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Abstract— Rapid advances in hardware-based technologies
during the past decades have opened up new possibilities
for life scientists to gather multimodal data in various appli-
cation domains, such as omics, bioimaging, medical imag-
ing, and (brain/body)–machine interfaces. These have generated
novel opportunities for development of dedicated data-intensive
machine learning techniques. In particular, recent research in
deep learning (DL), reinforcement learning (RL), and their com-
bination (deep RL) promise to revolutionize the future of artificial
intelligence. The growth in computational power accompanied by
faster and increased data storage, and declining computing costs
have already allowed scientists in various fields to apply these
techniques on data sets that were previously intractable owing to
their size and complexity. This paper provides a comprehensive
survey on the application of DL, RL, and deep RL techniques in
mining biological data. In addition, we compare the performances
of DL techniques when applied to different data sets across
various application domains. Finally, we outline open issues in
this challenging research area and discuss future development
perspectives.

Index Terms— Bioimaging, brain–machine interfaces, convolu-
tional neural network (CNN), deep autoencoder (DA), deep belief
network (DBN), deep learning performance, medical imaging,
omics, recurrent neural network (RNN).

I. INTRODUCTION

THE need for novel healthcare solutions and continuous
efforts in understating the biological bases of pathologies

has pushed extensive research in biological sciences over the
last two centuries [1]. Recent technological advancements in
life sciences have opened up possibilities not only to study
biological systems from a holistic perspective, but provided
unprecedented access to molecular details of living organ-
isms [2], [3]. Novel tools for DNA sequencing [4], gene
expression (GE) [5], bioimaging [6], neuroimaging [7], and
brain–machine interfaces [8] are now available to the scientific
community. However, considering the inherent complexity
of biological systems together with the high dimensionality,
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diversity, and noise contaminations, inferring meaningful con-
clusion from such data is a huge challenge [9]. Therefore,
novel instruments are required to process and analyze bio-
logical big data that must be robust, reliable, reusable, and
accurate [10]. This has encouraged numerous scientists from
life and computing sciences disciplines to embark in a mul-
tidisciplinary approach to demystify functions and dynamics
of living organisms, with remarkable progress reported in bio-
logical and biomedical research [11]. Thus, many techniques
of artificial intelligence (AI), in particular machine learning
(ML), have been proposed over time to facilitate recognition,
classification, and prediction of patterns in biological data [12].

Conventional ML techniques can be broadly categorized in
two large sets—supervised and unsupervised. The methods
pertaining to the supervised learning paradigm classify objects
in a pool using a set of known annotations/attributes/features.
On the other hand, the unsupervised learning techniques
form groups/clusters among the objects in a pool by iden-
tifying their similarity, and then use them for classifying
the unknowns. Further, the other category, reinforcement
learning (RL), allows a system to learn from the expe-
riences it gains through interacting with its environment
(see Section II-B for details).

Popular supervised methods include artificial neural net-
works (ANN) [13] and their variants [e.g., multilayer per-
ceptron (MLP)], support vector machines (SVMs) [14], linear
classifiers [15], Bayesian statistics [16], k-nearest neighbors
(kNNs) [17], hidden Markov model (HMM) [18], and decision
trees [19]. Popular unsupervised methods include autoen-
coders [20], expectation maximization [21], self-organizing
maps [22], k-means [23], fuzzy [24], and density-based [25]
clustering.

A large body of evidence shows that the above-
mentioned methods and their respective variants can
be successfully applied to biological data coming from
various sources, e.g., Omics (covers data from genetics and
(gen/transcript/epigen/prote/metabol)omics [26]), Bioimaging
(covers data from (sub)cellular images acquired by diverse
imaging techniques [27]), Medical Imaging (covers data
from (medical/clinical/health) imaging mainly through
diagnostic imaging techniques [28]), and (brain/body)–
machine interfaces (BMIs) (covers electrical signals generated
by the brain and the muscles and acquired using appropriate
sensors [29], [30]).

