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Abstract

Recent financial turmoil (e.g., the 2008-2009 gldbeancial crisis) has resulted in
financial contagion-induced instability becomingeoaf the major concerns in the
fields of economics and finance. In this paper, exéend the network analysis of
financial contagion from three perspectives. Figsten that cross-holding of claims
and obligations among financial institutions canvimwed as input-output linkages,
we model the financial system and the contagionhawism by introducing the
classic Leontief input—output framework. Secondsdabon this modeling process, we
propose a simple contagion algorithm to study howarfcial system heterogeneity
influences its stability. Third, to mitigate findakt contagion, we propose several
concrete intervention policies based on two widelysed prudential
approaches—forced mergers and capital injectionse Pperformance of these
intervention policies is then evaluated by compnshe numerical experiments. Our
study has significant implications for financiagtgation and supervision.
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Abstract

Recent financial turmoil (e.g., the 2008-2009 gldbeancial crisis) has resulted in financial
contagion-induced instability becoming one of th&on concerns in the fields of economics
and finance. In this paper, we extend the netwodysis of financial contagion from three
perspectives. First, given that cross-holding daiims and obligations among financial
institutions can be viewed as input-output linkages model the financial system and the
contagion mechanism by introducing the classic tiebmput—output framework. Second,
based on this modeling process, we propose a siogpiégagion algorithm to study how

financial system heterogeneity influences its $tgbiThird, to mitigate financial contagion,

we propose several concrete intervention policiased on two widely used prudential
approaches—forced mergers and capital injectioh& ferformance of these intervention
policies is then evaluated by comprehensive nurakexperiments. Our study has significant

implications for financial regulation and superuisi
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1. Introduction

The increasing frequency and scope of financiadesrihas not only made financial
stability one of the major concerns of academiersicsts and policymakers but also revealed
the necessity of changing from a micro-prudentgdraach to a macro-prudential approach
when considering the regulation and supervisiofinaincial risk management (Borio, 2011).
One crucial characteristic of such crises is trsegyic risk of financial contagion—i.e., the
potential for the failure (such as distress, inenby or default) of one financial institution to
propagate through interconnectedness, causing otkgtutions to fail or even the whole
financial system to collapse in an unforeseen doneffiect (Brownlees and Engle, 2016).
Such interconnectedness is indeed a feature ohtitkern financial system owing to financial
innovation and liberalization; financial instituti® are directly interconnectedue to the
bilateral exposures (cross-holding of claims ankilyabons)created in the interbank market,
where institutions with surplus liquidity can lemd those with liquidity shortages. These
bilateral exposures are often reflected in theramenected balance sheets as assets and
liabilities.

As the financial system can be labeled a netwoiiktefconnectedness (cross-holding of
claims and obligations), network theory has beexd ustensively to model it and to analyze
financial contagion in general, where the netwoeKects the interconnectedness of the
financial system. Particularly, a large body ofwmk literature has emerged detailing both
theoretical studies (including simulation studiéstemoglu et al., 2015; Amini and Minca,

2016; Elliott et al., 2014) and empirical applicais (Greenwood et al., 2015; Levy Carciente

! Financial institutions can also be indirectly interconnected with one another, such as by overlapping portfolio
exposures; see Section 2.1.



et al.,, 2014) aimed at analyzing a wide range sfias regarding financial contagion and
financial stability. However, there are severalrstmmings in the existing literature. First, a
particular focus of those works is how the probgbind extent of financial contagion are
influenced by bilateral exposures and interconmiees (Caccioli et al., 2015; Elliott et al.,
2014), which are often measured using the averbgegree and the average of exposures,
respectively. However, these are not consideredetsufficient measures. For example, a
regular network and a random network may have Hreesaverage of degree, but the
interconnectedness of the two networks may notssac#y be the same. Second, much of the
literature merely uses financial institutions’ boediues on balance sheets (Gai et al., 2011;
Nier et al., 2007), even though these cannot reflestitutions’ true value due to the
ever-present inflation between book value and makadue. Third, although financial
contagion has become a major concern of finaneigllators and supervisors, attempts to
understand how to mitigate it are still in the gastage (Galati and Moessner, 2013), and
there is a need to design and implement concrégevention policies when the financial
system is under distress.

The above considerations motivated our study. Iriiquaar, as the cross-holding of
claims and obligations can be viewed as input-duipkages, we aim to extend the network
approach to studying financial contagion usingdlessic Leontief input—output framework.
Using the input-output framework, we start by amadyg financial contagion in an
interconnected financial system based on the diahae of market value. We then propose a
simple contagion algorithm to study the effectsh@ diversification of bilateral exposures

(reflected by the mean and variance of exposurd)iaterconnectedness (reflected by the



mean and variance of degree) on financial contagging numerical simulation. Finally, we
focus on the design and implementation of intefieenpolicies based on two prudential
approaches—forced mergers and capital injections—tigating financial contagion to
enhance the stability of the financial system. irf&n standpoints of these policies follow the
Basel Il agreement, concentrating on systemicafigortant financial institutions, e.g., the
“too-big-to-fail” (TBTF) or the *“too-connected-tail” (TCTF). We adopt several
network-related indicators to measure the intereotedness of the financial system. In line
with these measures, we implement the interventistrument of forced mergers or capital
injections to the systemically important financiaktitutions. The performance of these
intervention policies is then evaluated by compnshe numerical experiments.

The contribution of this research can be summardzefbllows.

First, our work supplements the network approactintncial contagion by introducing
the classic Leontief input—output analysis. A ficiah network consists of the relationships
formed by the cross-holding of claims and obligagioOur motivation for using an input—
output analysis stems from its wide use in studyisi management in cross-holdings across
business groups (Crowther and Haimes, 2005; Hateedg2008; Henriet et al., 2012).

