
Contents lists available at ScienceDirect

Journal of Petroleum Science and Engineering

journal homepage: www.elsevier.com/locate/petrol

Optimum selection of sand control method using a combination of MCDM
and DOE techniques

Mohammad Hossein Shahsavari, Ehsan Khamehchi∗

Faculty of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, Iran

A R T I C L E I N F O

Keywords:
Sand control
MCDM
DOE
Monte Carlo simulation
NPV

A B S T R A C T

The design of an optimal sand control method and production management is a complex problem due to the
simultaneous influence of various factors. Typical effective variables for choosing an optimum sand control
method include geological, technical, economical, and expert's experience on similar projects. Some technical
factors, which affect the optimum method, are the type of exclusion, gravel size of gravel pack and pre-packed
screen, slot width and liner slot length, and productivity index reduction. The situation could be more com-
plicated due to the uncertainty associated with various contributing factors. Therefore, it is crucial to develop a
novel approach in order to select the best sand control method with a maximum level of confidence.

In this study, to select an optimal sand control method, Multi Criteria Decision Matrix (MCDM) techniques
including Analytic Hierarchy Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) and, ELimination and Choice Expressing REality (ELECTRE) are used. To simulate fluid flow, an in-
tegrated model of reservoir, well, and surface facility is used based on actual oil field data collected from the
south of Iran. Then, Design of Experiment (DOE) and Response Surface Methodology (RSM) are applied to
optimize the controllable variables of the best selected sand control method by MCDM. Finally, Monte Carlo
Simulation (MCS) is applied to perform sensitivity and uncertainty analysis in order to determine the crucial
factors that control net present value (NPV).

The results show that the best sand control method based on AHP, TOPSIS, and ELECTRE is the slotted liner.
After that, three different methods of pre-packed, gravel pack, and wire wrapped are respectively the most
efficient sand control methods based on an average score of all the MCDM techniques. The results also indicate
that although the pre-packed screen has the highest NPV, it is not the best sand control method due to the
influence of other efficient criteria. The result of sensitivity analysis using MCS in terms of contribution to total
variance shows that slot width, slot density, and slot height controls 60.5%, 38.8%, and 0.7% of the NPV
variation within the range of factors, respectively.

1. Introduction

Methods of sand control were first utilized in water wells and then
were later applied in oil and gas wells. There are several methods of
sand control, which used to control the sand production, include me-
chanical and chemical methods. Mechanical methods involve the use of
screens to retain the formation sand (with or without gravel) or use of
gravel to hold formation sand (with or without a screen to retain the
gravel) including gravel pack, pre-packed screen, slotted liner, and wire
wrapped. Chemical methods employ a liquid resin which is injected
from a wellbore into the unconsolidated rock surrounding the well.
Chemical methods involve in-situ sand consolidation techniques and
resin-coated gravel pack.

The design of an optimum sand control is a complicated process
because choosing an optimum sand control method depends on dif-
ferent effective factors. These factors include the type of exclusion,
gravel size of gravel pack and pre-packed screen, slot width and length
of the slotted liner, PI reduction and operating costs. Optimum selection
is further intricate due to the uncertainty associated with variables in-
fluencing sand control methods. Therefore, it is crucial to select the
most appropriate method in terms of minimum skin (pressure drop),
cost, and maximum net present value (NPV).

Many authors have studied various well completion methods under
different downhole conditions. Some of them have discussed sand
production consequences, while, few specialists have worked on sand
control method selection.
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Tausch and Corley (1958) found the economics and selection of the
sand control method, based on bridging and consolidation of sand
grains, is a function of the expected producing rate, time periods of
workovers, location, and condition of wells. Tiffin et al. (1998) pro-
posed new criteria for screen and gravel selection for sand control.
These criteria are mainly based on reservoir sand size distribution.
Hodge et al. (2002) developed a valuation method for a stand-alone
screen design, and gravel packed completion with consideration of
plugging resistance and sand retention. Denney (2002) worked on field
and laboratory tests to evaluate the relative effectiveness of two types of
sand control methods used in the field with respect to optimizing op-
erating expense. Farrow et al. (2004) used a new method based on the
combination of a sand control matrix and flowchart.

Accordingly, the selection criterion was compared conforming to a
probability of consequence ranking. Selection criteria were reservoir
management, Particle Size Distribution (PSD), well condition and
shales, installation risk and reliability, and cost. Mathisen et al. (2007)
studied the importance of the selection of the screen process and fluid
qualification. The authors presented a sand control selection method,
which takes into account the effects of screen type, fluid qualification
process, sand retention, and plugging properties. Slayter et al. (2008)
presented a methodical framework with consideration of tasks (sand
screen selection), activities (petrology analysis), and objectives (pro-
ductivity) for designing a sand control. Chanpura et al. (2011) proposed
a new method for selecting optimum stand-alone screen (SAS) based on
sand-retention performance, and screen/sand pack permeability ana-
lysis to maximize productivity. Latiff (2011) presented a modified
flowchart, which takes into account the effects of several parameters
including the length of production zone, well inclination, and particle
size distribution on sand control method selection. Chan et al. (2013)
investigated the effect of various factors including well life, type of well
completion, and particle size distribution on maximizing recovery of oil
and gas per well for the long-term production life cycle. Khamehchi
et al. (2015) studied the optimum sand control selection by considering
screen types, mechanical skin, and economic assessment. They con-
cluded that in the case of low oil production rate, factors of the re-
servoir productivity index, oil price, and time of capital return are more
important than sand control skin. In general, it is better to preliminary
analyze the predictive models, regardless the sand production is hap-
pening or not.

