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Boundaries as an Enhancement Technique for
Physical Layer Security

Konstantinos Koufos and Carl P. Dettmann

Abstract—In this paper, we study the receiver performance
with physical layer security in a Poisson field of interferers. We
compare the performance in two deployment scenarios: (i) the
receiver is located at the corner of a quadrant, (ii) the receiver is
located in the infinite plane. When the channel state information
(CSI) of the eavesdropper is not available at the transmitter, we
calculate the probability of secure connectivity using the Wyner
coding scheme, and we show that hiding the receiver at the
corner is beneficial at high rates of the transmitted codewords and
detrimental at low transmission rates. When the CSI is available,
we show that the average secrecy capacity is higher when the
receiver is located at the corner, even if the intensity of interferers
in this case is four times higher than the intensity of interferers
in the bulk. Therefore boundaries can also be used as a secrecy
enhancement technique for high data rate applications.

Index Terms—Interference modeling, physical layer security,
stochastic geometry.

I. I NTRODUCTION

With the forecasted deployment of indoor ultra-dense wire-
less networks, it becomes important to develop models that
consider the impact of boundaries in the performance anal-
ysis [1]–[6]. It is well-known that close to the boundary,
the connection probability degrades due to isolation [1], [5],
but it improves in terms of interference [2], [4]. Analytical
models considering finite deployment areas have so far been
used to study spatial and temporal interference aspects [2]–
[4], optimize the base station density in cellular networks [2],
assess millimeter-wave network performance [6], etc.

Physical layer security (PLS) without exchanging secret
keys was first proposed by Wyner [7], and refers to the
protection of information messages against eavesdropping with
the aid of channel coding. PLS would be well-suited for
devices with light computational power, e.g., in certain types
of sensor networks, where conventional security techniques
fail [8]. Nevertheless, the impact of boundaries on connectivity
and rate with PLS has so far received limited attention.

A great deal of research has adopted a type of random
geometric graphs, known as the secrecy graph [9]–[11],
and studied the Probability Distribution Function (PDF) of
the in- and out-connectivity degree with PLS, the isolation
probabilities, percolation threholds, etc. Another category of
research considered the impact of interference on PLS, and
applied stochastic geometry to study the performance for
the typical user in networks with infinite extent [12]–[15].
In [12], the trade-off between the connection and the secrecy
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probabilities in cellular systems is studied, and in [13] it
is shown that cluttered environments and blockage can be
helpful in meeting secrecy constraints. In [14], secure vehicle-
to-vehicle communication is considered; a subset of antennas
is used for beamforming towards the receiver, while the rest
send jamming signals towards other directions. In [15], relays
forward the data between the sensors and the sinks, and their
density is optimized for maximizing the average secrecy rate.

A. Related work− Secrecy enhancement techniques

In general, protecting the information messages against
eavesdropping with PLS comes along with a cost on the con-
nection probability [12] and the throughput [16]. To mitigate
the cost, secrecy enhancement techniques may be applied,
especially when the density of eavesdroppers is high [17],
[18]. When the channel state information (CSI) of the in-
tended receiver is known, eigen-beamforming can be used to
maximize the Signal-to-Noise Ratio (SNR) of the intended
channel [19]. Eigen-beamforming outperforms sectoring at the
cost of knowing the CSI instead of the direction [19]. Secrecy
can be further enhanced when artificial noise is transmitted to
the direction of the other sectors or to the null space of the
intended channel [20]. Combining artificial noise transmission
with multi-antenna techniques is also considered in [18]. In
this study, the power levels of the information signal and the
artificial noise are allocated to minimize the secrecy outage
probability. The transmission of artificial noise works particu-
larly well for secrecy enhancement, when the eavesdropper has
fewer antennas than the transmitter, otherwise transmission of
artificial fast fading achieves better secrecy because it prevents
the eavesdropper from estimating the channel [21]. With single
antenna equipment, it might be possible for the receivers
to transmit jamming signals while receiving, provided they
possess good self-interference cancellation mechanisms [24],
[25]. Artificial noise and beamforming come with a power
and computational cost for the transmitter. Other alternatives
for secrecy enhancement include multi-user scheduling [22],
[23] which enhances the capacity of the main channel while
leaving the capacity of the wiretap channel unaffected, and
cooperative diversity which uses the best relay(s) in terms of
secrecy capacity to forward the information messages [22].
Finally, when the transmitter can obtain some information
about the location of the eavesdroppers, guard zones can be
constructed; each transmitter will send confidential informa-
tion when its guard zone is free from eavesdroppers, and the
secrecy transmission capacity, especially under high security
constraints, is enhanced [16].

The information theoretic approaches [9]–[11] and the
analysis using stochastic geometry [12]–[20] assume that the
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locations of the transmitters and the eavesdroppers follow the
uniform distribution in the infinite plane. To the best of our
knowledge, the only available studies considering the impact
of boundaries on secrecy performance are [26], [27]. The study
in [26] neglects the interference effects, and shows that the
mean in- and out-connectivity degrees with PLS in a quadrant
are not necessarily equal, unlike in the infinite plane. The study
in [27] considers a transmitter-receiver pair and a Poisson
Point Process (PPP) for the locations of eavesdroppers inside
an L-sided convex polygon. The secrecy rate is studied for
differentL’s. Interference effects are neglected too.

B. Related work− Performance of wireless networks in
confined areas

The performance evaluation of wireless networks with ir-
regular structure in the presence of interference has been
mostly asymptotic, assuming a PPP for the locations of base
stations and users in a space with infinite extent [28]. In
practice, wireless networks are limited by physical boundaries
once deployed indoors, and they may also offer services over
limited locations, e.g., public outdoor hotspots. Finite areas
would naturally complicate the analysis because the notion of
typical receiver is no longer valid; the performance becomes
dependent on the location and the shape of the area. At
the same time, the asymptotic assumption underestimates the
performance for networks with low densities and also near the
boundaries, where the interference would be naturally less [2].

The moment generating function of interference due to a
Binomial Point Process at the origin of ad-dimensional ball
is derived in [29]. Over there, it is also shown that the PDF
of interference converges to Gaussian for a large number of
interferers. The study in [30] extends the statistical analysis of
interference for arbitrarily-shaped areas. When the point where
the interference statistics are collected is located outside of the
area generating the interference, e.g., primary-secondary sys-
tem set-up, the moments of interference (also cross-moments)
can be well-approximated using integration [31], [32].

The location-dependent property of outage probability over
finite areas is also highlighted in [33] for ad hoc networks and
in [34] for heterogeneous cellular networks. Finite deployment
areas are often associated with a non-uniform PDF of user
location, as an attempt to model the impact of population
density and/or mobility [35]. For a random waypoint mobility
model, the mean interference at the origin is asymptotically
twice the mean interference due to a uniform mobility model
because the users are concentrated towards the center of the
area [35]. The temporal statistics of interference and outage
become also location dependent, with higher correlation close
to the boundary, where the degree of mobility is less [36].

C. Motivation and list of contributions

With boundaries, the interference field becomes nonhomo-
geneous. Therefore a natural question to ask is whether placing
the receiver close to the boundary, where the interference is
less, can enhance PLS. Before looking at the impact of bound-
aries on the secrecy performance, let us consider the case,

where the receiver and eavesdropper are deployed in the infi-
nite plane (or in the bulk of the deployment area), and discuss
the impact of interferer’s intensity on the probability of secure
connectivity, i.e., the joint event of successful decoding at the
receiver and failure to decode at the eavesdropper [37], [38].
We assume a single receiver and eavesdropper at fixed and
known locations in a homogeneous Poisson field of interferers.
The signal level over the main and the eavesdropper channels
stay the same; it is only the interference level changing. When
the intensity of interferers decreases, the interference level
becomes less at the receiver and the eavesdropper. In that
case, the probability of secure connectivity should decrease at
low rates of the transmitted codewords (with reference to the
Wyner encoding scheme), because the eavesdropper becomes
capable of decoding low-rate transmissions almost surely. On
the other hand, at high rates of the transmitted codewords,
the probability of secure connectivity should increase because
the performance is dominated by the connection probability
of the receiver, which increases under a lower intensity of
interferers. The above discussion gives an initial insight into
the impact of boundaries on secure connectivity but it does
not reveal the complete story. Placing the receiver close to
the boundary is not equivalent to placing the receiver in the
bulk along with a reduction in the intensity of interferers. The
boundary introduces a trade-off which does not exist in the
bulk and it is discussed next.

