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Abstract 

Reprogrammed metabolism supports tumor growth and provides a potential 

source of therapeutic targets and disease biomarkers. Mass spectrometry-based 

metabolomics has emerged as a broadly informative technique for profiling metabolic 

features associated with specific oncogenotypes, disease progression, therapeutic 

liabilities and other clinically relevant aspects of tumor biology. In this review, we 

introduce the applications of metabolomics to study deregulated metabolism and 

metabolic vulnerabilities in cancer. We provide examples of studies that used 

metabolomics to discover novel metabolic regulatory mechanisms, including processes 

that link metabolic alterations with gene expression, protein function, and other aspects 

of systems biology. Finally, we discuss emerging applications of metabolomics for in 

vivo isotope tracing and metabolite imaging, both of which hold promise to advance our 

understanding of the role of metabolic reprogramming in cancer. 

 

Keywords: Metabolomics; Cancer Metabolism; Metabolic Subtypes; Systems Biology; 
Isotope Tracing; and Metabolite Imaging 
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Introduction 

Metabolism supports various aspects of normal cell biology, including breakdown 

of fuels such as carbohydrates, fats, and amino acids to generate energy and 

biosynthetic precursors for growth[1]. These fundamental features of cellular 

metabolism are reprogrammed in cancer cells to support their pathological levels of 

growth and proliferation. Metabolic reprogramming in malignant cells is likely the result 

of the multifactorial effects of genomic alterations (i.e. mutations of oncogenes and 

tumor suppressors), the tumor microenvironment (which imposes metabolic stress 

caused by compromised nutrients and oxygen availability), and other influences[1-3]. 

We need to understand the complete breadth of metabolic abnormalities in cancer 

because some metabolic changes provide opportunities to develop novel therapeutic 

targets and predictive biomarkers. 

 Generations of studies reaching back to the 1920s have analyzed metabolic 

alterations in cancer, with enhanced glucose utilization being the most frequently and 

broadly observed. The clinical relevance of metabolic reprogramming in tumors is 

supported by routine use of the glucose analog fluorodeoxyglucose as a radiolabeled 

tracer for positron emission tomography-based imaging (FDG-PET)[4]. As newer 

technologies have become available to characterize tumor metabolism more broadly 

and specifically than ever before, many other examples of potentially clinically-

actionable metabolic perturbations have become apparent, indicating that the 

propensity for enhanced glucose uptake is merely the tip of the iceberg[5].   

 Understanding cancer metabolism requires systematic application of analytical 

techniques to assess metabolite levels in biological samples from healthy and diseased 
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tissues. Metabolomics has emerged as the most powerful platform to recognize 

metabolic anomalies in urine, serum or tissue samples[6, 7]. In general, metabolomics 

techniques provide semi-quantitative or quantitative information about the steady-state 

abundance of intermediates from many metabolic pathways simultaneously, providing 

the user with an overview of the metabolic network and its perturbation in disease[8, 9]. 

This review discusses metabolomics methods and presents examples where 

metabolomics has been used to uncover new concepts in cancer biology or to identify 

novel targets for diagnostic imaging and therapy. 

Metabolomics: An informative platform to study cancer metabolism 

Metabolomics requires analytical techniques such as nuclear magnetic 

resonance spectroscopy (NMR) and mass-spectrometry (MS) to measure metabolites in 

biological samples. NMR detects the magnetic spin of molecular nuclei under a defined 

magnetic frequency and is effective at identifying metabolites from complex mixtures, 

quantifying metabolite abundance, and assessing the position of specific nuclei (e.g. 

13C) within a metabolite of interest, all with excellent reproducibility[10, 11]. NMR has 

the advantage of providing non-destructive analysis and the potential for in vivo 

metabolite detection in humans. Proton magnetic resonance spectroscopy (MRS) 

provides non-invasive detection of D-2-hydroxyglutarate (D-2HG) in gliomas with 

IDH1/2 mutations, and confirmed the previously observed profile of elevated choline 

and downregulated creatine and N-acetyl aspartate in gliomas compared to normal 

human brain[12, 13]. Similarly, 13C magnetic resonance spectroscopy (13C MRS) 

analysis of healthy individuals infused with [U-13C] glucose identified glucose flux into 

the TCA cycle via pyruvate dehydrogenase in healthy brain[14]. Limitations of NMR for 
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comprehensive metabolomic assessment include its relatively low sensitivity and 

selectivity[11].  

MS-based techniques rely on the mass/charge (m/z) ratio of a metabolite or its 

fragments. These techniques have extremely high sensitivity, with commercial 

instruments enabling the detection of metabolites in tiny samples of a few thousand 

cells or less and achieving femtomolar sensitivity[11, 15-17]. MS analysis can require 

parallel extraction procedures to recover polar, non-polar and volatile compounds for 

analysis, and extensive processing can lead to sample disintegration with loss of the 

most labile compounds. However, rapid advancements in mass spectrometry hardware, 

ionization techniques, and data-analysis software have steadily increased the scope of 

MS-based metabolomics experiments in both targeted and untargeted applications, 

making MS the most prominent technology in modern metabolomics[11, 17]. 

A common application of metabolomics has been to discover biomarkers for 

diagnosis or to predict therapeutic sensitivity and prognosis[18]. For example, relatively 

early metabolomics experiments in breast cancer identified positive associations 

between levels of choline, glycine, and lactate, and histopathological grade and tumor 

size[19, 20]. Similar work in tissue samples from ovarian[21], prostate[22, 23], brain[24, 

25], and kidney[26, 27] cancers and breath samples from lung cancer patients[28] 

identified metabolic perturbations within tumor grades and sizes. Specifically, choline 

and related metabolites were elevated in prostate and pediatric brain tumors, while 

lipids were elevated in kidney tumors. These studies employed various forms of 

statistical modelling to determine metabolic signatures that differentiated tumor from 

noncancerous tissues, and distinguished tumor stages and grades from each other.  
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Metabolic disturbances associated with genomic alterations in metabolic 

enzymes 

Many early metabolomic studies identified metabolic differences between tumors 

and non-cancerous tissues, but lacked understanding of the molecular basis for these 

differences. More recently, the simultaneous implementation of molecular biology 

techniques and other integrative strategies together with metabolomics has played an 

essential role in deciphering the molecular underpinnings of metabolic reprogramming 

in cancer. We now appreciate that genomic or gene expression alterations in key 

enzymes of metabolic pathways support oncogenic transformation and/or enable tumor 

growth and progression. A current challenge is to understand how these changes 

contribute to tumor biology and which might be amenable to therapeutic targeting. In a 

few important cases discussed in this section, mutations in metabolic enzymes result in 

the accumulation of metabolites that directly contribute to malignant transformation. 

