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Analysis of Regularized Least Squares for Functional
Linear Regression Model

Hongzhi Tong∗ Michael Ng†

Abstract

In this paper, we study and analyze the regularized least squares for functional
linear regression model. The approach is to use the reproducing kernel Hilbert space
framework and the integral operators. We show with a more general and realistic
assumption on the reproducing kernel and input data statistics that the rate of
excess prediction risk by the regularized least squares is minimax optimal.

Key words: Regularized least squares, Functional linear regression, Reproducing
kernel Hilbert space, Learning rate

AMS classification: 60K35, 62J05

1 Introduction

There are increasing cases in practice where the data are collected in the form of random
functions or curves. This type of data is becoming more prevalent throughout science,
engineering and financial market, as automated on-line data collection facilities are be-
coming more ubiquitous. Many classical statistical tools and models for multivariate
analysis, such as principal components analysis, canonical correlation analysis and linear
model are then extended to the infinite-dimensional functional domain. In this paper, we
consider the functional linear model

Y = α0 +

∫

I
X(t)β0(t)dt+ ε. (1)

where Y is a scalar response, X : I → R is a square integrable functional predictor
defined over compact domain I ⊂ R, α0 is the intercept, β0 : I→ R is the slope function,
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and ε is the random noise with mean 0 and finite variance σ2. Functional linear model
was introduced by J.O. Ramsay and C.J. Dalzell [11] and first written in its commonly
encountered form (1) by T. Hastie and C. Mallows [7]. Some recent research on the
statistical analysis of (1) includes [2, 3, 6, 15, 16]. In this paper, we focus on the random
design where X is a path of a square integrable stochastic process defined over I and
is independent of ε. Without loss of much generality, throughout the paper we assume
E(X) = 0 and the intercept α0 = 0, since the intercept can be easily estimated.

Let L2 be the Hilbert space of square integrable functions on I (with respect to
Lebesgue measure) with standard inner production < u, v >=

∫
I u(s)v(s)ds and norm

‖u‖ =
(∫

I u
2(s)ds

)1/2
. The goal of prediction is to recover the functional η0:

η0(X) =

∫

I
X(t)β0(t)dt =< η0, X >

based on a training sample {(Xi, Yi) : i = 1, · · · , n} consisting of n independent copies of
(X, Y ). Define the risk for a prediction η as

E(η) = E∗[Y ∗ − η(X∗)]2,

where (X∗, Y ∗) is a copy of (X, Y ) independent of the training data, and E∗ represents
expectations taken over X∗ and Y ∗ only. Let η̂ be a prediction rule constructed from the
training data. Then, its accuracy can be naturally measured by the excess risk:

E(η̂)− E(η0) = E∗[η̂(X∗)− η0(X∗)]2.

In this paper, we study the prediction problem in the reproducing kernel Hilbert space
(RKHS) framework under which the unknown slope function β0 is assumed to reside in
an RKHS HK with a reproducing kernel K [9]. A reproducing kernel K : I × I → R
is a real, symmetric, continuous, and nonnegative definite function. There is a one-to-
one correspondence between a reproducing kernel K and an RKHS HK which is a linear
functional space endowed with an inner product < ·, · >K such that for any t ∈ I, K(t, ·) ∈
HK , and

f(t) =< K(t, ·), f >K , ∀f ∈ HK .

We then estimate β0 via the following regularized least square scheme

βn,λ = arg min
β∈HK

{
1

n

n∑

i=1

[Yi −
∫

I
β(t)Xi(t)dt]

2 + λ‖β‖2K

}
, (2)

where λ > 0 is a regularization parameter. Given the estimate βn,λ, the prediction ηn,λ is
obtained by

ηn,λ(X) =

∫

I
X(t)βn,λ(t)dt.
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We consider the integral operator associated with kernel K as

LK(f)(t) =

∫

I
K(s, t)f(s)ds

for f ∈ L2. Because of non-negative function of K, the square root operator L
1/2
K of LK

can be constructed, see Section 2. The covariance function of X is also a symmetric,
square integrable, and non-negative definite function defined on I× I as

C(s, t) = E(X(s)X(t)).