Let us consider a quadrant, where the receiver is placed at
the corner, i.e., at the point of minimum interference, and the
eavesdropper along the side. The interference at the receiver
and the eavesdropper is correlated because it is due to the same
set of interferers [39]. We will show that the spatial correlation
of interference is higher along the boundary than in the bulk,
for the same distance separation between the receiver and the
eavesdropper. Therefore placing the receiver at the corner is
detrimental for PLS because the reception conditions at the
receiver and the eavesdropper become favorable at the same
time. On the other hand, placing the receiver at the corner
should benefit PLS because the eavesdropper is exposed to
higher interference than the receiver. The motivation of this
paper is to study this interplay.

The impact of interference correlation on the probability
of secure connectivity in infinite cellular systems has been
recently studied in [38]. Over there it is shown that interference
correlation plays a significant role in secrecy performance
when the typical eavesdropper is located close to the typical
user. In this paper, we consider an ad hoc type of system
and compare the receiver performance at the corner and in
the bulk of the deployment area considering both cases with
known and unknown CSI of the eavesdropper channel at the
transmitter. We have in mind an indoor setting, e.g., industrial
automation in a factory, smart home etc., where it is expected
to have both high rate transmissions, e.g., video content using
machine-to-machine technology, and/or low rate transmissions
for exchanging measurement information and data fusion
between low cost sensors. In the presence of eavesdroppers,
we would like to identify whether it is beneficial to deploy the
network elements near the boundaries or not and under which
conditions on the transmission rate. The main findings are:
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Fig. 1. The geometry in which the receiver is located at the corner of the
deployment area. The location of the eavesdropper is(u, 0).

• When the CSI of the eavesdropper is not available at
the transmitter, it is beneficial to hide the receiver at
the corner for high rates of the transmitted codewords
because the performance is dominated by the connection
probabilities of the receiver and the eavesdropper. At the
corner, the receiver is exposed to lower interference as
compared to an eavesdropper located along the boundary.

• When the CSI of the eavesdropper is not available at the
transmitter, it is detrimental to hide the receiver at the
corner for low rates of the transmitted codewords because
an eavesdropper which is located along the boundary is
also exposed to low interference thus, it can intercept the
transmissions with high probability.

• When the transmitter can adapt the rate based on the in-
stantaneous CSI, the average capacity with PLS is higher
at the corner even if the intensity of interferers over there
is four times higher than the intensity of interferers in the
bulk. This means that the impact of higher interference
at the eavesdropper than at the receiver dominates over
the higher correlation of interference along the boundary
than in the bulk.

The remainder of this paper is organized as follows. In
Section II, we present the system model. In Section III, we
calculate the mean, the variance, the correlation coefficient of
interference, and the connection probability of the receiver and
the eavesdropper. In Section IV, we calculate the probability
of secure connectivity assuming that the CSI is not available at
the transmitter. In Section V, we assume perfect knowledge of
the CSI and calculate the average secrecy capacity. Section IV
and Section V contain the main analysis of this paper and the
comparison of the receiver performance at the boundary and
in the bulk. In Section VI, we summarize the results of this
paper and outline future work.

II. SYSTEM MODEL

We consider an ad hoc network where the locations of the
transmitters follow the PPP with intensityλ, and each receiver
is placed at a fixed link distanced0 and a random angleθ from

the associated transmitter, see Fig. 1 for an illustration. The
transmit power level is normalized to unity. We would like
to assess the performance, i.e., connectivity and rate, with
PLS. In areas with boundaries, the performance is location-
dependent. We consider two locations for the receiver: at the
corner of a quadrant and in the bulk of the deployment area. In
addition, we consider a single eavesdropper which is located
at distanceu from the receiver. When the receiver is located
at the corner, the eavesdropper is located at the boundary.
The locations of the receiver and the eavesdropper are fixed
and known. The origin of the coordinate system is set at the
location of the receiver unless otherwise stated. The location
of the eavesdropper is(u, 0). The transmitter, the receiver
and the eavesdropper are equipped with a single antenna.
The eavesdropper does not employ any advanced technique
for intercepting the transmitter’s message, e.g., successive
interference cancellation, and the ad hoc network does not
apply any secrecy enhancement technique, e.g., artificial noise.

Considering just a single eavesdropper at an arbitrary lo-
cation may seem overly simplistic, but it is used to get
an insight on the comparison of secrecy performance with
and without boundaries. Considering two-dimensional random
locations for the eavesdroppers has been left as a future topic
to study but the main conclusions of this paper are unlikely
to change. After all, if we neglect eavesdroppers’ collusion, a
high (low) intensity of eavesdroppers means that the distance
separation between the receiver and the most detrimental
eavesdropper would be small (large), and the results of this
paper are still applicable. For presentation brevity, we will also
neglect the impact of interferers possibly located outside of
the boundaries. Incorporating an additional interference field
with a higher propagation pathloss attenuation factor and/or
penetration losses will increase the length of the expressions
for the mean, the variance and the connection probability for
the receiver located at the corner and for the eavesdropper
along the boundary. Ignoring these interferers allows us to
relate the statistics of interference for the receiver located at the
corner and in the bulk in a simple manner. This facilitates the
presentation of the proofs of lemmas, while the methodology
and the conclusion of this paper will not change. In a practical
system, one may also argue that the effect of interferers
deployed outside of the boundaries would be negligible in case
millimeter wave propagation frequency is considered.

When the receiver is located at the corner, the location of
the transmitter associated to it, hereafter the transmitter, is
(d0 cos θ, d0 sin θ), where the Random Variable (RV)θ follows
the uniform distribution in

[

0, π
2

]

, thus fΘ(θ) = 2
π . In the

bulk, the location of the transmitter should follow the uniform
distribution in[0, 2π]. Nevertheless, we would like to compare
the performance at the two locations on a fair basis. In order to
do that, the distribution of signal level over the eavesdropper
channel should stay the same. Therefore we constrain the
location of the transmitter over

[

0, π2
]

in both cases. We
denote byZ the RV describing the distance-based propagation
pathloss over the eavesdropper channel,Z=g

(

‖d0e
jΘ−u‖

)

,
whereg (r) =min (1, r−η) is the distance-based propagation
pathloss function andη>2 is the pathloss exponent. The PDF
fZ(z) is derived in the Appendix.
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Due to the Slivnyak’s Theorem, the locations of the trans-
mitters generating interference to the receiver and the eaves-
dropper, hereafter the interferers (or the users), follow a PPP
with intensity λ. Their transmission probability isξ. For a
high intensity of active usersλξ, the impact of noise can
be ignored in the performance assessment. The fast fading
h over all channels, i.e., main channel, eavesdropper chan-
nel and interfering channels is independent and identically
distributed (i.i.d.) following the exponential PDF with unit
meanE {h}= 1. The assumption of independent fast fading
between the receiver and the eavesdropper should be valid for
distancesu larger than half the wavelength. We assume that
the considered distances meet this constraint.