These metabolites are commonly referred to as oncometabolites, and although they 

account for a small subset of reprogrammed metabolism, they are highly instructive 

because they provide insight into mechanisms of tumorigenesis and the impact of 

metabolic perturbation on tissue function.  

A. Oncometabolites generated by gain of neomorphic enzyme activity 

Isocitrate-dehydrogenases (IDH1, IDH2 and IDH3) catalyze the NAD+/NADP+-

dependent decarboxylation of isocitrate to α-ketoglutarate (α-KG)[29].  While IDH1 is 

localized to cytosol and peroxisomes, IDH2 and IDH3 are mitochondrial enzymes. 

About 10 years ago, IDH1 and IDH2 mutations were identified in patients with low- and 

intermediate-grade gliomas and in glioblastomas arising from these initially less 
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aggressive lesions[30, 31]. These mutations result in suppression of the canonical 

NADP+-dependent oxidative decarboxylation of α-KG. However, the mutations are 

monoallelic and essentially always located in the same residues in the IDH1/IDH2 active 

site, suggesting a gain-of-function mechanism relevant to tumor initiation. Metabolomics 

identified millimolar levels of D-2-hydroxyglutarate (D-2HG), a metabolite normally 

present at trace levels, in gliomas and cell lines expressing mutant IDH1[32]. The R132 

mutation in IDH1 confers a neomorphic activity resulting in NADPH-dependent 

generation of D-2HG from -KG[32] (Figure 1). Soon after this observation, mutations 

in IDH1 and IDH2 were identified in acute myeloid leukemia (AML)[33], thyroid 

cancer[34], and in other tumor types[35]. Invariably, R132 mutations in IDH1 result in D-

2HG accumulation, suggesting a critical role for D-2HG in driving tumorigenesis. 

Orthogonal studies demonstrated that D-2HG functionally impairs α-KG dependent 

dioxygenases, such as histone and DNA demethylases and prolyl hydroxylases[35-37] 

(Figure 1). Small-molecules inhibiting mutant IDH1/2 were demonstrated to suppress 

D-2HG production, reduce tumor growth and/or induce differentiation of experimental 

models of glioma[38] and leukemia[39, 40], indicating the therapeutic potential of 

targeting these mutations. These remarkable discoveries ultimately led to the US Food 

and Drug Administration (FDA) approval of the mutant IDH2 inhibitor enasidenib 

(IDHIFA, Celgene Corp.) for the treatment of AML patients[41], with ongoing clinical 

trials in other forms of IDH-mutant cancer. 

B. Oncometabolites generated by loss of enzyme activity  

Mutations in the TCA cycle enzymes succinate dehydrogenase (SDH)[42, 43] and 

fumarate hydratase (FH)[44] lead to familial cancer syndromes such as paraganglioma, 
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pheochromocytoma and papillary renal cell carcinoma, indicating that these enzymes 

function as tumor suppressors[45]. Unlike IDH mutations, FH and SDH mutations result 

in the loss of enzymatic function, usually through the inheritance of one germline loss-

of-function mutation followed by loss of the second allele in the tumor. This results in the 

accumulation of the substrates fumarate and succinate, both of which inhibit α-KG 

dependent dioxygenases (Figure 1). The mechanisms by which fumarate and succinate 

contribute to tumorigenesis in sensitive tissues are an area of active investigation, with 

evidence indicating some overlap with D-2HG effects. Mechanistically, with varying IC50 

values, fumarate and succinate inhibit α-KG dependent prolyl hydroxylases[46, 47], TET 

enzyme-regulated hydroxylation of methyl-cytosine[48] including in the promoters of 

HIF-regulated genes[49], and histone demethylases[48], conferring genome and 

proteome modifications that support oncogenic transformation. Studies suggest that 

both metabolites can modulate the epithelial-mesenchymal transition (EMT). The 

fumarate driven EMT gene-signature is independent of HIF signaling but requires 

inhibition of TET enzyme-dependent demethylation of microRNA clusters that negatively 

regulate metastasis in papillary and renal cell carcinoma[50]. In paraganglioma and 

kidney cells lacking functional SDH, succinate inhibits α-KG dependent dioxygenases, 

resulting in histone hypermethylation and acquisition of EMT-like migratory 

phenotypes[50, 51]. Fumarate also covalently modifies reactive sulfhydryl groups on 

cysteine residues through a process called succination. Elevated levels of fumarate 

result in the conversion of glutathione (GSH) to succinated GSH, reducing NADPH 

abundance and enhancing ROS and HIF1α activation[52]. Fumarate also succinates 

cysteine residues of Kelch Like ECH Associated Protein 1 (KEAP1), abrogating its 
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ability to repress nuclear factor erythroid 2–related factor 2 (NRF2), which regulates 

expression of antioxidant genes and promotes tumorigenesis[53].   

Metabolomics identifies subtype-selective therapeutic liabilities in cancer 

Metabolomics can be used to reveal metabolic differences among different tumor 

subclasses from the same anatomic location. Some of these differences reflect the cell-

autonomous effects of specific oncogenotypes, while others reflect the complex effects 

of evolving tumor biology during cancer progression. Regardless of the cause, such 

metabolic changes might present new opportunities for diagnostic imaging or therapy. In 

this section, we discuss applications of metabolomics to identify metabolic features that 

stratify tumors into molecular or biological subclasses. 