Hence, the integral operator

LC(f)(t) =

∫

I
C(s, t)f(s)ds

is well defined and non-negative definite. The main contribution of this paper is to show
that if

κ2 := ess sup ‖L1/2K X‖2 <∞, (3)

and
Tr((L

1/2
K LCL

1/2
K + λI)−1L1/2K LCL

1/2
K ) ≤ cλ−θ, ∀λ > 0. (4)

where 0 < θ ≤ 1 and c is a positive constant, then we have for any 0 < δ < 1, we have
with confidence at least 1− δ,

E(ηn,λ)− E(η0) ≤
C(log 4

δ
)4

δ2
n

−1
1+θ , (5)

where C is a positive constant. Condition (3) coincides that the range of L
1/2
K on the

sample paths of the stochastic process forms a bounded subset of L2 almost surely. The
trace of the operator (L

1/2
K LCL

1/2
K +λI)−1L1/2K LCL

1/2
K is called effective dimension in learning

theory (see [17]). Condition (4) reflects the convergence of the eigenvalues of LK and LC ,
as well as how their eigenfunctions align each other.

The outline of this paper is given as follows. In Section 2, we review basic preliminaries.
In Section 3, we show our main minimax optimal results and explain the conditions we
assume here. Finally, some concluding remarks are given in Section 4.

2 The Regularization Model

2.1 Preliminaries

For a real, symmetric, square integrable, and nonnegative definite function R : I× I→ R,
we define an integral operator LR : L2 → L2 as

LR(f)(t) =

∫

I
R(s, t)f(s)ds.
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It is well-known (see Proposition 11.20 in [9]) that LR is a Hilbert-Schmidt operator
on L2, and thus is compact. The spectral theorem implies that there exists a set of
orthonormalized eigenfunctions {ψRk : k ≥ 1} and a sequence of eigenvalues θR1 ≥ θR2 ≥
· · · ≥ 0 such that

R(s, t) =
∑

k≥1
θRk ψ

R
k (s)ψRk (t), ∀s, t ∈ I,

and
LR(ψRk ) = θRk ψ

R
k , k = 1, 2, · · · .

Then the square root operator of LR is defined by

L
1/2
R (ψRk ) = LR1/2(ψRk ) =

√
θRk ψ

R
k ,

where

R1/2(s, t) =
∑

k≥1

√
θRk ψ

R
k (s)ψRk (t), ∀s, t ∈ I.

Define

(R1R2)(s, t) =

∫

I
R1(s, u)R2(u, t)du.

Then LR1LR2 = LR1R2 .

2.2 The Formulation

For brevity, we shall write
T = L

1/2
K LCL

1/2
K

Let τk and ϕk be the eigenvalues and eigenfunctions of T as a compact operator on L2.
Then {ϕk : k ≥ 1} form an orthonormal basis of L2 and

T(f) =
∑

k≥1
τk < f, ϕk > ϕk, ∀f ∈ L2.

Define the empirical covariance function as

Cn(s, t) =
1

n

n∑

i=1

Xi(s)Xi(t)

and
Tn = L

1/2
K LCnL

1/2
K ,

where LCn is an integral operator such that for any f ∈ L2,

LCnf(t) =

∫

I
Cn(s, t)f(s)ds.
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Recall that L
1/2
K (L2) = HK . Therefore, there exist f0, fn,λ ∈ L2 such that

β0 = L
1/2
K f0 and βn,λ = L

1/2
K fn,λ.

In the following, we assume that HK is dense in L2, which ensures that f0 and fn,λ are
uniquely defined. This assumption can be satisfied when K is a universal kernel, such as
Gaussian kernel, see [14, 13].

Now (2) can be rewritten as

fn,λ = arg min
f∈L2

{
1

n

n∑

i=1

(Yi− < Xi, L
1/2
K f >)2 + λ‖f‖2

}
.

It is not hard to see that

fn,λ = (Tn + λI)−1(Tnf0 + gn),

where I is the identity operator and

gn =
1

n

n∑

i=1

εiL
1/2
K Xi.

It is also clear that
E(ηn,λ)− E(η0) = ‖T1/2(fn,λ − f0)‖2.

Recall that
Yi =< Xi, L

1/2
K f0 > +εi.

Then we obtain

‖T1/2(fn,λ − f0)‖ ≤ ‖T1/2(Tn + λI)−1gn‖+

‖T1/2((Tn + λI)−1Tnf0 − f0)‖. (6)

In the next section, we estimate the terms of (6) so that E(ηn,λ)− E(η0) can be obtained
in (5).

