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Decomposition of Rotor Hopfield Neural Networks
Using Complex Numbers

Masaki Kobayashi

Abstract— A complex-valued Hopfield neural network (CHNN) is a
multistate model of a Hopfield neural network. It has the disadvantage
of low noise tolerance. Meanwhile, a symmetric CHNN (SCHNN) is a
modification of a CHNN that improves noise tolerance. Furthermore,
a rotor Hopfield neural network (RHNN) is an extension of a CHNN.
It has twice the storage capacity of CHNNs and SCHNNs, and much
better noise tolerance than CHNNs, although it requires twice many
connection parameters. In this brief, we investigate the relations between
CHNN, SCHNN, and RHNN; an RHNN is uniquely decomposed into a
CHNN and SCHNN. In addition, the Hebbian learning rule for RHNNs
is decomposed into those for CHNNs and SCHNNs.

Index Terms— Hebbian learning rule, rotor Hopfield neural
networks (RHNNs), symmetric complex-valued Hopfield neural
networks (SCHNNs), widely linear estimation.

I. INTRODUCTION

Acomplex-valued Hopfield neural network (CHNN) is a multistate
model of a Hopfield neural network [1]–[3]. It is often applied to
image storage [4], [5]. Several modifications and extensions of CHNN
have been proposed [6]–[16]. A symmetric CHNN (SCHNN) is a
modification of a CHNN [17]. An SCHNN has the same number
of connection parameters and almost the same storage capacity as
a CHNN. Since an SCHNN does not have rotational invariance,
however, it has much better noise tolerance. A rotor Hopfield neural
network (RHNN) is an extension of a CHNN [18]–[20]. Like
SCHNN, RHNN does not have rotational invariance and improves
noise tolerance significantly. In addition, RHNN has twice the storage
capacity of CHNN, although twice many connection parameters are
necessary [20]–[22]. RHNN has been applied to dynamic associative
memories, such as chaotic associative memories that never recall
rotated patterns [23], [24].

In this brief, the relations between CHNNs, SCHNNs, and RHNNs
are studied. CHNNs and SCHNNs are organized based on complex
numbers. Meanwhile, RHNNs are organized based on 2-D vectors
and 2 × 2 matrices. RHNNs include both CHNNs and SCHNNs;
CHNNs and SCHNNs can be represented by RHNNs. It is shown
that an RHNN is uniquely decomposed into a CHNN and SCHNN.
The decomposition matches a widely linear estimation [25]. However,
there is a difference. In a widely linear estimation, the connections
are one way. Meanwhile, in an RHNN, they are mutual. Widely linear
estimation with complex numbers has been utilized in communica-
tions and adaptive filters [26]–[28]. In recent years, applications of
widely linear estimation have been extended to quaternionic signal
processing [29]. Moreover, the Hebbian learning rule for RHNNs is
decomposed into those for CHNNs and SCHNNs. This brief provides
a new perspective on the RHNN, and extends the strategy of learning
algorithms.

II. COMPLEX-VALUED HOPFIELD NEURAL NETWORKS

In this section, a CHNN, which is a multistate extension of a Hop-
field neural network using complex numbers, is briefly described [3].
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Fig. 1. (A) Complex-valued phasor activation function. (B) Rotor activation
function. They are different only in the vertical axis.

Let z j = x j +y j i and u jk be the state of neuron j and the connection
weight from neuron k to neuron j , respectively. The connection
weights satisfy the stability condition u jk = ukj , where u is the
complex conjugate of u. The weighted sum input I C

j to neuron j is
defined as

I C
j =

∑

k �= j

u jk zk . (1)

Two types of activation functions, the phasor and the multistate,
are often employed. The phasor activation function is described
first. For a weighted sum input I = r exp(iθ), where r > 0 and
0 ≤ θ < 2π , the phasor activation function f (I ) is defined as
f (I ) = exp(iθ). Fig. 1(A) shows the phasor activation function.
Turning now to the multistate activation function, we denote θK = π

K
with the quantization level K . The multistate activation function f (I )
is defined as follows:

f (I ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

exp(iθK ) (0 ≤ θ < 2θK )

exp(3iθK ) (2θK ≤ θ < 4θK )

...
...

exp((2K − 1)iθK ) (2(K − 1) ≤ θ < 2π).