Broadly, AI can be thought to have evolved parallelly in two
main directions—expert systems (ES) and ML [see Fig. 1(h)].
Focusing on the latter, ML extracts features from training
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Fig. 1. Possible representation of the DL, RL, and deep RL frameworks
for biological applications. (a)–(f) Popular DL architectures. (g) Schematic
of the learning framework as a part of AI. Broadly, AI can be thought
to have evolved parallelly in two main directions—ES and ML. ES takes
expert decisions from given factual data using rule-based inferences.
ML extracts features from data mainly through statistical modeling and
provides predictive output when applied to unknown data. DL, being a
subdivision of ML, extracts more abstract features from a larger set of training
data mostly in a hierarchical fashion resembling the working principle of
our brain. The other subdivision, RL, provides a software agent that gathers
experience based on interactions with the environment through some actions
and aims to maximize the cumulative performance. (h) Possible applications
of AI to biological data.

data set(s) and make models with minimal or no human
intervention. These models provide predicted outputs based
on test data. Deep learning (DL), being a subdivision of ML,
extracts more abstract features from a larger set of training
data mostly without human supervision. RL, being the other
subdivision of ML, is inspired by psychology. It provides a
software agent that gathers experience based on interactions
with the environment through some actions and aims to
maximize the cumulative performance.

In recent years, DL, RL, and deep RL methods are poised
to reshape the future of ML [31]. Over the last decade,
works pertaining to DL, RL, and deep RL were extensively
reviewed from different perspectives. In a topical review,
Schmidhuber [32] provided a detailed time line of significant
DL developments (for both supervised and unsupervised),

RL and evolutionary computation, and DL in feedforward and
recurrent neural networks (RNNs) for RL. Other reviews are
focusing on the applications of DL in health informatics [33],
biomedicine [34], and bioinformatics [35]. On the other hand,
Kaelbling et al. [36] discussed RL from the perspective of the
tradeoff between exploitation and exploration, RL’s foundation
via Markov decision theory, the learning mechanism using
delayed reinforcement, construction of empirical learning
models, use of generalization and hierarchy, and reported some
exemplifying RL systems implementations. Glorennec [37]
provides a brief overview of the basis of RL with explicit
descriptions of Q- and fuzzy Q-learning. With respect to appli-
cations in solving dynamic optimization problems, Gosavi [38]
surveys Q-learning, temporal differences (TDs), semi-Markov
decision problems, stochastic games, policy gradients, and
hierarchical RL with the detailed underlying mathematics.
In addition, Li [39] analyzed the recent advances of deep RL
on—deep Q-network (DQN) with its extensions, asynchronous
methods, policy optimization, reward, and planning as well as
different applications, including games (e.g., AlphaGo, robot-
ics, and chatbot), neural architecture design, natural language
processing, personalized Web services, healthcare, and finance.

Despite the popularity of the topic and application potential
to diverse disciplines, a comprehensive review is missing that
focuses on data from different Biological application domains
while providing a performance comparison across techniques.
This review is intended to fill this gap: it provides a brief
overview on DL, RL, and deep RL concepts, followed by
the state-of-the-art applications of these techniques and perfor-
mance comparison between various DL approaches. Finally, it
identifies and outlines some open issues and speculates about
future perspectives.

As for the organization of the rest of this paper, Section II
provides a conceptual overview of DL, RL, and deep RL tech-
niques, introducing the reader to underlying theory. Section III
presents state-of-the-art applications of these techniques to
various biological domains. Section IV presents test results
and performance comparison of DL techniques applied on
data sets pertaining to different biological domains. Section V
highlights open issues and future perspectives, and, finally,
Section VI presents some concluding remarks.

II. CONCEPTUAL OVERVIEW

A. Deep Learning

The core concept of DL is to learn data representations
through increasing abstraction levels. Almost in all levels,
more abstract representations at a higher level are learned
by defining them in terms of less abstract representations
at lower levels. This type of hierarchical learning process
is very powerful as it allows a system to comprehend and
learn complex representations directly from the raw data [40],
making it useful in many disciplines [41].

Several DL architectures have been reported in the literature,
including deep neural network (DNN), RNN, convolutional
neural network (CNN), deep autoencoder (DA), deep Boltz-
mann machine (DBM), deep belief network (DBN), deep
residual network, deep convolutional inverse graphics network,
and so on. For the sake of brevity, only the ones widely used
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with biological data are briefly summarized in the following.
However, interested readers are directed to the references
mentioned in each section for concrete mathematical details
behind each architecture.

1) Deep Neural Network: DNN [Fig. 1(a)] [42] is inspired
by the brain’s visual input processing mechanism, which
takes place at multiple levels (i.e., starting with cortical area
“V1” and then passing to area “V2” and so on) [32]. The
standard neural network (NN) is extended to have multiple
hidden layers with nonlinear modules embodied in each hidden
layer allowing it to learn part-hole of the representations.
Though this formulation has been successfully used in many
applications, the training process is slow and cumbersome.

