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ABSTRACT 

Our understanding of the spatial patterns of landslides in Africa is limited with 

available landslide studies typically focusing on only one or a few study areas. 

Moreover, Africa is clearly underrepresented in terms of available landslide 

inventories. This study aims to produce a first continent-wide landslide susceptibility 

map for Africa, calibrated with a well-distributed landslide dataset. We reviewed the 

literature on landslides in Africa and compiled all available landslide inventories (ca. 

10,800 landslides), supplemented by additional landslide mapping using Google 

Earth imagery in underrepresented regions (ca. 7,250 landslides). This resulted in a 

dataset of approximately 18,050 landslides. Various environmental variables were 

investigated for their significance in explaining the observed spatial patterns of 

landslides. To account for potential mapping biases in the dataset, we used Monte 

Carlo simulations that selected different subsets of mapped landslides to test the 

significance of the considered environmental variables. Based on these analyses, we 

constructed two landslide susceptibility maps for Africa: one for all landslide types 

and one excluding the known rockfalls. In both maps, topography is by far the most 

significant variable. We evaluated the performance of the fitted multiple logistic 

regression models using independent subsets of landslides, selected from the total 

dataset. Overall, both maps perform very well in predicting intra-continental patterns 

of landslides in Africa and explain about 80% of the observed variance in landslide 

occurrence. To further test the robustness and sensitivity to mapping biases, we also 

modelled landslide susceptibility while excluding regions with arid climates, as 

landslides in these environments are expected to be better preserved over time and 

therefore likely relatively overrepresented. Despite this potential bias, the effect on 

the landslide susceptibility model is limited. Based on the constructed database and 

our analyses we further discuss potential research gaps for landslide prediction in 

Africa and at continental scales. For example, analysis of the African countries’ mean 

landslide susceptibility shows a lack of landslide research in various countries prone 
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to landsliding (e.g.: Guinea, Gabon, Lesotho, Madagascar). Apart from the intrinsic 

value of this landslide susceptibility map as a natural hazard risk management tool, 

the map and compiled database are highly promising for other applications. For 

example, we explored the potential significance of landslides as a geomorphic 

process by confronting our landslide susceptibility map with an available database of 

measured catchment sediment yield for 500 rivers in Africa. Overall, a significant 

positive, but relatively weak relation between landslide susceptibility and sediment 

yield is observed. 

 

KEYWORDS 

mass movement; landslide inventory; Google Earth; topography; seismicity; climate; 

air temperature; sediment yield 

 

ABBREVIATIONS 

AUC: area under the ROC curve 

LSD1: landslide dataset based on digitized landslide inventories 

LSD2: landslide dataset based on mapped landslides in Google Earth 

LSS: landslide susceptibility 

MLR: mean local relief 

P: mean annual precipitation 

PGA: peak ground acceleration 

ROC: receiver operating characteristic 

SMA: maximum slope 

std: standard deviation 

SY: sediment yield 
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1. Introduction 

Studies on landslide risks and fatalities indicate that landslides are present on all 

continents and are a global threat to humans, infrastructure and the environment 

(Dilley, 2005; Guzzetti et al., 2012; Haque et al., 2016; Kjekstad & Highland, 2009; 

Petley, 2012; Sassa & Canuti, 2009; Stanley & Kirschbaum, 2017). While this is 

certainly also the case for Africa, this continent remains strongly underrepresented in 

landslide research (e.g. Gariano & Guzzetti, 2016; Kirschbaum et al., 2015, 2010; 

Maes et al., 2017; Nadim et al., 2006; Petley, 2012; Reichenbach et al., 2018). Also 

global landslide susceptibility (LSS) maps rely on very few (or no) data of observed 

landslides in Africa for their calibration (e.g. Hong et al., 2007; Kirschbaum et al., 

2009; Nadim et al. 2006; Stanley & Kirschbaum, 2017). Nonetheless, landslides are 

one of the deadliest natural disasters in Africa (Guha-Sapir et al., 2017). Moreover, 

their importance and impact are expected to increase due to climate change, with an 

increase in total precipitation and increasing frequency and intensity of rainstorm 

events (Gariano & Guzzetti, 2016). This was for instance shown for the Great Lakes 

region (Shongwe et al., 2011; Souverijns et al., 2016; Thiery et al., 2016), probably 

one of the most landslide susceptible regions in Africa (Hong et al., 2007; Stanley & 

Kirschbaum 2017). In addition, Africa is facing a considerable growth in population, 

which is projected to triple by the end of the 21st century (Gerland et al., 2014). This 

will likely affect both the frequency and impact of landslide events. For these 

reasons, earlier studies have urged to fill the gap on landslide research in Africa (e.g. 

Gariano & Guzzetti, 2016; Jacobs et al., 2016; Maes et al., 2017). 

 

Furthermore, our geomorphic understanding of erosion processes at a continental 

scale may significantly benefit from addressing this research gap. Several studies 

indicate the importance of landslides as a dominant process explaining variations in 

catchment sediment yield (SY, [t km-2 y-1]) at regional and continental scales (e.g. 

Broeckx et al., 2016; Delmas et al., 2009; de Vente et al., 2006; Vanmaercke et al., 
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2017). As with landslides, information on SY for Africa is relatively scarce. However, 

Vanmaercke et al. (2014) demonstrated highly significant correlations between 

spatial patterns of contemporary SY and spatial patterns of seismicity in Africa. This 

indicates that landsliding could also play a significant role in the sediment budget of 

Africa, given that seismic activity can trigger landslides, but may also increase the 

susceptibility to landsliding by weakening substrates (e.g. Broeckx et al., 2016; 

Chang et al., 2007; Chuang et al., 2009; Hovius et al., 2011; Marc et al., 2015; 

Molnar et al., 2007; Nowicki et al., 2014; Vanmaercke et al., 2017). On the whole, the 

importance of landslides for SY in different environments remains poorly understood 

and our ability to simulate this process at larger spatial scales remains limited 

(Broeckx et al., 2016; de Vente et al., 2013; Hovius et al., 2011; Korup et al., 2014). 

Nevertheless, recent research showed the promising potential of LSS maps as a tool 

to better assess the importance of landsliding for catchment SY at such scales 

(Broeckx et al., 2016). 

 

Overall, this paper aims to contribute to a better understanding of landslide 

susceptibility in Africa and its importance as a geomorphic process. More specifically, 

we (1) carried out a review on mapped landslides in Africa and present an extensive 

compilation of this data; (2) propose a first continent-wide LSS map of Africa, 

calibrated by well-distributed landslide data; (3) explore the relation between LSS 

and SY for Africa; and (4) indicate scopes for further landslide research in Africa and 

at continental scales, based on a critical discussion of the compiled database and its 

analyses. 

 

2. Materials and methods  

2.1. Landslide data collection 

2.1.1. Available landslide inventories 
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The first step towards an African LSS map, encompassed the compilation of 

available landslide inventories for Africa. This was done through an extensive 

literature review of scientific papers, PhD and MSc theses and research institution 

websites (e.g.: Royal Museum for Central Africa, 2016). All landslide inventories 

suitable for digitization and georeferencing were selected from this review. 

Inventories required precise landslide coordinates (e.g. Mansour et al., 2014), the 

presence of a coordinate grid (e.g. Ayonghe et al., 2004) or other landscape features 

that allowed a sufficiently accurate georeferencing of the landslide inventory map 

(e.g. Moeyersons et al., 2004). A second selection retained those inventories with 

estimated errors on landslide locations of less than 12’’ (corresponding to ca. 350 m 

across the African continent). This error was estimated based on the quality and level 

of detail of the landslide features on the map and the average georeferencing error. 

The latter was assessed by exporting the digitized and georeferenced inventory 

maps to Google Earth and measuring the distance between clear landscape features 

(e.g. roads) on the map and on Google Earth images for a number of control points 

(typically 5). This resulted in a first landslide dataset (LSD1) based on digitized 

landslide inventories from the literature. 