A. Metabolic abnormalities governed by cancer genotypes  

In many non-transformed epithelial and hematopoietic cells, nutrient uptake is 

tightly regulated by growth factor signaling, allowing cells to engage growth-promoting 

metabolic pathways precisely when they receive exogenous signals to proliferate. The 

PI3K-AKT-mTOR signaling pathway is a major effector of growth factors and induces 

numerous bioenergetic and biosynthetic pathways through post-translational protein 

modifications, activating transcriptional networks, and other mechanisms[54-58]. This 

pathway frequently becomes constitutively activated in cancer due to 

mutations/amplifications of key regulatory subunits and/or deletion of tumor 

suppressors. For example, phosphatase and tensin homolog (PTEN), the key negative 

regulator of PI3K, is the most frequently deleted tumor suppressor[59-61]. PTEN 

transgenic mice with additional genomic copies of PTEN demonstrate increased energy 
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expenditure and reduced body mass[62, 63], and embryonic fibroblasts from these mice 

display elevated oxidative phosphorylation and reduced glycolysis as a result of 

repressed PI3K/AKT signaling[63]. Chronic engagement of PI3K-AKT-mTOR signaling 

through a variety of molecular mechanisms enhances glycolysis and anabolic pathways 

to supply de novo biosynthesis of nucleotides, fatty acids, and amino acids for tumor 

growth. For instance, Epidermal Growth Factor Receptor (EGFR)-mutant lung 

adenocarcinoma cell lines require PI3K-AKT-mTOR signaling to maintain a growth-

promoting metabolic program, and inhibition of the signaling pathway suppresses 

glycolysis[64]. These tumors do not respond to RAS/MEK/MAPK pathway inhibitors, but 

NRAS-mutant melanoma tumors do require concomitant MEK and PI3K signaling[65]. 

These examples highlight the orchestration of oncogenic signals to modulate cellular 

metabolism in cancer. 

Several recent studies have used metabolomic profiling to identify metabolic 

liabilities within specific molecular subsets of cancer. In these cases, signaling or 

transcriptional networks imposed by a mutation or combination of mutations can render 

cells exquisitely dependent on an activity that is dispensable in cells with different 

oncogenotypes. For example, in non-small cell lung cancer (NSCLC), metabolomics 

revealed marked differences between cells and tumors with concomitant mutations in 

the oncogene KRAS and tumor suppressor protein LKB1 compared to cells/tumors with 

mutant KRAS and wild-type LKB1[66]. Specifically, the co-mutants had broad 

alterations in pathways of nitrogen metabolism and expressed high levels of carbamoyl 

phosphate synthetase-1 (CPS1), the rate-limiting enzyme of urea cycle. CPS1’s 

physiological role in the liver is to initiate nitrogen disposal by condensing ammonia and 
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bicarbonate in the mitochondria. Surprisingly, in KRAS/LKB1 co-mutant NSCLC cells, 

carbamoyl phosphate from CPS1 instead stimulates an unconventional pathway of 

pyrimidine biosynthesis[66] (Figure 2a, Left). Suppressing CPS1 depletes the 

pyrimidine pool in co-mutant cells, resulting in DNA polymerase stalling, DNA damage, 

reduced tumor growth and increased sensitivity to cisplatin, whereas cells with wild-type 

LKB1 are resistant to CPS1 loss[66].  Similarly, high-grade KRASG12D/G12D-mutant lung 

cancer with TP53 null background exhibits elevated glycolysis and glucose-derived 

carbon flux into the TCA cycle and glutathione biosynthesis[67] (Figure 2a, Right). 

These tumors are strikingly more sensitive to combined treatment with the glycolytic 

inhibitor 2-deoxy-D-glucose (2DG) and the glutathione biosynthesis inhibitor buthionine 

sulfoximine (BSO), whereas both KRAS wild-type tumors and KRASG12D/+ tumors with 

wild-type TP53 are relatively resistant to these treatments.  

More than 90% of pancreatic ductal adenocarcinoma (PDAC) contain the 

KRASG12D mutation[68]. Combined transcriptomics and metabolomics in KRASG12D-

mutant PDAC revealed elevated glycolysis and increased fluxes into the hexosamine 

biosynthetic pathway (HBP) to maintain protein glycosylation and the non-oxidative 

pentose phosphate pathway (non-oxidative PPP) to generate DNA/RNA[68] (Figure 

2b). These KRASG12D tumors require MAPK signaling, but not the PI3K-AKT pathway, 

to maintain glucose flux through the HBP and the non-oxidative PPP. Oncogenic KRAS 

also diverts glutamine-derived aspartate to malate in the cytoplasm through increased 

expression of glutamic-oxaloacetic transaminase 1 (GOT1) in PDAC cells[69]. 

Subsequently, malate-derived oxaloacetate generates pyruvate and NADPH via malic 

enzyme, and the NADPH is used to maintain a reduced GSH pool for ROS 
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homeostasis[69]. Such rewiring of glutamine metabolism confers independence of the 

oxidative pentose phosphate pathway for NADPH production. KRAS-mutant colorectal 

cancer (CRC) cells convert glutamine-derived aspartate to asparagine and show 

sensitivity to inhibitors of asparagine synthetase (ASNS)[70]. Interestingly, KRAS-

mutant CRC cells maintain asparagine levels through PI3K-AKT-mTOR pathway 

mediated ASNS expression[70]. Thus, oncogenic KRAS has pleiotropic metabolic 

effects that result in different metabolic liabilities in different cancer types.  

BRAF, another member of the RAS family of oncogenes, is also frequently 

mutated in cancer. Numerous studies have illustrated the impact of the BRAF V600E on 

metabolic phenotypes. Genome wide shRNA screening identified 3-hydroxy-3-

methylglutaryl-CoA lyase (HMGCL) as a metabolic vulnerability associated with BRAF 

V600E melanoma[71]. HMGCL generates the ketone body acetoacetate, which 

physically binds to mutant BRAF protein to stabilize its interaction with Mitogen-

Activated Protein Kinase Kinase 1 (MEK1), thus potentiating BRAF-dependent 

signals[71]. These BRAF and MAPK dependent melanomas show reduced 

mitochondrial metabolism and decreased expression of peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PCG1α)[72]. In patient-derived 

melanoma xenografts, the BRAF V600E genotype is associated with abundant 

glycolytic metabolites and enhanced activity of the glycolytic pathway in vivo[73].  

