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ABSTRACT The prediction of next location for users in location-based social networks has become an 
increasing significant requirement since it can benefit both users and business. However, existing methods 
lack an integrated analysis of sequence context, input contexts and user preferences in a unified way, and 
result in an unsatisfactory prediction. Moreover, the interaction between different kinds of input contexts has 
not been investigated. In this paper, we propose a multi-context integrated deep neural network model (MCI-
DNN) to improve the accuracy of the next location prediction. In this model, we integrate sequence context, 
input contexts and user preferences into a cohesive framework. Firstly, we model sequence context and 
interaction of different kinds of input contexts jointly by extending the recurrent neural network to capture 
the semantic pattern of user behaviors from check-in records. After that, we design a feedforward neural 
network to capture high-level user preferences from check-in data and incorporate that into MCI-DNN. To 
deal with different kinds of input contexts in the form of multi-field categorical, we adopt embedding 
representation technology to automatically learn dense feature representations of input contexts. 
Experimental results on two typical real-world datasets show that the proposed model outperforms the current 
state-of-the-art approaches by about 57.12% for Foursquare and 76.4% for Gowalla on average regarding F1-
score@5.  

INDEX TERMS Location-based social networks, Next location prediction, Deep neural network, 
Sequence prediction, Multi-context 

I. INTRODUCTION 
With the rapid development of wireless communication 
technologies and the popularization of mobile devices, the 
emergence of location-based social networks (LBSNs), e.g., 
Foursquare, Gowalla, and Yelp, has bridged the gap between 
cyberspace and the physical world. In LBSNs, users can post 
their physical locations in the form of “check-ins”. They can 
also share their life experiences in the physical world, resulting 
in new opportunities to extract further insights into user 
preferences and behaviors [1]. Predicting location in LBSNs 
accurately is crucial for helping users find interesting places 
and services [2], for contributing to the connection of next hop 
in high-speed Internet of Things (IoT) [3] and for facilitating 
business owners to launch mobile advertisements to target 
users [4]. To gain significant benefit for both users and 
business, the prediction of next locations for users has recently 
attracted much academic attention [5], [6]. 

Predicting the next location is not just confined to 
estimating user preferences, which a general location 
prediction focuses on [7], [8]. It also includes the modeling of 
sequence transition from check-ins to predict user's future 
location. This is relevant because human movement exhibits 
strong sequence dependency [9], [10]. Current studies on the 
modeling sequence pattern are mainly based on first-order 
Markov Chain (MC) model such as Hidden Markov Model 
(HMM) [5], and Factorizing Personalized Markov Chain 
Model (FPMC) [9]. However, those methods are used to 
predict the possibility of visiting location based only on the 
latest check-in due to the higher computational complexity, 
and the influences of short-term and long-term sequence 
context (i.e., a set of locations visited before) have been 
ignored. Recently, deep neural networks have proved to be 
useful in modeling those sequence contexts in next location 
prediction. For example, by an analogous user's check-in 
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trajectory to a sentence, Liu et al. [10] and Zhao et al. [11] 
employed the word2vec framework to learn the hidden 
representation of locations by capturing the influence of short-
term sequence context. Liu et al. [13] and Yang et al. [14] 
leverage recurrent neural network (RNN) to capture the 
influence of long-term sequence context on next location 
decision. Cui et al. [15] propose a Hierarchical Contextual 
Attention-based GRU (HCA-GRU) network to capture long-
term dependency and short-term interest. Their results show 
better performance in predicting precision than MC-based 
approaches.  

The deep neural network has become a promising method 
in modeling complex sequence context. However, these 
methods still have some limitations. Firstly, multiple types of 
input contexts (e.g., time, traffic and weather condition) which 
generated from LBSNs have not been adequately considered 
to avoid the high computation cost. Those contexts have been 
demonstrated to be crucial for the accuracy improvement in 
predicting next locations for users [8]. Secondly, the 
interaction between different kinds of input context and its 
influence on users’ check-in behaviors has been neglected in 
previous works. For instance, a user goes to cinema depending 
on the interaction of the time, geographic distance, and 
weather conditions. Thirdly, user preferences which have 
priority contribute to the prediction of next location, have not 
been well considered in those models. User preferences 
change with time; it is naturally determined by the locations 
that user visited. Current researches have proved that users are 
likely to have different travel schedules if they have different 
preferences even when the sequence trajectories and the input 
contexts are similar [16]. For instance, it is suitable to 
recommend the theatre for cinephiles, and the gym for sports 
fans after dinner. 

Recently, a few studies focus on capturing the influence of 
different kinds of input contexts and sequence context in a 
unified manner on the prediction accuracy of next location for 
users. In [10]–[12], [14], [17], sequence context and input 
contexts were first modeled separately, and then combined by 
adopting an aggregation function. This method lacks a 
comprehensive analysis of their joint effects in a unified way. 
Although other studies [13], [18] incorporate input contexts 
into RNN by using adaptive context-specific projection 
matrices to model sequence context and input contexts 
simultaneously, these models were designed for a particular 
type of input context, and it is difficult to generalize them to 
cope with different kinds of input contexts. Moreover, the 
interaction of different kinds of input contexts has not been 
adequately investigated in the previous works. 