3 The Analysis

The main technical tool in our analysis is the integral operators, which is an important
approach in learning theory, see [12]. Some techniques used here are also closely connected
with the recent papers [5, 8] and references therein. We first define a quantity measuring
the learning complexity of kernel regression, the effective dimension of T [17, 4], to be the
trace of the operator (T + λI)−1T as follows:

D(λ) = Tr((T + λI)−1T).

We consider that ‖·‖op stands for the usual operator norm, that is, ‖U‖op = supf :‖f‖=1 ‖Uf‖
for an operator U : L2 → L2. Under the assumption in (3), we show the following results.
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Theorem 3.1. Under the assumption in (3), for any 0 < δ < 1, with confidence at least
1− δ, there holds

‖(T + λI)−1/2(T− Tn)‖op ≤ Bn,λ log(2/δ),

where

Bn,λ =
2κ√
n

{
κ√
nλ

+
√
D(λ)

}
.

To show the above theorem, we need the following probability inequality stated in
[10].

Theorem 3.2. Let H be a Hilbert space and ξ be a random variable with values in H.
Assume that ‖ξ‖H ≤ M almost surely. Let {ξ1, ξ2, · · · , ξn} be a sample of n independent
observations for ξ. Then for any 0 < δ < 1,

∥∥∥∥∥
1

n

n∑

i=1

[ξi − E(ξ)]

∥∥∥∥∥
H

≤ 2M log(2/δ)

n
+

√
2E(‖ξ‖2H) log(2/δ)

n
.

with confidence at least 1− δ.

Proof of Theorem 3.1: Consider the random variable

ξ = (T + λI)−1/2 < L
1/2
K X, · > L

1/2
K X.

It takes values in HS(L2), the Hilbert space of Hilbert-Schmidt operators on L2, with
inner product < A, B >HS= Tr(BTA). The norm is given by ‖A‖2HS =

∑
i ‖Aei‖2 where {ei}

is an orthonormal basis of L2. The space HS(L2) is a subspace of the space of bounded
linear operators on L2, with the norm relations

‖A‖op ≤ ‖A‖HS, ‖AB‖HS ≤ ‖A‖HS‖B‖op. (7)

Recall the set of eigenfunctions {ϕk : k ≥ 1} of T form an orthonormal basis of L2. By
the definition of the HS norm, we have

‖ξ‖2HS =
∑

k

‖(T + λI)−1/2 < L
1/2
K X,ϕk > L

1/2
K X‖2

≤ ‖(T + λI)−1/2‖2op‖L1/2K X‖2
∑

k

| < L
1/2
K X,ϕk > |2

≤ λ−1‖L1/2K X‖4

≤ κ4

λ
.

It follows that

‖ξ‖HS ≤
κ2√
λ
.
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Also L
1/2
K X ∈ L2 can be expanded by the orthonormal basis {ϕl}l as

L
1/2
K X =

∑

l

< L
1/2
K X,ϕl > ϕl.

Hence

‖ξ‖2HS =
∑

k

‖ < L
1/2
K X,ϕk >

∑

l

< L
1/2
K X,ϕl > (T + λ1)−1/2ϕl‖2

≤
∑

k

| < L
1/2
K X,ϕk > |2‖

∑

l

< L
1/2
K X,ϕl >

1√
λ+ τl

ϕl‖2

≤ ‖L1/2K X‖2
∑

l

| < L
1/2
K X,ϕl > |2
λ+ τl

≤ κ2
∑

l

| < L
1/2
K X,ϕl > |2
λ+ τl

.

We can see that

E‖ξ‖2HS ≤ κ2
∑

l

〈
E < L

1/2
K X,ϕl > L

1/2
K X,ϕl

〉

λ+ τl

= κ2
∑

l

〈Tϕl, ϕl〉
λ+ τl

= κ2
∑

l

τl
λ+ τl

= κ2D(λ).

Applying Theorem 3.2 to the random variable ξ with M = κ2√
λ
, we know by (7) that with

confidence at least 1− δ,

‖(T + λI)−1/2(T− Tn)‖op =

∥∥∥∥∥
1

n

n∑

i=1

[E(ξ)− ξi]
∥∥∥∥∥
op

≤
∥∥∥∥∥

1

n

n∑

i=1

[E(ξ)− ξi]
∥∥∥∥∥
HS

≤ 2κ2 log(2/δ)

n
√
λ

+

√
2κ2D(λ) log(2/δ)

n

≤ Bn,λ log(2/δ).