 

2.1.2. Additional landslide mapping in Google Earth 

Our literature review indicated that most studies focused on only a limited number of 

African countries and areas. Moreover, studies indicate that in many landslide-prone 

countries, little or no landslide research has been conducted (e.g. Gariano & 

Guzzetti, 2016; Jacobs et al., 2016, 2017; Maes et al., 2017). To improve the 

completeness and spatial representativeness of our landslide dataset, we generated 

a second landslide dataset (LSD2) by mapping additional landslides that could be 

observed in Google Earth imagery. Mapped landslides in this dataset include 

landslides in the study areas of the digitized inventories (2.1.1) that were not included 

in the inventory (e.g. missed or more recent landslides), as well as landslides in other 
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regions. Efforts to map additional landslides in other regions concentrated on areas 

that were known to be susceptible, e.g. based on studies that could not be accurately 

geo-referenced, local studies that provided no inventory, but reported the presence of 

landslides and earlier developed (global) landslide susceptibility maps (e.g. Audru et 

al., 2010; Nadim et al., 2006). However, also other areas were investigated for the 

presence of landslides. We did not intend to create a complete dataset of landslides 

in the mapped areas, but one with a good spatial coverage to represent the entire 

African continent. Examples of landslides mapped with Google Earth are shown in 

Fig. 1. Each landslide in Google Earth was mapped as a point, located at the 

landslide scarp. Landslide typology was not assessed in detail, apart from rockfalls 

that were considered as a separate category. 

 

 
 
Fig. 1. Examples of landslides mapped in Google Earth. Tanzania (10.929°S, 39.547°E), Angola 

(15.194°S, 13.210°E), Lesotho (29.145°S, 28.024°E, rockfall), Comoros (12.230°S, 44.420°E). 

 

2.1.3. Mapping of non-landslide points 

If landslide inventories are correct and complete, they also indicate the locations in 

the study area where landslides are absent (Guzzetti et al., 2012). However, we 

found that most of the landslide inventories were incomplete. This was sometimes 
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reported by the landslide studies themselves or because these studies considered 

only landslides linked to a specific event (e.g. earthquake) and hence presented no 

geomorphological historical inventory (e.g. Agbor et al., 2014; Bouhadad et al., 

2010). Besides, the incompleteness of inventories was also observed by comparing 

digitized landslide numbers with reported landslide numbers and by examining the 

study areas in Google Earth. Also the landslides we mapped based on Google Earth 

remain incomplete (2.1.2). Given our intent to assess LSS at the continental scale, 

the completeness of the landslide inventories was not considered as a quality 

criterion. Nevertheless, both landslide and non-landslide observations are required to 

correctly calibrate a logistic LSS model. To limit potential errors of including false 

negatives (i.e. non-landslide points that in fact correspond to landslide areas), we 

also generated a dataset of non-landslide locations.  2050 points were randomly 

distributed across Africa, at least one kilometer away from the known landslides. 

Each point was visually checked in Google Earth for the presence or absence of 

landslides. This approach had several advantages: (1) the entire African continent is 

correctly represented and not just the most susceptible areas covered by landslide 

studies; (2) all non-landslide points have exact locations; (3) chances of randomly 

selecting landslide locations are small as most locations are free of landslides and 

generating random points outside the most susceptible areas further reduces the 

chance of false negatives; (4) a visual check in Google Earth allowed for an 

additional removal of false negatives (<5%). Hence, although not all landslides can 

be seen in Google Earth, this method allowed for a representative and well 

distributed dataset of locations that are unlikely to be affected by landslides. 

 

2.2. Environmental variables 

Based on a review on landslide conditioning factors (Pourghasemi & Rossi, 2017), 

five independent environmental factors with available data for Africa were considered 

(i.e. topography, lithology, land use, precipitation and seismicity). For the logistic 
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regression analyses, six quantitative and seven qualitative variables that describe 

these factors were derived (Table 1). The qualitative variables, represent the most 

common lithological classes in Africa (Hartmann & Moosdorf, 2012) and were 

transformed into seven dummy variables, each having a value of 1 or 0, indicating 

the presence or absence of that particular lithology, respectively. The selected 

parameters correspond to variables typically selected in similar LSS studies (e.g. 

Budimir et al., 2015; Stanley & Kirschbaum, 2017; Van Den Eeckhaut et al., 2012) 

and are based on GIS data, with a consistent coverage for the entire African 

continent. All variables were rescaled to a resolution of 12”, i.e. larger than the 

maximum estimated positional error on the mapped landslides (2.1.1) and equal to 

the resolution of the resulting LSS maps. This rescaling implied a decrease in 

resolution with a factor four for the topographic data (3” SRTM). For this, both the 

maximum slope (SMA) and the mean local relief (MLR) were calculated in a 4x4 grid. 

The resulting values were then aggregated to a new raster at a resolution of 12”. 

 

Table 1. Overview of the considered variables. ‘na’ indicates not applicable. All variables were 

rescaled to a resolution of 12’’ for the analyses.  

Variable Description Unit Resolution  Source 

SMA maximum slope within a 4x4 SRTM 3'' slope grid.  % 3"  USGS 

MLR mean local relief within a 4x4 SRTM 3'' slope grid. Where local relief  is the 
maximum altitude dif f erence within a circle with a radius of  5 km at the equator 

m 3" USGS 

PGA peak ground acceleration with an exceedance probability  of  10% in 50 y ears m s-2 0.1° Giardini et al., 1999;  
Shedlock et al., 2000 

P precipitation:  av erage (1961-1990) annual rainf all mm 0.16° New et al., 2002 

RDN rainy day normal: total annual rainf all div ided by  the number of  rainy  day s  mm/day 0.16° New et al., 2002 

TREE tree cover: f raction of  a pixel cov ered by  trees (1992-1993 satellite data) % 30'' DeFries et al., 2000 

SU unconsolidated sediments: lithological class applied as a dummy  v ariable na 2 km Hartmann & Moosdorf , 2012 

SS siliciclastic sedimentary rocks: lithological class applied as a dummy  v ariable na 2 km Hartmann & Moosdorf , 2012 

SM mixed sedimentary rocks: lithological class applied as a dummy  v ariable na  2 km Hartmann & Moosdorf , 2012 

SC carbonate sedimentary rocks: lithological class applied as a dummy  v ariable na 2 km Hartmann & Moosdorf , 2012 

PL plutonic rocks: lithological class applied as a dummy  v ariable na 2 km Hartmann & Moosdorf , 2012 

MT metamorphics: lithological class applied as a dummy  v ariable na 2 km Hartmann & Moosdorf , 2012 

VOLC volcanic rocks: lithological class applied as a dummy  v ariable na 2 km Hartmann & Moosdorf , 2012 

 

2.3. Logistic landslide susceptibility model 

Logistic regression is a widely used technique in landslide susceptibility modelling 

(e.g. Ayalew & Yamagishi, 2005; Budimir et al., 2015; Dai & Lee et al., 2002; 

Vanacker et al., 2003; Van Den Eeckhaut et al., 2012, 2010, 2006). It describes the 
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relationship between a set of independent variables and a binary dependent variable, 

i.e. the presence or absence of a landslide. The logistic function can be written as 

(Kleinbaum & Klein, 2010): 

 

𝒑(𝒚 = 𝟏) = 
𝟏

𝟏+𝒆−(𝒃𝟎+𝒃𝟏𝒙𝟏+𝒃𝟐𝒙𝟐… +𝒃𝒏𝒙𝒏) equation 1 

 

With p the probability of landslide occurrence, xi the dependent variables and bi the 

regression coefficients. The result of this equation is a number between 0 and 1, 

which can be interpreted as the probability that a landslide occurs under the given set 

of variable values (Kleinbaum & Klein, 2010). When fitting logistic regression models 

with only one parameter, the Wald test statistic is commonly used to test the 

significance of the coefficients bi, which is obtained by comparing the maximum 

likelihood estimate of bi with its standard error (Kleinbaum & Klein, 2010).  