Second, our work has significant implications forahcial regulation and supervision,
particularly in business intelligence-related fiogh risk management (Hu et al., 2012). As
highlighted by the recent financial crisis, it isotnenough to implement purely
micro-prudential policies (Basel | and Basel lly fnancial regulation and supervision, as
such policies merely concentrate on the statenainttial institutions in isolation (Galati and

Moessner, 2013). Instead, there is a growing cansethat policymakers should adopt a



macro-prudential approach to regulation and supenvi The macro-prudential approach
(Basel Ill) views the financial system as a wholetaking the effect of systemic risk into
account (Galati and Moessner, 2013; Hasman, 2@s)considering the framework of
micro-prudential and macro-prudential regulationgether, we propose several concrete
intervention policies for bailing out systemicallynportant financial institutions——by
forced mergers or capital injections where theesyst important financial institutions are
either the institutions with higher bilateral exposs or the institutions with higher
interconnectedness.

The remainder of this paper is organized as folldestion 2 examines the related work;
Section 3 presents the modeling process; Sectistudies the effect of diversification of
bilateral exposures and interconnectedness ontdéhdity of the financial system; Section 5

proposes and evaluates intervention policies; tamally, Section 6 presents conclusions.

2. Related Work
2.1 Financial Contagion and Financial Stability

Our work is related to multiple strands of the exktéiterature. In its modeling of
financial networks, this paper is closely relatedte literature on financial contagion and
financial stability. The seminal work of Allen ar@ale (2000) pioneers this strand of
theoretical study by showing how the network stitetaffects risk sharing. Following this
outstanding work, a large number of studies onnitiel contagion have used network or
graph models. Financial contagion in a financiatesmn mainly occurs via three mechanisms.

The first is correlation risk resulting from ovepf@ng portfolios (Caccioli et al., 2015;



Dehmamy et al., 2014). There is portfolio overlapween two institutions if they both invest
in the same asset, and they will be affected ifrtfagket price of the asset decreases. As a
result, the institutions are indirectly interconteet by the portfolio overlap. The second
mechanism is illiquidity risk due to rumor or infoation asymmetry (Brunnermeier, 2008;
Calvo and Mendoza, 2000; Gai et al., 2011). Rumoinformation asymmetry causes
depositor panics characterized by unwarranted wathdls. These withdrawals place undue
pressure on a financial institution’s liquidity.ngily, the third mechanism is counterparty risk
arising from direct bilateral exposures (Farbo@fi14; Georg, 2013; Pegoraro, 2012). Our
work focuses on the third mechanism, in which tietdral exposures are formed by the
cross-holding of claims and obligations.

Many studies consider interconnectedness and fzlagposures as major influences on
financial contagion and the stability of the finesdsystem (Caccioli et al., 2012; Elliott et al.,
2014; Georg, 2013). These works identify the “katlge” or “robust-yet-fragile” properties
of financial networks, referring to the trade-offttveen risk sharing and risk propagating that
comes with the increase of interconnectedness.

2.2 Prudential Regulations and Interventions

Our work is also related to the literature on ficiah regulation and surveillance. The
recent financial crisis brought the issue of systerisk due to financial contagion to the
attention of governments and regulatory agencesg]ihg to calls for better management of
financial stability (Patro et al., 2013). Moreoverany academics have also highlighted the
importance of taking a macro-prudential approachrtsure financial stability (Borio, 2011).

In contrast to micro-prudential regulation, whickaimly concentrates on the stability of



individual financial institutions from a local pgective, macro-prudential regulation focuses
on the stability of the whole system by adoptinfeefve intervention policies from a
system-wide perspective. This shift has imposedptexities on the analysis of systemic
events (Flood et al.,, 2013) and also accentuatednd#ed to better understand not only
individual financial components but also their mtEnectedness and systemic risk
contributions (Mezei and Sarlin, 2018).

Under the paradigm of prudential regulation, muthhe extant literature focuses on
identifying systemically important financial institons (SIFIs). Traditional works focused on
institutions considered “too big to fail,” identifhg them as SIFls. After the crisis of
2008-2009, however, it became necessary to foctomy on “big” institutions but also
well-connected ones, which may function as hubddiure contagion. These are referred to
as “too-interconnected-to-fail” institutions. Someorks in the literature model financial
interdependency networks to measure those SIFI$ #re always well-connected
(Martinez-Jaramillo et al., 2014).

Aside from identifying SIFIs, several papers focusdeveloping concrete intervention
policies under the framework of macro-prudentigutation. However, there is no general
agreement on an adequate policy response (BluhnKaalthen, 2014). Two widely used
intervention policies are forced mergers (Greenwebdl., 2015; Hryckiewicz, 2014) and
capital injections (Berger et al., 2016; Mehran ahdkor, 2010). These intervention policies
can be further divided into two groups: systemidigies concentrating on all financial
institutions and simple instruments aimed at resggingle institutions (Farhi and Tirole,

2012).



2.3 Early Warning

This paper is also closely linked to the literatoreearly warning for financial crises.
Reliable and credible early warning indicators ystems would help policymakers prevent
financial crises or at least limit their potentedverse effects on the economy (Lang and
Schmidt, 2016). There are many theoretical and ecapistudies focusing on building early
warning indicators. In the theoretical literatur€éaminsky et al. (1998) presented a
non-parametric method—a static signal extractiopr@gch enabling identification of certain
variables. In contrastSaleh et al. (2012) developed a dynamic model feterchining
indicators’ thresholds, focusing more on the vbtgtof indicators. More recently, Billio et al.
(2016) proposed an entropy-based early warningatdr for systemic risk.

The empirical literature has come up with varioasrmetric models to develop an
early warning framework. Fuertes and KalotychouO@0applied pooled logit models to
predict debt crises in emerging economies. Simyildedidi (2013) used a fixed-effects logit
model to forecast sovereign debt crises. More tgcedaggiano et al., (2016) compared the
performance of binomial and multinomial logit magleh the context of building early
warning systems for systemic banking crises.