In order to assess the performance with secrecy, we follow
the Wyner encoding scheme [7], where the rate of transmitted
codewords isRt, and the rate of confidential messages is
Rs. Let us denote byγx,r the RV describing the instanta-
neous Signal-to-Interference Ratio (SIR) at the receiver, where
x ∈ {bu,co} indicates the reveiver location in the bulk or at
the corner. The connection probability of the receiver can be
calculated asPc

x,r=P {γx,r>µ}, whereµ=2Rt − 1. Similarly,
let us denote byγx,e(u) the RV describing the SIR at the
eavesdropper, and byPc

x,e(u)=P {γx,e(u)>σ} the probability
that the eavesdropper succeeds to decode the transmitter’s
message. According to the Wyner scheme,σ=2Re −1, where
the rateRe=Rt−Rs reflects the rate cost to secure the message
against the eavesdropper. For a positive secrecy rateRs≤Rt,
it is required thatµ≥ σ. When the CSI of the main and the
eavesdropper channels is not available at the transmitter, the
ratesRt, Rs are kept fixed. A pair of rates(Rt, Rs) can be
associated with a probability of secure connectivity,P

sc
x , which

can be expressed as the joint event [37], [38]

P
sc
x (u)=P (γx,r > µ, γx,e(u) < σ) . (1)

When the CSI at the receiver and the eavesdropper is
perfectly known, the transmitter can adapt the transmission
rate equal tomax

{

0, log
(

1+γx,r

1+γx,e

)}

, and the performance is
described in terms of average secrecy capacity [40], [41].

C
sc
x(u) =

∫ ∞

0

∫ γx,r

0

log2

(

1 + γx,r

1 + γx,e

)

fr,e(γx,r, γx,e) dγx,edγx,r, (2)

wherefr,e(γx,r, γx,e) is the joint PDF of the SIR at the receiver
and the eavesdropper.

Performance studies of PLS with CSI imperfections due to
estimation errors at the receiver and/or limited feedback can
be found in [42], [43] and references therein. Studying the
impact of imperfections on the performance comparison with
and without boundaries is a topic for future work.

While studying the performance with secrecy, we will need
the mean and the variance of interference at the receiver
and the eavesdropper, the correlation of interference between
the two locations, and the connection probabilities. These
quantities are calculated in the next section.

III. I NTERFERENCE AND CONNECTION PROBABILITY

In the bulk, the mean and the variance of interference are
independent of the location. Therefore it suffices to calculate

the moments of interference at the receiver

E {Ibu,r} =λξ
∫∞
0

∫ 2π

0
g (r) rdφdr

(a)
= λξηπ

η−2 .

Var {Ibu,r}=2λξ
∫∞
0

∫ 2π

0
g2(r) rdφdr

(b)
= 2λξηπ

η−1 ,
(3)

where(a) and (b) follow after taking into account the piece-
wise nature of the propagation pathloss functiong(·), and the
factor 2 in the calculation of the variance comes from the
second moment of a unit-mean exponential RV,E

{

h2
}

=2.
The mean and the variance of interference at the corner of a

quadrant can be calculated after scaling the respective statistics
in the bulk, see equation (3), by14 , i.e.,E {Ico,r}=

1
4E {Ibu,r}

andVar{Ico,r}=
1
4Var {Ibu,r}. In addition, the mean and the

variance of the interference at the eavesdropper located at the
boundary and at distanceu from the corner become easier to
calculate after shifting the origin to(u, 0).

E {Ico,e(u)} =λξ
∫∞
0

∫ φco(u,r)

0 g (r) rdφdr.

Var{Ico,e(u)}=2λξ
∫∞
0

∫ φco(u,r)

0 g2(r) rdφdr,
(4)

whereφco(u, r)=π for r≤u, andφco(u, r)=π − arccos
(

u
r

)

for r>u.
After differentiating equations (4) with respect tou using

the integral rule, one may show that the mean and the variance
increase as we move away from the corner. Therefore an
eavesdropper at the boundary is exposed to higher interference
than the receiver at the corner. Due to the piecewise nature
of the propagation pathloss function, we have to separate
between two cases,u≷ 1, in equation (4), before expressing
E {Ico,e(u)} andVar{Ico,e(u)} in semi-closed form.

E{Ico,e(u)}
u<1
= λξ

(

π
∫ u

0
rdr+

∫ 1

u

(

π−arccos
(

u
r

))

rdr+
∫∞
1

(

π−arccos
(

u
r

))

r1−ηdr
)

= λξ (η−2)u
√
1−u2+η(π−arccos(u))

2(η−2) −
u 2F1( 1

2 ,
η−1
2 ; η+1

2 ;u2)
(η−1)(η−2)

E{Ico,e(u)}
u>1
= λξ

(

π
2(η−2) −

√
πu2−ηΓ( η−1

2 )
2(η−2)Γ(η/2)

)

Var{Ico,e(u)}
u<1
= 2λξ

(

u
√
1−u2

2 + η(π−arccos(u))
2(η−1) −

u
2(η−1)(2η−1) 2F1

(

η− 1
2 ,

1
2 ;η+

1
2 ;u

2
)

)

Var{Ico,e(u)}
u>1
= 2λξ

2πηΓ(η)−u2−2η√π Γ(η− 1
2 )

4Γ(η)(η−1) ,

(5)

where 2F1 is the Gaussian hypergeometric function [44,
pp. 556], andΓ(x)=

∫∞
0 tx−1e−tdt is the Gamma function.

In order to calculate the covariance of interference between
the receiver and the eavesdropper, one should keep in mind that
the set of interferers for the two locations are fully correlated.
The Pearson correlation coefficient takes the following form:

ρx(u)=
λξ
∫∞
0

∫ φx

0
g(r) g

(

‖rejφ−u‖
)

rdφdr
√

Var {Ix,e(u)}
√

Var {Ix,r}
, (6)

where x∈{co,bu}, φbu=2π, φco=
π
2 , and the interference in the

bulk is independent of location,Var{Ibu,e(u)}=Var{Ibu,r}∀u.
The correlation coefficientρx is independent of the user

densityλ and user activityξ. In addition, we have seen that
the user activity is just a scaling factor in the calculation of the
mean and variance. Hereafter, we omit the activity probability
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Fig. 2. Spatial correlation coefficient of interference at distanceu from
the receiver. The receiver is placed at the corner and in the bulk. In the
numerator of equation (6), the integral is evaluated numerically. At the corner,
equation (6) is verified with simulations. Pathloss exponentη=4, and user
densityλ=0.2.

from the expressions for brevity, and the user intensityλ
describes the intensity of users after thinning withξ.

In Fig. 2, we depict the correlation coefficient at the corner
and in the bulk with respect to the distanceu. We see
that placing the receiver at the corner increases the spatial
correlation of interference for the same distance separation
between the receiver and the eavesdropper.

In order to calculate the connection probability of the
receiver in the interference-limited regime, we need to eval-
uate the Laplace Transform of the interferencePc

x,r =
E
{

e−sIx,r
}

[28]. Note that the impact of noise can be simply
incorporated by scaling with a constant the Laplace Transform
of the interference. Using the Probability Generating Func-
tional (PGFL) of the PPP we get

P
c
x,r=exp

(

−λ

∫ ∞

0

∫ φx

0

sg(r)

1+sg(r)
rdφdr

)

(7a)

=exp



−λφx





s

2 (1+s)
+

s 2F1

(

1, η−2η ; 2η−2
η ;−s

)

η − 2







, (7b)

wheres= µ
g(d0)

.
Let us assume for the moment that the location of the

transmitter is fixed and known. In order to calculate the
connection probability of the eavesdropper in the bulk, one
should substituteφx = 2π, and se = σ

g(‖d0ejθ−u‖) = σz−1

instead ofs in equation (7b).

P
c

bu,e(u)=exp



−2πλ





se
2 (1+se)

+
se2F1

(

1,η−2η ; 2η−2η ;−se

)

η − 2







. (8)

When the eavesdropper is located at the boundary, one
should substitutese instead ofs, andφco(u, r) instead ofφx in
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Fig. 3. Connection probability for the eavesdropper w.r.t. the distanceu from
the corner. Pathloss exponentη=4, and user densityλ=0.2. The transmitter
is located at the boundary at(0, 1). The calculation uses equations (9a)
and (9b) and the integralsI1, Iu are evaluated numerically. The bound uses
the approximations in equations (10a) and (10b).

equation (7a). After shifting the origin to(u, 0) and separating
betweenu≷1 in the double integral in equation (7a), we get

P
c

co,e(u)
u<1
=exp

(

−
λse

2(1+se)

(

π+u
√

1−u2−arccos(u)
)

−λI1

)

(9a)

P
c

co,e(u)
u>1
=exp

(

−λπse

( 1

2(1+se)
+

2F1

(

1,η−2η ; 2η−2η ;−se

)

η−2
−

u2−η

η − 2
2F1

(

1,
η−2

η
;
2η−2

η
;−

se
uη

))

− λIu

)

, (9b)

where I1 =
∫∞
1

(

π−arccos
(

u
r

))

se r
se+rη dr, and Iu =

∫∞
u

(

π−arccos
(

u
r

))

se r
se+rη dr.