2) Recurrent Neural Network: RNN [Fig. 1(b)] [43] is
an NN model designed to detect structures in streams of
data [44]. Unlike feedforward NN that performs computations
unidirectionally from input to output, an RNN computes the
current state’s output depending on the outputs of the previous
states. Due to this “memory-like” property, despite learning
problems related to vanishing and exploding gradients, RNN
applications have gained popularity in many fields involving
streaming data (e.g., text mining, time series, and genomes).
In recent years, two main variants, such as bidirectional
RNN [45] and long short-term memory (LSTM) [46], have
also been developed and increasingly applied in biological
applications [47], [48].

3) Convolutional Neural Network: CNN [Fig. 1(c)] [49] is
a multilayer NN model [50], inspired by the neurobiology
of visual cortex, that consists of convolutional layer(s) fol-
lowed by fully connected layer(s). In between these two
types of layers, there may exist subsampling steps. They get
the better of DNNs, which have difficulty in scaling well
with multidimensional locally correlated input data. Therefore,
the main application of the CNN has been in data sets,
where the number of nodes and parameters required to be
trained is relatively large (e.g., image analysis). Exploiting the
“stationary” property of an image, convolution filters (CFs)
can learn data-driven kernels. Applying such a CF along
with a suitable pooling function reduces the features that are
supplied to the fully connected network to classify. How-
ever, in case of large data sets, even this can be daunting
and can be solved using sparsely connected networks. Some
of the popular CNN configurations include AlexNet [51],
VGGNet [52], and GoogLeNet [53].

4) Deep Autoencoder: DA architecture [Fig. 1(d)] [54] is
obtained by stacking a number of autoencoders that are data
driven NN models (i.e., unsupervised) designed to reduce data
dimension by automatically projecting incoming representa-
tions to a lesser dimensional space than that of the input.
In an autoencoder, an equal amount of units are used in
the input/output layers and less units in the hidden layers.
(Non)linear transformations are embodied in the hidden layer
units to encode the given input into smaller dimensions [55].
Despite that it requires a pretraining stage and suffers from
vanishing error, this architecture is popular for its data com-
pression capability and have many variants, e.g., denoising
autoencoder [54], sparse autoencoder [56], variational autoen-
coder [57], and contractive autoencoder [58].

5) (Restricted) Boltzmann Machine: A (restricted) Boltz-
mann machine [(R)BM] is an undirected probabilistic genera-
tive model representing specific probability distributions [59].
It is also considered as a nonlinear feature detector. The learn-
ing process of (R)BM is based on optimizing its parameters
for a set of given observations to obtain the best possible
fit of the probability distribution through Gibbs sampling
(a Markov chain Monte Carlo (MC) method [60]) [61].
BM has symmetrical connections among its units and has one
visible layer with (multiple) hidden layers. Usually, the learn-
ing process of a BM is slow and computationally expensive
and, thus, requires long to reach equilibrium statistics [40].
By restricting the intralayer units of a BM to connect among
themselves, a bipartite graph is formed (i.e., an RBM has a
visible and a hidden layer), where the learning inefficiency
is solved [59]. Stacking multiple RBMs as learning elements
yields the following two DL architectures.

a) Deep Boltzmann Machine: DBM [Fig. 1(e)] [62] is
a stack of undirected RBMs. Being undirected, there is a
feedback process among the layers, where feature inference
from higher level units affect the inference of lower level
units. Despite this powerful inference mechanism that allows
an input’s alternative interpretations through concurrent com-
petition at all levels of the model, estimating model para-
meters from data remains difficult. Gradient-based methods
(e.g., persistent contrastive divergence [63]) fail to explore
the model parameters sufficiently [62]. Though this learning
problem is overcome by pretraining each RBM in a layerwise
greedy fashion, with outputs of the hidden variables from
lower layers as input to upper layers [59], the time complexity
remains high and may not be suitable for large training data
sets [64].

b) Deep Belief Network: DBN [Fig. 1(f)] [65] is formed
by ordering several RBMs in a way that one RBM’s latent
layer is linked to the subsequent RBM’s visible layer. The
connections of DBN are downward directed to its imme-
diate lower layer, except that the upper two layers are
undirected [65]. Thus, a DBN is a hybrid model with the first
two layers as undirected graphical model and the rest being
directed generative model. The different layers are learned in
a layerwise greedy fashion and fine-tuned based on required
output [33]; however, the training procedure is computationally
demanding.

B. Reinforcement Learning

Rooted in behavioral psychology, RL is a distinctive mem-
ber of the ML family. An RL problem is solved by learning
new experiences through trial-and-error. An RL agent is
trained; as such, its actions to interact with the environment
maximize the cumulative reward resulting from the interac-
tions. Generally, RL problems are modeled and solved using
Markov decision processes (MDPs) theory through MC and
dynamic programming (DP) [66].