MYC family members are the most frequently amplified or otherwise activated 

oncogenic transcription factors across human tumor types[74]. MYC stimulates glucose 

and glutamine metabolism by regulating expression of genes related to these pathways, 

including lactate dehydrogenase-A (LDHA)[75], glucose transporter (GLUT1)[76] and 
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glutaminase (GLS1)[77]. Metabolomic studies have broadened our understanding of the 

diverse functions of MYC in regulating many other metabolic pathways in cancer. In 

triple negative breast cancer, MYC regulates metabolites and genes involved in fatty 

acid oxidation, resulting in enhanced levels of acylcarnitine intermediates and rendering 

tumors sensitive to inhibitors of carnitine palmitoyltransferase 1 (CPT1), the rate-limiting 

enzyme in this pathway[78]. MYC also regulates 2-hydroxyglutarate (2-HG)-dependent 

DNA hypermethylation in tripe negative breast cancer[79]. Global metabolic profiling of 

MYC-driven colorectal tumors identified significant metabolic dysregulation at the 

advanced adenoma stage[80]. In this model, MYC regulates genes involved in 

purine/pyrimidine metabolism, glycolysis, and the pentose phosphate pathway as well 

as fatty acid synthesis. However, in contrast to its role in triple negative breast cancer, 

MYC overexpression downregulates fatty acid oxidation genes in colorectal cancer[80], 

further emphasizing that the metabolic effects of oncogene activation may manifest 

differently in different tumors. 

B. Metabolic dysregulation associated with tumor progression or aggressiveness 

Cellular metabolism is thought to evolve during cancer progression, and several 

studies demonstrate how metabolomics can be used to nominate evolving metabolic 

features as biomarkers or therapeutic targets. To identify non-invasive biomarkers for 

diagnosis and prognosis of prostate cancer, Sreekumar et. al used metabolomics to 

assess global metabolic alterations in urine, serum, and prostate cancer tissues[81]. 

Sarcosine, a naturally-occurring N-methylated form of glycine, was progressively 

elevated in localized and metastatic tissues (Figure 3) and urine samples. Treating 

benign prostate epithelial cells with sarcosine or silencing the sarcosine-degrading 
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enzyme sarcosine dehydrogenase (SARDH) enhanced invasive properties, while 

knockdown of the sarcosine-synthesizing enzyme glycine N-methyltransferase (GNMT) 

reduced invasion of prostate cancer cells[81]. Several[82, 83] but not all[84, 85] 

subsequent studies have validated elevated sarcosine level in tissues and urine 

samples from prostate cancer patients.  

The metabolomics data generated by Sreekumar et al[81] have subsequently 

been used to identify other metabolic networks contributing to prostate cancer 

progression. We observed that inhibition of the hexosamine biosynthesis pathway 

(HBP) promotes castration-resistant prostate cancer (CRPC)[86] (Figure 3). While the 

HBP is essential for localized prostate cancer growth[86], its downregulation promotes 

CRPC, making the HBP an example of metabolic rewiring associated with cancer 

progression.  Additionally, metabolomics of androgen-dependent and castration-

resistant prostate cancer cell lines identified correlations between UDP-

glucuronosyltransferase expression and disease progression[87]. In CRPC, constitutive 

activation of the androgen receptor (AR) is associated with resistance to 2nd generation 

anti-androgens. Interestingly, AR-V7, a spliced form of full-length AR that is expressed 

in anti-androgen enzalutamide and abiraterone-acetate resistant CRPC patients[88], 

was found to decrease the abundance of citrate[89] and increase utilization of 

glutamine-derived reductive carboxylation of α-KG in prostate cancer LNCaP cells 

expressing AR-V7[89]. Similarly, steroid receptor coactivator-2 (SRC-2), a nuclear 

receptor interacting protein with histone acetyltransferase activity, is elevated in 

metastatic prostate cancer and regulates glutamine-derived reductive carboxylation of 

α-KG in CRPC and metastatic cell lines[90].   
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Many similar studies have focused on breast cancer, another hormone-sensitive 

cancer.  However, breast cancer frequently becomes independent of hormone signaling 

in the aggressive/metastatic stages. Triple negative breast cancer (TNBC) is aggressive 

and therapeutically intractable. It is characterized by loss of estrogen and progesterone 

receptors (ER and PR) and lacks expression of the epidermal growth factor receptor 

HER-2. Cao et al. used high-resolution magic angle spinning magnetic resonance 

spectroscopy (HR MAS MRS) to differentiate metabolic profiles between TNBC and 

tumors positive for ER, PR, and HER-2[91].  TNBC tumors displayed elevations of 

choline and glutamate, while HER-2 positivity was associated with elevated glycine and 

glutamine[91]. Interestingly, in a separate study, choline and glutamic acid were 

identified as components of an 11-metabolite panel associated with breast cancer 

recurrence[92].  

Clear cell renal cell carcinoma (ccRCC) is the most commonly diagnosed kidney 

cancer. These tumors typically display constitutive expression of hypoxia inducible 

factors (HIF1α and/or HIF2α) due to frequent loss of the tumor suppressor Von-Hippel 

Lindau (VHL), which normally facilitates the oxygen-dependent degradation of HIF- 

subunits[93-95]. ccRCC displays hallmarks of perturbed metabolism including dramatic 

accumulation of lipids and glycogen. A large metabolomics analysis of more than 130 

matched ccRCC tumors and adjacent kidney samples revealed decreased citrate and 

increased glutathione, dipeptides, and α-hydroxybutrate in stage 4 tumors[96] (Figure 

3). The study also found positive associations between α-hydroxybutyrate and disease 

recurrence, and between metabolites of the one-carbon and cysteine/methionine cycles 

and disease progression. These latter correlations are consistent with several other 
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studies in suggesting that ccRCC tumors acquire robust anti-oxidant and methylation 

capacity[97-100]. We used metabolomics, Dixon-MR imaging of fat content, and 

lipidomics to assess regional heterogeneity of fat deposition and its relationship with 

metabolite abundance and tumor grade in ccRCC. This study revealed marked 

heterogeneity of lipids and aqueous metabolites, with relative depletion of lipid content 

and accumulation of several amino acids in higher-grade tumors[100].  