 

We considered the Wald test statistic at the 0.01 significance level, to determine the 

significance of individual environmental variables in predicting LSS. For each 

considered variable separately, we first fitted five univariate logistic regression 

models by randomly selecting respectively 500, 1000, 2000, 4000 and 8000 points 

from the entire dataset of landslide and non-landslide locations. In a next step, 

different combinations of all significant independent variables were tested in a 

multiple logistic regression approach. We performed two parallel analyses: one for all 

landslide types (LS (all)) and one excluding the rockfalls that were mapped in Google 

Earth (LS (excl. rockfalls)).  Mc Fadden’s pseudo R² (𝐑𝐌𝐜𝐅
𝟐 ) was used as a measure 

of goodness-of-fit, similar to the coefficient of determination for linear models 

(Cameron & Windmeijer, 1997). P-values were used to test the statistical significance 

(p < 0.01) of the predictor variables in the model.  
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As discussed above (section 2.1), landslide inventories were derived from various 

sources and consequently reflect large differences in the number and density of 

landslides. As a result, some combinations of environmental variables (Table 1) may 

be overrepresented in the landslide dataset. To account for these potential biases in 

our models, we first aggregated the digitized landslides at the pixel level (resolution 

of 12’’), i.e. for all pixels containing more than one landslide point, only one of them 

was retained after random selection. We further reduced the number and density of 

landslides in the inventories according to three selection rules: (1) all landslides are 

retained for inventories with less than 50 landslides. (2) for inventories with more 

than 50, 100 and 200 landslides, the number of landslides was iteratively reduced to 

obtain a density smaller than respectively 2, 0.5 and 0.1 landslides/km², with a lower 

limit of respectively 50, 100 and 200 landslides. (3) maximum 300 landslides were 

retained from any individual inventory. The correct number of landslides was 

randomly selected from each inventory, as a heuristic way to give a balanced weight 

to all landslide inventories. Landslides mapped in Google Earth in a specific area or 

clearly representing one triggering event, were also considered as an inventory to 

which these selection rules were applied.  

 

From this generated subset, 2/3 of the landslides were then randomly selected for 

model calibration and 1/3 for model validation. This procedure was repeated 101 

times for each combination of significant independent variables, since it was 

assessed that the range of 𝑹𝑴𝒄𝑭
𝟐  values did not significantly increase for larger 

numbers of iterations. Overall, this Monte Carlo simulation approach allowed us to 

select the most appropriate LSS models (for all landslides and after excluding known 

rockfalls). Furthermore, it allowed for the mapping of the standard deviation of 

obtained LSS values for each pixel and, hence, to identify areas with larger and 

smaller uncertainties in estimated LSS across Africa. 
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To evaluate model performance, receiver operation characteristic (ROC) curves were 

produced and analysed. ROC curves are a widely used technique in LSS model 

validation and useful for selecting LSS class boundaries for the final LSS maps. 

Class boundaries were chosen, based on natural breaks with the aim to include as 

many landslides as possible in the highest susceptibility classes covering areas as 

small as possible (e.g. Balteanu et al., 2010; Pontius & Schneider, 2001; Pradhan, 

2013; Swets, 1988; Van Den Eeckhaut et al., 2012). ROC curves are considered a 

more appropriate validation technique than success and prediction rate curves, since 

they are independent of the relative frequencies of landslide versus non-landslide 

pixels (Swets, 1988; Van Den Eeckhaut et al., 2009b). ROC curves were constructed 

for the total landslide subset and for six randomly selected validation datasets, used 

in the Monte Carlo simulations. 

 

2.4. Landslide susceptibility modelling, excluding arid climates 

In many cases, older landslides are difficult to detect as their scars are covered by 

vegetation and remodelled by other geomorphic processes (e.g. creep, erosion, 

sediment deposition). The rate at which this happens likely depends on the climate, 

with older landslides being more likely to be preserved in more arid climates. This 

may lead to biases in continental-scale LSS models as presented here. To assess 

the importance of these potential biases, we constructed an additional landslide map 

by applying the Köppen-Geiger climate classification and excluded all landslides in 

regions of B-type (arid) climates (Peel et al., 2007) from the landslide inventory. With 

this subset, we then performed logistic regression analyses as described in section 

2.3. 

 

2.5. Relation between landslide susceptibility and catchment sediment yield 

Vanmaercke et al. (2014) compiled a large dataset of measured SY data for Africa. 

These data were either collected from gauging station measurements or derived from 
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a reservoir sedimentation rate, with median measuring periods of 4 and 17 years 

respectively. The catchment areas range between 0.02 and 3.8 x 106 km² (median 

998 km²). We investigated the explanatory power of LSS for SY, by calculating the 

average catchment LSS and exploring correlations with measured SY for 500 

catchments for which the catchment boundaries could be correctly delineated. Only 

catchments for which the delineated catchment area deviated less than 20% from the 

reported area were retained. However, the median deviation between reported and 

delineated area was less than 3%. We considered the LSS model excluding rockfalls, 

as this landslide type is not expected to directly contribute to suspended sediment 

yield in rivers. Spearman correlation was considered as a goodness of fit measure, 

since neither SY, nor mean LSS were normally distributed. 

 

3. Results and discussion 

3.1. Landslide datasets 

An overview of all compiled landslide data is presented in Fig. 2. Combined, the 

dataset based on available inventories (LSD1) and the dataset of additional 

landslides mapped in Google Earth (LSD2) contain 18053 landslides, covering 51 out 

of 55 African countries and the island of Reunion. LSD1 is the largest dataset. By 

reviewing the literature, we found over 200 potentially relevant publications with 

landslide data for Africa. From these publications, 60 landslide inventories could be 

digitized (Table 2). Of these, 49 inventories were of sufficient quality (section 2.1.1) 

and were retained in LSD1 (10817 landslides). Additional mapping in Google Earth, 

guided by studies from our literature review and focusing on data-scarce regions 

resulted in a second dataset of 7236 landslides (LSD2).  

 

Several global landslide inventories exist that also cover Africa to some extent (e.g. 

Kirschbaum et al., 2010; Petley, 2012). Mapped landslides in these databases, were 

not directly used in this study due to the spatial uncertainty of landslide locations 
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(section 2.1.1). However, a visual comparison shows that our landslide dataset 

covers all regions of Africa that are represented in these global studies. Overall, both 

the number and the spatial coverage of landslides in our dataset is much larger and 

more representative for the African continent. This difference is partly due to the 

focus of those studies on rainfall-induced landslides (Kirschbaum et al., 2010) or 

landslides causing fatalities only (Petley, 2012). Despite these differences in extent 

and focus of these two global studies, we find the same landslide hotspots in our 

study (Fig. 2). The same pattern of hotspots in terms of landslide studies can be 

found in Maes et al. (2017). They give a spatial overview of publications on 

landslides and on landslide risk reduction measures in the tropics.  

 

More specifically, our dataset contains many landslides in the northernmost regions 

of Maghreb countries, e.g.: Morocco, Algeria and Tunisia, and West-Africa with 

numerous studies in Cameroon. However, most studies cover the East-African Rift 

region with Ethiopia, Uganda, DR Congo, Tanzania, Malawi and South-Africa 

contributing most of the landslides to our dataset. These landslide numbers can give 

a first indication of LSS, but are certainly not a true representation of the spatial 

distribution of landslide frequencies across Africa, since we did not intend to produce 

a complete dataset of landslides for Africa (section 2.1.2). For example, the dataset 

contains over 1000 landslides mapped in detail in Google Earth for a single region in 

Angola, corresponding to a heavy rainfall event (Dinis et al., 2013). On the other 

hand, many regions in South-Africa were mapped, where not all observed landslides 

were digitized. Moreover, the identification of landslides can be biased by the spatial 

and temporal resolution and availability of satellite imagery for different regions. In 

addition, one has to bear in mind that the observed landslide frequency is affected by 

differences in periods of landslide scar conservation across the African continent due 

to the diversity in climates (see discussion in section 3.2.3). Therefore, even a 
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complete inventorisation of landslides across Africa would not be a correct 

representation of the landslide occurrence across the continent.  