If we bound the inverse trigonometric function,π −
arccos

(

u
r

)

> π
2 +

u
r , ∀r≥u, we get a tight upper bound on the

connection probability of the eavesdropper after substituting
the following lower bound approximations in (9).

I1 &
us

1/η
e

sinc(π/η)
− u 2F1

(

1,
1

η
;
η + 1

η
;−

1

se

)

+

πse
2 (η − 2)

2F1

(

1,
η − 2

η
;
2η − 2

η
;−se

)

(10a)

Iu &
us

1/η
e

sinc(π/η)
− u2

2F1

(

1,
1

η
;
η + 1

η
;−

uη

se

)

+

πseu
2−η

2 (η − 2)
2F1

(

1,
η − 2

η
;
2η − 2

η
;−

se
uη

)

, (10b)

where sinc(x)= sin(x)
x .

The tightness of the bound is illustrated in Fig. 3. The
connection probability of the eavesdropper decreases rapidly
along the boundary because the interference becomes higher
over there, and at the same time the signal level over the
eavesdropper channel decreases. The trend is similar when the
location of the transmitter follows the uniform distribution. In
that case, the connection probability can be calculated after
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integrating (numerically) equations (8)−(9b) over the PDF of
the signal level over the eavesdropper channelfZ(z).

The connection probabilities for fixed and known trans-
mitter’s location given in equations (8) and (9b) would be
of use in Section IV while approximating the probability of
secure connectivity at high transmission ratesRt and large
distance separationu between the receiver and the eavesdrop-
per. For a largeu, the correlation coefficient of interference
may become negligible, see Fig. 2, and the probability of
secure connectivity can be approximated as the product of the
connection probability of the receiver with the complementary
of the connection probability of the eavesdropper. We will
expand the connection probability of the eavesdropper for
σ→ 0/σ→∞ to approximate the probability of secure con-
nectivity for high/low secrecy ratesRs under the assumption
of uncorrelated interference.

IV. SECURE CONNECTIVITY− UNKNOWN CSI

Using that the fading over the main and the eavesdropper
channels is Rayleigh, the probability of secure connectivity in
equation (1) can be read as

P
sc
x (u)=E

{

e−sIx,r
(

1− e−seIx,e(u)
)}

= P
c
x,r−Jx(u), (11)

whereJx(u) = E
{

e−sIx,r−seIx,e(u)
}

is the joint connection
probability of the receiver and the eavesdropper.

In a recently published paper [38], the quantityJx(u)
has been calculated taking into account the fact that the
interference at the receiver and the eavesdropper is correlated.
In order to take into account the correlation of interference
in our problem setting, we condition on the locationθ of
the transmitter, and we average over the fading states of the
interfering channels at the receiver and the eavesdropper, as
well as over the locations and activities of the interferers. After
using the PGFL of the PPP and the fact that the fading samples
in the interfering channels at the receiver and the eavesdropper
are i.i.d. unit-mean exponential RVs we get [38]

Jx(u)=

∫ π
2

0

exp



−λ

∫

Sx

(

1−
1

1+sg (r)

1

1+seg(d)

)

dS



fΘdθ

=

∫

Z

exp



−λ

∫

Sx

(

1−
1

1+sg (r)

1

1+σz−1g(d)

)

dS



fZdz (12)

where Sx is the infinite plane for x= bu and the upper-
right quadrant for x= co, dS = rdrdφ is the integration
element,d=‖rejφ−u‖ is the distance between the integration
element and the eavesdropper,s = µ

g(d0)
, se = σz−1, and

z=g
(

‖d0e
jθ − u‖

)

is the realization of the RVZ describing
the distance-based pathloss over the eavesdropper channel.

Lemma 1. For low transmission ratesRt, the probability of
secure connectivity is higher in the bulk than at the corner.

Proof. A low rate Rt necessitates a low SIR thresholdµ.
After expanding arounds = 0 equation (7a), keeping up to

the second order terms, we can approximate the connection
probability for low ratesRt as follows

P
c
x,r≈exp

(

−λ

(∫

Sx

(

sg(r)− s2g2(r)
)

dS

))

=exp

(

−sE{Ix,r}+
s2

2
Var(Ix,r)

)

≈1− sE{Ix,r}+
s2

2

(

Var(Ix,r) + E{Ix,r}
2
)

. (13)

In order to approximate the quantityJx(u) in equation (12)
for low ratesRt, we expand aroundσz−1=0 ands=0, again
keeping up to the second order terms.

Jx(u)≈

∫

Z

exp

(

−λ

∫

Sx

(

sg(r)+σz−1g(d)−s2g2(r)−

σ2z−2g2(d)−sσz−1g(r) g(d)
)

dS

)

fZ dz

≈1−sE{Ix,r}−σE
{

Z−1}
E{Ix,e(u)}+

s2

2Var(Ix,r)+
σ2

2 E
{

Z−2
}

Var(Ix,e(u))+

ρx(u)sσE
{

Z−1
}√

Var(Ix,r)Var(Ix,e(u))+
σ2

2 E
{

Z−1}2
E{Ix,e(u)}

2
+ s2

2 E{Ix,r}
2
+

sσE
{

Z−1
}

ρx(u)
√

Var(Ix,r)Var(Ix,e(u)).

(14)

After subtracting equation (14) from equation (13) we get

P
sc
x (u) ≈ σE

{

Z−1
}

E{Ix,e(u)}−
σ2

2

(

E
{

Z−2}
Var(Ix,e(u))+E

{

Z−1}2
E{Ix,e(u)}

2
)

−

2ρx(u) sσE
{

Z−1
}√

Var(Ix,r)Var(Ix,e(u)).

(15)

Recall that in the bulk the interference is independent of the
locationu, and the probability for secure connectivity can be
simplified after substitutingE {Ibu,r} instead ofE{Ibu,e(u)} in
equation (15). In addition, due to the fact thatE{Ico,e(u)}≤
lim
u→∞

E{Ico,e(u)} = 1
2E{Ibu,r} ∀u, the probability for secure

connectivity at the corner, for low ratesRt, can be upper-
bounded after substituting12E{Ibu,r} instead ofE{Ico,e(u)}
in the first-order term in equation (15). Finally, we get that

limσ→0,s→0
P

sc
co(u)

P
sc
bu(u)

=
E{Z−1}E{Ico,e(u)}
E{Z−1}E{Ibu,e(u)} ≤

E{Ibu,r}
2E{Ibu,r} =

1
2 .

Lemma 1 can be intuitively explained as follows. At the
boundary, the interference is low, thus both the receiver and the
eavesdropper are capable of decoding low rate transmissions
almost surely. Because of that, secure connectivity degrades.
On the other hand, in the bulk, where the mean interference is
at least twice than that at the boundary, there might be network
instances where the eavesdropper may fail to decode a low rate
transmission due to unfortunate interference conditions, and at
the same time the receiver can successfully decode.

A case of particular interest isRs=0, or equivalently,µ=
σ,γ. In that case, equation (15) is simplified to

P
sc
x (u) ≈ γE

{

Z−1
}

E{Ix,e(u)}−
γ2

2

(

E
{

Z−2}
Var(Ix,e(u))+E

{

Z−1}2
E{Ix,e(u)}

2
+

4ρx(u)
g(d0)

E
{

Z−1
}√

Var(Ix,r)Var(Ix,e(u))
)

.