Many researchers have studied the sand-production prediction
models using different methods including numerical, analytical models
(Morita et al., 1989a, 1989b; Khamehchi and Reisi, 2015), and ex-
perimental tests (Van den Hoek et al., 1996; Fattahpour et al., 2012).

A review of previous studies shows that all sand control selection
methods consider only a limited number of criteria in determining the
best method. Nonetheless, there are many factors influencing the se-
lection simultaneously. Due to the complexity and uncertainties found
in the field of petroleum engineering, considering these factors is va-
luable (Latiff, 2011).

This study proposes a novel approach based on a combination of
Multiple-Criteria Decision-Making (MCDM) and Design of Experiment
(DOE) techniques. MCDM is a part of operations research, which ex-
plicitly appraises multiple inconsistent criteria in the decision making
process. There are several MCDM methods including Analytic
Hierarchy Process (AHP), ELimination and Choice Expressing REality
(ELECTRE) and Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) (Zavadskas et al., 2014). After selection of best sand
control method by applying MCDM, DOE and Response Surface Meth-
odology (RSM) are used to optimize the parameters of the best-selected
sand control method. DOE is a powerful technique to gain maximum
information from a data set with the minimum number of experiments.
In this regard, Full Factorial design (FFD) is used to perform required
reservoir simulations. FFD is one type of DOE in which one can measure
responses at all combinations of the factor levels. Also, Response Sur-
face Methodology (RSM) is a collection of statistical methods to develop

a significance mathematical relationship between various independent
factors and one or more dependent variables. Finally, Monte Carlo si-
mulation (MCS) is applied to perform sensitivity and uncertainty ana-
lysis of the derived proxy equation of NPV for the best-selected sand
control method.

2. Model description

In order to perform the required reservoir simulations with the sand
control option, an actual carbonate reservoir was selected in the south
of Iran. The geometry of the field has been modeled using corner-point
geometry. This model contains 83× 115×28 grid blocks, of which
156631 blocks are active. The field contains 24 production wells that
are completed in the oil column and 19 wells have sand production
problems. The wells operate under constant-rate production con-
straints. After falling below a limiting bottom hole pressure, they will
switch to a BHP-constraint. Fig. 1 shows the simulated 3D reservoir
model of this oil field. Tables 1–3 presents more detailed information
about the properties of the simulated reservoir.

The Particle Size Distribution (PSD) method is used for designing
the sand control method. Using PSD method, samples of the formation
sand are evaluated to determine the median grain size diameter and the
grain size distribution. For this purpose, a sieve analysis is performed
on a formation sand sample to select the proper-sized gravel-pack sand.
In this regard, the weight of formation sample, retained by each size
screen, can be specified by weighing the screens before and after
sieving. Then, the cumulative weight percent of each sample against
screen mesh size is plotted on semi-log coordinates to obtain a sand
size-distribution plot. According to formation grain size distribution
plot, reading the graph at the 50% cumulative weight shows the median
formation grain size diameter (d50). This procedure is the basis of the
sand control method designing, for example, grains of gravel pack
method is defined when the median grain size of the gravel-pack sand,
D50, is no more than six times larger than the median grain size of the
formation sand, d50 (Zhang et al., 2014).

As can be seen from Fig. 2, formation sand size is between 0.00032
and 0.00125m in diameter. The following shows that the formation
grains are coarse. The sand control properties (Table 4) are designed
Based on Fig. 2.

Fig. 1. 3D reservoir model.

Table 1
Properties of the simulated reservoir.

Properties Value

Producing tubing ID 2.996 in.
Top of producing sand face 13466 ft.
Wellhead temperature 77 F
Production fluid Oil
Thickness of producing layer 100–300 ft.
Wellbore radius 0.36 ft.
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3. Methodology

The major objective of this study is to find the best sand control
method by considering inconsistent criteria. In this regard, MCDM
methods are used. In MCDM topics, criteria such as economic and
technical are called inconsistent criteria, which are qualitative or
quantitative. Qualitative criteria include revenue, cost of installation,

and skin. Quantitative criteria include limitation of installation, avail-
ability, and reliability. Solving an optimization problem by considering
inconsistent criteria is more reliable and accurate relative to make a
decision by considering only similar factors. Different MCDM methods
with different complexity and presumptions exist. This occurs because
the chosen score scales, weights and the resulting distributions of the
scores within the criteria do not have the same impact on all the
methods. For this reason, there is a knowledge gap about the validity of
their outcomes. Complexity in MCDM methods is related to the math-
ematical process and the statistical features. Assumptions are related to
weighting, intensity and, explanation for comparing i rows with j
column in a matrix of pairwise comparisons (Tscheikner-Gratl et al.,
2017).

Three methods of AHP, ELECTRE, and TOPSIS were selected based
on expert experience and previews study because of their applicability
in petroleum engineering. Therefore, in the current study, three
methods of MCDM including AHP, ELECTRE, and TOPSIS are used to
select the best sand control method. In the AHP method, a weight w is
assigned to each criterion, which represents the importance of the cri-
terion. The TOPSIS measures how good alternatives reach determined
goals or aspirations. ELECTRE compares the alternatives pairwise for
each criterion, finding the strength of preferring one over the other. The
combining of these methods has better results due to the considering
various aspects of MCDM approach.

Finally, the average rating method is used to combine the previous
mentioned methods. The following sections review the MCDM methods
in detail.

3.1. MCDM (multiple-criteria-decision-making)

MCDM is a subset of operations research which explicitly appraises
multiple inconsistent criteria in decision making. Examples include
daily life and in environments such as government, medicine, and
business (Hashemi et al., 2016). The inconsistent criteria have a dif-
ferent nature, some of them are quantitative and others are qualitative
which results in complexity of decision making. This complexity can be
solved by MCDM methods. In selecting sand control methods, various
inconsistent criteria take part in decision making (Weistroffer et al.,
2005) and MCDM methods can significantly help the production en-
gineer to select the best choice.