In this paper, a novel prediction model has been established 
to improve the prediction performance of user's next location, 
called Multi-Context Integrated Deep Neural Network Model 
(MCI-DNN). This model is a natural extension of the deep 
neural network, which models sequence context, different 
kinds of input contexts, and user preferences in a unified 
framework. MCI-DNN capture semantic pattern of user 
behaviors from check-in data by modeling sequence context 
and interaction of different kinds of input contexts jointly 

using RNN. Subsequently, a feedforward neural network 
(FNN) is constructed to learn users' high-level preferences 
from the locations that user interacts with and then incorporate 
into MCI-DNN. To deal with different kinds of input contexts, 
embedding representation technique was adopted to 
automatically learn an expressive feature representation of 
these input contexts [19]. Compared with the traditional one-
hot representation, it is less vulnerable to the data sparsity 
problem. Note that although our model is simple, it is more 
flexible and capable of capturing the joint influence of 
multiple context factors. It also generates a high-quality 
prediction. 

The main contributions of this paper are summarized as 
follows: (1) To the best of our knowledge, it is the first time 
that the interaction between different kinds of input contexts 
was investigated to make accurate location prediction. (2) We 
integrate sequence context, different kinds of input contexts, 
and user preferences into a cohesive framework to improve the 
quality and capability for predicting the next location. (3) The 
proposed model is flexible and can incorporate other kinds of 
input contexts to make a prediction economically. 

The remainder of this paper is organized as follows: Section 
2 reviews the related works; Section 3 highlights our MCI-
DNN model; Section 4 details the experimental configuration; 
and Section 5 depicts the experimental results and discussion, 
followed by the conclusion in Section 6. 

II. RELATED WORK 
Classical location prediction methods are based on users’ 
check-in records and auxiliary information, such as location 
categories and users’ social relationships, to predict where a 
user most likely checks-in in the future. Previous works [20]–
[23] focused  on the memory-based or model-based 
Collaborative Filtering (CF) to make location prediction. By 
regarding time as another dimension, Tensor Factorization 
(TF) based approaches were proposed to make location 
prediction by learning latent factors of users, items, and time 
bins [24]. Recently, some other works have taken different 
kinds of contexts into account to improve location prediction 
accuracy. For example, Liu et al. [8] proposed a geographical 
probabilistic factor model by taking geographical influences 
and user mobility into account. Ren et al. [25] proposed a 
context-aware probabilistic matrix factorization by exploiting 
textual information, geographical information, social 
information, categorical information, and popularity 
information. Zhou et al. [16] proposed a multi-context 
trajectory embedding model to systematically explore 
contexts. 

Compared with the task of general location prediction in 
which the “check-in” data were considered as a whole, and 
their temporal relation was neglected, the essential difference 
in the prediction of next location is that the strong sequence 
dependency largely influences the performance. Chen et al. [9] 
first explored the dynamics of location and check-ins and 
proposed a personalized Markov chain model for the 
successive personalized location recommendation. By 
considering all visited locations in the check-in history of a 
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user, the spatial-temporal sequence influence was exploited in 
[10] and [26]. However, these methods directly model 
transition probability of the observed check-in data, and fail to 
estimate the transition probability of the unobserved data. In 
addition, a metric embedding algorithm was used to compute 
the location transition by projecting each location into one 
object in a low-dimensional Euclidean latent space [6], [17]. 
Other works [5], [27] investigate the transition pattern of 
location categories to improve location prediction accuracy. 
These studies exploit sequence influences which are confined 
to first-order transitions due to data sparsity and computational 
complexity [10]. They cannot consider the effects of long 
sequence influences. 

Prediction of users’ next locations relies not only on the 
latest visited location but also on the earlier visited locations 
[11]. Hence, some current works [11], [12], [28] explored the 
influences of the location's context based on the word2vec 
framework by treating each location as a word and each user's 
visited locations as a sentence. Recently, with the successful 
application of deep learning on image retrieval [29], text 
generation [30], click prediction [10] and recommendation 
[31], some studies investigated the long-term sequence 
context influence using RNN within a whole check-in 
sequence. For example, Yang et al. [14] employed the RNN 
and GRU (Gated Recurrent Unit) models to capture the 
sequence relatedness in mobile trajectories at short-term or 
long-term. Liu et al.[32] also employed LBL (Log-Bilinear) 
and RNN to model short-term and long-term sequence context 
respectively, and then combined them into a linear model. 