(2)

Fig. 2(A) is an illustration of the multistate activation function with
K = 6. For a weighted sum input I C , the neuron state is determined
by f (I C ). In particular, |z j | = 1 holds. We denote a state of a CHNN
by z = (z1, z2, · · · , zN ), where N is the number of neurons. Then,
the energy of the CHNN is defined as follows:

EC (z) = −1

2

∑

j �=k

z j u jkzk . (3)

The energy is a real number from EC = EC ; it does not increase
under an asynchronous updating mode, and a CHNN always con-
verges.

To describe the Hebbian learning rule for CHNNs, let z p
j =

x p
j + y p

j i be the j th component of the pth training pattern. Then,

the connection weight u H
jk given by the Hebbian learning rule is as
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Fig. 2. (A) Complex-valued multistate activation function with K = 6.
(B) Rotor multistate activation function with K = 6. They are different only
in the vertical axis.

follows:
u H

jk =
∑

p
z p

j z p
k . (4)

These connection weights satisfy the stability condition uH
jk = u H

kj .

III. SYMMETRIC COMPLEX-VALUED HOPFIELD

NEURAL NETWORKS

In this section, an SCHNN is briefly described [17]. An SCHNN
is a modification of a CHNN. The symbols z j and z p

j used in the
CHNN are also employed in the SCHNN. The connection weights
are denoted by v j k . They satisfy the stability condition v j k = vkj .
An SCHNN modifies the weighted sum input of CHNN as follows:

I S
j =

∑

k �= j

v j k zk . (5)

For a weighted sum input I S , the neuron state is determined
by f (I S ). We denote the state of an SCHNN by z =
(z1, z2, · · · , zN ). Then, the energy of the SCHNN is defined as

E S(z) = −1

2
Re

⎛

⎝
∑

j �=k

z j v j k zk

⎞

⎠ (6)

where Re(·) means the real part. Since the above summation is not
a real number, it is necessary to take its real part. The energy does
not increase under an asynchronous updating mode, and an SCHNN
always converges.

To describe the Hebbian learning rule for SCHNNs, the connection
weight v H

jk given by the Hebbian learning rule is as follows:
v H

jk =
∑

p
z p

j z p
k . (7)

These connection weights satisfy the stability condition v H
jk = v H

kj .

IV. ROTOR HOPFIELD NEURAL NETWORKS

An RHNN is an extension of a CHNN [20]. An RHNN has
twice the CHNN’s large storage capacity and a much higher noise
tolerance [20]–[22]. The neuron states and connection weights are
represented by 2-D vectors and 2 × 2 matrices, respectively, whose
elements are real numbers. Let z j and ŵ j k be the state of neuron j
and the connection weight from neuron k to neuron j , respectively.
The connection weight ŵ j k is described using the elements as
follows:

ŵ j k =
(

a jk b jk
c jk d jk

)
. (8)

The state z j = (x j y j )
T of the rotor neuron is identical to the

state x j + y j i of the complex-valued neuron. Here, the superscript T

Fig. 3. Mutual connections of RHNNs are transpose matrices.

means the transpose. The activation function of an RHNN is also
identical to that of a CHNN. In particular, |z j |2 = x2

j + y2
j = 1

holds. Figs. 1(B) and 2(B) show the rotor versions of the phasor
and multistate activation functions, respectively. The weighted sum
input IR

j to neuron j is defined as follows:

IR
j =

∑

k �= j

ŵ j kzk . (9)

Since ŵ j k is a 2×2 matrix, the weighted sum input IR
j is a 2-D vector.

The connection weights satisfy the stability condition ŵ j k = ŵT
kj .

Fig. 3 shows the mutual connection between two rotor neurons.
We denote the state of an RHNN by z = (z1, z2, · · · , zN ). Then,

the energy of the RHNN is defined as

E R(z) = −1

2

∑

j �=k

zT
j ŵ j kzk . (10)

The energy is a real number. It does not increase under asynchronous
updating mode, and an RHNN always converges.

To define the Hebbian learning rule for RHNNs, we denote the
j th component of the pth training pattern as zp

j = (x p
j y p

j )T . Then,

the connection weight ŵH
jk given by the Hebbian learning rule is as

follows:

ŵH
jk =

∑

p
ŵ

p
jk, (11)

ŵ
p
jk = zp

j (z
p
k )T =

(
x p

j

y p
j

)
(
x p

k y p
k

)
(12)

=
(

x p
j x p

k x p
j y p

k
y p

j x p
k y p

j y p
k

)
. (13)

The equality ŵ
p
jkzp

k = zp
j then holds.