 

These spatial differences in landslide representation may potentially bias 

assessments of LSS and should be taken into account in LSS analyses (see sections 

2.3 and 2.4). Likewise, the landslides included in our dataset typically have an 

unknown age and are not necessarily representative for actual contemporary 

landslide frequencies. As a result, this study only aims to seek and explain the spatial 

patterns in LSS in Africa. The rate or hazard of landslide events is beyond the scope 

of this study. 

 

 

Fig. 2. Spatial overview of all compiled landslide locations in Africa, classified by dataset LSD1: 

inventories, LSD2: Google Earth (section 2.1). 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Table 2: Overview of all mapped landslides by country (LSD1: inventories, LSD2: Google 

Earth). References of landslide inventories used in our analyses (n=49) are marked in bold. 

Other listed references on landslides were used as a guide to map landslides in Google Earth.  

Country 
# LS in LSD1  

(# inventories) 

# LS in  

LSD2 

total   

# LS   
sources 

Algeria 266 (5) 322 588 Bouhadad, 2010; Bourenane et al., 2015; Busche, 2001; Capot-Rey, 1954;  
Gabert, 1984; Hadji et al., 2013; Mansour et al., 2014; Raunet, 1973 

Angola 0 (0) 1308 1308 Dinis et al., 2013 
Benin 0 (0) 8 8  
Burkina Faso 0 (0) 3 3  
Burundi 87 (1) 117 204 Nibigira et al., 2013 

Cabo Verde 0 (0) 93 93  
Cameroon 440 (6) 145 585 Afungang, 2015; Ayonghe et al., 2004, 1999; Che et al., 2011;  

Ngatcha et al., 2011; Ngole et al., 2007; Zogning et al., 2007 

Central Af rican Republic 0 (0) 6 6  
Chad 0 (0) 87 87  
Comoros 0 (0) 33 33 Audru et al., 2010 
Congo Republic 0 (0) 77 77  
Cote d'Iv oire 0 (0) 2 2  
Djibouti 0 (0) 33 33  
DR Congo 231 (4) 685 916 Maki Mateso & Dewitte, 2014; Moeyersons et al., 2010, 2004;  

Ndy anabo et al., 2011; Roy al Museum f or Central Af rica, 2016; Sahani, 2011 
Egy pt 0 (0) 120 120 Arnous, 2011; Emam et al., 2010 
Eritrea 0 (0) 74 74  
Ethiopia 700 (9) 101 801 Asfaw, 2010; Asma, 2013; Broothaerts et al., 2012; Girma, 2010;  

Hagos, 2012; Ismail, 2013; Suyum, 2011; Temesgen et al., 2001;  
Van Den Eeckhaut et al., 2009; Vercammen, 2011 

Gabon 0 (0) 31 31  
Ghana 0 (0) 16 16  
Guinea 0 (0) 23 23  
Guinea-Bissau 0 (0) 0 0  
Keny a 0 (0) 325 325 Maina-Gichaba et al., 2013; Ngecu & Mathu, 1999 
Lesotho 0 (0) 35 35  
Liberia 0 (0) 6 6  
Liby a 0 (0) 174 174 Busche, 2001; Ostaf iczuk, 1973 
Madagascar 0 (0) 411 411 Ramasiarinoro et al., 2012 
Malawi 130 (4) 47 177 Msilimba, 2010; Msilimba & Holmes, 2010 

Mali 0 (0) 35 35  
Mauritania 0 (0) 129 129 Busche, 2001 
Mauritius 0 (0) 5 5  
Morocco 3600 (1) 150 3750 Choubert & Ennadif i, 1970; Fonseca, 2014 

Mozambique 0 (0) 334 334 Bomans, 2005 
Namibia 0 (0) 50 50  
Niger 0 (0) 146 146 Busche, 2001 
Nigeria 43 (1) 148 191 Agbor et al., 2014; Igwe & Fukuoka, 2014; Okagbue, 1994 
Reunion 0 (0) 21 21  
Rwanda 30 (2) 42 72 Moeyersons, 2003; Moeyersons et al., 2004  
Sao Tome and Principe 0 (0) 5 5  
Senegal 0 (0) 2 2  
Sierra Leone 0 (0) 13 13  
Somalia 0 (0) 73 73  
South Af rica 3349 (4) 1050 4399 Bijker, 2001; Chiliza & Richardson, 2008; De Lemos, 2013; Gupta, 2001;  

Hardwick, 2012; Singh, 2009; Ty oda et al., 2012 
South Sudan 0 (0) 45 45  
Sudan 0 (0) 41 41  
Swaziland 0 (0) 10 10  
Tanzania 788 (3) 170 958 Bomans, 2005; Kimaro et al., 2010; Temple & Rapp, 1972 

Togo 0 (0) 11 11  
Tunisia 342 (1) 246 588 Bonvallot, 1984; Busche, 2001; Dimanche & Hamza, 1978 

Uganda 811 (8) 156 967 Broeckx et al., in prep.; Jacobs et al., 2016, 2017; Knapen et al., 2006; 
Maertens, 2016 

Western Sahara 0 (0) 29 29  
Zambia 0 (0) 36 36  
Zimbabwe 0 (0) 7 7   

Total  10817 (49) 7236 18053   
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3.2. Predicting landslide susceptibility in Africa 

3.2.1. Controlling factors and calibration of the landslide susceptibility 

maps  

Processing of the data for the LSS analyses, as described in section 2.3, resulted in 

a dataset of 9652 points used for model calibration, corresponding to 7641 landslides 

and 2011 non-landslide locations. The ratio between non-landslide and landslide 

pixels is 0.26, which is within the suggested range of 0.2 to 1 by King and Zeng 

(2001). However, Allison (2012) states that small samples (<200 occurrences: 

absolute rareness) rather than extreme proportions (relative rareness) are 

problematic for valid logistic regression results. With 2011 non-landslide locations 

also this criterion is met. Tests (carried out before model calibration), in which the 

number of non-landslide pixels in our dataset was systematically decreased, indicate 

similar model results as long as more than 250 non-landslide pixels are used. With 

lower non-landslide numbers, the explanatory power of the model reduces 

significantly and the regression coefficients become unstable. Still, the proportion of 

non-landslide locations versus landslides in our dataset is not representative for the 

true landslide/non-landslide proportion. Hence, the LSS values (between 0 and 1) 

have only a relative significance. They do not represent the relative frequency of 

landslide occurrences between different locations, but only indicate whether a 

location is less or more susceptible to landsliding compared to another location in the 

study area. 

 

Univariate logistic regression analyses on this selected dataset indicate that the 

maximum slope (SMA), mean local relief (MLR), peak ground acceleration (PGA), 

mean annual precipitation (P), tree cover and dummy variables for the lithological 

classes unconsolidated sediments (SU), siliciclastic sedimentary rocks (SS) and 

volcanic rocks (VOLC) are significant to predict landslide occurrence, considering the 

Wald test statistic at the 0.01 significance level. The Rainy Day Normal and other 
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lithological classes, were not significant. The significant variables, except for tree 

cover, were used to test multiple regression models of LSS. Tree cover showed a 

positive correlation with LSS. Such positive relation contradicts most studies 

indicating that vegetation reinforces slope stability (e.g.: Gariano & Guzzetti, 2016; 

Glade, 2003; Guns & Vanacker, 2013; Vannoppen et al., 2016). Furthermore, this 

variable showed a highly significant positive correlation with precipitation (p <<< 

0.01). This intercorrelation might explain the positive relation between tree cover and 

LSS. Moreover, this positive correlation might be attributable to mapping biases. Due 

to the detection limit of smaller and shallow mass movements on the satellite 

imagery, many of the landslides in our inventory (especially those mapped in Google 

Earth) are deep-seated (large) landslides. For these landslides, the effect of trees on 

slope stability is mostly limited to increased evapotranspiration, while root 

reinforcement has only a minor influence (Sidle & Bogaard, 2016). In addition, land 

reclamation (including soil tillage and land levelling) in cultivated (non-forested) areas 

shortens the conservation period of smaller and shallow landslides (resulting in their 

relative underrepresentation), while (large) landslides under forest are often easier to 

detect on satellite images and can remain visible during longer periods (Guzzetti et 

al., 2012). For these reasons, the positive correlation between landslide occurrence 

and tree cover is likely spurious. It was therefore decided to exclude this variable 

from our further analyses. 