A comprehensive, integrative analysis incorporating gene expression and 

metabolomics data observed elevated glycolytic metabolites and decreased expression 

of the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) in ccRCC, with 

FBP1 expression declining as the disease progressed[99]. FBP1 expression 

suppressed glycolysis, thereby interrupting the pseudohypoxic metabolic state of cells 

with chronic HIF- expression.  Surprisingly, this study identified a second, non-catalytic 

function of FBP1 in ccRCC. Nuclear-localized FBP1 directly associated with HIF- 

subunits, interfering with the expression of HIF target genes and resulting in reduced 

cell proliferation.  

A key question in cancer metabolism is how metabolic reprogramming influences 

metastasis, because metastasis is the primary determinant of mortality in many forms of 

cancer. Melanoma provides an excellent opportunity to study the metabolic basis of 

metastasis, because these tumors metastasize frequently in patients and because 

mouse models of melanoma exhibiting frequent metastasis are available for study. We 

used metabolomics to profile a panel of patient-derived melanoma xenografts (PDXs) in 

which the metastatic efficiency of the tumors in mice correlated with progression to 

stage IV melanoma (i.e. distant macrometastases) in the donor patients[101]. In this 
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panel of PDXs, subcutaneous tumors that frequently gave rise to distant 

macrometastases had increased levels of trimethyllysine (TML) and dimethylarginine 

(DMA), two metabolites related to histone methylation[73] (Figure 3). TML abundance 

correlated with two distinct trimethylation marks on histone H3, H3K9me3 and 

H3K27me3. Erasing these marks by silencing or inhibiting the methyltransferases  SET 

Domain Bifurcated 1 (SETDB1) and Enhancer Of Zeste Homolog 2 (EZH2) reduced 

free TML levels and decreased in vitro invasion and in vivo metastasis without 

impacting subcutaneous tumor growth[73]. These findings indicate that metabolomics 

can be sensitive enough to detect changes in the epigenetic state and can identify 

activities that enable metastasis in vivo.  

Another study using these same melanoma PDXs focused on metabolic 

differences between tumor cells at the subcutaneous site, in the circulation and in 

metastases in visceral organs [102]. Tumor cells in the circulation and in visceral 

metastases had evidence of oxidative stress and enhanced activity of the folate 

pathway to generate NADPH for ROS homeostasis, indicating that ROS imposed a 

bottleneck on metastasis in these models (Figure 3). Treating tumor-bearing mice with 

the antioxidant N-acetyl cysteine (NAC) increased the number of tumor cells in 

circulation and enhanced metastatic burden, whereas imposing modest oxidative stress 

with low-dose methotrexate suppressed metastasis[102].  Additional mechanistic 

studies in cell culture further support a role for ROS mitigation in anchorage-

independent survival and growth, key determinants of the metastatic cascade. Loss of 

NADPH production from the pentose phosphate pathway was observed to limit the 

survival of non-transformed cells during loss of anchorage, and this could be overcome 
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by expressing an oncogene[103]. In cancer cells, loss of attachment to a 2-dimensional 

matrix was associated with enhanced levels of mitochondrial ROS which limited the 

growth of detached tumor spheroids[104]. In this system, mitigating mitochondrial ROS 

required transfer of NADPH from the pentose phosphate pathway in the cytosol into the 

mitochondria. The transfer mechanism involved NADPH-dependent reductive 

carboxylation of cytosolic α-KG by IDH1, followed by entry of the resulting 

isocitrate/citrate into the mitochondria where it supplied IDH2-depenent NADPH 

production[104]. Altogether, these studies demonstrate how metabolism is rewired to 

mitigate elevated ROS associated with disease progression and metastasis. 

C. Metabolic cross-talk between cancer cells and immune cells 

Cancer cells compete for nutrient availability with non-malignant cells in the tumor 

microenvironment, including macrophages, dendritic cells, lymphocytes, natural killer 

cells, fibroblasts, adipocytes, pericytes and others[105-107]. Metabolism of these cells 

may also be perturbed during tumorigenesis, and therefore, understanding their 

metabolism could help develop better therapeutic strategies. Tumor-infiltrating T cells 

(TILs) and tumor-associated macrophages (TAMs) exhibit marked metabolic 

adaptations in the tumor microenvironment. Activated CD8+ T cells demonstrate 

elevated HIF1/VEGFA signaling which corresponds positively with their anti-tumor 

acivities[108]. Tumor-promoting TAMs demonstrate elevated oxidative phosphorylation 

and reliance on glutamine metabolism and fatty acid oxidation, while tumor-inhibiting 

TAMs demonstrate elevated glycolysis and pentose phosphate pathway activity[109]. 

Several excellent reviews describe metabolic adaptations in immune cells in various 

diseases, including cancer[106, 110].   
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With the approval of anti-PD1 and anti-PDL1 immunotherapy such as nivolumab 

for advanced cancer, there is an emerging interest in deciphering metabolic alterations 

associated with immunotherapy. Giannakis et al. used LC/MS-based metabolomics to 

identify changes in the serum of melanoma and RCC patients treated with 

nivolumab[111].  Melanoma patients that responded to therapy showed increased levels 

of kynurenine[111], an intermediate of tryptophan degradation with inflammatory and 

immunomodulatory properties[112]. In RCC, nivolumab non-responders showed 

increased adenosine and poor progression free survival[111]. Frankel et al. conducted a 

similar but prospective study to determine both gut microbiome and metabolite 

alterations in melanoma patients treated with ipilimumab (anti-CLA4 antibody); 

nivolumab (anti-PD1 antibody); ipilimumab with nivolumab; or pembrolizumab (anti-PD1 

antibody). Metabolomics on stool samples revealed several altered pathways among 

the treatment groups, and metagenomics of stool revealed a significant increase in the 

expression of bacterial enzymes related to fatty acid synthesis in patients responding to 

therapy[113]. Many ongoing clinical trials will further explore the interplay between 

immunotherapy and cancer metabolism, with the goal of identifying metabolic inhibitors 

to enhance the efficacy of immunotherapy. 

Systems biology to integrate metabolomics with genomics, transcriptomics, and 

proteomics 

Cancer originates from genomic alterations that rewire the landscape of 

transcriptome, proteome, and metabolome. While changes in gene and protein 

expression have pleiotropic effects on the cell, changes in the metabolome often occur 

in the closest proximity to changes in cell biology; in other words, many changes in the 
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cellular phenotype are most closely related to changes in metabolic activity downstream 

of altered transcription and protein function (Figure 4). This principle emphasizes the 

benefits of including metabolomics in the overall assessment of tumor phenotypes. 