The learning of an agent is a continuous process, where
interactions with the environment occur at discrete time steps.
In a typical RL cycle (at time t), the agent receives the
environment’s state (i.e., state, st ) and selects an action (at )
to interact. The environment responds to the action and
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progresses to a new state (st+1). The reward (rt+1) that the
agent either receives or not for the selected action associated
with the transition (st , at , st+1) is also determined [66].
Accordingly, after each cycle, the agent updates the value
function V (s) or action-value function Q(s, a) based on a
certain policy, where policy (π) is a function that maps states
s ∈ S to actions a ∈ A, i.e., π : S → A ⇒ a = π(s) [36].

A possible way to solve the RL problem is to describe
the environment as MDP with a set of state-value function
pairs, a set of actions, a policy, and a reward function.
The value function can be separated to solve state-value
function (V ) or action-value function (Q). In the state-value
function, the expected outcome, of being in state s following
policy π , is determined by sum of the rewards at future
time steps with a given discount factor (γ ∈ [0, 1]), i.e.,
V π(s) = Eπ(

∑∞
k=0 γ krt+k+1|st = s). And in the action-

value function, the expected outcome, of being in state s
taking action a following policy π , is determined by sum
of the rewards for each state action pairs, i.e., Qπ (s, a) =
Eπ (

∑∞
k=0 γ krt+k+1|st = s, at = a).

The MDP can be solved, and the optimum policy can
be achieved through DP by: either starting with an initial
policy or improving it iteratively (policy iteration), or start-
ing with arbitrary value function and recursively refining an
estimate of an improved state-value or action-value function
to compute an optimal policy and its value (value itera-
tion) [67]. In the simplest case, the state-value function for
a given policy can be estimated using the Bellman expecta-
tion equation as: V π(s) = Eπ(rt+1 + γ V π(st+1)|st = s).
Considering this as a policy evaluation process, an improved
and eventually optimal policy (π∗) can be achieved by taking
actions greedily that maximizes the state-action value. But
in scenarios with unknown environments, modelfree methods
are to be used without the MDP. In such cases, instead
of the state-value function, the action-value function can be
maximized to find the optimal policy (π∗) using a similar
policy evaluation and improvement process, i.e., Qπ (s, a) =
Eπ (rt+1 + γ Qπ (st+1, at+1)|st = s, at = a). There are several
learning techniques, e.g., MC, TD, and state-action-reward-
state-action (SARSA), which describe various aspects of the
modelfree policy evaluation and improvement process [68].

However, in real-world RL problems, the state-action space
is very large, and storing a separate value function for every
possible state is cumbersome. In such situations, generaliza-
tion of the value function through function approximation is
required. For example, the Q value function approximation is
able to generalize to unknown states by calculating a func-
tion (Q̂) for a given state action pair (s, a), i.e., Q̂(s, a, w) ≈
Qπ (s, a) = x(s, a)�w. In other words, a rough approximation
of the Q function is obtained from the feature vector repre-
senting (s, a) pair (x) and the provided parameter (w which is
updated using MC or TD learning) [69]. This approximation
allows to improve the Q function by minimizing the loss
between the true and approximated values (e.g., using gradient
descent), i.e., J (w) = Eπ((Qπ (s, a) − Q̂(s, a, w))2). Exam-
ples of differentiable function approximators include NN, lin-
ear combinations of features, decision tree, nearest neighbor,
and Fourier bases [70].

C. Deep Reinforcement Learning

The autonomic capability to learn without any feature craft-
ing makes RL a powerful tool applicable to many disciplines,
but it falls short in cases when the data dimensionality is
large and the environment is nonstationary [71]. Also, DL’s
capability to learn complex patterns is sometimes prone to
misclassification [72]. To mitigate, in recent years, RL algo-
rithms have been successfully combined with a deep NN [39]
giving rise to novel learning strategies. This integration has
been used either in approximating RL functions using deep
NN architectures or in training deep NN using RL.

The first notable example of such an integration is the
DQN [31], which combines Q-learning with a deep NN. The
DQN agent, when presented with high-dimensional inputs, can
successfully learn policies using RL. The action-value function
is approximated for optimality using the deep CNN. The deep
CNN, using experience replay and target network, overcomes
the instability and divergence sometimes experienced while
approximating Q-function with shallow NN.