 

Fig. 3 shows the explained variance of the different multiple logistic regression 

models that were tested. In general, all models shown in Fig. 3 indicate that the 

performance of the validation data (1/3) is very similar to the performance of the 

calibration data (2/3, i.e. 6400 points).  
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Fig. 3. Boxplots of the explained variance (𝑹𝑴𝒄𝑭
𝟐 ), for different variable combinations of 101 

simulations for the model of all landslide types (left) and for the model excluding rockfalls 

(right). The different predictor variables are explained in Table 1. For all simulations the dataset 

(containing 9652 landslide and non-landslide locations) is randomly divided in a calibration 

(2/3) and a validation (1/3) dataset (see section 2.3). 

 

Analysis of the factors and models displayed in Fig. 3, indicates that SMA (Fig. 4A) 

explains by far most of the variance in LSS. Adding MLR (Fig. 4B) significantly 

increases the explained variance for both the model based on all landslide types and 

the model excluding known rockfalls. Model performance further increases 

significantly when PGA (Fig. 4C) and P (Fig. 4D) are added, especially for the model 

excluding rockfalls, but for the model considering all landslide types, P is not 

significant at the 0.01 significance level (p = 0.01). Model performance also increases 

when lithological variables are taken into account. Both siliciclastic sedimentary rocks 

and unconsolidated sediments (Fig. 4E) are significant (p < 0.01) for the model of all 

landslide types. Only siliciclastic sedimentary rocks are significant, for the model 

excluding rockfalls.  
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Based on these results, a final selection of variables was made (see fifth pair of 

boxplots in Fig. 3). For both models the explained variance was significantly larger, 

compared to the other tested models where all predictor variables were significant at 

p = 0.01. Both models have topography, but also seismicity as a common basis to 

predict LSS. The fact that precipitation is not significant for the model considering all 

landslide types, can be explained by the presence of many rockfalls in dryer regions 

(e.g. the Sahara, Fig. 2). This finding also concurs with other studies, finding no or 

very weak correlations between rockfalls and precipitation as a trigger (Perret, 2006; 

Sandersen, 1997). Moreover, as explained above, the effect of vegetation might 

counteract the importance of precipitation as a factor in the model, due to strong 

intercorrelation between the two factors. The importance of this effect could not be 

determined and needs further research to refine large-scale susceptibility maps with 

more detailed (higher resolution) parameters for vegetation cover and precipitation. 

With respect to lithology, the class of unconsolidated sediments was not significant 

for the model excluding rockfalls. This lithological class covers a vast area in the 

Sahara and in southwest Africa (Fig. 4E). These are two dry areas, already 

characterized by lower susceptibilities due to the precipitation factor that is included 

in this model. Moreover, areas with unconsolidated sediments are typically 

characterized by low topographic relief (Fig. 4), while rockfalls generally occur on 

very steep slopes in other lithologies. 
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Fig. 4. Spatial pattern of significant environmental variables in Africa, considered in the 

landslide susceptibility models. Data sources are given in Table 1. 

    

The model based on all landslide types and the model excluding known rockfalls are 

represented by equation 2 and 3, respectively. Both models explain about 80% of the 

variance in landslide occurrence. 
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𝒑(𝒚 = 𝟏) =  
𝟏

𝟏+𝒆−(−𝟒.𝟗𝟓+𝟎.𝟏𝟔∗𝑺𝑴𝑨+𝟎.𝟎𝟎𝟐𝟔∗𝑴𝑳𝑹 +𝟎.𝟗𝟑∗𝑷𝑮𝑨−𝟎.𝟖𝟑∗𝑺𝑼+𝟏.𝟓𝟔∗𝑺𝑺)
 equation 2 

𝒑(𝒚 = 𝟏) =  
𝟏

𝟏+𝒆−(−𝟔.𝟑𝟒+𝟎.𝟏𝟒∗𝑺𝑴𝑨+𝟎.𝟎𝟎𝟑𝟑∗𝑴𝑳𝑹 +𝟏.𝟏𝟐∗𝑷𝑮𝑨+𝟐.𝟎𝟔∗𝑺𝑺+𝟎.𝟎𝟎𝟎𝟗𝟗∗𝑷)
 equation 3 

The sets of regression coefficients in these equations were determined by selecting 

the median coefficient value of SMA (the most significant variable) from the 101 

Monte Carlo simulations. For the other variables, we selected the coefficients 

corresponding to this median SMA. Fig. 5 shows the ROC curves corresponding to 

model equations 2 and 3. For both, the area under the ROC curve (AUC) is very high 

(>0.95), which indicates excellent discrimination of landslide and non-landslide pixels 

according to Swets (1988).  

 

Fig. 5. ROC curves of the calibration data for the model based on all landslide types and for the 

model excluding rockfalls, with area under the curve (AUC) values of 0.98 and 0.97, 

respectively. The curves in green are the corresponding ROC curves, but excluding the lowest 

susceptibility class, with AUC values of 0.86 and 0.88 respectively. The class boundaries of the 

landslide susceptibility maps are shown on the ROC curve for the model based on all landslide 

types with decreasing susceptibility from left to right. 
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The ROC curves were used to derive the five class boundaries to reclassify the final 

LSS maps, presented in Fig. 6 and Fig. 7. For the model equations 2 and 3, 

respectively 5% and 4% of the study area was classified as having a very high 

susceptibility, containing respectively, 85% and 82% of all landslides used for model 

calibration. Respectively 95% and 93% of these landslides are located in regions with 

at least a high susceptibility and respectively 99% and 97% in regions with at least a 

moderate susceptibility. These three classes together cover about 10% of Africa. 

Given that almost 85% of the study area has a very low susceptibility, we constructed 

the same ROC curves, excluding this susceptibility class, to assess the dependence 

of the high AUC values on the large low susceptibility class (Fig. 5). This way, AUC 

values of 0.86 and 0.88 were obtained for respectively the model based on all 

landslide types and the model excluding rockfalls. Hence, the AUC decreased 

significantly, due to the removal of over 80% of the true negative values 

corresponding to the ‘very low’ susceptibility class, but remained very high. Overall, 

these results demonstrate the great potential of these maps for landslide risk 

reduction and disaster planning at continental scale as they can accurately pinpoint 

the regions at risk by indicating a small fraction of the total land area that contains 

nearly all observed landslides. 
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Fig. 6. Classified landslide susceptibility map taking into account all landslide types (equation 

2). 
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Fig. 7. Classified landslide susceptibility map excluding known rockfalls (equation 3). 

 

The LSS maps for Africa in Fig. 6 (based on all landslide types) and Fig. 7 (excluding 

the known rockfalls from LSD2 compiled in Google Earth) overall show a very similar 

pattern. This is mainly due to the importance of the slope gradient in both empirical 

models, which was also considered as a critical factor in the heuristic global LSS 

model of Stanley & Kirschbaum (2017). We must acknowledge that although rockfalls 

mapped in Google Earth were excluded from the second model (Fig. 7), we cannot 

rule out that some rockfalls are still included in the dataset compiled from the 

literature (LSD1). Nonetheless, the fraction of rockfalls in this dataset is expected to 

be relatively low as most studies mainly focus on other landslide types, confined to 

regions very prone to landsliding (Table 2). In this way, potential rockfalls in LSD1 
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are likely to be located in places affected by other types of landslides as well. Fig. 8 

displays a quantitative comparison between the 10% highest LSS values of both 

models. The models agree on these high susceptibilities for 83% of the pixels (grey), 

but disagree on the remainder of the pixels: for each model, 8.5% of the pixels 

belonged to the highest 10% of the LSS values of that model only (green and blue). 