2.4 Input-output Analysis

This study is partly related to the literature aput-output analysis. Since its original
development by Leontief to study the US economyofitief, 1986), input-output analysis has
been one of the most widely applied methods in ecocs (Chen et al., 2016). The
fundamental purpose of the input—output framewarka analyze the interdependence of

individual parts of an economic system. Examplegoiise include inter-industry analysis



(Wiedmann et al., 2006), the analysis of crossihgkl in business (Bonacich, 1987), risk
analysis of large-scale interdependent systemsaiies and Haimes, 2005) and the analysis
of energy efficiency (Garrett-Peltier, 2017).

Several papers also use input-output analysis witfocus on financial contagion.
Acemoglu et al. (2015) use the Cobb-Douglas pradadechnologies to study the interaction
between the shape of firm-level shock distributi@msl the structure of the input-output
network. Similarly, Aldasoro and Angeloni, (2014euinput-output analysis to measure the
systemic importance of financial institutions. dtworth noting that the paper of Elliott et al.
(2014) is related to our work in that it focusestbe effect of integration (the average of
exposures) and diversification (the average of ekgon financial contagion. However, our
work contains several important differences. Fiwat, focus on the cross-holding of claims
and obligations based on information from balanteets. Second, in addition to average
exposures and degree, we investigate the effecaiwnce. Finally, using the input-output
framework, we propose and perform several intergantpolicies for mitigating the

probability and extent of financial contagion.

3. Modeling and Contagion Mechanism
3.1 Pre-description

One striking characteristic of the modern financg@istem is interconnectedness:
financial institutions are directly interconnectedie to the cross-holding of claims or
obligations created in the interbank market, whigr@ncial institutions with surplus liquidity

can lend to those with liquidity shortages. Intetbanarkets play a key role in financial



systems, as their main purpose is to allocatedituefficiently. At times of crisis, however,
they also act as channels for financial contaglorthe value of one financial institution
sharply decreases in a short space of time frordiasyncratic shock, the institution may fail
and go into liquidation, when its value is belowve failure threshold. This failure may then
induce losses on its counterparties in the intereoted balance sheets, which may then result
in the counterparties themselves failing, indudwgses on their own counterparties, and so
on. This dynamic is what leads to failure contag{inancial contagion) in the financial
system.

As the cross-holding of claims and obligations barviewed as input-output linkages,
here we adopt the classic Leontief input—outpun@aork. It is reasonable to consider these
cross-holding relationships as input-output linkageor example, financial institution A
holds a certain share of financial institution B&sets; this share can be viewed as the input of
institution B, or equally, the output of instituticA. Furthermore, the balance sheets of
financial institutions often reveal the cross-hodgiclaims or obligations. We adopt a
deliberately oversimplified balance sheet, as shamvrFigure 1, to denote the financial
institution. The structure of assets and liabsitien the balance sheet reflects the
cross-holdings. On the assets side (the outpuj, Sikéernal Assets” denotes the amount of
total shares of other institutions (the total intediate output). The remainder of the assets
consists of a range of “External Assets,” which thie holdings of other real economies (the
total final output), where these external assets loa considered the investment of the
institution, such as high-quality government bondsprtgages, corporate lending and

commercial real estate lending. As our main purges® study financial contagion in an



interconnected network, we assume each institutmrhave a single and independent
investment project. This assumption indicates tiherte is no correlation between the external
assets for each institution, which enables us tmdoon direct bilateral exposures and to
ignore the indirect linkages of correlated exteras$ets. On the other side of the balance
sheet, liabilities consist of “Deposits” and “Imtet Liabilities.” Deposits are the share of
input from outside of the system, such as fromhiigsehold, while internal liabilities are the
share of input from other institutions. “Equity”tise capital buffer, which denotes the excess
of total assets (output) over total liabilitiesgir).

Using the input-output framework and network theevg model a financial system as
an interconnected financial network. In the netwoglach node represents a financial
institution and each link represents a directidiatling of claims or obligations between two
institutions. Thus, both the intrinsic charactéesbf individual financial institutions and the
structure of the entire financial network—two majofluence factors for the magnitude of
financial contagion and the stability of the finehcsystem—are clearly reflected in the
financial network. In particular, these two infleenfactors are usually denoted by the
diversification of bilateral exposures and intencectedness, respectively. Indeed, a financial
network has a particular bilateral exposures serpi@mn interconnectedness sequence, and
these unique sequences determine the resiliencstabitity of the financial system in times
of distress. For example, greater interconnectedmesns that an idiosyncratic shock is more
easily dissipated and absorbed (risk sharing) vamemstitution is highly interconnected. On
the flip side, an institution with high intercontedness will also have a high probability of

being hit by a failure through one of its counteties.



3.2 Financial System Modeling

Figure 1 is an illustration of a typical financiaystem, where each institution is
represented by a deliberately oversimplified badasbeet. Here we consider a financial
system in whicn financial institutions form an interconnected netkvby their claims or
obligations on one another. The cross-holdings lmamrepresented by an exposure matrix
W € R, where the elemenw;; is the share of institutiop that is held by institution
(i,j e N,N ={1,2,...,n}). Here we should highlight thav;; = 0 for eachi in the financial
network. We denote the corresponding adjacencyixnatrW as G, where g;; = 1 when
w;; > 0, otherwise0. Aside from the cross-holding shares, the remaingig =1 —
Z};lwﬁ of banki is the share owned by its owners-operators. It) fais is the part owned
by outside shareholders that are external to thesyof cross-holdings. We adopt a diagonal
matrix W to depict these shares, where the off-diagonalesnof the matrix are defined to
be 0. Now we turn to the structure of assets and li@sl for individual financial institutions.
We used;, L;, A%, Al, L!, D; and E; to denote institutioii s total assets, total liabilities,

external assets, internal assets, internal ligdslideposits and equity, respectively.
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Figure 1. An illustration of a financial system whe@ach institution is represented by a delibeyateérsimplified
balance sheet and the structure of assets antitikghieflects the cross-holdings.