Moreover, recent work has revealed many processes that place metabolic alterations 

“upstream” of changes in the genome, transcriptome, and proteome. Examples include 

the impact of 2-HG on epigenetic reprogramming, the ability of short-chain acyl-CoA 

esters to modify protein function, and the impact of ROS and xenobiotics on 

mutagenesis (Figure 4). Thus, metabolism should be considered as a dynamic network 

with the potential both to respond to and influence other networks. Systems biology 

provides a powerful approach to integrate high-content data generated from genomics, 

transcriptomics, proteomics, and metabolomics.  For years, concordance-based 

analyses of high-content data sets have recognized roles of transcription factors and 

signaling pathways in regulating metabolism. Massie et al. identified increased AR 

binding to regulatory regions of the metabolic genes including glucose transporter 

(GLUT1), hexokinases (HK1/2), and glutathione-disulfide reductase (GSR), involved in 

glycolysis and amino acid metabolism in prostate cancer cells treated with 

androgen[114]. Subsequently, metabolomics analysis confirmed alterations in these 

pathways in androgen treated cells[114]. Hakimi et al used pathway-based enrichment 

analysis to identify alterations in several metabolic pathways in ccRCC, but also 

demonstrated lack of uniform concordance between metabolite levels and 

corresponding enzyme-coding gene expression in ccRCC[96]. This observation likely 

reflects the myriad regulatory mechanisms in addition to gene expression that regulate 
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pathway activity, and argues that advanced applications of systems biology are needed 

to improve our understanding of interactions between genes, proteins, and metabolites.  

In recent years, novel pathway and network-based integrative approaches have 

been developed to combine data from multi-omics studies, especially metabolomics and 

transcriptomics. We used the Oncomine concept map (OCM)[87] and network based 

gene set analysis (NetGSA)[86] to combine data from transcriptomics and 

metabolomics in prostate cancer. OCM is a pathway-based analysis platform that 

requires a list of differential enzyme-coding genes or metabolites to test the enrichment 

of associated biological processes, also termed as molecular concepts, using Fisher’s 

exact test[115]. Advanced network-centric framework utilizes information on gene-

gene/protein-protein interactions and reactome based information with associated 

stoichiometry. We applied network-based integrative analysis in prostate cancer to first 

derive pathway scores from gene-expression data using gene set analysis (GSA) and 

from metabolomics data using network-based gene set analysis (NetGSA)[86].  Unlike 

gene-set enrichment analysis, NetGSA utilizes reactome-based metabolite-interactions 

and stochiometric information, which increases the power of this statistical model[116]. 

Finally, the pathway scores were combined using a bootstrap resampling procedure to 

nominate significant enrichment of the HBP and pathways of riboflavin, biotin, cysteine, 

and valine-isoleucine metabolism in prostate cancer[86].  

Others have applied similar network-based approaches. Zhang et al. used 

weighted co-expression network analysis (WGCNA) to identify highly interconnected 

nodes of metabolic pathways associated with fatty acid metabolism in pancreatic ductal 

adenocarcinoma (PDAC)[117]. First, the authors generated a matrix of pairwise 
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Pearson correlation coefficients for each metabolite in all tumors, then defined an 

adjacent matrix using a power function. The resulted weighted network was assessed 

using WGCNA to enrich for highly interconnected modules based on network topology. 

Next, genes corresponding to top altered metabolites were analyzed in tumor samples 

to determine their association with pathways derived using WGCNA[117].  

Several other studies have used various forms of integrative approaches to 

classify novel interactions between metabolomics and other dimensions of systems 

biology. Su et al. interrogated metabolomics and gene-expression from the NCI-60 cell 

lines to study relationships between metabolite and transcripts[118]. They observed that 

the metabolome can distinguish cancer subtypes and that metabolite levels correlate 

well with gene expression under strong correlation models[118]. Yang et al. performed a 

comprehensive assessment of metabolomics and gene expression from cervical cancer 

patients and identified potential diagnostic biomarkers[119]. Using a similar approach 

that also incorporated pathway over-representation analysis, Fahrmann et al. combined 

metabolomics and proteomics to identify altered nicotinamide and polyamine 

metabolism in lung adenocarcinoma[120]. Using parameters of biochemical reactions, 

enzyme expression and metabolite levels, Auslander et al. combined gene-expression 

and metabolomics data from breast cancer patients to identify significant metabolite-

gene correlations in both malignant and non-malignant tissues, with more abundant 

correlations in cancer tissues[121]. Interestingly, the authors developed a support vector 

machine model that predicted metabolite levels based on gene-expression data and 

performed quite well in breast cancer and hepatocellular carcinoma[121].  Altogether, 
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these studies highlight the potential of systems-based approaches, and many online 

tools are available to perform such integrative analyses[122-124].  

A current challenge in integrative analysis is to identify common metabolomic 

alterations across multiple cancer types; such alterations could shed light on common 

mechanisms of transformation and might uncover opportunities for generalizable 

therapies. These analyses have proven difficult in part because of the lack of standard 

methods to combine datasets generated in different tumor types, from different 

institutions, and/or incorporating different metabolomics methods. These hurdles were 

highlighted in a meta-analysis of clinical metabolomics studies from diverse tumor 

types[125]. The authors combined data using binary vote-counting methods, which uses 

a voting function of +1 for elevation and -1 for downregulation for each metabolite 

across all cohorts to derive a composite voting score. This approach identified high 

levels of lactate and glutamic acid in cancer tissues from multiple cohorts. It also noted 

the dearth of complete and raw datasets in many of the published studies, perhaps 

because of the lack of universally-accepted metabolomics practices, limiting the scope 

of meta-analyses[125]. Hopefully the dissemination of standard metabolomics protocols 

via the Metabolomics Workbench[126] and other efforts will improve the implementation 

of integrative approaches.  