The theorem follows. �
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We note that if A and B are invertible operators on a Banach space, one can see the
following decomposition of the operator product

BA−1 = (B− A)B−1(B− A)A−1 + (B− A)B−1 + I. (8)

By considering A = Tn + λI and B = T + λI in (8), and applying Theorem 3.1, we have
the following results.

Theorem 3.3. Under the assumption in (3), for any 0 < δ < 1 with confidence at least
1− δ, there holds

‖(T + λI)(Tn + λI)−1‖op ≤
(
Bn,λ log(2/δ)√

λ
+ 1

)2

.

Moreover, the confidence set is the same as that in Theorem 3.1.

Proof: We apply (8) to the operator A = Tn + λI and B = T + λI. By applying the
bounds ‖(Tn + λI)−1‖op ≤ 1/λ and ‖(T + λI)−1/2‖op ≤ 1/

√
λ gives

‖(T + λI)(Tn + λI)−1‖op ≤
1

λ
‖(T + λI)−1/2(T− Tn)‖2op +

1√
λ
‖(T + λI)−1/2(T− Tn)‖op + 1

Here we have used the fact that

‖UV‖op = ‖(UV)T‖op = ‖VTUT‖op = ‖VU‖op (9)

for any self-adjoint operators U, V on Hilbert spaces. The application of Theorem 3.1 yields
with the same confident set in Theorem 3.1,

‖(T + λI)(Tn + λI)−1‖op ≤
(

1√
λ
‖(T + λI)−1/2(T− Tn)‖op + 1

)2

≤
(
Bn,λ log(2/δ)√

λ
+ 1

)2

.

The theorem follows. �
Next we can bound the first term on the right-hand side of (6) using Theorem 3.3.

Theorem 3.4. Under the assumption in (3), for any 0 < δ < 1, with confidence at least
1− δ, there holds

‖T1/2(Tn + λI)−1gn)‖ ≤ σ(log 4
δ
)2

κδ

(
Bn,λ√
λ

+ 1

)2

Bn,λ.
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Proof: By applying the fact (see e.g. [1, Lemma A.7]) that

‖AγBγ‖op ≤ ‖AB‖γop, 0 < γ < 1,

for positive operators A and B on Hilbert spaces and (9), we have

‖T1/2(Tn + λ1)−1gn)‖
≤ ‖(T + λI)1/2(Tn + λI)−1/2‖op‖(Tn + λI)−1/2(T + λI)1/2‖op‖(T + λI)−1/2gn‖
≤ ‖(T + λI)(Tn + λI)−1‖op‖(T + λI)−1/2gn‖.

By using Theorem 3.3, we have with confidence at least 1− δ/2

‖(T + λI)(Tn + λI)−1‖op ≤
(
Bn,λ log(4/δ)√

λ
+ 1

)2

. (10)

To estimate ‖(T + λI)1/2gn‖, we recall that

gn =
1

n

n∑

i=1

εiL
1/2
K Xi

and consider the random variable ξ defined by

ξ = (T + λI)−1/2(εL1/2K X).

It takes values in L2 and satisfies

E(ξ) = E[ε(T + λI)−1/2L1/2K X] = E[E[ε(T + λI)−1/2L1/2K X|X]] = 0,

and

E‖ξ‖2 = E‖ε
∑

l

< L
1/2
K X,ϕl > (T + λI)−1/2ϕl‖2

= σ2
∑

l

E
(
< L

1/2
K X,ϕl >

)2

λ+ τl

= σ2
∑

l

< Tϕl, ϕl >

λ+ τl

= σ2D(λ).

Hence we obtain

E‖(T + λI)−1/2gn‖2 = E‖ 1

n

n∑

i=1

ξi‖2 =
E‖ξ‖2
n

=
σ2D(λ)

n
.
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By applying Markov inequality, we have with confidence at least 1− δ/2,

‖(T + λI)−1/2gn‖ ≤
2σ

δ

√
D(λ)

n
≤ σ

κδ
Bn,λ.

This together with (10) proves the theorem. �
Next we estimate the second term of the right-hand side in (6).