Overall, the model based on all landslide types identifies more susceptible zones in 

dryer regions (e.g. the Sahara), while the model excluding known rockfalls predicts 

that wet regions and areas with siliciclastic sedimentary rocks (e.g. West-Africa and 

northeast Madagascar) are more susceptible.  
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Fig. 8. Spatial distribution of the differences in areas belonging to the 10% highest landslide 
susceptibility (LSS) values for the model based on all landslide types (equation 2) and the 
model excluding rockfalls (equation 3). 

 

In general both models correspond very well to the combined pattern of SMA (Fig. 

4A) and MLR (Fig. 4B), with high values for both variables resulting in high LSS. 

While it can be argued that including two topographic factors is redundant, MLR can 

be considered as an important factor on its own, as it avoids assigning high LSS to 

steep slopes in areas with low local relief. This resolves problems related to artefacts 

in the SMA data (e.g. satellite tracks in the Sahara desert), but also corresponds to 

our understanding that areas with larger local relief are overall effectively more prone 

to landslide occurrence. For instance, due to larger slope length and contributing 

areas and due to higher uplift and rainfall rates (e.g. van Westen et al., 1997).  

 

Besides topographic variables, the other significant factors seem to only have a 

modifying effect on LSS at the continental scale. The fact that AUC values (>0.95) for 
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the model only taking into account SMA and MLR remain high, further illustrates the 

limited effect of the other variables on the relative LSS values and the general LSS 

pattern in Africa.  Nonetheless, a comparison of a model taking into account only 

SMA and MLR with our full models indicates that LSS at the same location can be 

easily underestimated by a factor 2 to 5 and sometimes even more than 10 times in 

regions with high PGA, P and the occurrence of siliciclastic sedimentary rocks. This 

underestimation of LSS mainly occurs for locations with low to moderate LSS, while 

their impact on high to very high LSS values, foremostly determined by topography, 

is limited. Moreover, it is important to take these significant variables (PGA, P and 

lithological variables) into account in our models, due to their large impact on the 

absolute LSS values in certain regions, resulting in a more correct approximation of 

the actual LSS for the entire continent. 

 

3.2.2. Validation and uncertainty assessment 

Fig. 9 shows ROC curves for 6 randomly selected validation datasets from the Monte 

Carlo simulations (3 for both LSS models). The curves are very similar to those of the 

calibration dataset (Fig. 5), with AUC values that are also very high (0.97-0.98). As 

discussed in section 3.2.1, our two LSS models, were constructed based on a Monte 

Carlo simulation procedure using 101 different landslide subsets. This also allowed to 

determine the standard deviation on the LSS in each pixel, over all these simulations. 

Mapping these standard deviations provides insight into the uncertainty of the models 

in different regions (Fig. 10). Overall, we find that standard deviations (std) of LSS 

(with values between 0 and 1) are very small for both the model based on all 

landslide types (mean std: 0.009) and the model excluding known rockfalls (mean 

std: 0.012). This implies that the model results are little influenced by selecting 

different subsets of our calibration dataset.  Nevertheless, Fig. 10 does not show a 

uniform pattern across Africa, with clearly higher standard deviations in some 

regions.   
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A comparison of the maps in Fig. 10 with Fig. 2 and an analysis of mean standard 

deviations of LSS at the country level demonstrates that regions having larger 

uncertainties are not  corresponding to regions and countries with lower landslide 

densities in the dataset. The patterns of standard deviations are more closely linked 

to the considered environmental variables (Fig. 4). Uncertainties are larger in areas 

with high PGA and P and in places where siliciclastic sedimentary rocks are present 

and unconsolidated sediments are absent. The topographical factors show a more 

complicated pattern. Uncertainties are smaller in areas with low and high SMA and 

MLR and they are larger in areas with intermediate SMA and MLR. Hence, these 

uncertainties are not directly proportional to LSS. However, because of their relation 

to the different variables, uncertainties are generally small for the most and least 

susceptible areas and (although still very low) higher for areas having a moderate 

LSS. The latter areas are typically characterized by a combination of high PGA, high 

P or the presence of siliciclastic sedimentary rocks and low to intermediate maximum 

slopes (ca. 5-25%). Examples of such areas can be found along the coast of Sierra 

Leone and Liberia (very high P and low to intermediate SMA) or in Gabon and north-

west Ethiopia (high PGA and intermediate SMA). These observations are in line with 

the results and discussion above: topography is the dominant factor and in case of 

high or low topography, model uncertainty is very low. Only for areas of intermediate 

relief, the interplay with other variables affects the resulting LSS and we observe that 

these variables are positively correlated with model uncertainty. This further indicates 

that the role of these other (non-topographic) variables is relatively harder to 

constrain. This is possibly because these factors can affect landslide occurrence in 

many ways and because their interactions can be complex. However, also the coarse 

resolution of available precipitation, seismicity and lithology data that was used 

(Table 1) and their associated uncertainties, likely play an important role here.  
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Fig. 9. ROC curves for 6 randomly selected validation datasets from the Monte Carlo 

simulations (3 for both LSS models), with ROC values ranging between 0.97 and 0.98. 
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Fig. 10. Standard deviation of landslide susceptibility for the model with all landslide types (A) 

and for the model excluding rockfalls (B), based on 101 simulations.
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3.2.3. Potential biases linked to climate and human impacts 

The African continent spans a wide variety of climates, certainly in terms of 

precipitation variability (Peel et al., 2007). Most landslide inventories are compiled at 

a local to regional scale (Guzzetti et al., 2012) and thus within one climate type. As a 

result, little attention has hitherto been drawn to the landslide sample bias resulting 

from climatic differences. Also, our Monte Carlo simulation approach discussed 

above does not allow to fully take this aspect into account, as the sampling of 

subsets remains constrained to our dataset of detected landslides. 

 

In Fig. 11 we propose a conceptual model illustrating this potential bias. Vegetation 

regrowth and other geomorphic process rates (e.g. soil erosion and sediment 

deposition) can vary between different climates, therefore spectral signatures of 

landslides can accordingly last longer or shorter. Where vegetation grows rapidly and 

other geomorphic process rates are high, i.e. in humid tropical areas, the landslide 

scars can be obliterated in a matter of months or seasons. This is especially the case 

for small and shallow landslides. In densely populated areas, soil tillage and land 

levelling can accelerate this process. As a result, many smaller landslides in (sub-

)humid and densely populated regions likely remain undetected. On the other hand, 

landslides in (semi-)arid regions can remain ‘fossilized’ in the landscape during 

centuries to millennia.  Hence, one can expect that for an equal size, many landslides 

in dry regions (desert and steppe) are on average older than those observed in the 

wet tropics. Assuming that our landslide inventory reflects the occurrence of 

landslides over periods of decades to centuries, smaller landslides in (semi-)arid 

regions will be likely overrepresented. Moreover, it may well be that the 
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environmental conditions that triggered landslides, observed today in arid regions, 

may differ from the current conditions. 