3.2. Selection of multi-criteria decision-making (MCDM) methods
(literature review)

3.2.1. Review of methods
MCDM methods have a wide range of approaches (Zavadskas et al.,

2014). These methods can be classified into three groups (Belton and
Stewart, 2002):

• Value evaluation methods: For each alternative, a numerical score is
created. In addition, a weight (w) is specified to each criterion that
demonstrates the influence of the criterion (e.g., AHP).

• Reference level and goal models: These methods evaluate how
proper alternatives impact reaching determined goals or aspirations
(e.g., TOPSIS).

• Dominating models: These methods for each criterion contrast the
alternatives pairwise and discover the strength of preferring one
over the others (e.g., PROMETHEE, ELECTRE).

In this paper, all three groups of MCDM including AHP, ELECTRE,
and TOPSIS are used to select the best sand control method, with
considering all aspects of MCDM methods. The remaining sections focus
on the AHP, ELECTRE, and TOPSIS, and describe how they work. Then,
the best sand control technique is selected with consideration of six
criteria including revenue, cost of operation and installation, sand
screen skin, availability, limitation, and reliability.

Table 2
Fluid properties and reservoir data.

Properties Value

Reservoir pressure 8800 Psi
Solution GOR 1.721 MSCF/STB
Oil gravity 33.71API
Gas gravity 0.83 sp. gravity
Oil viscosity 0.296 cP
Oil FVF 1.898 RB/STB
Reservoir temperature 294.3 F
Bubble point pressure 4887 Psi

Table 3
Well test data.

Properties Value

Skin factor 0–25
Average reservoir permeability 110 md

Fig. 2. Formation gran size distribution (adapted from Iranian oil company).

Table 4
Properties of the sand control methods.

Gravel pack Value

Mesh size 30/50
Permeability 90 D
Length of penetration 0.5 ft.

Slotted liner
Liner inner radius 2.706 in
Liner outer radius 2.907 in
Slot height 8 in
Slot width 0.04 in
Shot density 6 1/ft.

Wire wrapped
Screen inner radius 2.63784 in
Outside permeability 1000 md

Pre-packed
Screen inner radius 2.126 in
Screen outer radius 2.2368 in
Screen permeability 5000 md
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By reviewing previous research utilizing of MCDM methods in the
petroleum industry, TOPSIS has been successfully applied for the pre-
diction of the best artificial lift method (Alemi et al., 2010). Application
of this method in the optimum selection of drainage gas recovery
technology (Gong et al., 2007) was noted. As well as in the novel EOR
strategy-decision system based on Delphi-AHP-TOPSIS methodology
(Liang et al., 2015). Valbuena et al. (2016) used ELECTRE for defining
the artificial lift system selection guidelines for horizontal wells. Also,
Fatahi et al. (2011) selected the best artificial lift method for one of the
Iranian oil fields by employing the ELECTRE approach. Wang et al.
(2017) studied reservoir heterogeneity by AHP and Fuzzy Logic.
Gerbacia and Al-Shammari (2001) used AHP in Strategic Reservoir
Planning. Also, Wan et al. (2011) applied AHP in oil and gas pipeline
route selection.

For applying the MCDM methods to select the best sand control
approach, first, the following decision matrix that consists of various
criteria and alternatives should be constructed. Table 5 shows the de-
cision matrix.

In Table 5, A1, A2 … …. An are the possible alternatives which are
chosen by decision makers. C1, C2, …Cn are the criteria for which al-
ternatives are chosen, and Xij is the ratio of Ai to Cj. Wj is the weight of
Cj. The value of weight can be computed either via a direct way or from
a pairwise comparison.

3.2.1.1. AHP. Analytical Hierarchy Process (AHP) is a structured
approach to cope with complicated decision-making processes
developed by Thomas L. Saaty in 1970. AHP is able to help decision
makers acquire the best selection based on their needs and their
understanding of the subject. AHP method combines mathematics and
psychology in order to be able to select the best alternative. AHP
presents an all-inclusive and rational method for solving a decision
problem. AHP transforms evaluations to numerical values, which can
be processed and contrasted over the entire problem. For each element
of the hierarchy, a numerical weight is derived, allowing diverse
criteria to be compared to one another in a consistent and rational
way. This ability is the exclusivity that distinguishes AHP from other
MCDM techniques (Samad et al., 2012). AHP is based on a paired
comparison, which is used to define the relative priority of each
criterion. This method, uses the standardized network to grade the
priority of different choices of a complex decision making process. This
is achieved by using different criteria and distinct indices with
prioritized multi-surface structures. The ability to analyze a decision
making issue with graded structure is the basic foundation in AHP
(Saaty, 1977; Javaheri et al., 2006; Gbanie et al., 2013). Further details
of the AHP approach are given in (Saaty, 1977).

Saaty (1980) designed the following procedure for the AHP process:

1) Define alternatives and criteria as a decision matrix such as
Table 5.

2) Determine qualitative and quantitative criteria.

• Quantitative criteria such as price, revenue, distance

• Qualitative criteria such as hardness, security, beauty
3) Convert qualitative criteria to quantitative values using the bipolar

reference space shown in Fig. 3.

4) Build the matrix of pairwise comparisons among criteria.
By using Table 6, in a matrix of pairwise comparisons, i rows are
compared with the j column such that the main diagonal is equal to
one. Also, each element under the main diagonal is the reverse of
the element above the main diagonal.
The results of the pairwise comparison on criteria are summarized
in an ×n(n ) matrix in which elements = …a i j n( , 1,2, )ij are shown
by equation (1).