In the last five years, there were a few studies that hade 
incorporated context information into the sequence model to 
improve the performance of next location prediction [28]. For 
example, Zhao et al. [12] incorporated temporal contexts into 
a word2vect framework to learn location representation under 
some particular temporal state. The study [14] also 
incorporated social influence, location' context and long-term 
sequence dependence into a unified framework to improve the 
performance of next location prediction. Recently, Liu et al. 
[13] propose a Spatial-Temporal Recurrent Neural Networks 
(ST-RNN) by modeling local temporal and spatial contexts in 
each hidden layer with time-specific transition matrices and 
distance-specific transition matrices. However, these efforts 
towards each type of context are ad-hoc, and they limit their 
capacity in dealing with other kinds of contexts. Another work 
proposed by Liu et al. [18] adopted adaptive context-specific 
transition matrices to capture the external situation where user 
behaviors occurred. This approach is different from the 
conventional RNN which uses constant input and transition 
matrix. However, it is difficult to learn numerous parameters 
sufficiently due to the sparsity of check-in data. Besides, the 
previous studies have revealed that the interaction of different 
kinds of contexts has not been investigated. 

III.  MULTI-CONTEXT INTEGRATED MODEL 
In this section, we first formulate the problem of next location 
prediction and then present our proposed MCI-DNN model. 

A.  PROBLEM DEFINITION 
Definition 1 (Check-in point). A check-in point is an action 
conducted by a user under the specified context. For each user 
ݑ , the check-in point can be denoted as a three-tuple ൏
݈, ܿ, ݐ ൐ , where a representative user ݑ  conducts check-in 
action on location ݈ under the context ܿ at timestamp ݐ; ݈ is the 
location ID or coordinate; and ܿ  is multiple-tuple ൏
ܿଵ, ܿଶ, … , ܿ|௖| ൐ such as spatial, temporal and traffic condition. 
Definition 2 (Check-in sequence). A check-in sequence is a 
set of check-in points with chronological order in the light of 
timestamp. The check-in sequence of a user ݑ  before time 
denoted as ܵ௨݇ݐ ൌ ሼሺ݈ଵ, ܿଵ, ,ଵሻݐ ሺ݈ଶ, ܿଶ, ,ଶሻݐ … , ሺ݈௞, ܿ௞, ,௞ሻሽݐ  ݇ 
is time index. 

Formally, let ܷ ൌ ൛ݑଵ, ,ଶݑ … , ௎|ൟ|ݑ  be a set of users and 
ܮ ൌ ሼ݈ଵ, ݈ଶ, … , ݈|௅|ሽ be a set of locations, where |ܷ|  and |ܮ| 
denote the total number of unique users and locations 
respectively. For each user ݑ, given a trajectory sequence ܵ௨ 
before time ݐ௞, input contexts ܿ௞ାଵ at the next timestamp ݐ௞ାଵ, 
the task of next location prediction is to recommend top-N 
locations to the user u for his next move. 

TABLE 1. Key Mathematical Notations. 
Variable Interpretation 

ܷ,  The set of users and locations ܮ

ܵ௨ The check-in sequence of user ݑ 

 ௜ Embedding matrix for i-th type of input contextܧ

ܿ௜,௞ 
The one-hot representation vector of i-th input context in k-
th type 

 ܹ,ܯ
Projection matrices for current input and last hidden layer in 
RNN 

ܳ Projection matrix for the previous layer in FNN 

ܸ Projection Matrix for the prediction layer 

݄௧ Hidden state vector at time ݐ in RNN 

݃ௗ Represent output vector of d-th layer in FNN  

ܴܰ ௧ܰ Unit of Recurrent Neural Network (RNN) at time ݐ 
 Unit of feedforward neural work (FNN) ܰܰܨ

Fig.1. Architecture of the proposed Model. 
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B.  MODEL DESCRIPTION 
The key mathematical notations used in this study are shown 
in Table 1. Fig.1 shows the architecture of the MCI-DNN 
model. The arrows in Fig.1 represent data flows, c௝

௧ represent 
j-th input context encoded by one-hot representation. In our 
model, we first capture the semantic pattern of users from 
sequence context using RNN. Different kinds of input contexts 
are incorporated into RNN by embedding technique. 
Subsequently, FNN was used to capture users' high-level 
preferences based on the learned location latent representation 
from RNN and incorporated them into MCI-DNN using 
pooling operation to make the final prediction. The model is 
proposed and described in the following.  

1)  THE RNN MODEL FOR CONTEXT 
Input contexts collected from LBSNs generally consist of 
multiple fields of categorical data such as location information 
(e.g., location ID and category ID) and temporal information 
(e.g., hour of the day, day of the week, and week of the month). 
In contrast to previous works [13], [18] that directly 
incorporate different kinds of input context into RNN by 
means of adaptive context-specific matrices, we embedded 
them into a dense low-dimension latent space by way of 
embedding representation. The entire contexts were first 
represented as a multi-field categorical feature vector by one-
hot encoding. For example, weekday='Tuesday', the one-hot 
encoding can be described as [0, 1, 0, 0, 0, 0, 0]. Then, for the 
input feature vector ܿ௜,௞ of the ݅-th input context in k-th types, 
the embedding representation ݁௜  is the output of the 
embedding layer: 

݁௜ ൌ ܿ௜,௞ܧ௞  (1) 

௞ܧ   is embedded matrix of k-th type of input context in 
embedding layer which can be learned during training. We 
merged the embedding vector through vector concatenation 
instead of element-wise product because the latter could not 
capture non-linear interactions between different kinds of 
input contexts [19]. Besides, the element-wise product 
requires the embedding in the same size space. Then, the value 
of the hidden state ݄௧ at time ݐ can be computed as: 