A related challenge in integrative analysis is the incomplete coverage of the 

metabolome provided by different methods. To address this challenge, multiple groups 

are developing improved extraction and chromatography techniques and enhancing 

mass-spectrometry sensitivity to increase the breadth of metabolites that can be 

quantified in a single experiment[127, 128].  In recent years, techniques of untargeted 
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LC/MS metabolomics have been successfully applied to improve metabolome coverage 

from biological samples. Novel bioinformatics software, such as XCMS[129-131], can 

perform non-linear integration of raw spectral peaks and identify thousands of novel 

metabolic features across multiple biological samples. Thus, the next few years should 

bring improved implementation of targeted and untargeted metabolomics techniques to 

map global metabolic changes in cancer and other diseases. 

Advanced applications of metabolomics 

In vivo isotope tracing and metabolite imaging have emerged as advanced 

techniques to assess metabolism. In this section, we briefly discuss applications of 

these techniques to generate insights about cancer metabolism in intact tissues. 

A. Tracing of isotope labeled metabolites 

Unlike metabolomics, isotope tracing (i.e. monitoring distribution of an isotope 

label originating on a nutrient of interest) provides information about metabolic pathway 

activity. Isotope tracing has been used extensively to characterize altered metabolic 

fluxes arising from mutations in tumor suppressors and oncogenes, or resulting from 

various metabolic stressors in cancer cells. The reader is referred to several reviews 

discussing principles and experimental techniques in isotope tracing[132-134]. Here we 

discuss a few original papers that helped shape current concepts in cancer metabolism. 

Isotope tracing with 13C-glucose and 13C-glutamine using NMR-compatible bioreactors 

that enabled long-term, steady-state labeling highlighted the prominence of anaplerotic 

fluxes in proliferating cancer cells; these fluxes, which can be provided by either glucose 

or glutamine, allow the TCA cycle to provide biosynthetic precursors for macromolecular 
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synthesis[135, 136]. Subsequent isotope tracing in tumor-bearing mice and cancer 

patients also revealed extensive glucose oxidation and anaplerosis in vivo, with 

pyruvate carboxylation providing an anaplerotic flux in lung and brain tumors[137-140]. 

Several in vivo analyses of tumor metabolic flux have highlighted the importance of both 

cell-intrinsic (e.g. genetic) and cell-extrinsic (e.g. impact of the tissue/culture 

environment) determinants on metabolic phenotypes[137, 138, 141, 142]. 

The fact that cancer metabolism is influenced by such a complex set of factors 

makes metabolic analysis in primary human tumors essential. Neither the full 

complement of genetic diversity in human tumors nor the precise composition of human 

tumor microenvironments are recapitulated in mouse models of cancer. Progression of 

low-grade neoplastic lesions to disseminated macrometastatic disease can take years 

in humans, and it is not feasible to model this key aspect of cancer in mice. A number of 

studies have used isotope tracing in patients as a primary means to describe tumor 

metabolism in vivo, then turned to mouse models to test hypotheses arising from the 

human studies. Most published studies to date have focused on brain and lung tumors. 

Human gliomas and brain metastases tumors are metabolically active and display 

substantial glucose oxidation in vivo[139]. Non-small cell lung tumors are reported to a) 

oxidize glucose at rates exceeding the adjacent lung[143], a departure from the 

classical view of suppressed glucose oxidation in cancer cell lines (Figure 5, Left); b) 

display substantial inter- and intratumor metabolic heterogeneity[144]; and c) exhibit 

nutrient preferences associated with the degree of tissue perfusion, with the best-

perfused areas complementing glucose oxidation with oxidation of additional fuels[144]. 

An interesting outcome of in vivo human infusion studies has been to identify some of 
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these alternative fuels. Tumors in the human brain were observed to use the short chain 

fatty acid acetate as a carbon source for the TCA cycle[145]. In lung tumors in both 

humans and mice, lactate from the circulation provided carbon for the TCA cycle, a 

surprising finding given the long-standing expectation that lactate is primarily a waste 

product in cancer[146, 147].  

Conventional methods in isotope tracing usually capitalize on a priori knowledge 

of which downstream metabolites should carry label from the precursor. A number of 

newer approaches allow the user to perform unbiased detection of isotope-labeled 

molecules, providing the opportunity to detect truly novel pathways. These techniques, 

which include nontargeted tracer fate detection (NTFD)[148] and X13CMS[149], require 

extensive computation and statistical modelling and pose challenges in data 

interpretation[150]. Nevertheless, a recent study applied few of these concepts in a 

targeted analysis in mice fed with liquid diet containing [U-13C] glucose for up to 48 

hours. This study demonstrated significant enrichment of 13C in wide range of metabolic 

pathways, including HBP, PPP, lipids, as well as in proteins[151], documenting the 

feasibility of global metabolite labeling in vivo. 

B. Metabolite Imaging 

The tumor metabolomics and isotope tracing experiments described above 

assessed metabolites extracted from tissue fragments containing mixtures of distinct 

cell types. In addition to cancer cells, the tumor microenvironment contains a number of 

non-malignant cell populations, including fibroblasts, endothelial cells, immune cells and 

others. A major ongoing challenge is to deconvolve the contributions of different cell 
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types to understand how they interact metabolically with each other. High resolution 

matrix-assisted laser desorption ionization (MALDI)-based mass spectrometry imaging 

(MSI) has the potential to address this challenge by assessing localized metabolite 

distribution across a plane of tissue. This technique has proven to be particularly useful 

in assessing the spatial resolution of larger metabolites like lipids[152, 153].  

Kawashima et al. used MALDI-MSI to identify spatial distribution of phosphatidylinositol 

species in malignant cells in breast cancer and to correlate the abundance of these 

lipids with invasive phenotypes[154]. Dilliol et al[155] used MALDI-MSI to study proteins 

and metabolites in mouse models of glioblastoma (Figure 5, Right). They employed 

Fourier Transform Ion Cyclotron Resonance (FTICR)-MALDI-MSI to demonstrate 

changes in protein compositions in high-grade gliomas, then validated their findings 

using microproteomics in laser-capture microdissected tumor tissue sections. MALDI-

MSI also revealed accumulation of  glucose-6-phosphate, ribose-5-phosphate, glycine, 

UDP-N acetyl glucosamine, and TCA cycle intermediates in tumors compared to 

adjacent tissue[155]. MALDI-MSI and the related technique desorption electrospray 

ionization MSI (DESI-MSI) have been used to assess regional metabolite distribution in 

tissues from human and mouse models of renal cell carcinoma[156, 157], prostate 

cancer[158], gastric cancer[159], and sarcoma[160], in some cases identifying specific 

metabolic effects of oncogenic drivers in the tumor tissue. MSI approaches have also 

been used to detect conversion of precursor to product molecules, thereby providing 

proof of principle that the technique has the capability to monitor some metabolic 

activities[161]. Altogether, these studies illustrate the emerging role of MSI in studying 
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cancer metabolism and understanding the role of the native microenvironment in 

dictating metabolic phenotypes in vivo[162-164]. 