(16)

The accuracy of approximation (15) for the probability of
secure connectivity at the corner and in the bulk is illustrated
in Fig. 4a w.r.t. the secrecy rateRs ≤Rt and a low rateRt.
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Fig. 4. Validating the approximations for the probability of secure connectivity at low transmission ratesRt. (a) The approximation is given in (15). The
rate of the transmitter codewords isRt=log2(1 + µ). (b) The approximation is given in (16). The secrecy rate isRs =0, i.e., µ=σ. In both figures, the
exact probability is calculated numerically based on (11) and (12). Pathloss exponentη=4, user densityλ=0.2, u=1, d0=1 unless otherwise stated.
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Fig. 5. Illustrating the approximation accuracy of the bounds given in equation (17) for the corner, and in equation (18) for the bulk at high transmission
ratesRt, low transmission ratesRs and large distance separationu. The distance is selectedu=3. The rest of the parameter settings can be found in the
caption of Fig. 4. The exact probability is calculated numerically after substituting equation (12) into (11). In (a) we depict the results only pertinent to the
corner because the probability of secure connectivity at high transmission ratesRt in the bulk is very low.d0=1 unless otherwise stated.

The accuracy of equation (16) is illustrated in Fig. 4b w.r.t.
the rateRt. In both figures we see that the performance in the
bulk is superior to the corner.

Lemma 2. For high transmission ratesRt and large distance
separationu between the receiver and the eavesdropper, the
probability of secure connectivity is higher at the corner than
in the bulk.

Proof. For a large distance separationu, we may assume
that the interference at the receiver and the eavesdropper is
uncorrelated. In that case, the joint connection probability
Jx(u) is equal to the product of the connection probabilities
of the receiver and the eavesdropper, and the probability of
secure connectivity in equation (11) is simplified toPsc

x (u)=
P

c
x,r

(

1− E
{

e−seIx,e(u)
})

. For a high transmission rateRt

or equivalently for a largeµ, the connection probability of
the receiver at the corner can be approximated by expanding

equation (7b) arounds→∞, Pc
co,r≈ e−

λπs2/η

4sinc(2π/η) . In the bulk,

the exponent should be scaled by four,P
c
bu,r≈e−

λπs2/η

sinc(2π/η) .
The connection probability of the eavesdropper at the

boundary,Pc
co,e(u) = E

{

e−seIco,e(u)
}

, can be approximated
after substitutingIu from equation (10b) into (9b). For a
low secrecy rateRs, or equivalently for a largeσ, we can
approximate the connection probability of the eavesdropper as

P
c
co,e≈EZ

{

e−
λπσ2/ηz−2/η

4sinc(2π/η)
−uλσ1/ηz−1/η

sinc(π/η)

}

. In order to obtain a

lower bound for the probability of secure connectivity at the
corner, we can upper-bound the connection probability of the
eavesdropper at the boundary. One way to do that is to fix the
signal level over the eavesdropper channel at the maximum
valuez2= |u− d0|

−η, see the Appendix. Finally, we get

P
sc
co(u) & e−

λπs2/η

4sinc(2π/η)

(

1−e−
λπσ2/η(u−d0)2

4sinc(2π/η) e−
λσ1/ηu(u−d0)

sinc(π/η)

)

,

(17)
where it is reasonable to assume thatu>d0.

In the bulk, the connection probability of the eavesdropper
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for a low secrecy rateRs can be approximated asPc
bu,e ≈

EZ

{

e−
λπσ2/ηz−2/η

sinc(2π/η)

}

. An upper-bound for the probability of

secure connectivity can be obtained by fixing the signal level
over the eavesdropper channel at the minimum valuez1 =
(

d20 + u2
)−η/2

. Finally, we get

P
sc
bu(u) . e−

λπs2/η

sinc(2π/η)

(

1− e−
λπσ2/η(d20+u2)

sinc(2π/η)

)

. (18)

Let us denotex = λπ
4sinc(2π/η) and y = λu(u−d0)

sinc(π/η) . In order

to show that limµ→∞
P

sc
bu(u)

Psc
co(u)

< 1, it suffices to show that

lims→∞
exp(−4xs2/η)(1−exp(−4xσ2/η(d2

0+u2)))
exp(−xs2/η)(1−exp(−xσ2/η(u−d0)

2−yσ1/η))
= 0, which

is true. ForRs=0, or equivalentlyµ=σ,γ, we also get that

limγ→∞
exp

(

− 4x

g(d0)2/η
γ2/η

)

(1−exp(−4xγ2/η(d2
0+u2)))

exp

(

− x

g(d0)2/η
γ2/η

)

(1−exp(−xγ2/η(u−d0)
2−yγ1/η))

=0.

When the secrecy rateRs is high, or equivalentlyσ is
low, one can approximate the connection probability of the
eavesdropper after substituting equation (10b) into (9b) and
expanding aroundσ=0.

P
c

co,e(u)≈1−λσ2/η
EZ

{

(η−1)ηπ−(4−π+(π−2) η)u2−η

2 (η−1) (η−2)
z−

2
η

}

.

Sinceσ→0, it is straightforward to show thatlim
µ→∞

P
sc
bu(u)

Psc
co(u)

<

1, and the proof is complete.

The intuitive explanation of Lemma 2 is as follows: For a
large distance separationu, the signal level over the eaves-
dropper channel becomes low, and the probability of secure
connectivity at high transmission ratesRt is dominated by the
connection probability of the receiver. Therefore the perfor-
mance is better at the corner, where the interference level is
lower than in the bulk.

The accuracy of the approximations for the probability of
secure connectivity in Lemma 2 is illustrated in Fig. 5 for
distance separationu = 3. At this distance, the correlation
coefficient is less than10−1 both at the corner and in the
bulk, see Fig. 2. In Fig. 5a, we see that for decreasingσ, or
equivalently, for increasing secrecy rateRs the approximation
accuracy degrades. As expexted, the approximation accuracy
improves for increasing rateRt (or µ). In Fig. 5a, we also see
that for high transmission ratesRt, we can allow for increas-
ing secrecy ratesRs over some range, without a noticeable
decrease in the probability of secure connectivity. Finally, we
note that the approximation given in equation (18) for the bulk
is an upper bound only for highµ, σ (not visible in Fig. 5b).

For small distancesu, the impact of correlated interference
at the receiver and the eavesdropper should not be ignored.
Extending Lemma 2 for smallu and a positive secrecy rate
Rs is tedious. We show the extension only for secrecy rate
Rs = 0, or µ= σ , γ. For presentation clarity, we will also
assumed0=1. These assumptions are discussed after the proof
of this and the following lemma.

Lemma 3. For high transmission ratesRt and small distance
separationu between the receiver and the eavesdropper, the

probability of secure connectivity is higher at the corner than
in the bulk for secrecy rateRs=0.

Proof. Let us assume thatu≤ 1 since the correlation coeffi-
cient of interference is large for small distancesu. In addition,
let us assume thatγ≥ 1 since we consider high transmission
ratesRt. First, we will approximate the termJx(u) at high
transmission ratesRt, then the connection probability of the
receiver.

In order to approximate the termJx(u), we note that for
u≤1, the signal level over the eavesdropper channel becomes
equal to one with probabilityp, while it takes values from the
continuous distributionfZc with probability (1−p), see the
Appendix for the definition and the derivation of the PDF
fZc(z). Due to the fact that the RVZ follows a mixture
distribution for u ≤ 1, the quantityJx(u) in equation (12)
can be read as

Jx(u) = p exp

(

−λ

∫

Sx

(

1−
1

1+γg(r)

1

1+γg(d)

)

dS

)

+

(1−p)

∫ z2

z1

exp



−λ

∫

Sx

(

1−
1

1+γg(r)

1

1+γz−1g(d)

)

dS



fZcdz (19)

wherez1=
(

1 + u2
)−η/2

is the minimum signal level andz2
is the maximum signal level over the eavesdropper channel.