Definition—financial systen# financial systemW {Af} { E;},) is defined by

1) an exposure matrid € R™™;

2) a sequence ofAf }1<izn;

3) a sequence ofE;}1<i<n-

Based on this information, we can obtain the secgief bilateral exposurefx;}1<i<n

and the sequence of interconnectedn@g$1<i<n.

n Al
a; =Y Wji = '/Al. (2);

di=d"+dM™ =37, 95 +Y19;2

Without loss of generality, here we merely consitiee output side (assets) of the

financial system. According to the balance shdwt, hook value of institution i can be



obtained as follows.

n
viook = Al + Af = Z wyVpook + AF (3)
j=1

Equation (3) can be rewritten in matrix notation 1k = wybeek + AE and solved
to yield (4), whereybeok = (phook yhook  'ybooky = AE — (A% AE ., AE) are nx1
column vectors, andI — W)~1 is the well-known Leontief inverse.

vbook — (] — w)~14F (4)

We refer to the market value of a financial ins$tdn as the non-inflated value, which is
the share of the book value that is held by its ewvaperators (Elliott et al., 2014). Thus,
taking the market value of institutiono be equal taw;V2°°%, we can obtain equation (5).

ymarket — frybook — W (f — w)-14E (5)

We refer toW (I — W)~! = R as the Relevance matrix, whdés column-stochastic.
3.3 Contagion Mechanism

For a financial institution, the value shared by tiwners-operators i@; V2%, If this
value is sufficiently low (e.g., a random exogensbeck to the value of the institution’s
external assets), the owners-operators may chanseedse operations and liquidate the
institution. If an institution ceases operationgl aggoes into liquidation, its value sharply
decreases due to the liquidation costs, such asd$ieof assessing value, losses involving
idle assets and holding costs for sales assets, Tlaiassume that there is a threshold value
ymarket guch that if the valud&™e™ket of institutioni falls below this threshold level, thén
is said to fail and incurs liquidation cosféi". This leads to a new version of (5) market
value:

ymarket _ pyybook — R(AE _ Cliq) (6)



The entry R;; of the Relevance matrix describes the proportiéningtitution j's
liquidation costs that institution bears when fails. As the liquidation costs of failed
institutions are distributed across the intercotecnetwork through the cross-holding
relationships, small idiosyncratic shocks to a lgnigstitution may have a significant effect
on the system as a whole by triggering an avalaotifelures. Specifically, when institution
J fails, thereby incurring liquidation costs ﬁf", I's value will decrease byzi,-c]’."". If
AV; = ymarket _ ymarket s npegative, then institution will fail. The liquidation of
institutioni will lead to decreased market value for its creditand this may cause the failure
of creditors, and so forth. This illustrates thechnism of financial contagion through an
interconnected network, which is the foundatiortlo$ study. Here we present a contagion
algorithm to trace the propagation of failure. Tiyise of algorithm can also be found in other
works on financial contagion (Eisenberg and No&12Elliott et al., 2014; Elsinger et al.,
2006).

The pseudo algorithm is presented below.

Input: exposure matrix¥, a sequence ofAf}, <<, liquidation costs vectoc'.
Output: total set of failed institution& aily.

(1) Initialize. Fail, is the set of failed institutions at tintielet €, be a vector with
element C; = Cﬁi" if i€ Fail,_q; and 0 otherwiset&l); randomly select one
financial institution to fail #Fail, = 1);

(2) Do AV, = R(AE — C,_) — ymarket;

(3) Count the total number of negative valued\iy,, denoting asN,,update Fail;;

(4)If N; > N;_4,then sett = t + 1, and return to step (2)



elsereturn Fail, and terminate the algorithm.
If the algorithm is terminated at time T, the sktRmil; corresponds to the total set of
failed institutions. According to this algorithmevean find the failed institution at any given
time by comparing the number of new entriesFiail, to those inFail,_;, where these

new entries are institutions whose failures areced by the aggregate of prior losses.

4. Diversification of Bilateral Exposures and I nter connectedness
4.1 Diversification of Bilateral Exposures

For simplicity, we consider a financial system te B network wheren (n=100
institutions are randomly interconnected, and dastitution has an independent and equal
external asset (i.e., there are no correlationsgrnioose assets). The random network can be
represented as the adjacency matfix where g; =1 denotes that institution has
cross-holdings in institutiopy and the diagonal entrieg;; = 0. We assume that the sequence
of bilateral exposures obeys a normal distributionN (u, o), where u € (0,1) denotes the
average exposure. Thua; indicates the total interbank exposures of inttitui, which are
spread evenly among the institutions in iftb column of the adjacency matri&. To
illustrate the effect of diversification of intenmda exposures, we assume that there is a
common failure threshol@™a ket = gymarket for 3 paramete® € (0,1). We sen as 100,
and construct 60 random networks by different pbiltees P for forming a link between
each couple of nodes. We then perform the contagigarithm on each random network,
repeating the simulation 1000 times to averagestathastic effects and to obtain robust

results.



To evaluate the magnitude of financial contagioa,imtroduce two measure indicators:
The probability of contagion defined as the probability of the occurrence afoatagion
event; and thextent of contagiondefined as the average number of institutionsftibas a
result of the initial failure if a contagion evemtcurs. The probability of contagion reflects
the susceptibility of a financial system to finalatontagion, while the extent of contagion

reflects the stability of the financial system.