Another deep RL algorithm is the double DQN, which
is an extension of the DQN algorithm [73]. In certain sit-
uations, the DQN suffers from substantial overestimations
inherited from the implemented Q-learning, which are over-
come by replacing the Q-learning of the DQN with a double
Q-learning algorithm [74]. The DQN learns two value func-
tions, by assigning an experience randomly to update one
of them, resulting in two sets of weights. During every
update, one set determines the greedy policy, while the other
determines its value. Other deep RL algorithms include deep
deterministic policy gradient, continuous DQN, asynchronous
N-step Q-learning, Dueling network DQN, prioritized expe-
rience replay, deep SARSA, asynchronous advantage actor-
critic, and actor-critic with experience replay [39].

III. APPLICATIONS TO BIOLOGICAL DATA

The above-outlined techniques, also available as open-
source tools (see [75] for a mini review of tools based on DL),
have been used in mining biological data. The applications,
as reported in literature, are provided in the following for data
from each of the application domains.

Table I summarizes state-of-the-art applications of
DL and RL to biological data [see Fig. 1(h)]. It also reports
on individual applications in each of these domains and the
data type on which the methods have been applied.

A. Omics

Some DL and RL methods have been extensively used
in Omics (such as genomics, proteomics, or metabolomics)
research to extract features, functions, structure, and molecular
dynamics from the raw biological sequence data (e.g., DNA,
RNA, and amino acids). Specifically, mining sequence data
is a challenging task. Different analyses (e.g., GE profiling,
splicing junction prediction, sequence specificity prediction,
transcription factor determination, and protein–protein interac-
tion evaluation) dealing with different types of sequence data
have been reported in the literature.
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TABLE I

SUMMARY OF (DEEP) (REINFORCEMENT) LEARNING APPLICATIONS TO BIOLOGICAL DATA

To identify splicing junction at the DNA level, a tedious
job to do manually, Lee and Yoon [79] proposed a DBN-
based unsupervised method to perform the autoprediction.
Profiling GE is a demanding job. Chen et al. [83] exploited
a DNN-based method for GE profiling on RNA-seq and
microarray-based GE Omnibus data set. The ChIP-seq
data were preprocessed, using CNN, into a 2-D matrix
where each row denoted a gene’s transcription factor activity
profile [92]. Also, somatic point mutation-based cancer clas-
sification was performed using the DNN [90]. In addition,
DA-based methods have been used for feature extraction in
cancer diagnosis and classification (Fakoor et al. [76] used
the sparse DA method) in combination with related gene
identification (Danaee et al. [77] used stacked denoising DA)
from GE data.

Alipanahi et al. [93] used a deep CNN structure to predict
DNA- and RNA-binding proteins’ [(D/R)BPs] role in alter-
native splicing and examined the effect of disease associated
genetic variants (GVs) on transcription factor binding and GE.
Zhang et al. [84] developed a DNN framework to model
structural features of RBPs. Pan and Shen [82] proposed a
hybrid CNN-DBN model to predict RBP interaction sites and
motifs on RNAs. Quang et al. [86] proposed a DNN model
to annotate and identify pathogenicity in GV.

Identifying the best discriminative genes/microRNAs
(miRNAs) is a challenging task. Ibrahim et al. [80] pro-
posed a group feature selection method from genes/miRNAs
based on expression profile using DBN and active learn-
ing. CNN was used to interpret noncoding genome by
annotating them [94]. Also, Zeng et al. [95] employed

CNN to predict the binding between DNA and protein.
Zhou and Troyanskaya [96] proposed a CNN-based approach
to identify noncoding GV, which was also used by
Huang et al. [97] for a similar purpose. Park et al. [99]
proposed an LSTM-based tool to automatically predict miRNA
precursor. Also, Lee et al. [100] presented a deep RNN
framework for automatic miRNA target prediction.

DNA methylation (DM) causes DNA segment activity alter-
ation without affecting the sequence, and thus, detecting its
state in a sequence is important. Angermueller et al. [85] used
a DNN-based method to estimate a DM state by predicting the
changes in single nucleotides and uncovering sequence motifs.

Proteomics pose many complex computational problems to
solve. Estimating complete protein structures from biological
sequences, in 3-D space, is a complex and NP-hard prob-
lem. Alternatively, the protein structures can be divided into
independent subproblems (e.g., torsion angle, access surface
area, and dihedral angles) and solved in parallel, and estimate
the secondary protein structures (2-PS). Predicting compound–
protein interaction (CPI) is very interesting from drug discov-
ery point of view and tough to solve.

Heffernan et al. [87] proposed an iterative DNN scheme
to solve these subproblems for 2-PS. Wang et al. [98] uti-
lized a deep CNN to predict 2-PS. Li [78] proposed the
DA learning-based model to reconstruct a protein structure
based on a template. Also, DNN-based methods to predict
CPI [88], [89], [91] have also been reported.