Next, we show how to approximate the integralI(u) =
∫ π/2

0

∫∞
0

(

1− 1
1+γg(r)

1
1+γg(d)

)

dS at the corner for a largeγ.
In order to do that, we will divide the quadrantSco into disjoint
regions and select a suitable expansion for the terms11+γg(r)

and 1
1+γg(d) over each region. Forγg(r) > 1, or equivalently

for r < r0, where r0 = γ1/η, we get 1
1+γg(r) ≈ 1

γg(r) . On
the other hand, forr>r0 the termγg(r) becomes small, and

1
1+γg(r) ≈1−γg(r)+γ2g2(r). The expansion of the term 1

1+γg(d)
is more involved as it does not depend only onr, but also onφ.
We will split the plane into three regions w.r.t. the distancer:
r<r0, r0≤r≤r0+u andr>r0+u. The corresponding integral
contributions are denoted byIj(u), I(u)=

∑3
j=1Ij(u).

For r < r0 and anglesφ < φ(r), where φ(r) =

min
{

π
2 , arccos

(

r2+u2−r20
2ur

)}

, the distanced to the eaves-

dropper is small, thusγg(d) > 1 and 1
1+γg(d) ≈ 1

γg(d) . On
the other hand, forr < r0 and φ > φ(r), the distance to
the eavesdropper becomes large, thus the termγg(d) becomes
small, and 1

1+γg(d) ≈1−γg(d)+γ2g2(d). Finally, the integral
I1(u) can be approximated as

I1(u) &
∫ r0

0

∫ φ(r)

0

(

1−
1

γ2g(r) g(d)

)

dS+
∫ r0

0

∫ π
2

φ(r)

(

1−
1− γg(d) + γ2g2(d)

γg(r)

)

dS.

(20)

Let us definer1 = r0+u. For r0 ≤ r≤ r1, the termγg(r)
becomes small, while the termγg(d) might be small or large
depending on the angle.

I2(u) &
∫ r1

r0

∫ φ(r)

0

(

1−
1− γg(r) + γ2g2(r)

γg(d)

)

dS+

∫ r1

r0

∫ π
2

φ(r)

(

1−
1− γg(r) + γ2g2(r)

(1−γg(d)+γ2g2(d))
−1

)

dS.

(21)
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Finally, for r > r1, both termsγg(r) , γg(d) become small
independent of the angleφ, thus

I3(u)&
∫ ∞

r1

∫ π
2

0

(

1−
1− γg(r) + γ2g2(r)

(1− γg(d) + γ2g2(d))
−1

)

dS. (22)

In order to approximateI(u) we need to sum up the
approximations from the different regions. For a smallu and
a large γ, we get thatφ(r) ≈ π

2 ∀r ≤ r0 and r1 ≈ r0.
Therefore, the terms that dominate the integralI(u) is the
first term in equation (20) and equation (22). Next, we show
how to approximate the dominant terms at a high rateRt or
equivalently for a largeγ.

Since r1 > 1, the leading order approximation for the
integral

∫ π/2

0

∫∞
r1

(

γg(r)− γ2g2(r)
)

dS is calculated after sub-
stituting g(r) = r−η and performing the integration. Fi-
nally, we get ηπγ2/η

4(η−1)(η−2) . On the other hand, the integral
∫ π/2

0

∫∞
r1

(

γg(d)−γ2g2(d)
)

dS cannot be conputed in closed-
form. Nevertheless, after approximatingg(d) , g2(d) for a
large r, i.e., g(d) ≈ r−η + ηr−1−ηu cosφ and g2(d) ≈
r−2η+2ηr−1−2ηu cosφ, which should be valid forr1 ≫ u,
we get

(

ηπγ2/η

4(η−1)(η−2) +
ηuγ1/η

(2η−1)(η−1)

)

. Using the larger ap-

proximation for g(d), the integralγ2
∫ π/2

0

∫∞
r1

g(r) g(d)dS is

approximated as
(

πγ2/η

4(η−1)−
(2η(π−1)−π)uγ1/η

4η−2

)

for a largeγ.

The term
∫ π/2

0

∫∞
r1

(

γ3
(

g(r)g2(d)+g2(r)g(d)
)

−γ4g2(r) g2(d)
)

dS

gives
(

(5η−2)πγ2/η

4(2+η(6η−7)) −
2η+12η2(π−1)−π(7η−1)

2+2η(12η−7) uγ1/η
)

, and the

term
∫ π

2

0

∫ r0
0

(

1− 1
γ2g(r)g(d)

)

dS gives
(

ηπγ2/η

4(1+η) +
ηuγ1/η

2η+1

)

. After
summing up,

I(u)&
π

4

(

η

η+1
+

η+2

(η−1) (η−2)
+

5η−2

2+η (6η−7)

)

γ2/η +

(

π

2
+

3η

(4η2−1) (η−1)
−

2η+12η2 (π−1)−π (7η−1)

2+2η (12η−7)

)

uγ1/η. (23)

In order to approximate the second integral in equation (19),
we note that the behaviour of the termγz−1g(d) depends on
the signal levelz which is continuous over[z1, z2). One way
to simplify the approximation is to bound the integral using
the maximum value of the signal level,
∫

Sco

∫ z2

z1

(

1−
1

1+γg(r)

1

1+γz−1g(d)

)

fZc(z)dzdS ≥
∫

Sco

(

1−
1

1+γg (r)

z2
z2+γg (d)

)

dS.

(24)
We can expand the right-hand side of the above inequality

similar to equations (20)−(22). Though, we will have to
modify some of the integration limits and the way that the
angleφ (r), separating between small and large distancesd,
is computed. Firstly, in order to calculate the termI1(u),
we will still carry out the integration over0 ≤ r ≤ γ1/η,
but the angleφ(r) = min

{

π
2 , arccos

(

r2+u2−(γ/z2)
2/η

2ur

)}

.

Secondly, the termI2(u) is calculated after integrating over
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Fig. 6. Illustrating the accuracy of the approximations madein Lemma 3.
The connection probability of the receiver (blue curves) is calculated at the
corner using equation (7b) and approximated using equation (28). The quantity
Jco(u) (black curves) is calculated numerically based on equation (12) and
approximated using equation (25). The probability of secure connectivity (red
curves) is evaluated after substractingJco from the connection probability.
Pathloss exponentη=4, user densityλ=0.2, distanceu= 1

2
, d0=1.

γ1/η ≤ r≤u+
(

γ
z2

)2/η

, and using the updated expression for

φ (r). Finally, the termI3(u) is calculated after integrating

over r≥u+
(

γ
z2

)2/η

.

Note that foru≤1, we havez2=1, and the probabilityp to
experience signal levelZ=1 at the eavesdropper is larger than
1
2 , see the Appendix. Therefore usingp=1, in the calculation
of Jco(u) for small distance separationsu≤1 introduces small
approximation error, see Fig. 6 (set of black curves).

Jco(u)&exp

(

−
λπγ

2
η

4

( η

η+1
+

η+2

(η−1) (η−2)
+

5η−2

2+η (6η−7)

)

−
(π

2
+

3η

(4η2−1) (η−1)
−

2η+12η2 (π−1)−π (7η−1)

2+2η (12η−7)

)

λuγ1/η

)

. (25)

Finally, recall that all approximations made, i.e., expansion
for the terms 1

1+γg(r) ,
1

1+γg(d) in equations (20)−(22), leading
order terms in equation (23) and inequality (24) are lower
bounds to the integrals, thus the approximation would upper-
bound the quantityJco(u), see Fig. 6.

Following similar steps, the integralI(u) in the bulk is
dominated by the following two terms for a largeγ and a
small distance separationu

I(u) & 2

∫ r0

0

∫ π

0

(

1−
1

γ2g(r) g(d)

)

dS+

2

∫ ∞

r1

∫ π

0

(

1−
1−γg(r)+γ2g2(r)

(1−γg(d)+γ2g2(d))
−1

)

dS,
(26)

where the factor2 is used to account for anglesπ≤φ≤2π.