݄௧ ൌ ,ሾ݁ଵܯሺߩ ݁ଶ, … , ݁௄ሿ ൅ܹ݄௧ିଵሻ (2) 

where ܭ is the number of different input contexts,	ߩሺ⋅ሻ was a 
non-linear activation function, such as tanh, ReLU and 
sigmoid. In this study, we chose tanh as the activation function: 

ሻݔሺߩ ൌ
݁௫ െ ݁ି௫

݁௫ ൅ ݁ି௫
 (3) 

Additionally, the information transition from the previously 
hidden state is mainly determined by transition contexts 
between adjacent behaviors, such as time interval and 
geographical distance (which is a special input context). In this 
study, only time transition context was considered for 
simplification purposes, but our method can easily extend to 
other contexts. Instead of using continuous values of the time 
interval, we partitioned all the possible time intervals between 
two behaviors into discrete bins and then discretized them into 
the floor of the corresponding bin. Finally, the time-specific 

transition matrix was utilized. Then, equation (2) could be 
rewritten as: 

݄௧ ൌ ,ሾ݁ଵܯሺߩ ݁ଶ, … , ݁௄ሿ ൅ ௖ܹ೟షభ݄௧ିଵሻ (4) 

where ௖ܹ೟షభ is projection matrix for ݄௧ିଵ  under transition 
context ܿ௧ିଵ. 

The basic RNN model assumes that the temporal 
dependency changes monotonously along with positions in a 
sequence by only modeling one element in each hidden layer. 
Such an assumption is reasonable in modeling words in a 
sentence or frames in a video, as adjacent words or frames 
have significant correlation [18]. However, it is unsuitable for 
modeling the complex human mobility in a real situation 
because users usually complete successive check-in numerous 
of locations in a short time [3, 8]. Hence, previous check-in 
behaviors usually have a strong impact on the current and 
future decision [18]. To model such short-term sequence 
contexts, we further extend RNN to model multiple elements 
in each hidden layer to capture location relatedness context, as 
is shown in Fig.1. Finally, the equation (4) could be rewritten 
as: 

݄௧ ൌ ,ሾ݁ଵܯሺ෍ߩ ݁ଶ, … , ݁௄ሿ ൅ ௖ܹ೟షభ݄௧ିଵ

௡ିଵ

௝ୀଵ

ሻ (5) 
 

where ݊ is the number of elements modeled in a sequence, 
which is also called slide window width. In particular, 
Equation (5) will be changed into basic RNN if and only if one 
input element was considered in each hidden layer (i.e., ݊ ൌ
1ሻ. 
2)  THE FNN MODEL FOR PREFERENCE 
Naturally, user preferences are determined by the locations he 
or she visited. Inspired by [17], [33], we built a feedforward 
neural network (FNN) to learn high-level latent preference 
automatically. For simplicity, all users shared the same size of 
neurons in the hidden layers, which also helped us identify the 
common check-in patterns of users. Given the ݀-1-th hidden 
layer ݃ௗିଵ, the state of ݀-th is updated as: 

݃ௗ ൌ  ሺܳௗ݃ௗିଵሻ (6)ߪ

where ܳ denotes projection matrix for the previous layer as 
input, σሺxሻ:ൌ 1 1 ൅ ݁ି௫⁄   is the logistic sigmoid function. 

We regarded each trajectory sequence as an ordered list of 
input elementsd ൌ ൫݁௟భ, ݁௟మ, … , ݁௟೟, … ൯, where ݁௟೟  is learned 
embedding vector of the location visited by user ݑ at time ݐ 
according to equation (1). Thus, the input vector ݃଴ could be 
represented by a weighted average of all visited elements in 
the sequence, computed as: 

݃଴ ൌ
∑ ݐሻ݈݁ݐሺݓ
|ݑܵ|
ൌ1ݐ

∑ ሻݐሺݓ
|ݑܵ|
ൌ1ݐ

 (7) 

where ݓሺݐሻ denotes the degree of user preferences on location 
݈௧, which can be any weighting function. We used TF-IDF as 
the weighting function.	|ܵ௨| denotes the length of check-in 
sequence. 
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C.  PARAMETER LEARNING 
The prediction of user ݑ visiting location ݈ at time ݐ ൅ 1 can 
be influenced by semantic pattern learned from check-in and 
users' personal preferences. Hence, the prediction function can 
be written as: 

௨,௟ݎ
௧ାଵ ൌ ݄௧⨁݃௨ܸ (8)

where ⨁ denote pooling operation. 
The neural network is usually trained by back propagation 

(BP) algorithm in natural language processing. In this study, 
only a small number of the visited locations were recorded in 
LBSNs. The density of the check-in data used for location 
prediction is approximate 0.1%. This value is largely sparse 
compared with a traditional recommendation task, such as 
movie recommendation. The unrecorded locations may be 
either negative feedback or unknown for users. Similar to [13], 
we trained our model by Bayesian analysis of Personalized 
Ranking (BPR) criteria [34] and Back Propagation Through 
Time (BPTT) algorithm to learn the parameters of the 
proposed model. 

