over the model horizon
were chosen as decision variables in the MGA runs. Compared to the
base case scenarios and carbon-constrained scenarios, the MGA sce-
nario results demonstrate a more diverse set of deployed technologies,
and the variety increases with the slack level. Technologies such as
IGCC, biomass, and wind have significantly higher penetration in MGA
scenarios, indicating that they could play a significant role in achieving
a low carbon future. Trutnevyte [106] employed the EXPANSE (Ex-
ploration of Patterns in Near-optimal energy ScEnarios) model to
evaluate the economic potential of renewable energy sources for heat
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supply, and demonstrated the interactions among different energy
sources. The EXPANSE model was also used to explore 800 different
pathways for the UK power sector using a combined approach of MGA
and Monte Carlo sampling [107]. The analysis considers a large number
of uncertainties and produces ranges of generation capacity and in-
vestment cost in 2050. The multiplicity of near-optimal solutions with
different power generation mixes supports the current UK policy of
maintaining a liberalized and technology neutral electricity market.
Price and Keppo [108] implemented a revised MGA algorithm into the
TIAM-UCL model that produced solutions that are maximally different
in terms of cumulative primary energy consumption by fuel type.

3.4.3. Limitations
The MGA results depend on the slack value, which is subjectively

chosen. The alternative scenarios represent plausible future alter-
natives, but associated probabilities are not attached to the scenarios.
Therefore, the findings produced from this approach do not yield a
unified, near-term decision making strategy that accounts for future
uncertainty. In addition, even though the alternative scenarios can be
valuable in outlining future possibilities, they may also be used to

justify pre-existing policy preferences. Finally, MGA allows modelers to
consider structural uncertainties in a limited way. Other approaches to
address structural uncertainty should be considered, particularly ones
that integrate insights from models with fundamentally different
structures.

4. Discussion and conclusion

The value of energy system modelling is on highlighting policy
implications rather than providing absolute numbers - providing in-
sights rather than answers. Compared to conventional scenario ana-
lysis, assessing uncertainties in a systematic manner helps improve the
robustness of results and provide additional insights associated with
multiple outcomes. In this paper, we carried out a comprehensive re-
view of uncertainty techniques that have been applied to ESOM models:
Monte Carlo analysis, stochastic programming, robust optimization,
and modelling to generate alternatives.

A key finding arising from this review is that each of the four un-
certainty analysis techniques has its own focus, advantages and lim-
itations, and informs different aspects of decision-making. Choosing a

Fig. 4. Uncertainty technique selection flowchart.
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specific uncertainty technique should involve consideration of issues
such as data availability, the uncertainty space to be covered, and the
type of policy questions to be answered. Fig. 4 provides guidance and
recommendations for modellers in the form of a flow chart that sum-
marizes the key policy insights for each technique and a basis for se-
lecting which uncertainty technique to use. It is also worth noting that
uncertainty analysis approaches are not mutually exclusive and should
be used in a complementary manner to provide well-rounded analysis.

MCA can be applied when information on probability distributions
could be obtained through existing studies or expert elicitation. In ad-
dition to quantifying the feasibility in reaching policy targets and
identifying robust technologies, MCA can also be run in tandem with
GSA to map the relationships between inputs and outputs, which im-
proves model transparency and unpacks model structure. As the only
approach for sequential decision-making, stochastic programming is
best used when the number of uncertain sources under concern is small.
It can be used to provide a single optimal hedging strategy that can help
guide near-term action. Such an approach avoids the issue with multi-
scenario approaches, where the scenario ensemble may leave the de-
cision makers in a quandary. Robust optimization is a computationally
efficient approach for handling uncertainties associated with a large set
of parameters while requiring minimal information on the distribution
of uncertain parameters. It computes the cost of hedging against risk at
a prescribed level of uncertainty, and indicates which technologies are
critical in reaching the desired policy targets. MGA is currently the only
systematic approach that addresses structural uncertainties, and can be
combined with other approaches.

Even though it is widely accepted that uncertainty is a key issue for
energy models, the results of our literature review indicate that the
number of studies that actually apply formal techniques to address
uncertainties for ESOMs models is limited. For example, info-gap de-
cision theory (IGDT) [109–111] is a well-established uncertainty ana-
lysis method for the power system; however, none of the ESOM studies
have applied IGDT, and only three studies used the alternative ap-
proach of robust optimization. One possible cause is the difficulty and
additional efforts required in modifying model formulations and de-
veloping stochastic model infrastructure. The popularity of uncertainty
analysis was found to be strongly related to the stochastic features that
the model provides. Most of the stochastic programming analysis stu-
dies have been carried out with the MARKAL/TIMES model generators
using the built-in stochastic programming feature, but only a few MCA
studies have been carried out with these models. The application of
MCA with the TIMES family of models may gain popularity if compu-
tational features similar to that in ESME or PROMETHEUS models is
provided for queueing, processing and storing the model runs. Emer-
ging techniques such as robust optimization and MGA also require
considerable modifications in the mathematical formulation, which
raises difficulties for modelers who want to apply these methods in their
analysis. Deploying systematic uncertainty approaches for additional
policy insights is important and therefore we recommend incorporating
features that enable stochastic programming analysis into new or ex-
isting models, since these may encourage model users to go beyond
simple scenarios.

Besides developing stochastic features for existing models, future
research on uncertainty modelling should consider a broader range of
uncertainties, explore new techniques to treat these uncertainties, ad-
dress uncertainty of pertinent climate change issues, such as explora-
tion of uncertainty around keystone technologies, and reflect on un-
certainties associated with policy, politics and societal factors [112].
Currently, the majority of ESOM studies rely on historical data or expert
judgements to address uncertainties for existing technologies such as
electric vehicles and bioenergy. The well below 2° target set by the Paris
agreement necessitates the analysis of more ambitious national and
global climate targets. ESOM models should therefore further consider
feasibility and uncertainties of emerging technologies such as direct air
capture, as well as more speculative technologies made cost-effective

through potential technology breakthroughs. In addition, policy un-
certainties are increasingly relevant after the US withdrawal from the
Paris Agreement [113]. Rather than assuming a perfect foresight over
the next several decades, modellers should be aware that decisions can
be made myopically [114], and constantly seek better ways to properly
assess and communicate uncertainties in policy changes.
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