= ⎡

⎣
⎢

⋯
⋮ ⋱ ⋮

⋯

⎤

⎦
⎥ = = ≠A

a a a

a a a
, a 1, a 1

a , a 0
11 12 1n

n1 n2 nn
ii ji ij ij

(1)

5) Make pairwise comparisons for each criteria in terms of the alter-
natives (similar to step 4).

6) Normalize matrix of pairwise comparisons by dividing the value of
each matrix with the sum of the corresponding column.

7) After normalization, calculate the relative weight of each criteria
by computing the average of each row.

8) Do the same steps for each alternative in terms of the criteria.
9) Multiply relative weights of criteria with the average of relative

weight alternatives matrix.
10) Rank the alternatives according to the results of step 9.

After these steps, measure the inconsistency to determine whether
or not there is a compatibility between the pairwise comparisons as
follows:

1) Calculate the weighted sum vector with a multiplication of the
pairwise comparisons matrix of criteria in the vector of relative
magnitudes.

2) Divide the magnitudes of the weighted sum vector of criteria by the
vector of relative magnitudes to obtain the consistency vector.

3) Calculate the average elements of this vector.

The mathematical procedure starts to normalize and calculate the
relative weights for each matrix. The relative weights are determined
by the right eigenvector (λ) corresponding to the largest eigenvalue
(λmax) as:

=Aω λ ωmax (2)

When pairwise comparisons are quite consistent, the matrix A has
rank 1 and =λ nmax . In this condition, weights can be calculated by
normalizing any of the columns or rows of matrix A (Wang and Yang,
2007).

4) Calculate inconsistency ratio.

The accuracy of the output of the AHP is rigorously related to the
consistency of the pairwise comparison adjudication (Daǧdeviren,
2008). When (λmax) diverges from n, the inconsistency of pairwise
comparison matrices is limited. The divergence ( −λ nmax ) is used as a
value of inconsistency. This value is divided by n-1. This results in an
average of the other eigenvectors (Forman, 1998). Thus, “consistency
index” (Cl), is calculated by equation (3).

= − −Cl λ n n( )/( 1)max (3)

To find out whether the evaluations are completely consistent, the
final consistency ratio (CR) can be calculated as the ratio of Cl and
random index (RI) by equation (4).

=CR Cl RI/ (4)

The random consistency indices (RI) are in accordance with the
degree of consistency. With values on the 1–9 scale, as shown in Table 7
and n is the number of criteria. The degree of consistency automatically
increases when completing random reciprocal matrices. The accepted

Table 5
Decision matrix.

C1 C2 … Cn

A1 X11 X12 … X11

A2 X21 X22 … X2n

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Am Xm1 Xm2 … Xmn

W W1 W1 … W1
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upper limit for CR is 0.1. If CR > 0.1, in this case the calculation has to
be repeated to result in better consistency. Calculating the consistency
is used to evaluate the consistency of decision makers (Wang and Yang,
2007) (see Table 8).

5) Read inconsistency random index from Table 7.

3.2.1.2. ELECTRE. ELECTRE method is one of the methods under the
umbrella of multiple criteria decision making (Hwang and Yoon, 1981)
presented by Bernard Roy. This method is generally applied to three
main problems: choosing, ranking, and sorting (Roy, 1968). Its first idea
about concordance, discordance, and outranking notions emanated
from real-world applications (Roy and Vanderpooten, 1997). To
evaluate the outranking relations among the alternatives, ELECTRE
uses concordance and discordance indicators (Almeida, 2007). The
ELECTRE process encompasses the following steps (Mary and Suganya,
2016):

• Computation of concordance matrix

• Computation of discordance matrix

• Computation of credibility matrix

• Ascending preorder and descending

The ELECTRE process presents the following steps in detail:

1) Define alternatives and criteria as a decision matrix similar to AHP.
2) Determine qualitative and quantitative criteria.
3) Convert qualitative criteria to quantitative ones using bipolar re-

ference space.
4) Normalize the decision matrix using norm method as shown in

equation (5).

= =
∑ =

N n n
a

a
[ ] ,

[ ]
ij ij

ij

i
m

ij1
2 1

2 (5)

5) Evaluate individual criterion weight using Shannon maximum en-
tropy

For this purpose, these steps should be implemented:

1. Suppose that the decision matrix is as follows:
2. Calculate Pij by using the following equation:

=
∑

= ∀
=

P
a

a
ij ij

i
n

ij
i j

1
,

(6)

3. The entropy of the jth criteria is calculated as follows:

∑= − ∀
=

E k P P[ ln ] ;j
i

m

ij ij j
1 (7)

Then, calculate the degree of deviation dj and unreliability of j
criteria to show how much the criteria related to j offers important
information to the decision maker.

= − ∀d E1 ;j j j (8)

4. Calculate weight wj using the following equation:

=
∑

∀
=

w
d

d
;j

j

i
n

j
j

1 (9)

6) Calculate balanced normalized matrix (V). For this purpose, mul-
tiply the normalized matrix with the square matrix (Wn×n). The
main diagonal elements of which are criterion weights and the other
elements are zero.

= × ×V N Wn n (10)

7) Compute concordance matrix and discordance matrix.

In this step, all alternatives are evaluated relative to all criteria and
then sets of concordance and discordance matrices are constructed.

3.2.1.2.1. Concordance set (Sk,l). The concordance set (Sk,l) is
constructed by l and k alternatives. This set consists of criteria in
which alternative Ak is more favorable than alternative Al. To find this
favorability, one must consider the type of decision-making criteria,
namely the positive or negative aspects.