 

These differences in relative landslide representation in inventories may lead to 

biases in LSS that remain difficult to quantify. However, to explore the magnitude of 

this effect, we calibrated an additional LSS model that excluded all landslides 

mapped in arid regions (equation 4, Fig. 12) and compared this model with our 

proposed LSS models (Fig. 6 and Fig. 7).  
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Fig. 11. Conceptual model, illustrating the effect of landslide size, climate and land use on the 

relative representation of landslides in a landslide inventory (based on field observations or on 

the analysis of remote sensing images) at the continental scale. Relative landslide 

representation indicates the ratio between the number of observed landslides in the inventory 

and the number of landslides that occurred over the past decades to centuries. (1) In arid to 

semi-arid regions, (especially smaller) landslides are likely over-represented because 

landslides that occurred over the course of millennia are likely to remain well preserved. (2) In 

humid and sub-humid regions, the number of smaller landslides is typically underrepresented 

as landslide scars are rapidly overgrown by vegetation and as other geomorphic processes 

(erosion and sediment deposition) may rapidly modify their morphology. (3) In densely 

populated areas, the underrepresentation of smaller landslides is further enhanced by human 

interventions (e.g. soil tillage and land levelling). (4) However, even in humid and densely 

populated areas, the largest landslides typically remain detectable over a long period and are 

therefore most likely slightly overrepresented compared to their occurrence during the past 

decades to centuries. 
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Excluding the arid climates resulted in a removal of 1870 landslides from the dataset 

of 7641 landslides used to calibrate the LSS model based on all landslide types 

(section 3.2.1). Logistic regression analyses resulted in the following LSS model 

(equation 4): 

 

𝒑(𝒚 = 𝟏) =  
𝟏

𝟏+𝒆−(−𝟓.𝟗𝟗+𝟎.𝟏𝟑∗𝑺𝑴𝑨+𝟎.𝟎𝟎𝟑𝟒∗𝑴𝑳𝑹 +𝟎.𝟗𝟕∗𝑷𝑮𝑨+𝟐.𝟓𝟖∗𝑺𝑺+𝟎.𝟎𝟎𝟎𝟕∗𝑷+𝟎.𝟗𝟕∗𝑽𝑶𝑳𝑪)
   equation 4 

 

The environmental variables taken into account in this model are the same as those 

for the model excluding rockfalls, with the addition of the lithology class of volcanic 

rocks as a significant positive predictor variable. Also, the model coefficients for the 

topographic variables, the main predictors of LSS, are very similar. Consequently, the 

resulting LSS map excluding arid climates (Fig. 12), shows a very similar pattern to 

the presented LSS in Fig. 6 and especially Fig. 7. AUC values of the constructed 

ROC curves for the calibration data outside arid regions and for the excluded data 

inside those regions are 0.97 and 0.98, respectively. This indicates that the model 

performance remains very high, even for the arid regions that were excluded from the 

calibration. This is in line with what can be expected as topography is by far the main 

predictor of landslides at the continental scale in Africa.  

 

Overall, these analyses show that the exclusion of arid climates, has a limited effect 

on the LSS pattern, mainly due to the overriding effect of topography. The main 

difference however, is that precipitation becomes a significant factor when arid 

regions are excluded. The same was the case when known rockfalls were excluded 

(equation 3; Fig. 7). Most of these rockfalls were indeed mapped in the Sahara 
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Desert.  This seems to support the idea that landslides in arid regions are linked to 

environmental conditions that prevailed in the past and indeed points to the 

suggested age bias due to climatic differences (Fig. 11). However, it is also possible 

that the environmental conditions explaining the occurrence of recent landslides differ 

for arid and non-arid regions and that the dominant types of currently triggered 

landslides are different in both regions. Based on our observations, we believe that 

both hypotheses are true; (1) landslides currently observed in arid climates are on 

average older than landslides currently observed in humid climates and (2) 

landslides, likely dominantly of different types (e.g. rockfalls, flow-type landslides), 

are also currently triggered in dry climates (e.g. Dinis et al., 2013). As a result, it 

remains impossible to fully quantify the effect of potential biases in landslide 

representation (Fig. 11) on the resulting LSS at continental scale. We therefore 

recommend, as a scope for further research, to further explore and quantify these 

potential representation biases, e.g. by confronting inventories of mapped landslides 

with information on landslide rates for study areas in contrasting climatic zones. Such 

analyses may further our understanding of LSS patterns at large scale and especially 

improve hazard and risk assessment in Africa. 
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Fig. 12. Classified landslide susceptibility map excluding arid climates (equation 4). 

 

3.2.4. Comparison with other studies on landslide susceptibility 

Overall, these results are in accordance with the continental LSS study for Europe of 

Van Den Eeckhaut et al. (2012), which also indicates that topographical variables are 

by far the most important control on the occurrence of landslides. Like us, they also 

included 10 other variables (lithology, geology, soil and land cover classes) in their 

model to differentiate LSS within areas having similar topographical characteristics. 

However, they did not include variables relating to seismicity and precipitation, which 
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were both found to be significant for predicting LSS in Africa. While precipitation and 

seismicity can be considered as triggering factors of landslides (and are therefore at 

first sight more appropriate for landslide hazard analyses), they were included in our 

models because previous research clearly shows that they can also have an 

important impact on LSS. Both seismicity and precipitation can also weaken 

substrates and decrease soil stability (by shaking, weathering and saturation), 

resulting in an increased susceptibility to landsliding as well as larger landslide 

responses during subsequent triggering events (e.g. Broeckx et al., 2016; Chang et 

al., 2007; Chuang et al., 2009; Hovius et al., 2011; Molnar et al., 2007; Nowicki et al., 

2014; Steger et al., 2016; Vanmaercke et al., 2017). 

 

While we present the first LSS maps specifically focussing on Africa, our landslide 

maps can also be compared with the landslide susceptibility of Africa as presented in 

global LSS maps. Stanley & Kirschbaum (2017), Hong et al. (2007) and Nadim et al. 

(2006) produced such global landslide hazard and landslide susceptibility models. 

Their maps are not calibrated with actual landslide data, but are expert-based and 

provide less detail in terms of spatial resolution. Nevertheless, the general patterns of 

LSS in these maps correspond well to our models. The few regions showing 

moderate landslide hazard in Nadim et al. (2006) match with the highly susceptible 

regions around Mount Cameroon, the Ethiopian Highlands and further south along 

the East-African rift in our models. In the model of Hong et al. (2007) additional 

susceptible regions can be observed in Morocco, west Angola, east South-Africa 

(Lesotho), Madagascar and even the Hoggar and Tibesti Mountains in the central 

Sahara. This model, although very roughly, corresponds to our LSS models for most 

of the continent. The most recent model (Stanley & Kirschbaum, 2017) is also the 
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one that shows spatial patterns of LSS similar to our susceptibility models (Fig. 6 and 

Fig. 7) As discussed above, this is mainly due to the dominant effect of topography 

on LSS.  

 

The results of our LSS maps also allow to evaluate the landslide data availability of 

African countries in relation to the country’s LSS (Fig. 13). It can be observed that 

highly susceptible countries in general also have a relatively large number of mapped 

landslides in our dataset (green circles). Exceptions are Liberia, Sierra Leone and 

Guinea in West-Africa, Gabon and Equatorial Guinea at the west coast of Central-

Africa, Zimbabwe and a number of Islands (e.g. Sao Tome and Principe, Mauritius). 

For these (mostly tropical) countries the quality of the Google Earth satellite imagery 

is often insufficient to map landslides (e.g. due to cloud cover). Likewise, our 

literature review revealed no studies reporting landslide data for these countries. 

When considering the number of landslide studies (white circles), Fig. 13 shows that 

countries along the East-African Rift region, North-Africa, Cameroon and South Africa 

are relatively well represented. However, there is a substantial share of African 

countries that are prone to landsliding with few to no landslide-mapping studies 

available. These under-researched countries include all countries listed above (e.g. 

Liberia, Gabon, Zimbabwe) and several smaller countries (e.g. Lesotho, Swaziland, 

Djibouti, Cabo Verde). However, also for several larger countries where landslides 

were mapped in Google Earth, relatively few landslide studies are currently available 

(e.g. Madagascar, Eritrea, DR Congo). Given their high susceptibility to landsliding, 

our results underline the need for landslide research in these countries.  
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Fig. 13: Overview by country of the number of landslides in the calibration dataset, the number 

of landslide studies from our literature review and the mean landslide susceptibility. Numbers 

indicate the areal percentage of the country with moderate to very high landslide susceptibility.  

 

3.2.5. Landslide susceptibility in Africa: scope for further research 

Spatial patterns of LSS at the continental scale are dominantly determined by 

topography. However, also other factors (e.g. precipitation, lithology, seismicity) play 

a significant role. Their effect remains more difficult to constrain in continental-scale 

models. This may be due to the complex role they may play, but especially also 

because of the relatively crude nature of the data sources at continental scale and 
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their associated uncertainties. Hence, there is a need for better quality (and 

resolution) data on environmental variables in Africa at continental scale, to better 

assess their importance for LSS. Likewise, such data are needed for landslide hazard 

and risk assessments. 