Future Perspective 

Recent years have seen the expanded use of metabolomics to study cancer. 

These studies have been propelled by rapid improvements both in our understanding of 

the molecular basis of metabolic reprogramming, and in the analytical systems with 

which cancer metabolism can be studied. The availability of isotope labeling methods, 

metabolite imaging, and tools to integrate metabolic data with genomics, 

transcriptomics, and proteomics have the potential to accelerate research in cancer 

metabolism even further, particularly in the context of intact tumors in mice and humans. 

We anticipate further advancements in global metabolite profiling, hopefully with an 

increasing emphasis on methodological consistency to facilitate durable data sharing 

and reproducibility across centers.  
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Figure Legends 

Figure 1. Oncometabolites inhibit α-KG-dependent dioxygenases. α-KG is required 
for the function of a family of dioxygenase enzymes including histone demethylases, 
which remove methyl groups from lysine residues in histone proteins; 5-methylcytosine 
hydroxylases, which initiate demethylation of cytosine bases; and prolyl hydroxylases, 
which hydroxylate proline residues in proteins such as the α subunits of hypoxia 
inducible factors (HIFs). These dioxygenases can be inhibited by high levels of other 
dicarboxylic acids, which compete with α-KG. Dicarboxylic acids demonstrated to inhibit 
dioxygenases include D-HG (a product of mutant IDH1/2) and fumarate and succinate, 
which accumulate due to loss-of-function mutations in FH and SDH, respectively.  

Figure 2. Examples of genotype-driven metabolic reprogramming in cancer. a. 
Non-small cell lung cancer (NSCLC) with concomitant mutations in KRAS and LKB1 
use an unusual form of pyrimidine biosynthesis initiated by carbamoylphosphate 
synthetase-1 (CPS1). NSCLC with mutations in KRAS and p53 display glucose-
dependent glutathione (GSH) biosynthesis. b. KRAS-mutant pancreatic ductal 
adenocarcinoma (PDAC) requires MAPK signaling to regulate glucose flux into the 
hexosamine biosynthesis pathway (HBP) and non-oxidative pentose phosphate 
pathway (Non-Oxidative PPP). These pathways contribute to protein glycosylation and 
nucleic acid synthesis, respectively. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

41 
 

Figure 3. Metabolic rewiring during cancer progression. In prostate cancer, 
elevated sarcosine is associated with metastasis while downregulation of the 
hexosamine biosynthesis pathway (HBP) is associated with castration-resistance. In 
clear cell renal cell carcinoma (ccRCC), elevated glutathione (GSH), dipeptide 
metabolites, and metabolites from the 1-carbon/folate pathway are associated with 
metastasis while α-hydroxybutyrate is associated with disease recurrence. Decreased 
levels of lipids and citrate are observed as lower-grade tumors progress to high-grade 
ccRCC. In melanoma, trimethyllysine, dimethylarginine, and induction of the 1-
carbon/folate pathway are associated with metastasis, while elevated ROS is 
associated with inhibition of metastasis. 

Figure 4. Systems biology approaches to understand biological interactions 
between the metabolome and other regulatory networks. Metabolic changes define 
many phenotypic aspects of genetically-determined diseases. These diseases generally 
originate with genomic mutations and are executed through changes in the 
transcriptome, proteome and metabolome. Recent work has emphasized the 
importance of signaling effects caused by perturbed metabolic states, resulting in 
changes in protein function, transcription, and other effects. Examples include post-
translational protein modification or regulation of these modifications by 2-HG, Acetyl-
CoA, and UDP-GlcNac, all of which can impact cell signaling. Other metabolites 
regulate epigenetic control of the transcriptome or promote further genomic alterations. 
Systems biology provides systematic techniques to interrogate the complex interaction 
of genes and proteins with metabolites. Broadly, high throughput data generated from 
multiple compartments can be integrated with metabolomics using three different 
approaches. Concordance analysis uses direct information from the transcript/protein 
expression of enzymes and levels of product and substrate of the reaction. As an 
example, high levels of glucose and glucose 6-phosphate (Glucose-6-P) correlate with 
elevated hexokinase 1 (HK1) expression. Pathway based enrichment analysis uses 
statistical tests, such as Fisher’s exact test, to determine the likelihood of observing 
alterations in groups of metabolites/genes associated with specific metabolic pathways. 
In the corresponding figure, node size represents the number of metabolites in a 
pathway, and enrichment score represents directionality of enriched pathways based on 
composite score of differential metabolites. Network based integration uses interaction 
information about genes, proteins and metabolites as well as stoichiometry information 
of reactomes to design networks to test enrichment of metabolic pathways using several 
mathematical models. In the figure, node size corresponds to number of metabolites in 
a pathway, and interaction between pathways and directionality of flux are represented 
by arrows of varying width.  

Figure 5. Advanced in vivo applications of metabolomics. Isotope tracing (left) and 
metabolite imaging (right) are two examples of advanced applications of metabolomics. 
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Isotope tracing studies in lung cancer patients have established that glucose and lactate 
are oxidized in the TCA cycle in vivo. These studies have also revealed the activity of 
both pyruvate dehydrogenase and pyruvate carboxylase (PDH and PC) in vivo. In the 
illustration, PDH activity results in TCA cycle intermediates with two 13C nuclei and PC 
activity results in TCA cycle intermediates with three 13C nuclei. Metabolite imaging 
(right) using matrix assisted laser desorption/ionization (MALDI) provides temporal and 
spatial resolution of metabolite abundance to observe metabolic differences across 
tissue sections. Metabolite imaging has been used in murine glioma models to assess 
changes in glycolytic and TCA cycle intermediates. 
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