The BPR algorithm is a matrix factorization method that 
uses pairwise ranking loss. The basic assumption of BPR is 
that a user prefers the selected items to unselected ones. This 
method has been used successfully for parameter estimation 
of RNN-based recommendation models [13]. In the BPR 
algorithm, given a visited location ݈  and sampled negative 
location ݈ᇱ,  the pairwise preference probability can be given 
as: 

ሺ݈݌ ൐ ݈ᇱ; ,ݑ ݐ ൅ 1|θሻ ൌ σሺݎ௨,௟
௧ାଵ െ ௨,௟ᇲݎ

௧ାଵሻ (9) 

where ߠ ൌ ሺܯ,ܧ,ܹ, ܸ, ܳሻ	 denotes all parameters to be 
learned. Then, incorporating the negative log-likelihood 
function, we have the final objective function: 

ࣤ ൌ െ෍ln	σሺݎ௨,௟
௧ାଵ െ ’௨,௟ݎ

௧ାଵሻ ൅
ߣ
2
 ଶ (10)‖ߠ‖

where ߣ is the regularization parameter to avoid overfitting. 
According to Equation (10), derivations of ࣤ with respect to 
the parameters ߠ can be calculated. 

Moreover, parameters in RNN can be further learned by 
using BPTT algorithm. According to Equation (5), given the 
derivation ࣤߜ ݄௧⁄ , the corresponding gradients of all 
parameters in the hidden layer can be calculated. Moreover, 
we adopted a dropout technique to avoid overfitting. In our 
work, we simply set a fixed drop ratio (50%) for each hidden 
unit. 

IV.  EXPERIMENTAL CONFIGURATION 
In this section, the experimental configuration, including 
datasets, evaluation methods, comparative approaches, and 
experimental setting is introduced. 

A.  DATA COLLECTIONS 
We took two publicly available large-scale check-in datasets 
from real-world LBSNs, Foursquare, and Gowalla to conduct 
our experiment.  

Foursquare data [35] included long-term (from 12 April 
2012 to 16 February 2013) check-ins in New York and Tokyo. 
New York and Tokyo are the most populous metropolitan 
areas in the world, and the most popular check-in cities in USA 
and Asia respectively in Foursquare. Therefore, it is valuable 
and representative for the study of human mobility. Taking 
into account the urban compositions, the cultural differences 
of the two cities, and user check-in behaviors that exhibit 
different patterns, we conducted our experiment on the two 
cities using their datasets (i.e., Foursquare-NYC and 
Foursquare-TKY). 

Gowalla data [36] consisted of check-ins in California and 
Nevada between February 2009 and October 2010. Since there 
is no significant cultural difference between these two adjacent 
areas, we conducted our experiment on the same dataset (i.e., 
Gowalla) without distinguishing cities. 

We picked up 5-month check-in data in two datasets to 
conduct our experiment. Each check-in is a three-tuple ൏
user, venue, time ൐ and each venue is associated with the 
latitude and longitude. For each dataset, we removed users 
who had check-ins fewer than 4 locations each month, and 
locations which had been visited by fewer than 10 users. After 
preprocessing, the Foursquare (NYC) dataset contains 
147,938 check-ins collected from 1083 users at 5135 locations, 
Foursquare (TKY) datasets contained 447,570 check-ins 
collected from 2293 users at 7873 locations, and Gowalla 
dataset contained 762,636 check-ins collected from 3374 users 
at 7208 locations. Basic statistics of the datasets are 
summarized in Table 2. 

B.  EVALUATION METHODS 
As there is no explicit rating for test dataset, we evaluated our 
model based on the ranking list of the predicted locations. We 
presented each user with a certain number (N) of locations 
sorted by the predicted score using equation (8). We computed 
the precision, recall, F1-score and NDCG based on  those 
locations which were visited by the user.  

Precision and recall [8]. Given a top-N predicted location 
list S௨,௧

ே,௣௥௘ sorted in descending order of the prediction values, 
precision and recall are defined as: 

Precision@N ൌ
1
|ܷ|

෍ ෍
ܵ௨,௧
ே,௣௥௘ ∩ ܵ௨,௧

௩௜௦௜௧௘ௗ

ܰ

௅೟೐ೞ೟

௧ୀଵ

|௎|

௨ୀଵ

(11) 

Recall@N ൌ
1
|ܷ|

෍ ෍
ܵ௨,௧
ே,௣௥௘ ∩ ܵ௨,௧

௩௜௦௜௧௘ௗ

ܵ௨,௧
௩௜௦௜௧௘ௗ

௅೟೐ೞ೟

௧ୀଵ

|௎|

௨ୀଵ

 (12) 

TABLE 2. Statistics of Two Datasets. 

Datasets City #Users #Venues #Check-ins
Avg. 