For criteria with a positive aspect:

= ≥ = …A j v v j m{ | } , 1, ,k j kj ij, (11)

For criteria with a negative aspect:

= ≤ = …A j v v j m{ | } , 1, ,k j kj ij, (12)

The discordance set (Dk,l) includes criteria for which alternative Ak

Fig. 3. Bipolar reference space.

Table 6
Intensity and explanation for comparing i rows with j column in a matrix of
pairwise comparisons.

Intensity Definition Explanation

1 Equal importance Two activities contribute
3 Moderate importance Slightly favors one over another
5 Essential or strong Strongly favors one over another
7 Demonstrated

importance
Dominance of the demonstrated in practice

9 Extreme importance Evidence favoring one over another of
highest possible order of affirmation

2, 4, 6, 8 Intermediate values When compromise is needed

Table 7
Random consistency indices (RI) (Saaty, 1995).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

Table 8
Decision matrix.

C1 C2 … Cn

A1 X11 X12 … X11

A2 X21 X22 … X2n

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Am Xm1 Xm2 … Xmn
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is less favorable than alternative Al.
For criteria with a positive aspect:

= ≤ = …D j v v j m{ | } , 1, ,k j kj ij, (13)

For criteria with a negative aspect:

= ≤ = …D j v v j m{ | } , 1, ,k j kj ij, (14)

With previous steps, the concordance matrix is constructed. This is
an m×m matrix; the main diagonal of which has no element. The
other elements of this matrix are created by summing up the weights of
the criteria that belong to the concordance set.

Hence,

∑= ∈I w j A,kl j k l, (15)

Ikl expressing relative importance of Ak to Al.
The value of this index is between 0 and 1. The higher this value is,

the greater the favorability of Ak to Al.
3.2.1.2.2. Discordance set (NI). Discordance set (NI) is an m×m

matrix. The matrix main diagonal does not have any element. The other
elements of this matrix are obtained from the balanced normalized
matrix. This element is calculated according to the following equation:

=
− ∈

− ∈
NI

Max v v j D
Max v v j All criteria

,
,kl

kj lj k l

kj lj

,

(16)

This index calculates the u-favorability ratio of discordance set k
and j to total discordance of all criteria.

8) Compute the effective concordance matrix and effective discordance
matrix.
3.2.1.2.3. Effective concordance matrix (H). For constructing this

matrix, a threshold should be defined. If any matrix element is larger or
equal to this threshold, that element in matrix (H) takes the value of
one. Otherwise, it takes the value of zero. The following equation is
used to determine an index for the threshold:

∑ ∑= −
= =

I I m m/ ( 1)
l

m

k

m

kl
1 1 (17)

So

≥ → =if I I H 1kl kl (18)

≤ → =if I I H 0kl kl

This matrix indicates preference of an alternative over another.
3.2.1.2.4. Effective discordance matrix (G). The threshold of this

matrix is calculated as follows:

∑ ∑= −
= =

NI NI m m/ ( 1)
l

m

k

m

kl
1 1 (19)

The elements of this matrix are obtained as follows:

≥ → =if NI N I G 0kl kl (20)

≥ → =if NI N I G 1kl kl

9) Multiply effective concordance matrix with effective discordance
matrix.

For this purpose, multiply H and G and obtain the final matrix (F).
In this matrix, the row is preferred to the column. According to this,
alternatives are ranked.

3.2.1.3. TOPSIS. TOPSIS is an acronym for Technique for Order of
Preference by Similarity to Ideal Solution. This method is one of the
types of multi-criteria decision-making approach that is developed by
Hwang and Yoon (1981). TOPSIS can be applied easily to solve a
problem with various criteria relative to the other multi-criteria

decision making methods.
TOPSIS presents a more pragmatic form of modelling compared to

other methods, which include or exclude alternative solutions (Greene
et al., 2011). TOPSIS has been successfully applied in the petroleum
industry for EOR selection.

The concept of TOPSIS is that the elected alternative should have
the longest geometric distance from the negative ideal solution (NIS)
and the shortest geometric distance from the positive ideal solution
(PIS) (Assari et al., 2012). TOPSIS assumes that the criteria are uni-
formly increasing or decreasing. When parameters or criteria in multi-
criteria problems are in incompatible dimensions, normalization is
usually required (Yoon and Hwang, 1995; Zavadskas et al., 2006).

TOPSIS method is composed of the following steps:

1) Define alternatives and criteria as a decision matrix.
2) Determine qualitative and quantitative criteria.
3) Convert qualitative criteria to quantitative ones using bipolar re-

ference space.
4) Normalize the decision matrix using a norm method such as the

ELECTRE method.
5) Evaluate individual criterion weight using Shannon maximum en-

tropy as explained in the ELECTRE method.
6) Calculate the balanced normalized matrix, for this purpose multiply

the normalized matrix with square matrix (Wn*n), for which their
main diagonal elements are criterion weights and the other elements
are zero (such as ELECTRE method).

7) Define negative ideal solution (NIS) and positive ideal solution (PIS)
and then calculate the geometric distances from the positive ideal,
and geometric distance from the negative ideal.

For this purpose, define the following indices:

Positive ideal solution (Vj
+)= [vector of the best value of each criteria]

Negative ideal solution (Vj
−)= [vector of the worst value of each cri-

teria]

And then calculate;

∑= − = …+

=

+d v v i m( ) , 1,2, ,i
j

n

ij j
1

2

(21)

∑= − = …−

=

−d v v i m( ) , 1,2, ,i
j

n

ij j
1

2

(22)

di+ and di− are geometric distance from the positive ideal and the
negative ideal, respectively.