Number of contagion events observed (9)

The Probability of Contagion =

Number of total experiments

Number of total failed institutions induced by contagion (10)

The Extent of Contagion =

Number of contagion events observed

Average exposure=0.5, 8=0.96 Average exposure=0.5, 8=0.96

S

80

70F

60

50+

a0

The Extent of Contagion

EYS

201

Figure 2. The “knife-edge” property of a financial system @lenotes the variance of bilateral exposures). The
extent of contagion and the probability of contages a function of interconnectedness (reflectedidégree)

display inverted U-shaped curves.

Figure 2 identifies the “knife-edge” or “robust-yfeagile” property of financial
networks that is also identified in other worksctswas Caccioli et al., (2014). In particular,
Figure 2 shows how the extent and probability afitagion change as interconnectedness
increases (reflected by degree). For both the esteth probability of contagion, the property

of non-monotonicity is represented as inverted Blpgldl curve$. Focusing on the blue curve,

% For other scenarios, please refer to the Supplemental Information.



as the degree increases in the range of O to b, that contagion extent and contagion

probability sharply increase as the interconneasslriakes the role of “risk spreading.” As

we further increase the degree (in the range ob 2(), both the contagion extent and

contagion probability dramatically decrease as eotinty takes the role of “risk sharing.”

In addition, Figure 2 shows the effect of varyiag which denotes the variance of

bilateral exposures. Generally speaking, both iten¢ and probability of contagion increase

as o increases. More specifically, as the degree vani¢he range of 0 to 5, the extent of

financial contagion only slightly changes with timerease ofe, while the probability of

contagion dramatically changes. One reasonablepratation is that the higher the value of

o, the greater the diversification of bilateral espes. The diversification then makes the

financial system more sensitive to financial coidagbut as the network is incompletely

interconnected (the degree is lower), a typicaltitutson is interconnected through

cross-holdings with only a small fraction of théet institutions. Thus, financial contagion is

limited to a small component (reflected by the $malue of the contagion extent). However,

when the degree is in the range of 5 to 20, battctmtagion probability and contagion extent

increase as we continue to increase the value.dfigure 3 further illustrates how the

changes in contagion probability and contagion rextgffer. As the variance of exposures

varies in the range of 0 to 0.3, the contagion rexgtightly increases, but the change in

contagion probability is more significant, espdgiathen the degree is small.
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Figure 3. How the diversification of bilateral exposures affethe extent and probability of contagion. The
variance of exposures corresponds to the diveasific of bilateral exposures for the financial systwhere the

average exposure is 0.5 afd equals 0.96.
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Figure 4. An illustration of network topology for differenewiring probabilities based on the WS model (Panel

A-Panel C); Panel D shows the changing of the vaeaf degree with the varying of the rewiring prioltigy.

In this subsection, we investigate the effect @f thversification of interconnectedness
on financial contagion. The challenge is to cordtaiset of networks in which the degree
sequences have the same mean but different variemdeis end, we adopt the Watts and
Strogatz (WS) model (Watts and Strogatz, 1998atisfy this feature. Figure 4 illustrates the

WS model; forp = Q, the network is a regular network (panel A), wHibe p = 1itis a



random network (panel C). A higher rewiring proli&piincreases the randomness of the
network, so by varying this tunable parameter, we model numerous different kinds of

networks that have the same average degree beitatiffvariance.
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Figure 5. How the diversification of interconnectedness dffethe extent and probability of contagion. The
diversification of interconnectedness is measungddriance of degree for the financial system, whaverage

exposure is 0.5 and average degree is 12.

Based on the WS model, we construct a set of n&ksvand perform the contagion
algorithm on these financial systems. Figure 5 shdtiwe effect of the diversification of
interconnectedness (reflected by the variance gfedg; here we set the average exposure to
0.5 and the average degree to 12. We find thatthetlextent of contagion and the probability
of contagion slightly increase as the variance efrde varies in the range of 0 to 1.5.
However, when the variance of degree continuesdrease (in the range of 1.5 to 3), both
the contagion extent and probability significaritigrease. Figure 5 also illustrates the effect
of varying 8. Given that both the contagion extent and probighiicrease a#9 grows, it is
intuitive that a higher value of indicates a higher failures threshold, so thatfthancial
system more easily induces financial contagion.

In this section, we investigate the effect of dsification of bilateral exposures and



interconnectedness on financial contagion. We firad the increase of diversification has a
negative influence on financial stability. This ultscoincides with the conclusion of the
seminal paper of (Allen and Gale, 2000), in whible fauthors point out that a complete
network can absorb shocks, but an incomplete n&tvean spread negative spillovers
throughout the entire system. Indeed, there is siimo heterogeneity in a complete network.
However, given that there is significant heterogignamong financial institutions in an
incomplete network, financial contagion easily asam such a network under distress or in a
time of crisis. Heterogeneity in a financial systereates a higher risk exposure in case of
distress, making systemic failure through financahtagion more likely to occur. In fact,
many empirical investigations have shown that thistiag financial structure was socially
suboptimal due to the high systemic risk that eeerfyom the heterogeneity of financial
systems (Laeven and Valencia, 2013; Roukny e2@14). For example, Laeven and Valencia
(2013) found that the world's top financial centesshich have always had a high level of
heterogeneity—were the ones that most often suffdmgancial crises; since 1945, the
financial systems of France, the United StatesthedJnited Kingdom have collapsed 15, 13
and 12 times, respectively. Our study supports simetls further light on such empirical

findings.