Theorem 3.5. Under the assumption in (3), with the same confidence set of Theorem
3.1, there holds

‖T1/2((Tn + λI)−1Tnf0 − f0)‖ ≤ ‖f0‖
√
λ

(
Bn,λ log(4/δ)√

λ
+ 1

)
.

Proof: Since (Tn + λI)−1Tnf0 − f0 = −λ(Tn + λI)−1f0, we get from Theorem 3.3 with
confidence at least 1− δ/2,

‖T1/2((Tn + λI)−1Tnf0 − f0)‖
≤ λ‖(T + λI)1/2(Tn + λI)−1/2‖op‖(Tn + λI)−1/2‖op‖f0‖
≤ ‖f0‖

√
λ‖(T + λI)(Tn + λI)−1‖1/2op

≤ ‖f0‖
√
λ

(
Bn,λ log(4/δ)√

λ
+ 1

)
. (11)

Note that (10) and (11) hold simultaneously with probability at least 1 − δ/2, we thus
derive the error bound. �

Next we derive explicit learning rates of regularized least squares for functional linear
regression, we need to quantify the increment of D(λ) with a parameter 0 < θ ≤ 1 and a
constant c > 0 as in (4).

Theorem 3.6. Under the assumption (3) and (4), for any 0 < δ < 1, by taking λ =

( 1
n
)

1
1+θ , we have with confidence at least 1− δ,

E(ηn,λ)− E(η0) ≤
C(log 4

δ
)4n

−1
1+θ

δ2
,

where C is a constant independent of n or δ.

Proof: Let λ = ( 1
n
)

1
1+θ , it is easy to check Bn,λ ≤ 2κ(κ+

√
c)
√
λ. Since Theorems 3.4

and 3.5 hold simultaneously with probability at least 1− δ, we get from (6)

E(ηn,λ)− E(η0)

= ‖T1/2(fnλ − f0)‖2
≤ 2

(
‖T1/2(Tn + λI)−1gn‖2 + ‖T1/2((Tn + λI)−1Tnf0 − f0)‖2

)

≤ 2
(log 4

δ
)4λ

δ2

(
σ2(2κ(κ+

√
c) + 1)6

κ2
+ (2κ(κ+

√
c) + 1)2‖f0‖2

)
.
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This proves the theorem with

C = 2

(
σ2(2κ(κ+

√
c) + 1)6

κ2
+ (2κ(κ+

√
c) + 1)2‖f0‖2

)
.

�
Here we give some remarks for the above theorem. In terms of methodology, the

analysis in this paper is most closely related of that of [3], where a minimax rate of
convergence of the excess risk is derived under the assumption that the eigenvalues τk of
T decay as follows:

τk ≤ c1k
−2r, (12)

for some constant c1 > 0 and 1/2 < r < ∞1. We note that our assumption in (4) for
0 < θ < 1 is more general than that in (12). In fact, if (12) is satisfied, it is easy to check
that

D(λ) =
∞∑

l

τl
λ+ τl

≤
∞∑

l

c1l
−2r

λ+ c1l−2r
=
∞∑

l

c1
c1 + λl2r

≤
∫ ∞

0

c1
c1 + λt2r

dt ≤ c′λ−
1
2r .

It implies that condition in (4) holds with θ = 1
2r

. We thus conclude the results in the
following theorem.

Theorem 3.7. Suppose the eigenvalues {τk : k ≥ 1} of T satisfy τk ≤ c1k
−2r for some

constant c1 > 0 and 1/2 < r < ∞. Under the assumption in (3), for any 0 < δ < 1, we
have with confidence at least 1− δ,

E(ηn,λ)− E(η0) ≤
C ′(log 4

δ
)4

δ2
n

−2r
1+2r .