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2841870, IEEE
Transactions on Information Forensics and Security

10

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Secrecy rate R
s
 (bps)

P
ro

ba
bi

lit
y 

of
 s

ec
ur

e 
co

nn
ec

tiv
ity

 

 
u=1/2, µ=1, Bulk
u=1/2, µ=1, Corner
u=1/2, µ=10, Bulk
u=1/2, µ=10, Corner
u=1, µ=1, Bulk
u=1, µ=1, Corner
u=1, µ=10, Bulk
u=1, µ=10, Corner

(a) Rs≥0

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SIR Threshold  γ

P
ro

ba
bi

lit
y 

of
 s

ec
ur

e 
co

nn
ec

tiv
ity

 

 
 u = 1/2, Bulk
 u = 1/2, Corner
 u = 1, Bulk
 u = 1, Corner
 u = 2, Bulk
 u = 2, Corner
 u = 3, Bulk
 u = 3, Corner

(b) Rs=0

Fig. 7. Probability of secure connectivity at the corner and in the bulk using equation (11). Pathloss exponentη=4, user densityλ=0.2, d0=1.

The leading order terms in equation (26) can be computed
following similar steps to equation (23)

Jbu(u) & exp

(

−

(

η

η+1
+

η+2

(η−1) (η−2)
+

5η−2

2+η (6η−7)

)

λπγ
2
η

)

.

(27)

Comparing with equation (23), we see that the coeffi-
cient of γ2/η in the bulk, as expected, it is equal to the
respective coefficient at the corner after scaling by four.
In addition, in the bulk, the approximation of the integral
I(u) at high transmission rates does not require a correction
term depending on the distance separationu. This is due
to the following reasons: (i) in the bulk, the mean and the
variance of interference are location-independent and, (ii)
the terms2γ2

∫ π

0

∫∞
r1

g(r)g(d)dS and 2γ4
∫ π

0

∫∞
r1

g2(r)g2(d)dS

accept a total correction−4πuγ1/η at high rates, but this
is cancelled out due to the terms2γ3

∫ π

0

∫∞
r1

g2(r)g(d)dS and
2γ3
∫ π

0

∫∞
r1

g(r)g2(d)dS.

Having approximated the termsJx(u), the approximation of
the connection probability of the receiver at high transmission
rates Rt is rather trivial. It can be done using different
expansions for the termγg(r)

1+γg(r) at small and large distances
r. The connection probability of the receiver at the corner is

P
c
co,r & exp

(

− λ

(

∫ π/2

0

∫ γ1/η

0

(

1−
1

γg(r)

)

dS+

∫ π/2

0

∫ ∞

γ1/η

(

γg(r)−γ2g2(r)
)

dS

))

& exp

(

−
λπ

4

(

η

η+2
+

η

(η−1) (η−2)

)

γ2/η

)

.

(28)

The quality of the above approximation for the connection
probability is illustrated in Fig. 6, set of blue curves.

The connection probability in the bulk for a high trans-
mission rateRt can be approximated following the same
steps with equation (28),Pc

bu,r & e−4λc1γ
2/η

, where c1 =
π
4

(

η
η+2+

η
(η−1)(η−2)

)

.

The ratio of the probabilities of secure connectivity in the
bulk and at the corner asγ→∞ is

lim
γ→∞

P
sc
bu(u)

Psc
co(u)

= lim
γ→∞

e−4c1λγ
2/η

− e−4c2λγ
2/η

e−c1λγ2/η − e−c2λγ2/ηe−c3uλγ1/η

(a)
= 0,

wherec3>0 is the coefficient ofuγ1/η in equation (23),c2 is
the coefficient ofγ2/η in equation (23), and(a) follows from
0<c1<c2 ∀η>2.

Lemma 4. For secrecy rateRs = 0 and small distance
separationu between the receiver and the eavesdropper, the
transmission ratesRt=log2(1 + γ) maximizing the probabil-
ity of secure connectivity in the bulk and at the corner are
related asγ∗

bu=2−ηγ∗
co.

Proof. Using the leading orderγ2/η in equation (23) and
equation (28), the probability of secure connecticity at the
corner can be approximated as the difference between two
exponentials,Psc

co≈e−λc1γ
2/η

−e−λc2γ
2/η

. This kind of function

accepts a maximum atγ∗
co=

(

log(c2/c1)
λ(c2−c1)

)η/2

. Forη=4, we get

γ∗
co=

11025 log(54/35)
361λ2π2 , which is close to the value seen in Fig. 6.

Similarly, the transmission rate maximizing the probability of

secure connectivity in the bulk isγ∗
bu=

(

log(c2/c1)
4λ(c2−c1)

)η/2

, thus

γ∗
bu=2−ηγ∗

co.

Recall that in Lemma 3 the plane has been divided into three
areas w.r.t. to the distancer from the receiver, i.e.,r≤r0, r0<
r < r1 and r ≥ r1. The extension of Lemma 3 for positive
secrecy ratesRs > 0 is tedious because forµ 6= σ we need
to separate between more cases while identifying the areas
where the termsµg(r) andσg(d) accept different expansions.
Apart from that, the proof will follow exactly the same steps
with Lemma 3. Furthermore, givenRs = 0, a generalization
for arbitrary d0 will only modify the separation distance to

r0 =
(

γ
g(d0)

)1/η

instead ofr0 = γ1/η used in Lemma 3. The
expressions in Lemma 3 and Lemma 4 will also look more
complicated because ford0>1, s= γ

g(d0)
instead ofs=γ.
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Fig. 8. Average capacity with secrecy assuming known CSI at the transmitter w.r.t. to the eavesdropper location. In the bulk, the results are generated for
intensity of interferers equal toλ as well asλ

4
. Pathloss exponentη=4, user intensityλ=0.2.

In Fig. 7a we see that the probability of secure connectivity
is higher in the bulk for low transmission ratesRt (correspond-
ing toµ=1) confirming Lemma 1, and higher at the corner for
high transmission rates (corresponding toµ=10), confirming
Lemma 3. Same behaviour is observed forRs=0 in Fig. 7b,
where we see that for increasing distance separation between
the receiver and the eavesdropper, the receiver performance at
the corner outweighs the performance in the bulk over a wider
range of transmission ratesRt.

V. AVERAGE SECRECY CAPACITY− KNOWN CSI

Let us denote byf(γr, γe) andF (γr, γe) the PDF and the
Cummulative Distribution Function (CDF) of the joint SIR
distribution at the receiver and the eavesdropper, where the
dependency on the location is omitted for brevity. The inner
integral in equation (2) can be read as

IR =

∫ γr

0

(log2(1 + γr)− log2(1 + γe)) f(γr, γe) dγe

= log2(1 + γr)

∫ γr

0

f(γr, γe) dγe−

∫ γr

0

log2(1 + γe)
∂2F (γr, γe)

∂γr∂γe
dγe

(a)
= log2(1 + γr)

∫ γr

0

f(γr, γe) dγe−

[

log2(1+γe)
∂F

∂γr

]γr

0

+

1

log(2)

∫ γr

0

1

1 + γe

∂F

∂γr
dγe (29a)

(b)
=

1

log(2)

∫ γr

0

1

1 + γe

∂F

∂γr
dγe, (29b)

where(a) uses integration by parts, and(b) uses that∂F∂γr
=

∫ γe

0 f(γr, y) dy, thus the first two terms in equation (29a) are
cancelled out.
After substituting equation (29b) into equation (2) we get

C
sc
x(u) =

1

log(2)

∫ ∞

0

∫ γr

0

1

1 + γe

∂F

∂γr
dγedγr

(a)
=

1

log(2)

∫ ∞

0

∫ ∞

γe

1

1 + γe

∂F

∂γr
dγrdγe

=
1

log(2)

∫ ∞

0

1

1+γe
[F (γr, γe)]

∞
γedγe

(b)
=

1

log(2)

∫ ∞

0

1

1+γe
(Fe(γe)−F (γe, γe)) dγe

=
1

log(2)

∫ ∞

0

1

1+γ
(Fe(γ)−F (γ, γ)) dγ

(c)
=

1

log(2)

∫ ∞

0

E
{

e−γIx,r
}

− Jx(u, γ)

1+γ
dγ, (30)

where in (a) we have changed the order of integration,(b)
uses thatF (∞, γe) = Fe(γe), see for instance [45, Chapter
6], with Fe(γe) being the CDF of the SIR at the eaves-

dropper, and(c) uses thatFe(γ) = 1 − E

{

e−γz−1Ix,e(u)
}

,

F (γ, γ) = E

{(

1−e−γz−1Ix,e(u)
)

(

1−e−γIx,r
)

}

, andJx(u, γ)

stands for the joint connection probability of the receiver and
the eavesdropper given in equation (12) forµ=σ,γ.