5. Intervention Policy
5.1 Proposed Policies
There are two instruments that are used for thenstauction and recapitalization of

financial systems: forced mergers and capital tges (Greenwood et al., 2015; Sorkin,



2010). In practice, when implementing these twdérumsents to bail out financial institutions,
one problem regulators face is choosing the targtitutions to merge or inject capital into.
The terms TBTF and TCTF remind regulators to cotreém on SIFIs that display either
higher bilateral exposures or higher interconneetsd. It is therefore reasonable to consider
financial institutions with high bilateral exposarer high interconnectedness to be SIFIs, and
the bailouts instrument should focus on thesetutgins. Thus, we propose six concrete
intervention policies, which are described in Talile In detail, we rank the systemic
importance of financial institutions based on swlicators: bilateral exposure, in-degree,
out-degree, closeness, clustering coefficient afgkneector’ The bilateral exposure,
in-degree and out-degree indicators are in thedwvamnk of micro-prudential regulation, as
their focus is limited to - individual financial stitution’s exposure or interconnectedness
from a local perspective. However, the closeneksstering coefficient and eigenvector
indicators measure the institution’s interconnecésd from a global perspective and thus
follows the framework of macro-prudential regulatidn the framework of micro-prudential
regulation, there are six concrete interventiongoes (three for forced mergers and three for
capital injection); analogously, there are alsosmicies in the macro-prudential regulation
framework. We now use the model and contagion méshrato evaluate the performance of
these concrete intervention policieg comprehensive numerical simulation. To be cleatr,
we assume the exogenous adjustment strategy famdial institutions, we do not consider
whether the institutions behave optimally. Rathbese intervention policies should be

interpreted as potential ex-post policies that ddod used in the midst of a crisis.

® In network theory, In-degree and out-degree measure the local connectivity, closeness, clustering coefficient
and eigenvector measure the global connectivity. For more information please refer to Supplement Information.



Table 1. Intervention Policies for forced mergers and cajiiactions

I ntervention I nstrument

Forced Mergers

Capital Injections

by eigenvector

Ranking by L-FM Palicy 1: merging theop L-CI Policy 1: uniform injecting
- Bilateral Exposure K with thelast Kinstitutions by capital to theop Kinstitutions by
‘g ; bilateral exposure bilateral exposure
%. qQ Ranking by L-FM Palicy 2: merging theop L-CI Policy 2: uniform injecting
> _g Out-degree K with thelast Kinstitutions by capital to theop Kinstitutions by
% é out-degree out-degree
% § Ranking by L-FM Policy 3: merging theop L-CI Policy 3: uniform injecting
~ 2 In-degree K with thelast Kinstitutions by capital to theop Kinstitutions by
in-degree in-degree
- Ranking by G-FM Palicy 1. merging the  G-CI Palicy 1: uniform injecting
g Closeness top Kwith thelast Kinstitutions capital to thegop Kinstitutions by
g by closeness closeness
=T : . : . —
% é Ranking by G-FM Palicy 2: merging the  G-CI Poalicy 2: uniform injecting
e Q Clustering top Kwith thelast Kinstitutions capital to thaop Kinstitutions by
‘—i o Coefficient by clustering coefficient clustering coefficient
‘é Ranking by G-FM Palicy 3: merging the  G-CI Palicy 3: uniform injecting
%’i Eigenvector top Kwith thelast Kinstitutions capital to theéop Kinstitutions by
=}

eigenvector

This table shows six concrete intervention policiHse bilateral exposure, in-degree and out-degrgieators are in the

framework of micro-prudential regulation, and theseness, clustering coefficient and eigenvectdicators follow the

framework of macro-prudential regulation.

5.2 Performance of Intervention Policies of Forddergers

In this subsection, we mainly focus on the perfaroeaof the intervention instrument of

forced mergers under different policies. The loiceérvention policies l(-FM Policy 1,

L-FM Policy 2 andL-FM Policy 3) follow the framework of micro-prudential regulai,

and the global intervention policie&{FM Poalicy 1, G-FM Palicy 2 andG-FM Policy 3)

are based on the framework of macro-prudential lagigm. Following the numerical

simulation described in Section 4, we also setdke&l number of financial institutions in the

system at 100nE100), and these are randomly connected with one andheonnection

probability P. As the value ofP changes in the range (0, 0.2], the average degfre¢lee



system varies from O to 20. In addition, we setdkierage exposures of the system in four

classes (0.2, 0.4, 0.6 and 0.8) and@ixas 0.96 ¥Y™a7ket = (.96 » ymarket),
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Figure 6. How the local intervention policies for forced merg C-FM Policy 1, L-FM Policy 2 andL-FM
Policy 3) affect the extent of contagion in financial syssewith different average exposures. The average
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Figure 7. How the local intervention policies for forced merg L-FM Policy 1, L-FM Policy 2 andL-FM
Policy 3) affect the probability of contagion in financisystems with different average exposures. The geera
exposures for Panel A-D are 0.2, 0.4, 0.6, 0.§aetsvely.

Figure 6 and Figure 7 show the results of contagixient and contagion probability for
the local intervention policies, respectively. Have take the original case in which no
intervention policy is implemented as the baselme setK as 10. Based on these two

Figures, we find several interesting results. FaBtthree intervention policies are effective to



some extent. In particular, as the average degmesgo a certain extent, both the extent of
contagion and the probability of contagion are espnted by an inverted U-shaped curve for
all three policies, and these are significantly mnahan the baseline curves in both width
and height. Taking L-FM Policy 2 as an example, wiige average degree varies in the
interval of O to 6, there is always an inverted Haysed curve for both the extent and the
probability of contagion. However, as we continaericrease the average degree, these three
policies are not effective at mitigating contagian,both the contagion extent and probability
are significantly higher than the baseline. SecanBiM Policy 1 is more optimal than the
other two policies when they are effective, as sgater the inverted U-shaped curve. When
the average degree varies in the range 0 to 6,thetbxtent and probability of contagion for
L-FM Policy 1 are smaller than for L-FM Policiesahd 3. Thus, in the framework of
micro-prudential regulation, we find that the biested merger policy is based on a financial
institution’s bilateral exposure (when the intemectedness of the financial system is
relatively small).