In medicine, model organisms are often used for trans-
lational research. Chen et al. [81] used bimodal DBNs
to predict responses of human cells under certain stimuli
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based on responses of rat cells obtained with the same
stimuli.

RL has also been used in omics, for example,
Chuang et al. [101] used binary particle swarm
optimization (PSO) and RL to predict bacterial genomes,
Ralha et al. [102] used RL through a system called
BioAgent to increase the accuracy of biological sequence
annotation, and Bocicor et al. [103] solved the problem of
DNA fragment assembly using the RL-based framework.
Zhu et al. [104] proposed a hybrid RL method, with text
mining, for constructing protein–protein interaction networks.

B. Bioimaging

In biology, DL architectures targeted on pixel levels of a bio-
logical image to train the NN. Ning et al. [108] used CNN for
pixelwise image segmentation of nucleus, cytoplasm, cell, and
nuclear membranes using electron microscope image (EMI).
Reduced pixel noise and better abstract features of bio-
logical images can be obtained by adding multiple layers.
Ciresan et al. [109], [110] employed deep CNNs to identify
mitosis in histology images of the breast, and a similar archi-
tecture was also used to find neuronal membranes and auto-
matically segment neuronal structures in EMI. Xu et al. [105]
used a stacked sparse DA architecture to identify nuclei in the
histopathology images of the breast cancer. Xu et al. [106]
classified colon cancer images using multiple instance
learning (MIL) from DNN learned features.

Besides pixel-level analysis, DL has also been applied to
cell- and tissue-level analysis. Chen et al. [107] employed
DNN in labelfree cell classification. Parnamaa and Parts [111]
used the CNN to automatically detect fluorescent protein
in various subcellular localization patterns using microscopy
images of yeast. Ferrari et al. [112] used CNNs to count
bacterial colonies in agar plates. Kraus et al. [113] integrated
both the segmentation and the classification in a model, which
can be utilized to classify the microscopy images of the
yeast. Flow cytometry is used in cellular biology through
a cycle analysis to monitor different stages of a cell cycle.
Eulenberg et al. [114] proposed a deep flow model, combining
nonlinear dimension reduction with CNN, to analyze single-
cell flow cytometry images. Furthermore, a CNN architecture
was employed to segment and recognize neural stem cells in
images taken by bright field microscope [115], and DBN for
analyzing gold immunochromatographic strip [197].

C. Medical Imaging

DL and RL architectures have been widely used in ana-
lyzing medical images obtained from—magnetic resonance
[(f/s)MRI], CT scan, positron emission tomography (PET),
radiography/fundus (e.g., X-ray and CFI), microscope, ultra-
sound (UlS)—to denoise, segment, classify, detect anomalies,
and diseases from these images.

Segmentation is a process of partitioning an image based on
some specific patterns. Sirinukunwattana et al. [156] reported
the results of the gland segmentation competition from colon
histology images. Kamnitsas et al. [130] proposed a 3-D
dual pathway CNN to simultaneously process multichannel

MRI and segment lesions related to tumors, traumatic injuries,
and ischemic stroke. Stollenga et al. [131] segmented neu-
ronal structures from 3-D EMI and brain MRI using multi-
dimensional RNN. Fritscher et al. [134] used a deep CNN
for volume segmentation from head-neck region’s CT scans.
Havaei et al. [123], [125] segmented brain tumor from MRI
using CNN and DNN. Brosch and Tam [119] proposed
a DBN-based manifold learning method of 3-D brain MRI.
Cardiac MRIs were segmented for heart’s left ventricle using
the DBN [145], and blood pool (BP) and myocardium (MC)
using the CNN [157]. Mansoor et al. [116] automatically
segmented anterior visual pathway from MRI sequences using
a stacked DA model. Lerouge et al. [133] proposed the
DNN-based method to label CT scans.

Success of many medical image analysis methods depends
on image denoising. Gondara [144] proposed a denois-
ing technique utilizing convolutional denoising DA, and
validated it with mammograms and dental radiography,
while Agostinelli et al. presented an adaptive multicolumn
stacked sparse denoising DA method for image denois-
ing, which was validated using CT scan images of the
head [132].

Detecting anomaly in medical images is widely used
for disease diagnosis. Several models were applied to
detect Alzheimer’s disease (AD) and mild cognitive
impairment (MCI) from MRI and PET scans, including
DA [117], [118], DBM [120], RBM [121], and multimodal
stacked deep polynomial network (MStDPN) [124].