#Check-ins

Foursquare
NYC 1083 5135 147,938 137 
TKY 2293 7873 447,570 95 

Gowalla -- 3374 7208 762,636 226 
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where ܵ௨,௧
௩௜௦௜௧௘ௗ are the locations a user has visited in the test 

data, L୲ୣୱ୲ is the length of the test sequence of each user. Note 
that the precision and recall are computed by averaging all the 
precision and recall values of all the users respectively.  

F1-score [8]. An F1-score combines precision and recall. It 
is the harmonic mean of precision and recall. 

1ܨ െ ݁ݎ݋ܿݏ ൌ
2 ൈ ݊݋݅ݏ݅ܿ݁ݎܲ ൈ ܴ݈݈݁ܿܽ
݊݋݅ݏ݅ܿ݁ݎܲ ൅ ܴ݈݈݁ܿܽ

 (13)

NDCG@N is defined as:	NDCG ൌ ܰ@ܩܥܦ ⁄ܰ@ܩܥܦܫ , 
where DCG@N ൌ ∑ ሺ2݈݅݁ݎ െ 1ሻ 2ሺܑ൅૚ሻൗே݃݋݈

௜ୀଵ . IDCG@N is 
equal to the DCG@N  on condition that the recommended 
locations are ideally ranked, and ݈݅݁ݎ refers to the graded 
relevance of the result ranked at the position ݅ [37]. 

 C.  COMPARATIVE APPROACHES 
We compared our MCI-DNN with the following six baseline 
approaches which representing the state-of-the-art location 
recommendation techniques:  

Matrix Factorization based CF [38]: MFCF is the 
conventional collaborative filtering with matrix factorization, 
which factorizes the user-item preference matrix with BPR. 

Markov Chains based model [10]: MC is a commonly 
used sequence model for sequence prediction, which 
computes the transition probability by a counting method. 

Factorizing Personalized Markov chains model [9], [39]: 
FPMC is the state-of-art method that extends conventional 
MC methods and factorizes personalized probability transition 
matrices of users. 

Personalized Ranking Metric Embedding [6]: PRME 
integrates sequence information, individual preference, and 
geographical influence to improve the recommendation 
performance. 

Recurrent Neural Network [31]: RNN is the state-of-the-
art method for sequence prediction, which has been 
successfully applied in natural language processing, click 
prediction and sequence recommendation task. 

Context-Aware RNN [18]: CA-RNN is an extension of 
RNN for the sequence recommendation using adaptive 
context-specific matrices.  

D.  EXPERIMENTAL SETTING 
According to the contextual information in the two datasets, 
similar to [18], [19], we extracted three kinds of input contexts: 
seven days in a week, twenty-four hours in a day, and time 
intervals between adjacent behaviors. For time interval, 
discretization was completed in one-day time bins. For those 
whose time intervals were larger than 30 days, they were 
treated as one time bin to avoid data sparsity. Note that our 
model is a generic and flexible model that can be extended to 
easily incorporate other input contexts that are not limited to 

Fig.2. Precision, Recall and NDCG of MCI-DNN and other approaches (MFCF, MC, FPMC, PRME, RNN, and CA-RNN) with the increasing N from 1 to 
10 (with the interval of 5) using the Foursquare (NYC) dataset.
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Fig.3. Precision, Recall and NDCG of MCI-DNN and other approaches (MFCF, MC, FPMC, PRME, RNN, and CA-RNN) with the increasing N from 1 to 
10 (with the interval of 5) using the Foursquare (TKY) dataset. 
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the above three input contexts. Moreover, we converted the 
location that a user visited into an id as input of MCI-DNN.  

In our experiment, for each behavioral historical sequence 
in the two datasets, 80% check-ins of each user were selected 
for training data and remaining 20% for the test data. The 
learning rate of the proposed model was initialized as 0.1 and 
decay dynamically. Regularization parameter in the proposed 
model is set to 0.001 according to experimental results. 
Moreover, to avoid gradient explosion, the gradient range was 
limited to [-5, 5] using the clip gradient technique. 

V.  RESULTS AND DISCUSSION 

A.  PERFORMANCE COMPARISON 
The results of our proposed MCI-DNN and other comparative 
approaches with well-tuned parameters are compared and 
reported by using the Foursquare and Gowalla datasets. It 
should be noted that only the performance when N is set to 1,  
5, and 10 is shown because a greater value of N is usually 
ignored by users. 

Figs. 2 and 3 show the precision, recall and NDCG 
achieved on the Foursquare datasets of NYC and TKY, and 
Table 3 shows the F1-score values. Results show that (a) our 
proposed MCI-DNN significantly outperforms all of the 
baseline methods. From Table 3, compared with CA-RNN, the 
relative improvements, in terms of F1-score@10, are more 
than 54.22% and 14.46% of NYC and TKY respectively; (b) 
MC-based approach significantly outperforms MFCF, which 
demonstrates the important influence of check-in sequences 
on human decision process [40]; (c) The performance of RNN 
significantly outperforms the MC-based model. This is 
because MC based approaches only model the transition 
probability between the current location and the latest visited 
location, while the influence of other previously visited 
locations was ignored [32]. Although a higher-order MC can 
capture the influence of other previously visited locations, it is 
subjected to huge prediction state space and computational 
complexity [1]. Compared to MC, RNN can capture relatively 
long sequence dependency. Thus, such a significant 
improvement of RNN is reasonable; (d) By taking the input 
and transition contexts into RNN, CA-RNN proposed by Liu 

et al. [18] performs better than RNN, indicating the 
importance of input context on the prediction of next locations.  