Figure 8 and Figure 9 reveal the results of contagixtent and contagion probability for
the global intervention policies for forced mergesspectively. First, we can see that the
three global forced merger policies are effectiveemwthe interconnectedness of the financial
system is small (e.g., the average degree is smbde 10 in Panel B of Figure 8), but the
contagion probability of G-FM Policy 1 and G-FM Ryl 2 exceeds the baseline when the
average degree is very small (e.g., in Figure®atrerage degree is smaller than 2 in Panel A,
B and C). Second, taking into account both contagxtent and contagion probability, we

find that G-FM Policy 1 is more optimal than thehat two global policies in the



macro-prudential regulation framework.

Panel A: Average Exposure=0.2 Panel B: Average Exposure=0.4

e Baseline
==p== G-FM Policy 1

== Baseline

=t G-FM Policy 2 a0 e patiey1| 1

== G-FM Policy 3

=== G-FM Policy 2| |

208 s G-FM Policy 3

The Extent of Contagion
@
8

L L L L L ¥
0 2 a 6 8 10 12 14 16 18 20

Panel C: Average Exposure=0.6 Panel D: Average Exposure=0.8
T T T T T ;i T T T T

—— Baseline
=== G-FM Policy 1
= G-FM Policy 2| 4
== G-FM Policy 3| |

—e— Baseline
=== G-FM Policy 1
== G-FM Policy 2
~—=— G-FM Policy 3

The Extent of Contagion
g

L L L I L f L L L L L L
0 2 4 6 8 10 12 14 16 18 20 o 2 4 6 8 10 12 14 16 18 20

Average Degree Average Degree

Figure 8. How the global intervention policies for forced mers (G-FM Policy 1, G-FM Policy 2 and G-FM
Policy 3) affect the extent of contagion in finalcsystems with different average exposures. Theraae
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Based on the results of different intervention @eb for forced mergers under both the
micro-prudential and macro-prudential regulatioanifeworks, we conclude that forced
mergers are an effective intervention instrumensdme extent; this accords with existing
works Rogers and Veraart (2013), Molyneux et &#014), etc. However, as we have

illustrated, forced mergers are not always effegtiespecially in situations where the



interconnectedness of the system is relatively .hibihere is one probable reason. In a
financial system in which financial institutionsedrnighly interconnected, when implementing
the forced mergers policy, the diversification dateral exposures and the diversification of
interconnectedness may change in different direstas forced mergers change the topology
of the financial system: the diversification of dtéral exposures in the financial system
decreases as expected, but the diversificationtefdonnectedness increases. Following this
logic, when the average degree is high and whemerge thdop Kinstitutions with thdast

K institutions, the diversification of interconnedtess significantly increases for the new
financial system, and this increased diversificatttas a negative influence on financial
stability. Furthermore, we illustrated that L-FMIieg 1 is a better policy for mitigating
financial contagion than the other two local intgrtron policies in the framework of
micro-prudential regulation, whereas G-FM Policyslmore effective than the other two

global intervention policies in the framework of ena-prudential regulation.

5.3 Performance of Intervention Policies of Capltgéctions

In this subsection, we concentrate on the perfoomanf capital injections in both
micro-prudential and macro-prudential regulaticarieworks. We set the value l§fas 10,
indicating that we implement the intervention pglioy injecting capital into the top 10
financial institutions. This setting is reasonalals,in reality regulators always have a certain
amount of cash available to bail out institutiomsthe system, and it is impossible for
regulators to inject capital into all institutiorfSor a target institution we set the amount of

injected capital to be 10% of its total assetsheobilateral exposura; = A}/(4; + 0.14,)



will decrease. Unlike the forced mergers, the edjections will not change the topology of

the financial system, as there is no merger oftutsins.
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Figure 10. How local intervention policies for capital injemti (L- ClI Policy 1, L- Cl Policy 2 and L- CI Policy 3)
affect the extent of contagion in financial systewith different average exposures. The average fxgs for

Panel A-D are 0.2, 0.4, 0.6, 0.8, respectively.

Panel A: Average Exposure=0.2

The Probability of Contagion

Panel B: Average Exposure=0.4

06 —a— Baseline B

olicy 1 08 L-Cl Policy 1|

05F L-Cl Policy 2 4 07 s L-Cl Policy 2 B
L-Cl Policy 3 === .C| Policy 3

—— Baseline

Panel C: Average Exposure=0.6
T . T T T

3 o4l

S 03] 0.9
202

088
F o

Panel D: Average Exposure=0.8
T T T T T

09) —e— Bascline 008 —e— Baseline
s ]
s LCl Policy 1 LCl Policy 1
S ol
g = L.CI Policy 2 =t LCI Policy 2
o7 = LCl Policy 3 096 == L-CI Policy 3
S o6l
S 094
> o5t

I
2 a 6 8 10 12 14 16 18
Average Degree

2 4 6 8 10 12 14 16 18 20
Average Degree

Figure 11. How local intervention policies for capital injeati (L- ClI Policy 1, L- Cl Policy 2 and L- CI Policy 3)
affect the probability of contagion in financialssgms with different average exposures. The avesagesures
for Panel A-D are 0.2, 0.4, 0.6, 0.8, respectively.