Due to its facilitating structure, a CNN has been the most
popular DL architecture for an image analysis. The CNN was
applied to classify breast masses from mammograms (MMM)
[151]–[155], diagnose AD using different neuroimages
(e.g., brain MRI [126], brain CT scans [135], and
(f)MRIs [128]), and rheumatoid arthritis from hand radi-
ographs [150]. The CNN was also used extensively: on
CT scans to detect anatomical structure [136], sclerotic
metastases of spine along with colonic polyps and lymph
nodes (LNs) [137], thoracoabdominal LN and interstitial lung
disease (ILD) [139], pulmonary nodules [138], [140], [141];
on (f)MRI and diffusion tensor images to extract deep features
for brain tumor patients’ survival time prediction [129]; on
MRI to detect neuroendocrine carcinoma [127]; on UlS images
to diagnose breast lesions [138] and ILD [147]; on CFI to
detect hemorrhages [148]; on endoscopy images to diagnose
digestive organ-related diseases [149]; and on PET images
to identify oesophagal carcinoma and predict responses of
neoadjuvant chemotherapy [143].

In addition, a DBN was successfully applied to identify
attention deficit hyperactivity disorder [142], and schizophre-
nia and Huntington disease from (f/s)MRI [122]. And, a DNN-
based method was proposed to successfully identify the fetal
abdominal standard plane in UlS images [146].

RL was used in segmenting transrectal UlS images to
estimate location and volume of the prostate [158].

D. (Brain/Body)–Machine Interfaces

DL and RL methods have been applied to BMI signals
[e.g., electroencephalogram (EEG), electrocardiogram (ECG),
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and electromyogram (EMG)] mainly from (brain) function
decoding and anomaly detection perspectives.

Various DL architectures have been used in classifying
EEG signals to decode Motor Imagery (MoI). The CNN was
applied in the classification pipeline using—augmented com-
mon spatial pattern (CSP) features which covered various
frequency ranges [172], features based on combined selective
location, time, and frequency attributes, which were then
classified using DA [173], and signal’s dynamic energy repre-
sentation [174]. The DBN was also employed—in combination
with softmax regression to classify signal frequency infor-
mation as features [161] and in conjunction with Ada-boost
algorithm to classify single channels [162]. DNN was used
with variance-based CSP features to classify MoI EEG [171]
and to find neural patterns occurring at each time points in
single trials, where the input heatmaps were created with a
layerwise relevance propagation technique [170]. In addition,
MoI EEG signals were classified by denoising DA using
multifractal attribute features [159].

The DBN was used by Li et al. [163] to extract low-
dimensional latent features as well as critical channel selection
that led to an early framework for affective state classification
using EEG signals. In a similar work, Jia et al. [164] used
a semisupervised approach with active learning to train DBN
and generative RBMs for the classification. Later, using dif-
ferential entropy as features to train the DBN, Zheng and Lu
examined dominant frequency bands and channels of EEG
in an emotion recognition system [165]. Jirayucharoensak
et al. used principal component analysis (PCA) extracted
power spectral densities from each EEG channel, which were
corrected by covariate shift adaptation to reduce nonstation-
arity, as features to stacked DA to detect emotion [160].
Tripathi et al. [175] explored the DNN (with Softmax activator
and Dropout) and CNN [198] (with Tan Hyperbolic, Max
Pooling, Dropout, and Softplus) for emotion classification
from the DEAP data set using EEG signals and response
face video. Using the similar data from the MAHNOB-HCI
data set, Soleymani et al. [178] detected continuous emotion
using the LSTM-RNN. Channelwise CNN and its variant with
RBM [176], and autoregressive-model based features with
sparse-DBN [169], was used to estimate driver’s cognitive
states using EEG data.

In another approach to model cognitive events, EEG signals
were transformed to time-lagged multispectral images and fed
to the CNN for learning the spectral and spatial representations
of each image, followed by an adapted LSTM to find the
temporal patterns in the image sequence [179].

The DBN has been employed in classifying EEG signals
for anomaly detection in diverse scenarios, including online
waveform classification [166], AD diagnosis [167], integrated
with HMM to understand sleep phases [168]. To detect
and predict seizures, the CNN was used for classification
of synchronization patterns [177]; RNN predicted specific
signal features related to seizure after being trained with data
preprocessed by wavelet decomposition [180]. Also, a lapse
of responsiveness warning system was proposed using the
LSTM [181].

Using the CNN, Atzori et al. [184] and Park and Lee [185]
decoded hand movements from EMG signals.

ECG arrhythmias were successfully detected using the
DBN [188] and DNN [189]. The DBN was also used to
classify ECG signals acquired with two leads [187], and in
combination with nonlinear SVM and Gaussian kernel [186].