Equation (30) indicates that for computing the average
secrecy capacity with known CSI one has to integrate the prob-
ability of secure connectivity in equation (11) forµ= σ , γ
over the derivative of the rate function. Another way to put
equation (30) is to see that the transmitter has to sacrifice some
of its rate to achieve PLS, and the amount of loss depends
on the location of the receiver, the eavesdropper and the
interference effects, incorporated into the quantityJx(u, γ).

C
sc
x (u) = Cx −

1

log(2)

∫ ∞

0

Jx(u, γ)

1 + γ
dγ, (31)

where the average transmission rate without secrecy isCx =
1

log(2)

∫∞
0

1−Fr(γ)
1+γ dγ, see for instance [46], andFr(γ) is the

CDF of the SIR at the receiver.
For independent interference at the receiver and the eaves-

dropper, F (γ, γ) = Fe(γ)Fr(γ), and the analysis in [41,
Equation (12)] is confirmed. In Fig. 8, we depict the average
capacity with secrecy after evaluating equation (31) numeri-
cally. The results are also verified by simulations. We see that
placing the receiver at the corner offers higher average capacity
for all distances between the receiver and the eavesdropper,
even if the intensity of interferers is four times higher than
the intensity of interferers in the bulk.

Lemma 5. The average secrecy capacity with known CSI at
the transmitter is higher when the receiver is located at the
corner than in the bulk even if the intensity of interferers at
the corner is four times higher.
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Fig. 9. Probability of secure connectivity at the corner and in the bulk w.r.t.
the SIR thresholdγ and the locationu of the eavesdropper. Pathloss exponent
η=4. The user density isλco=0.2 at the corner, andλbu=0.05 in the bulk.

Proof. Based on equation (30), it suffices to show that the
probability of secure connectivity forµ = σ , γ is higher
at the corner than in the bulk for allγ. This is possible
to show as follows: Firstly, for a highγ and a small dis-
tanceu, the probability of secure connectivity at the corner
can be expressed, according to Lemma 3, asP

sc
co (λ) ≈

e−λc1γ
2/η

−e−λc2γ
2/η

e−λc3uγ
1/η

. In the bulk, the probability
of secure connectivity isPsc

bu

(

λ
4

)

≈ e−4λ
4 c1γ

2/η

−e−4λ
4 c2γ

2/η

,
see Lemma 3. For a positiveu > 0, P

sc
bu

(

λ
4

)

< P
sc
co(λ) due

to the fact thatc3 > 0 ∀η > 2. Only in the limit γ → ∞,
we get thatPsc

co(λ) = P
sc
bu

(

λ
4

)

. If the distance separation is
large, we can use the approximations in Lemma 2,P

sc
co (λ)≈

e−xγ2/η
(

1− EZ

{

e−xγ2/ηz−2/η−yγ1/ηz−1/η
})

andPsc
bu

(

λ
4

)

≈

e−xγ2/η
(

1− EZ

{

e−xγ2/ηz−2/η
})

, thusPsc
bu

(

λ
4

)

<P
sc
co(λ) for

y > 0. Secondly, for a lowγ, the probability of secure
connectivity is dominated by the mean interference at the
eavesdropper, see equation (15). Due to the scaled intensity
of users, the mean interference at the receiver is equal at the
corner and in the bulk, however, the mean interference at the
eavesdropper is higher at the boundary foru> 0 than in the
bulk. ThereforePsc

bu

(

λ
4

)

< P
sc
co (λ) for a low γ too. Example

illustration using numerical integration of equation (11) is
available in Fig. 9.

VI. CONCLUSIONS

In this paper, we have calculated the probability of secure
connectivity and the average secrecy capacity in a Poisson field
of interferers. The receiver performance has been assessed
in the infinite plane and also at the corner of a quadrant,
and the results have been compared. The analysis shows
that hiding the receiver at the corner can provide secrecy
enhancement for high dara rate applications. Exposing the
receiver at less interference than the eavesdropper is beneficial
for physical layer security, even if the boundaries enhance
the spatial correlation of interference. On the other hand, for
low-rate applications, the impact of boundaries is detrimental

because the interference level is reduced overall, and the
eavesdropper can mostly decode the low-rate transmissions. In
that case, applying further secrecy enhancement techniques,
e.g., transmission of jamming signals could be of use to
increase the interference level at the boundary. Studying the
performance of secrecy enhancement techniques over finite
areas, also with more complex geometries, is a direction for
future work.

APPENDIX

The RV X describing the distance between the trans-
mitter and the eavesdropper,X = ‖d0e

jΘ − u‖, ranges in
[

|u− d0| ,
√

d20 + u2
]

. Due to the fact that the RVΘ follows

the uniform PDF in
[

0, π
2

]

, one may calculate the PDF ofX

fX(x)=
4x

π

√

x2 − (u− d0)
2
√

(d0 + u)
2
− x2

.

For u ≤
√

1− d20 with d0 ≤ 1, the distanceX becomes
smaller than one with probabilityp = 1. After integrating
the PDF of the distancefX(x), one can calculate that for
{u≤d0, u≥d0 − 1} and {u≥d0, u≤d0 + 1}, the distance
becomes smaller than one with probability

p=1−
2

π
arctan





√

√

√

√

(d20 (1+α2)−1)
2

(2αd20)
2
− (d20 (1+α2)−1)

2



 ,

whereα= u
d0

.
Due to the fact that the distance-based pathlossg(r) be-

comes equal to unity for distances smaller than one, the
RV Z follows in general the mixture distributionfZ(z) =
p δ(z − 1) + (1− p) fZc(z), where δ (·) is the Dirac delta
function. The PDF of the continuous RVZc=‖d0e

jΘ−u‖−η :
Zc<1 can be derived from the distance distributionfX(x) and
it is equal to

fZc(z)=
1

1−p

4z−1−
2
η (πη)

−1

√

z−
2
η −(u−d0)

2
√

(d0+u)
2
−z−

2
η

, z1≤z<z2,

wherez1=
(

d20 + u2
)− η

2 and z2=1.
For the pairs{u, d0} giving p = 0, the RV Z becomes

continuous in[z1, z2] wherez2= |u− d0|
−η.

For the simplified cased0 = 1, p= 4
π arctan

(√

2−u
2+u

)

for
u≤2, andp=0 for u>2. In that case, the computation of the
mean link gain can take a compact form for pathloss exponent
η=4. We give below the expressions for the mean link gain
for u≥2. For u<2, we give the mean of the continuous part
of the distribution

E {Z} =
4u(u2−1)+(1+u2)2(π+4arctan( 1

u ))
π(u2−1)3(1+u2)

, u≥2.

E {Zc} =
2(1+u2)

(

2 arctan( 1
u )−arcsin

(

3u−u3

2

))

(1−p)π(u2−1)3 +

2u(2−(1+u2)
√
4−u2)

(1−p)π(u2−1)(u4−1) , 1<u<2.

E {Zc} = 3
√
3−2
2π , u=1.

E {Zc} =
2(1+u2)

(

2 arctan( 1
u )+arcsin

(

3u−u3

2

)

−π
)

(1−p)π(u2−1)3 +

2u(2−(1+u2)
√
4−u2)

(1−p)π(u2−1)(u4−1) , 0<u< 1.
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