8) Calculate relative proximity (CL) with the following equation:

=
+

∗
−

− +CL
d

d di
i

i i (23)

According to the amount of CL, the best method is chosen.

3.3. Procedure of applying MCDM methods and specifying the criteria and
alternative

The procedure of applying MCDM tools to select the best sand
control is shown briefly in Fig. 4.

3.3.1. Selecting the criteria and alternative
Five criteria including revenue, skin, cost of installation, avail-

ability, limitation, and reliability are selected to determine the best
sand control method. Also, four considered sand control methods are
gravel pack, slotted liner, wire wrapped, and prepacked. Fig. 5 shows
the criteria and alternatives.
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For constructing the decision matrix and defining the alternatives,
available information and experts' questionnaires are used. In the fol-
lowing, the selected criteria are described briefly.

• Revenue including incomes from oil and gas minus water disposal
cost. In this paper, one of the fields in southern Iran with formation
particle production was simulated for 42 years from 2001 to 2043.
The prediction period spans from 2011 to 2043. The production
system is an integrated model of reservoir, wells with sand control
completion, and surface equipment.

• Skin in this matrix refers to skin caused by pressure drop in sand
control.

• Cost of installation consists of cost of tools, necessary equipment,
rig time, and man power. Table 9 shows the approximate costs of
sand control equipment and operations, and the cost of work-overs.

• Availability means the ability to access tools with consideration of
different conditions like political sanction of spare parts, offshore.

• Limitation criteria are the indication of restriction in installing
tools in wells such as diameter of well and tool, type of metal,
erosion, corrosion and designing with regard to prevention sands.

• Reliability shows the future aspect of tools like break down due to
mechanical failure, plugging, and the term reliability embraces not
only equipment, such as tools, and fixtures, but also the operational,
technical, and activities, extending from tool specifications to daily
maintenance and operation, required to maintain the efficiency of
equipment over its useful life (Edge et al., 1991).

When selecting a sand control method, one has to consider the de-
sign limitations, complexity of installation, availability, mechanical
risk, reliability, plugging erosion, well specifications, productivity, total
cost and costs of work-over. The comparison between four sand control
methods has been shown in Table 10. Table 10 was constructed by
information that was gathered from experts' questionnaires and litera-
ture.

The decision matrix can be constructed by using the above con-
siderations. Table 11 shows the prepared decision matrix to select the
best sand control method based on MCDM techniques.

4. Results and discussion

4.1. AHP for sand control method selection

In the previous section, alternatives and criteria were selected based
on the literature review and experts' questionnaire. The result of ap-
plying the AHP method for selecting sand control is given in Table 12.

Also, the inconsistency in determining whether or not there is a com-
patibility between the pairwise comparisons was calculated. The
number 0.1 is the accepted upper limit for CR. CR for the matrix of
pairwise comparisons among criteria was calculated as 0.09. This shows
compatibility between the pairwise comparisons. The results show that
slotted liner, pre-packed, wire wrapped and, gravel pack are the best
alternatives for the sand control method, respectively.

4.2. ELECTRE for sand control method selection

The result of applying ELECTRE for selecting sand control is given in
Table 13. The results show that slotted liner, pre-packed, wire wrapped,
and gravel pack are the best alternatives for the sand control method,

Fig. 4. Procedure of applying MCDM tools to select the best sand control.

Fig. 5. The criteria and alternatives.

Table 9
Equipment and operations Cost (Khamehchi et al., 2015).

Equipment and operations (1000$)

Gravel pack method
Necessary tools 500
Perforation or under reaming 600
Fluids and gravels 900
Pump 800
Rig time (15 days) 15× 30
Gravel pack placement operation 2700
Man power 400
Total 6350
+ Work-over operation (Gravel pack replacement) 10400

Slotted liner method

Slotted pipe (3 branches) 3×400
Rig time (10 days) 10× 30
Man power 100
Total 1600
+ Work-over operation 500

Wire wrapped screen method

Screen (3 branches) 3×1000
Rig time (10 days) 10× 30
Total 3300
+ Work-over operation 500

Pre-packed screen method

Screen (4 branches) 4×1200
Rig time (10 days) 10× 20
Total 5000
+ Work-over operation 400
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respectively.

4.3. TOPSIS for sand control method selection

The result of TOPSIS based on relative proximity (CL) is given in
Table 14. The results show that slotted liner, gravel pack, pre-packed,
and wire wrapped are the best alternatives for the sand control method,
respectively.

In order to find the best sand control method, a collection of eco-
nomic and technical criteria was used. These criteria had a different
concept that lead to difficult choices. These criteria and scoring were
done by using experts' questionnaires in order to construct the decision
matrix. As shown in Fig. 6, which is obtained from the TOPSIS method,
revenue has the lowest weight and limitation has the highest weight.
The revenue includes oil and gas income with water disposal cost
subtracted. The well with more skin (due to sand control pressure drop)
has less oil and gas production. Therefore, the reservoir depletion was
slower and water and gas coning were postponed, which resulted in less
water production. Eventually, the income deficit from oil and gas was
compensated by lesser water production.

The three MCDM methods have slightly different results and are not
equal. The discrepancy occurs because of different weights, score scales,
and distributions of scores. The decision maker must be aware of the
strengths and weaknesses of all methods. Therefore, in some conditions,
it would be logical to use one of the simplest methods. Nonetheless, to
test the consistency, a better comparison and to increase the reliability
of the results, the application of various methods are indeed trial-
worthy. Finally, to select the best sand control method, the average

rating method was used. This method determines the best option based
on the average rankings obtained from different MADM priority
methods. Table 15 shows the results of the three methods and the
average score of the different sand control methods.