Fig. 4 shows the precision, recall and NDCG achieved on 
the Gowalla dataset, and the corresponding F1-score values 
are shown in Table 4. We observe that the proposed MCI-
DNN performed consistently better than all the baseline 
approaches. From Table 4, we can observe about 63.62% 
improvements in terms of F1-score@10 for MCI-DNN over 
CA-RNN. In addition, we observe that our model performed 
better on Gowalla than Foursquare in precision, recall, and F1-
score and NDCG. The reason lies in the fact that each user's 
check-in data size in Gowalla is larger than Foursquare. As 
shown in Table 2, the average check-ins per user in Gowalla 
is about 65% and 15% larger than Foursquare (NYC) and 
Foursquare (TKY) dataset, which enable the model to capture 
users' preferences more accurately. Therefore, it is reasonable 
for the better performance of MCI-DNN on Gowalla dataset 
than Foursquare dataset.  

The improvements in precision, recall, F1-score, and 
NDCG for the proposed MCI-DNN can be ascribed to the 
following reasons. Firstly, an MCI-DNN model with multiple 
elements was utilized in each hidden layer to capture the 
influence of sequence contexts. This is different from 
conventional RNN where only one element was considered. 
Visiting behaviors of a user are usually related to a series of 
related activities in a short time, making that the previous 
check-in behaviors have close connections to current and 

Fig.4. Precision, Recall and NDCG of MCI-DNN and other approaches (MFCF, MC, FPMC, PRME, RNN, and CA-RNN) with the increasing N from 1 to 
10 (with the interval of 5) using the Gowalla dataset. 
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TABLE 3. F1-score in the dataset from Foursquare. 
City @N MFCF MC FPMC PRME RNN CA-RNN MCI-DNN

NYC

1 0.0051 0.0058 0.0061 0.0075 0.0142 0.0177 0.0319 

5 0.0085 0.0089 0.0089 0.0089 0.0128 0.0197 0.0393 

10 0.0072 0.0077 0.0076 0.0080 0.0098 0.0167 0.0257 

TKY

1 0.0082 0.0114 0.0147 0.0243 0.0289 0.0369 0.0517 

5 0.0139 0.0154 0.0235 0.0334 0.0339 0.0366 0.0420 

10 0.0136 0.0153 0.0206 0.0283 0.0240 0.0266 0.0305 

TABLE 4. F1-score in dataset from Gowalla 

@N MFCF MC FPMC PRME RNN CA-NN MCI-DNN

1 0.0096 0.0091 0.0204 0.0303 0.0357 0.0934 0.1882 

5 0.0129 0.0181 0.0215 0.0430 0.0550 0.0692 0.1221 

10 0.0119 0.0184 0.0166 0.0444 0.0516 0.0488 0.0799 
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future decision [9], [41], [6]. Therefore, the performance of 
predicting next locations is significantly improved by 
considering sequence contexts. We will report the 
experimental results in Section 5.2. Secondly, the interaction 
of different kinds of input context was considered in our model, 
and the embedding representation technology was adopted to 
avoid the data sparsity of input contexts. Although CA-RNN 
models different kinds of input contexts using context-specific 
projection matrices, it fails to capture the interaction of 
different kinds of input contexts. Thirdly, user preferences 
were considered to enhance the performance of next location 
prediction. In Table 5, MCI-DNN* is the variant of MCI-DNN 
in which user preferences were not taken into account. We 
observe that we achieved about 16.43% improvement on 
average in term of recall@5 and 41.2% improvement on 
average in term of precision@5. 

B.  PARAMETER SENSITIVITY ANALYSIS  

In this experiment, we investigated the impact of the window 
width and the dimension of the hidden layer on the 

Table 5. Performance Comprise of MCI-DNN Variants using Datasets from Foursquare and Gowalla. 

Datasets Methods 
Recall Precision NDCG 

1 5 10 1 5 10 1 5 10 

Foursquare 

(NYC) 

MCI-DNN* 0.0200 0.0670 0.0999 0.0200 0.0134 0.0100 0.0393 0.0333 0.0306

MCI-DNN 0.0319 0.0802 0.1414 0.0319 0.0260 0.0141 0.0536 0.0401 0.0319

Foursquare 

(TKY) 

MCI-DNN* 0.0384 0.1211 0.1666 0.0384 0.0242 0.0167 0.0520 0.0494 0.0429

MCI-DNN 0.0517 0.1260 0.1676 0.0517 0.0252 0.0168 0.0788 0.0519 0.0395

Gowalla 
MCI-DNN* 0.1087 0.2918 0.4006 0.1087 0.0584 0.0401 0.1233 0.0809 0.0682

MCI-DNN 0.1883 0.3665 0.4396 0.1883 0.0733 0.0440 0.1719 0.1106 0.0822

 
Fig.5. Impact of Dimension of Hidden Layer on the performance of MCI-DNN at different predicted location number using the Datasets from (a) 
Foursquare(NYC), (b) Foursquare (TKY) and (c) Gowalla. 
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Fig.6. Convergence curves of F1-Score using MCI-DNN at different predicted location numbers using the dataset (a) Foursquare (NYC), (b) Foursquare 
(TKY), (c) Gowalla. 
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TABLE 6. Impact of Window Width on the Performance of MCI-DNN 
Using Foursquare (NYC). 