V. REPRESENTATION OF CHNN USING RHNN

A CHNN is described using an RHNN. We first denote that
u jk = α j k + β j ki . A connection weight takes a transformation role
and can be represented by a matrix. The connection weight û j k of
the RHNN corresponding to u jk is considered as follows:

û j k =
(

α j k −β j k
β j k α j k

)
. (14)

From u jk = ukj , the stability condition û j k = ûT
kj holds. Thus,

a CHNN is considered an RHNN. Fig. 4(A) shows the mutual
connections between two neurons by complex numbers; Fig. 4(B)
shows mutual connections between two neurons by RHNN.
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Fig. 4. (A) Complex-valued representation of mutual connections of
a CHNN. They are complex conjugate. (B) Representation by an RHNN.

The energy can be rewritten as follows:

EC (z) = −1

2

∑

j �=k

(x j − y j i)(α j k + β j ki)(xk + yki)

(15)

= −1

2

∑

j �=k

(x j − y j i)((α j k xk − β j k yk) + (β j k xk + α j k yk)i)

(16)

= −1

2

∑

j �=k

(x j (α j k xk − β j k yk) + y j (β j k xk + α j k yk)) (17)

= −1

2

∑

j �=k

(x j y j )

(
α j k xk − β j k yk
β j k xk + α j k yk

)
(18)

= −1

2

∑

j �=k

(x j y j )

(
α j k −β j k
β j k α j k

) (
xk
yk

)

(19)

= −1

2

∑

j �=k

zT
j û j kzk . (20)

Since EC (z) is a real number, the imaginary part in (17) vanishes.
By identification of a complex number x+yi and a matrix

(
x −y
y x

)
,

the Hebbian learning rule for CHNNs can be rewritten as follows:
û H

jk =
∑

p
û p

jk , (21)

û p
j k =

(
x p

j −y p
j

y p
j x p

j

) (
x p

k y p
k

−y p
k x p

k

)
(22)

=
(

x p
j x p

k + y p
j y p

k x p
j y p

k − y p
j x p

k
y p

j x p
k − x p

j y p
k y p

j y p
k + x p

j x p
k

)
. (23)

Then, the equality û p
j kzp

k = zp
j holds.

VI. REPRESENTATION OF SCHNN USING RHNN

An SCHNN is described using an RHNN. We denote v j k = γ j k +
δ j ki . The following equality holds:

v j k zk = (γ j k xk + δ j k yk) + (δ j k xk − γ j k yk)i. (24)

Fig. 5. (A) Complex-valued representation of mutual connections of
an SCHNN. They are symmetric. (B) Representation by an RHNN.

Therefore, the connection weight v̂ j k of the RHNN corresponding
to v j k is considered as follows:

v̂ j k =
(

γ j k δ j k
δ j k −γ j k

)
. (25)

From v j k = vkj , the stability condition v̂ j k = ˆvkj
T holds. Thus,

an SCHNN can be considered as an RHNN. Fig. 5(A) shows the
mutual connections between two neurons by complex numbers, and
Fig. 5(B) shows mutual connections between two neurons by RHNN.

The energy can be rewritten as follows:

E S(z) = −1

2
Re

⎛

⎝
∑

j �=k

(x j − y j i)(γ j k + δ j ki)(xk − yki)

⎞

⎠ (26)

= −1

2

∑

j �=k

Re((x j − y j i)

{(γ j kxk + δ j k yk) + (δ j k xk − γ j k yk)i}) (27)

= −1

2

∑

j �=k

(x j (γ j kxk + δ j k yk) + y j (δ j k xk − γ j k yk)) (28)

= −1

2

∑

j �=k

(x j y j )

(
γ j kxk + δ j k yk
δ j k xk − γ j k yk

)
(29)

= −1

2

∑

j �=k

(x j y j )

(
γ j k δ j k
δ j k −γ j k

)(
xk
yk

)

(30)

= −1

2

∑

j �=k

zT
j v̂ j kzk . (31)

z is identified with
(

x
−y

)
=

(
1 0
0 −1

) (
x
y

)
. (32)

Then, the Hebbian learning rule for SCHNNs can be rewritten as
follows:

v̂ H
jk =

∑

p
v̂

p
jk, (33)
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v̂
p
jk =

(
x p

j −y p
j

y p
j x p

j

)(
x p

k −y p
k

y p
k x p

k

) (
1 0
0 −1

)

(34)

=
(

x p
j x p

k − y p
j y p

k x p
j y p

k + y p
j x p

k
y p

j x p
k + x p

j y p
k y p

j y p
k − x p

j x p
k

)
. (35)

The matrix
(

1 0
0 −1

)
corresponds to the complex conjugate. Then, the

equality v̂
p
jkzp

k = zp
j holds.