According to the average rating method, in this Iranian carbonate
reservoir, a slotted liner is the best tool to control sand particles. Pre-
packed is in second and gravel pack comes in third rank. The wire
wrapped alternative is the last option for controlling sand particles.

4.4. Optimization of the best sand control method

After selecting the best sand control method, namely slotted liner, a
combination of DOE, RSM, and MCS is applied to perform optimization
and uncertainty analysis. DOE provides a tool to investigate the effects
of parameters in results concurrently. DOE has a feasibility to provide a
predictive knowledge of a complicated, multi-variable process (Lazić,
2005). DOE has have been successfully applied to a wide range of
problems in the petroleum and natural gas industry including: a risk
optimization approach to water drive gas reservoir production opti-
mization, well placement and individual well controls optimization,
and cutting transport efficiency prediction (Naderi and Khamehchi,
2016, 2017, 2018). To develop proxy models, sets of simulations should
be carried out to obtain the importance and priority of parameters and
their interactions. By the methodical design of simulations, DOE allows
exploring a full range of parameters swiftly and efficiently. For gen-
erating a response surface model, the three level full factorial design
was selected. Full Factorial design (FFD) is used to perform required
reservoir simulations. FFD is one type of DOE in which one can measure
responses at all combinations of the factor levels. In this design, the
number of required simulations for n factors with three levels is equal

Table 11
Decision matrix to select the best sand control method.

Revenue (US$) Skin Cost of installation (US$) Availability Limitation Reliability

Gravel pack 63450318257.76 9.595 6350000 High Very High Moderate
Slotted liner 63736507202.97 3.647 1600000 Very High Very Low Low
Wire wrapped 63737079173.70 7.233 3300000 Very Low Moderate High
Pre-packed 63985386733.05 5.091 5000000 Moderate Low Very High

Table 12
Sand control methods ranking for AHP method.

Method Value Rank

Gravel pack 0.081297 4
Slotted liner 0.539812 1
Wire wrapped 0.130885 3
Pre-packed 0.273121 2

Table 13
Sand control method ranking with ELECTRE
method.

Method Rank

Gravel pack 3
Slotted liner 1
Wire wrapped 3
Pre-packed 2

Table 14
Relative proximity (CL) and sand control method ranking with TOPSIS method.

Method CL Rank

Gravel pack 1.209414218 2
Slotted liner 1.228327857 1
Wire wrapped 1.035756481 4
Pre-packed 1.12760924 3

Fig. 6. Weights obtained from TOPSIS method for different criteria, revenue
has the lowest weight and limitation has the highest weight.

Table 15
Results of three methods and average score of different sand control methods.

TOPSIS ELECTRE AHP Average score

Gravel Pack 2 3 4 3
Slotted liner 1 1 1 1
Wire wrapped 4 3 3 3.333333
Pre-packed 3 2 2 2.333333
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to 3n. Due to the fixed ratios of well bore in this study, only slot height,
slot width and density are considered and liner inner radius and liner
outer radius remain constant. Table 16 shows the input parameters for
each simulation run. According to the three level full factorial method,
27 simulations should be performed which are shown in Table 17. Data
are expressed in relative values between 1 (for minimum valve), 2 (for
moderate value) and 3 (for maximum value).

The significance of derived response functions was investigated by
analysis of variance (ANOVA) as shown in Table 18. From Table 18, it is
very obvious that the interactions among variables have a considerable
effect on the NPV. In this analysis, α is equal to 0.1. Alpha is a para-
meter whose value is applied by the user. (Alpha to enter: Enter the
alpha value that is used to determine whether a term can be entered

into the model. Alpha to remove: Enter the alpha value that is used to
determine whether a term is removed from the model). If P-Value≤ α,
then the dependency is statistically significant. In each step, the vari-
able with the least impact will be omitted from the model. When all
variables in the ANOVA table have been taken a P-Value less than or
equal to the alpha to remove, the process stops. Simply, a P-Value
shows us the information about the reality of a result. Technically, this
parameter is a decreasing index of the reliability of an outcome, and the
larger it is, the confidence in the reality of the results reduces (Plackett
and Burman, 1946).

To evaluate the relative strength of the effects among factors, main
effects plot for NPV based on FFD is shown in Fig. 7. In these figures,
the means for each level of a factor are plotted and linked with a line.
Factorial points and Center points are shown by different symbols. A
reference line is also shown at the grand mean of the response data by
dots. As shown in the main effect plot for NPV, respectively the width,
the shot density, and the height, have the most effect on NPV variations.
As can be seen, NPV always increases by increasing these three para-
meters.

The changing any factor and holding the value of the second factor
constant has also importance in this analysis. Fig. 8 shows the inter-
action plots of NPV. An interaction plot is a plot of means for each level
of a factor by holding the level of a second factor constant. The relative
strength of the effects across factors can be compared using interaction
plots. However, the interpretation, as also for the main effects, is
meaningful only if the interaction effects are statistically significant. By
considering the interaction effects in the statistical model the complex
nature of the optimization process becomes more understandable
(Fegade et al., 2013). The most significant interaction effects on NPV
are W×D and H×D.

Table 19 shows the coefficient of determination (R2) and the ad-
justed coefficient of determination (R2adj) for the proxy equation of
NPV 94.94% and 83.54%, respectively. These parameters used to show
the quality of fit for the regressions. To show how well the data fit a
statistical model, R2 is considered between zero and one. This para-
meter shows the percentage of variability in the process defined by the
fitted model. Therefore, the closer the R2 to 100 is, the higher the re-
gression quality. 100% indicates that the regression line perfectly fits
the data, while a value of zero percent indicates that the regression does
not fit the data at all. The R2adj is defined in terms of the coefficient of
determination which has the effect of the number of independent
variables on regression goodness of fit. A little difference between R2adj
and R2 means that the unnecessary terms have not been included in the
model (Myers and Montgomery, 1995).