Figure 10 and Figure 11 show the results of contagxtent and contagion probability
for the three local intervention policies for capiinjections, respectively. Here we can see
that the curves of both contagion extent and caoagrobability for these three policies are

within the corresponding baseline curve, indicatihgt these three policies are always



effective for mitigating the extent and probabily financial contagion. In particular, the
width and height of the inverted U-shaped curveghese three policies are smaller than the
baseline curve. Indeed, these three policies caohahge the interconnectedness of the
system, but they can decrease the bilateral exesdar the target institutions. As such, they
are effective for mitigating financial contagionokéover, the two figures illustrate that L-CI
Policy 1 is more optimal than the other two pobci€or example, when the average degree
varies in the range 2 to 10 and the average expa=syuals 0.2 (Panel A of Figure 10), the
extent of contagion for L-CI Policy 1 is signifiaghn smaller than that of the other two
policies. L-CI Policy 1 injects capital into theptdO institutions with the highest bilateral
exposures, reducing the bilateral exposures okthestitutions and significantly decreasing
the diversification of the bilateral exposures lo# system. However, for L-Cl Policies 2 and
3, while it is clear that they can reduce the bilat exposures of the target institutions, it is
not clear that they can significantly reduce theediification of bilateral exposures, given
that an institution with a large out-degree or @gcee is not necessarily an institution with
high bilateral exposures. Unlike L-CI Policies 21&8) L-Cl Policy 1 focuses on reducing the
bilateral exposures of institutions with the highaitateral exposures, and thus it significantly
reduces the diversification of the financial systdinerefore, L-ClI Policy 1 is more effective
than the other two policies most of the time.
We turn to evaluate the performance of the globé&trvention policies for capital

injection. Figure 12 and Figure 13 show the resoltscontagion extent and contagion
probability for the three global intervention padis, respectively. First, we find that all three

global intervention policies are effective at nigng financial contagion in terms of both



extent and probability, as the width and heighttle# curves for these three policies are
smaller than the baseline. Second, the resultalévat G-Cl Policy 3 is better than the other
two global intervention policies when the averagposure for the financial system is small.
For example, in Panel A of both Figure 12 and Fegi8, the curve of G-Cl Policy 3 is

smaller than those of G-CI Policies 1 and 2.
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Figure 12. How global intervention policies for capital injart (L-Cl Policy 1, L- Cl Policy 2 and L- CI Policy 3)
affect the extent of contagion in financial systewith different average exposures. The average fxgs for
Panel A-D are 0.2, 0.4, 0.6, 0.8, respectively.

According to our study on the performance of capitgections under both
micro-prudential and macro-prudential regulatioranieworks, we conclude that the
intervention instrument of capital injection carfieefively mitigate financial contagion and
reduce the magnitude of systemic risk. Our concluss also supported by several prior
works such as Bluhm and Krahnen (2014), Greenwbadtl,§2015) and Berger et al., (2016).
Indeed, capital injections help to recapitalize alsleverage financial institutions through
balance sheet effects, thus significantly redutivegbilateral exposure in the financial system.
In addition, our study also suggests that L-Cl &oli and G-CI Policy 3 are more effective

than the other policies in their respective framewo
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Figure 13. How global intervention policies for capital injart (L-Cl Policy 1, L- Cl Policy 2 and L- CI Policy 3)
affect the probability of contagion in financialssgms with different average exposures. The avesagesures
for Panel A-D are 0.2, 0.4, 0.6, 0.8, respectively.

6. Conclusion and Discussion
In this paper, we focus on extending the networ&lyasis of financial contagion from

three perspectives. First, given that the relahgpssformed by the cross-holding of claims
and obligations can be viewed as input-output lj@sa we model the financial system and
the contagion mechanism by introducing the clalssantief input—output framework. Based
on this modeling process, we propose a simple gmriaalgorithm to evaluate it further.
Second, based on this contagion algorithm, we shaly financial system heterogeneity
influences its stability. Heterogeneity is measusgdhe diversification of bilateral exposures
and interconnectedness. Based on the results oénmahsimulation, we conclude that an
increase in the diversification of bilateral exp@suand interconnectedness—reflected by the
variance of exposure and variance of degree—hagatine influence on financial stability.
High variance of exposures and degree intensifgnional contagion by increasing both the
extent and probability of contagion. Third, to méte financial contagion, we propose several

concrete intervention policies based on two widabed intervention policies—forced



mergers and capital injection. We implement theerwention policies on systemically
important financial institutions, which are detened by high bilateral exposures or high
interconnectedness. The performances of thesevamton policies are evaluated by
comprehensive numerical experiments. Differentged perform differently in mitigating
financial contagion. We illustrate that capital ecions is an effective instrument for
mitigating financial contagion, reducing bilaterakposure in the financial system by
recapitalizing and deleveraging financial instibas. However, forced mergers is not always
effective. Although forced mergers help to recdgiésfinancial institutions, they also lead to
restructuring of the whole financial system, and tlestructuring mechanism may influence
systemic risk.

Our work can provide policy suggestions for theveillance and regulation of a given
financial system. From a regulatory perspectivegricial supervision should be thought of as
a systemic task, focusing not only on the role ades to unravel the structure of the system
under surveillance—that is, particular financiaktitutions or banks—but also on the
interdependent relationships among these nodes, &.gnancial early warning system
(Koyuncugil and Ozgulbas, 2012). In addition, theearch framework can be embedded into
business intelligence or decision support technetépr modeling and analyzing financial
risk management scenarios, such as stress testingt(al., 2012). Our work can easily be
used to perform stress testing and to check thfempegince of intervention policies.

However, this research has some shortcomings. Atiomed above, there are three
mechanisms for financial contagion, but we onlydgtihe counterparty risk arising from

direct bilateral exposures (the third mechanismytfermore, we only focus on the internal



network, although there are other networks in faia@nsystems, e.g., the Bank-Assets
network (Caccioli et al., 2015; Lux, 2014). Oureach may be furthered through future

study of these issues.
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Highlights

1. Financial system and contagion is modelled byntief input—output framework.

2. Effect of heterogeneity on financial stabilisystudied by a contagion algorithm.

3. Several intervention policies are proposed tigatie financial contagion.

4. Our study has significant implications on finahcegulation.