     N 

Metric 
1 3 5 7 9 11 

Precision 0.0051 0.0091 0.0129 0.0197 0.0208 0.0192

Recall 0.0513 0.0911 0.1288 0.1973 0.2079 0.183

F1-Score 0.0093 0.0165 0.0234 0.0359 0.0378 0.0350

TABLE 7. Impact of Window Width on the Performance of MCI-DNN 
Using Foursquare (TKY). 

   N 

Metric 
1 3 5 7 9 11 

Precision 0.0108 0.0121 0.0134 0.0142 0.0146 0.0133

Recall 0.1083 0.1212 0.1335 0.1418 0.1461 0.1325

F1-Score 0.0197 0.0220 0.0243 0.0258 0.0265 0.0249
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performance of the proposed MCI-DNN using the Foursquare 
and Gowalla datasets.  

Tables 6 and 7 depict the influences of window width ݊ on 
the prediction accuracy for the Foursquare dataset. Note that 
results regarding the Gowalla dataset are similar to those 
regarding the Foursquare dataset, and thus are not presented 
here. The parameter ݊  being set to 1 only means that the 
current element was considered as input to RNN. We observe 
that with the increase of window width in two datasets, the 
performance improves significantly. The smaller window 
width results in a worse performance. In this case, only a few 
previous behaviors were considered. In contrast, the larger 
window width results in better performance. This is 
attributable to the fact that most of the successive check-ins 
occurred within a short period, such as two hours. Hence, the 
result is consistent with the finding in [9], which reported that 
almost 40% and 48% successive check-ins occurred within 
two hours in Foursquare and Gowalla respectively. 

By setting window width ݊ as 9, we further studied the 
impact of ܦ on the prediction accuracy using the Foursquare 
and Gowalla datasets. Fig. 5 shows the result of F1-score 
values with the variation of ܦ from 5 to 40 (with the interval 
of 5). The result shows that with the increase of ܦ in three 
datasets, the F1-score values become higher, indicating better 
performance. However, when ܦ  was higher than 35, lower 
F1-score values were obtained in Foursquare (NYC) and 
Foursquare (TKY) datasets illustrated in Figs. 5(a) and 5(b). 
This phenomenon implies that overfitting may occur when ܦ 
is very large. Moreover, for the Gowalla dataset, F1-score 
changed smoothly when ܦ was larger than 35, but the trend of 
F1-score was not obvious. Then, according to the curves, the 
best dimension size can be set to 30, 35, and 40 for Foursquare 
(NYC), Foursquare (TKY), and Gowalla, respectively. 

C.  EFFICIENCY ANALYSIS  
We further investigated the computational time and the 
convergence of the learning progress of the proposed method. 
Fig.6 illustrates the convergence curves of F1-score that were 
obtained by using the proposed method on three datasets. 
Results show that MCI-DNN converged in a relatively small 
number of iterations. For the Foursquare (NYC) dataset, the 
learning process converged in about 30 iterations, while the 
learning process converged in about 35 iterations on the 
Foursquare (TKY) and 45 on the Gowalla dataset. This is 
because the average check-in number per user for the 
Foursquare (NYC) is smaller than the Foursquare (TKY) and 
the Gowalla dataset.  

The results of computational efficiency in each iteration 
are shown in Table 8. The computation time was measured in 
seconds. We observe that all these methods had relatively 

short training time. Although the computation time of MCI-
DNN is longer than RNN and CA-RNN, the computation time 
of MCI-DNN with a significant performance improvement is 
still acceptable.  

VI. CONCLUSION 

We have presented an integrated analysis of the joint effect of 
multiple factors, i.e., sequence context, input contexts, and 
user preferences, on the process of a user's decision to the next 
location. We have also developed an effective Multi-Context 
Integrated Deep Neural Network Model (MCI-DNN) to 
improve the accuracy of next location prediction. The 
prediction results by two datasets from Foursquare and 
Gowalla demonstrate the significant joint influence of 
sequence context and the interaction of different kinds of input 
contexts on the user's decision to the next locations. The 
average improvement in term of F1-score@5 was about 57.12% 
for Foursquare and 76.4% for Gowalla. The model developed 
herein performed better than the state-of-the-art approaches in 
view of prediction accuracy and stability. The proposed 
method shows significant potential for next location 
predictions in several applications where sequence context and 
input context characteristics exist, such as a recommendation 
system, advertising delivery, traffic jams forecasting, urban 
planning and so on. 
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