VII. DECOMPOSITION OF ROTOR HOPFIELD NEURAL NETWORKS

In this section, an RHNN is decomposed into a CHNN and
an SCHNN.

Theorem 1: For connection weights ŵ j k of an RHNN, there
uniquely exist connection weights û j k and v̂ j k of a CHNN and an
SCHNN, such that ŵ j k = û j k + v̂ j k .

Proof: We determine connection weights û j k and v̂ j k of the
CHNN and SCHNN, such that ŵ j k = û j k + v̂ j k . By solving the
equation

(
a jk b jk
c jk d jk

)
=

(
α j k −β j k
β j k α j k

)
+

(
γ j k δ j k
δ j k −γ j k

)
(36)

=
(

α j k + γ j k −β j k + δ j k
β j k + δ j k α j k − γ j k

)
(37)

the unique decomposition is obtained as follows:

û j k = 1

2

(
a jk + d jk b jk − c jk
c jk − b jk a jk + d jk

)
, (38)

v̂ j k = 1

2

(
a jk − d jk b jk + c jk
b jk + c jk d jk − a jk

)
, (39)

ŵ j k = û j k + v̂ j k . (40)

We put u jk and v j k as follows:
u jk = 1

2
(a jk + d jk) + 1

2
(c jk − b jk)i, (41)

v j k = 1

2
(a jk − d jk) + 1

2
(b jk + c jk)i. (42)

Then, the following equality holds:
u jk zk + v j k zk = v j k(xk + yki) + u jk(xk − yki) (43)

= a jk xk + b jk yk + (c jk xk + d jk yk)i. (44)

This expression (44) is identical to the 2-D vector ŵ j kzk . Therefore,
an RHNN can be represented with complex numbers; an RHNN is
identical to a combination of a CHNN and an SCHNN. A rotor
neuron is identical to a complex-valued neuron. The connection
weights of the RHNN are considered pairs (u jk, v j k) of complex
numbers, where u jk and v j k correspond to the CHNN and SCHNN,
respectively. The weighted sum input I R

j to neuron j is defined as
follows:

I R
j =

∑

k �= j

(u jkzk + v j k zk) = I C
j + I S

j . (45)

This matches the widely linear estimation [25]. The state of neuron j
is determined by f (I R

j ). Here, I R
j is a complex number identical to

the weighted sum input IR
j of the RHNN. The energy of the RHNN

is also decomposed into those of the CHNN and SCHNN.
Corollary 1: E R(z) = EC (z) + E S(z)

Proof: From equalities (20) and (31) and Theorem 1, the
following equalities hold:

E R(z) = −1

2

∑

j �=k

zT
j ŵ j kzk (46)

= −1

2

∑

j �=k

zT
j (û j k + v̂ j k)zk (47)

= −1

2

∑

j �=k

zT
j û j kzk − 1

2

∑

j �=k

zT
j v̂ j kzk (48)

= EC (z) + E S(z). (49)

In Corollary 1, z = (z1, z2, · · · , zN ) in E R(z) is identified with
z = (z1, z2, · · · , zN ) in EC (z) and E S(z). Thus, the Hebbian
learning rule for RHNNs is decomposed into those for CHNNs and
SCHNNs. In fact, from the Hebbian learning rules (11), (13), (21),
(23), (33), and (35), the following decomposition of the Hebbian
learning rule is obtained.

Theorem 2: The connection weights obtained by the Hebbian
learning rule for RHNNs are decomposed into those for CHNNs and
SCHNNs as follows:

ŵH
jk = 1

2

(
û H

jk + v̂ H
jk

)
. (50)

VIII. CONCLUSION

This brief provides the unique decomposition of an RHNN into
a CHNN and an SCHNN. This decomposition provides a new
perspective on the RHNN, and could extend the strategy of learn-
ing algorithms. For example, it enables the corresponding CHNN
and SCHNN to learn independently. The Hebbian learning rule
for RHNNs is identical to the combination of those for CHNNs
and SCHNNs. It is an important fact that the weighted sum
input of the RHNN matches a widely linear estimation. We plan
to study new learning algorithms utilizing the decomposition of
RHNNs.
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