The convergence rate presented in Theorem 3.7 is the same as the minimax rate in
[3]. It is interesting to note in [3] that the following assumption

E
(∫

I
X(t)f(t)dt

)4

≤ c2

(
E
(∫

I
X(t)f(t)dt

)2
)2

(13)

for all f ∈ L2 with c2 > 0, is required in order to derive the minmax rate for (2). We
know by Cauchy inequality that

(
E
(∫

I
X(t)f(t)dt

)2
)2

≤ E
(∫

I
X(t)f(t)dt

)4

. (14)

1The original assumption in [3] requires eigenvalues {τk : k ≥ 1} satisfy τk ≤ c′k−2r for some 0 < r <
∞ and c′ is a positive constant. But the proof of [3, Lemma 1] requires r > 1/2.
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It is clear to see that (13) is an opposite inequality to (14). Therefore, (13) may be very
difficult to verify except for Gaussian data X. Compared with (13), our assumption (3)
is more realistic. In fact,

E‖L1/2K X‖2 = E < LKX,X >= E
∫

I×I
K(s, t)X(s)X(t)dsdt

=

∫

I×I
K(s, t)C(s, t)dsdt

≤ ‖K‖L2(I×I) · ‖C‖L2(I×I).

By Markov inequality, for any 0 < η < 1, with confidence at least 1− η,

‖L1/2K X‖2 ≤ ‖K‖L2(I×I) · ‖C‖L2(I×I)
η

.

This implies ‖L1/2K X‖2 is a bounded set with high probability. From a practical point
of view, although condition (3) is not satisfied for any non-degenerate Gaussian process,
real-data processes are bounded as usual. Hence, results of the paper can be considered
as complimentary results to [3].

4 Concluding Remarks

In this paper, we have derived the minimax rate of of regularized least squares for func-
tional linear regression. Our required assumptions are more general and realistic than
those in the literature. On the other hand, we focus on scalar response in the functional
linear model. It would be interesting to consider multiple responses arising from multi-
linear model and study the corresponding regularized least squares setting as a future
research work. Such a setting can have useful applications in image and multi-dimensional
signal processing.
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[1] G. Blanchard, N. Krämer, Optimal learning rates for kernel conjugate gradient re-
gression, In: NIPs, 226-234, 2010.

12



[2] T. Cai and P. Hall, Prediction in function linear regression, Ann. Statist., 34, 2159-
2179, 2006.

[3] T. Cai and M. Yuan, Minimax and adaptive prediction for function linear regression,
J. Amer. Statist. Assoc., 107, 1201-1216, 2012.

[4] A. Caponnetto and E. DeVito, Optimal rates for the regularized least squares algo-
rithm, Foundations of Computational Mathematics, 7, 331-368, 2007.

[5] Z. C. Guo, S. B. Lin and D. X. Zhou, Learning theory of distributed spectral algo-
rithms, Inverse Problems, 33(7), 074009, 2017.

[6] P. Hall and G. L. Horowitz, Methodology and convergence rates for function linear
regression, Ann. Statist., 35, 70-91, 2007.

[7] T. Hastie and C. Mallow, A discussion of ”A statistical view of some chemometrics
regression tools” by I. E. Frank and J. H. Friedman, Technometrics, 35, 140-143,
1993.

[8] S. Lu, P., Mathe and S. V. Pereverzev, Balancing principle in supervised learning
for a general regularization scheme, Applied and Computational Harmonic Analysis,
https://doi.org/10.1016/j.acha.2018.03.001.

[9] V. Paulsen and M. Raghupathi, An Introduction to the Theory of Reproducing Kernel
Hilbert Spaces, Cambridge University Press, 2016.

[10] I. Pinelis, Optimum bounds for the distributions of martingales in Banach spaces,
The Annals of Probality, 22, 679-1706, 1994.

[11] J. O. Ramsay and C. J. Dalzell, Some tools for functional data analysis (with Dis-
cussion), Journal of the Royal Statistical Society, Series B, 53, 539C572, 1991.

[12] S. Smale and D. X. Zhou, Learning theory estimates via integral operators and their
approximations, Constr. Approx., 26, 153-172, 2007.

[13] I. Steinwart, Support vector machines are universally consistent, J. Complexity, 18,
768-791, 2002.

[14] I. Steinwart, On the influence of the kernel on the consistency of support vector
machines, J. Mach. Learning Res., 2, 67-93, 2001.

[15] F. Yao, H. G. Müller and J. L. Wang, Function linear regression analysis for longi-
tudinal data, Ann. Statist., 33, 2873-2903, 2005.

[16] M. Yuan and T. Cai, A reproducing kernel Hilbert space approach to function linear
regression, Ann. Statist., 38, 3412-3444, 2010.

13



[17] T. Zhang, Learning bounds for kernel regression using effective data dimensionality,
Neural Computation, 17, 2077-2098, 2004.

14