Analyzing Table 17 using RSM and performing optimization reveals
that run order 7 (Height= 8 in and width=0.07 in, Shot density= 6
1/ft.) and NPV=63.8226 billion dollars is the optimum design for
slotted liner. The optimum design for slotted liner results in a greater
income of 86092797.03 dollars (0.135%).

4.5. Sensitivity and uncertainty analysis of NPV

Sensitivity studies of the NPV response function were conducted
using analysis of variance and performing MCS. Prior to Monte Carlo
simulation, it is necessary to assign the appropriate probability dis-
tribution function for factors. A probability distribution function is a
function that applied to specify a particular probability distribution. To
evaluate the possibility of the occurrence of a specific event, probability
distribution functions is first developed. Then, MCS begins with a
model, often built in a spreadsheet, which includes input distributions
and output functions of the inputs (Sánchez et al., 2007). In this regard,
based on the available information, we assigned three distributions of
normal, triangular, and uniform for all factors of slot height, slot width,
and slot density (Gilman et al., 1998).

The result of Monte Carlo simulation by considering Latin
Hypercube Sampling (LHS) and generating 1000 random numbers from

Table 16
Ranges of data used in this study.

Parameter Symbol in study Minimum Moderate Maximum

Height (in) H 4 8 12
Width (in) W 0.01 0.04 0.07
Shot density (1/ft.) D 2 6 10

Table 17
Three level full factorial design (33) in DOE.

RunOrder StdOrder H W D NPV (US$)

1 21 3 1 3 6.33052E+10
2 18 2 3 3 6.37897E+10
3 1 1 1 1 4.50346E+10
4 13 2 2 1 6.21307E+10
5 20 3 1 2 6.25501E+10
6 5 1 2 2 6.29665E+10
7 17 2 3 2 6.38226E+10
8 7 1 3 1 6.13482E+10
9 10 2 1 1 5.56138E+10
10 14 2 2 2 6.39365E+10
11 2 1 1 2 5.95152E+10
12 4 1 2 1 5.99384E+10
13 27 3 3 3 6.38134E+10
14 3 1 1 3 6.12830E+10
15 11 2 1 2 6.17698E+10
16 23 3 2 2 6.36884E+10
17 22 3 2 1 6.29019E+10
18 12 2 1 3 6.24249E+10
19 16 2 3 1 6.31549E+10
20 15 2 2 3 6.36772E+10
21 6 1 2 3 6.34467E+10
22 26 3 3 2 6.36461E+10
23 9 1 3 3 6.36663E+10
24 8 1 3 2 6.35712E+10
25 24 3 2 3 6.37681E+10
26 19 3 1 1 5.85852E+10
27 25 3 3 1 6.35203E+10

Table 18
ANOVA table.

Source Degrees of
freedom

Adj Sum of
squares

Adj Mean
squares

F-Value P-Value

Model 18 3.69E+20 2.05E+19 8.33 0.002
Linear 6 2.39E+20 3.98E+19 16.17 0
H 2 3.82E+19 1.91E+19 7.76 0.013
W 2 1.09E+20 5.46E+19 22.15 0.001
D 2 9.16E+19 4.58E+19 18.59 0.001
2-Way

Interactions
12 1.30E+20 1.09E+19 4.41 0.022

H*W 4 2.85E+19 7.12E+18 2.89 0.094
H*D 4 3.00E+19 7.49E+18 3.04 0.085
W*D 4 7.19E+19 1.80E+19 7.3 0.009
Error 8 1.97E+19 2.46E+18
Total 26 3.89E+20
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the entire range of factors is given in Fig. 9.
It can be seen from Fig. 9 that the values of P10, P50, and P90 for

NPV are 60.91%, 63.38%, and 64.27%, respectively. Also, the
minimum and maximum NPV is equal to 55.93%, and 64.86%, re-
spectively. The result of sensitivity analysis in terms of contribution to
total variance shows that slot width, slot density, and slot height con-
trols 60.5%, 38.8%, and 0.7% of the NPV variation in the range of
factors, respectively.

In sum, the results of sensitivity and uncertainty analyses show that
the greatest uncertainty in estimating the best variables of slotted liner
is associated with two factors of slot width and slot density. Therefore,
these factors should carefully be characterized prior to the design of the
best slotted liner for sand control, in order to, maximize NPV.

5. Conclusion

The purpose of the current study was to determine the best sand
control method based on considering economic and technical criteria.
Therefore, three types of MCDM tools were used for this purpose.
MCDM methods had nearly similar ranking results. By using the
average rating approach, the slotted liner was selected as the best sand
control technique. The second aim of this study was to investigate the
effects of optimum slotted liner parameters (height, width, and shot

Fig. 7. Main effect plots for NPV. The main effect plots illustrate the relative strength of the effects across different levels of factors.

Fig. 8. Interaction plot for NPV. An interaction arises when the effect of one factor depends on the level of the other factors. Parallel lines in an interaction plot show
no interaction. The greater difference in slope between the lines indicates a higher degree of interaction.

Table 19
Response functions statistics.

R-sq R-sq (adj)

94.94% 83.54%
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density) on income; which resulted in a greater income of 86092797.03
dollars (0.135%). The investigation of the sensitivity and uncertainty
analysis also has shown that the greatest uncertainty in estimating the
best variables of the slotted liner is associated with two factors of slot
width and slot density. Therefore, these factors should carefully be
characterized prior to designing the best slotted liner for the sand
control in order to maximize NPV.
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