 

Improved data on potential controlling factors will also allow to better assess the 

many potential interactions between these factors that may affect landslide 

occurrence. Improved understanding and quantitation of these interactions will not 

only benefit LSS assessments at the continental scale, but also landslide hazard and 

risk assessments. Such interactions include the interplay between lithology, 

seismicity and geology that are often complex but may strongly affect the occurrence 

of landslides (e.g. Clarke and Burbank, 2010; Vanmaercke et al., 2017). However, 

also interactions between climate, vegetation and soil moisture are likely important. 

For instance, during exploratory analyses, we found a significantly negative 

correlation between mean annual air temperature and landslide occurrence, even 

after considering the effect of topography, seismicity, precipitation and lithology. It 

remains unclear to what extent this is a spurious correlation or not. Given that air 

temperature is generally not considered as a factor controlling LSS (Pourghasemi & 

Rossi, 2017; Reichenbach et al., 2018), we did not further consider this effect. 

However, we advise future researchers to further explore this effect. One potential 

hypothesis is that differences in mean air temperature at the continental scale might 

affect the water balance resulting in a significant indirect effect of air temperature on 

LSS. Comparing patterns of landsliding with modelled components of the water 

balance and data on soil moisture may help to clarify this. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Our data compilation and analyses further show that the available landslide 

inventories remain limited for Africa. At the country level, landslide densities of the 

compiled dataset correspond well to the mean LSS in these countries (Fig. 13) and 

the uncertainty on LSS is not larger in areas with smaller landslide densities. 

However, some countries prone to landsliding are clearly underrepresented in terms 

of landslide research. These include: Guinea, Sierra Leone, Liberia, Equatorial 

Guinea, Gabon, Eritrea, Djibouti, DR Congo, Burundi, Tanzania Zimbabwe, 

Swaziland, Lesotho, Madagascar, Cabo Verde, Sao Tome and Principe, the 

Seychelles and Mauritius. Based on our uncertainty analyses, we also recommend 

that future landslide mapping efforts focus on areas of intermediate topography to 

further constrain the LSS of these areas in relation to other environmental factors 

(e.g. lithology, seismicity, precipitation). Furthermore, there is an important need for 

inventories including the (approximative) age of landslides. This is not only necessary 

to better assess and avoid potential climatic biases in landslide susceptibility 

assessments (Fig. 11), but also crucial for landslide hazard and risk assessments 

across Africa.   

 

3.3. Relation between landslide susceptibility and catchment sediment yield 

In this section we present an application of our LSS map, apart from its primary use 

as a basis for natural hazard assessment or risk management. The compilation of 

landslide data and resulting LSS maps in combination with a compilation of sediment 

yield (SY) for 500 catchments in Africa by Vanmaercke et al. (2014), provides a 

unique opportunity to explore the importance of landslides for SY at continental 

scale, as done by previous studies at smaller scales (e.g. Broeckx et al., 2016; 

Delmas et al., 2009; de Vente et al., 2006; Vanmaercke et al., 2017). More 
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specifically, LSS has proven to be a significant predictor of SY at the regional scale, 

suggesting the importance of landslides to explain spatial patterns in SY (Broeckx et 

al., 2016).  

 

Fig. 14 shows the relation between LSS and SY for Africa, for 500 catchments 

compiled by Vanmaercke et al. (2014). SY and also LSS tend to be smaller for larger 

catchments. A highly significant positive relation exists between LSS and SY and the 

relation further improves when only larger catchments are considered (Spearman R² 

of 0.26 and 0.34 for catchments larger than 100 km² and 1000 km², respectively). 

Even when considering all catchments, LSS explains as much of the variance (R²: 

0.15) as the best predictors for SY in Africa, i.e. PGA, MLR and tree cover. However, 

LSS as a single predictor for SY scores rather poorly compared to an integrated 

model constructed by Vanmaercke et al. (2014), explaining 40% of the variance. 

Nonetheless, a visual comparison of the modeled SY pattern for Africa shows an 

overall correspondence with our LSS maps (Fig. 6 and Fig. 7).  

 

The significant positive relationship and the corresponding spatial patterns between 

LSS and SY suggest that landslides contribute significantly to SY in Africa. This 

strong relationship is certainly remarkable taking into account the errors on the 

measured SY data and the rough approach of using LSS as an approximation of 

actual landslide rates contributing to SY. On the other hand, spatial autocorrelation 

exists between landsliding and other erosion processes, like sheet and rill erosion 

and gully erosion, as could also be observed while mapping landslides in Google 

Earth. In this respect, despite the high incidence of landslides in a number of regions 

across Africa, it is still uncertain if landsliding is a dominant process determining the 
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variation of SY in Africa at the continental scale. This is what might be expected for a 

large continent with vast areas of relatively low relief. It is also in line with the limited 

spatial extent (10%) of the area moderately to very highly susceptible to landsliding, 

as predicted by our models. Further integrated research, compiling quantitative data 

on the different erosion processes is required to assess their relative importance as 

geomorphologic drivers at the continental scale for Africa. 
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Fig. 14. Mean catchment landslide susceptibility (LSS) predicted by the LSS model excluding 

rockfalls versus sediment yield (SY) for 500 catchments in Africa, compiled by Vanmaercke et 

al. (2014). 

 

4. Conclusions 

In this study a first continent-wide landslide susceptibility assessment for Africa was 

made, based on a landslide dataset representing the entire continent. Two separate 

models were constructed, one including all landslide types and one excluding 
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rockfalls that were mapped in Google Earth. Overall, both models show a very similar 

susceptibility pattern, largely determined by topography as the main predictor for 

landslide occurrence in both models. The other significant variables, i.e. seismicity, 

lithology and for the model excluding rockfalls also precipitation, have only a 

modifying effect on the overall pattern. Nevertheless, at regional scale landslide 

susceptibility can be easily underestimated by a factor 5, if these variables are not 

taken into account. Both models explain about 80% of the variance in landslide 

occurrence and successfully distinguish between landslide and non-landslide 

locations. Based on these models, about 10% of the African continent was assigned 

a moderate to very high landslide susceptibility. This area included 97-99% of all 

mapped landslides. Uncertainties on the LSS models are directly related to the 

predictor variables. We find the highest uncertainties for intermediate topography and 

areas with high precipitation and seismicity and the occurrence of siliciclastic 

sedimentary rocks. This points to the need for higher resolution data on these 

variables at the continental scale as well as the need for additional mapping efforts in 

such areas.  

 

Landslide susceptibility was tested as a predictor for SY. The significant positive 

relation suggests that landslides contribute to an increased SY in Africa. However, 

the relatively low explanatory power of LSS suggests that landsliding is unlikely to be 

the single main driver of sediment production at the continental scale in Africa.  

 

The extensive dataset compiled and published in this study can be further refined 

and applied in other studies for different purposes. For instance, our understanding of 

landslide occurrence can likely be further improved by considering more detailed 
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spatial and temporal data on precipitation, soil moisture, temperature, seismicity and 

lithology and by studying their potential interactions. However, a key limitation here is 

the unknown age of most landslides. Better constraining the age (and type) of known 

landslides is a central issue that is needed to assess and avoid potential biases in 

continental scale models (e.g. as a result of climatic differences, Fig. 11), but also to 

advance towards landslide hazard and risk assessments. In addition, particular 

attention is drawn to countries that we assessed to be prone to landsliding, but 

lacking landslide research. (e.g.: Sierra Leone, Equatorial Guinea, Eritrea, Swaziland, 

Madagascar; Fig. 13). These countries very likely have several landslide-prone areas 

with currently little or no research available. 
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Appendices 

Appendix A. Supplementary data 

Supplementary data to this article (i.e. all landslide locations) can be found online at 

[insert link] 

Appendix B. landslide susceptibility map for all landslide types 

The landslide susceptibility map for all landslide types can be found online at [insert 

link] 

Appendix C. landslide susceptibility map excluding rockfalls 

The landslide susceptibility map excluding rockfalls can be found online at [insert link] 
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