RL has also been applied in the BMI research. Con-
centrating mainly on controlling (prosthetic/robotic) devices,
several studies have been reported, including mapping neural
activity to intended behavior through coadaptive BMI [using
TD(λ)] [190], symbiotic BMI (using actor-critic) [191], a test-
bed targeting center-out reaching task in primates for cre-
ating more realistic BMI control models [192], Hebbian
RL for adaptive control by mapping neural states to pros-
thetic actions [193], BMI for unsupervised decoding of cor-
tical spikes in multistep goal-directed tracking task [using
Q(λ)] [194], adaptive BMI capable of adjusting to dramatic
reorganizing neural activities with minimal training and stable
performance over long duration (using actor-critic) [195],
and BMI for efficient nonlinear mapping of neural states to
actions through sparsification of state-action mapping space
using quantized attention-gated kernel RL as an approxima-
tor [196]. Also, Lampe et al. [182] proposed BMI capa-
ble of transmitting imaginary movement-evoked EEG signals
over the Internet to remotely control a robotic device, and
Bauer and Gharabaghi [183] combined RL with the Bayesian
model to select dynamic thresholds for an improved perfor-
mance of restorative BMI.

IV. PERFORMANCE ANALYSIS AND COMPARISON

Comparative test results, in the form of performances/
accuracies of each DL technique when applied to the data
coming from Omics (Fig. 2), Bioimaging (Fig. 3), Medical
Imaging (Fig. 4), and BMIs (Fig. 5), are summarized in the
following to facilitate the reader in selecting the appropriate
method for h(is/er) research. The reported performances can
be regarded as a metric to evaluate the strengths/weaknesses
of a particular technique with a given set of parameters on
a specific data set. It should be noted that several factors
(e.g., data preprocessing, network architecture, feature selec-
tion and learning, and parameters’ optimization) collectively
determine the accuracy of a method.

In Figs. 2–5, each group of bars indicates the accuracies/
performances of comparable DL or non-DL techniques when
applied to the same data and reported in an individual study.
And, each bar in a group shows the (mean) performance of
different runs of a technique on either multiple subjects/data
sets (for means, error bar is ± standard deviation). Many of
the acronyms used in the performance comparison are defined
in the legends of the figures.

A. Omics
Fig. 2(a) reports that DBN outperforms other methods

in predicting splice junction when applied to two data sets
from Whole Human Genome database (GWH-donor and
GWH-acceptor) and two from UCSC genome database
(UCSC-hg19 and UCSC-hg38) [79]. In the GWH data sets,
the DBN-based method achieved superior F1-score (0.81
and 0.75) against the SVM-based methods with radial basis
(SVM-RBF; 0.77 and 0.67), sigmoid (SVM-SF; 0.71 and 0.56)
functions, and other splicing techniques, such as gene splicer
(GS; 0.74 and 0.75) and splice machine (SM; 0.77 and 0.73).
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Fig. 2. Performance comparison of representative DL techniques when applied to Omics data in (a) predicting splice junction, (b) CPIs, (c) secondary/tertiary
structures of proteins, (d) analyzing GE data and classifying and detecting cancers from them, (e) predicting DNA- and RNA-sequence specificity (details
about DREAM5 can be found in [201] and [202]), (f) RNA binding proteins, and (g) micro-RNA precursors. Ray et al.’s method [199].

Also, in the UCSC data sets, the DBN achieved highest
classification accuracy (0.88 and 0.88) in comparison with
SVM-RBF (0.868 and 0.867) and SVM-SF (0.864 and 0.861).

Performance comparison of CPI is shown in Fig. 2(b).
Tested over two CPI data sets, a DNN-based method (DNN*)
achieved superior prediction accuracy (93.2% in data set 1 and
93.8% in data set 2) compared with other methods based on RF
(83.9% and 86.6%), logistic regression (88.3% using LR-L1

and 89.9% using LR-L2), and SVM (88.7% and 90.3% using
SVM3) [88]. In another study, a similar DNN* was applied
on the DUD-E data set, where it achieved higher accuracy
(99.6%) over RF-based (99.58%) and CNN-based (89.5%)
methods [89]. As per the accuracies reported in [88], the RF-
based method had lower values in comparison with the LR-
and SVM-based methods, which had similar values. When
applied on DUD-E data set (reported in [89]), the RF-based
method outperforms the CNN-based method. This may be
attributed to the fact that, classification problems are data
dependent and despite being one of the best classifiers [200],
RF performs poorly on the DUD-E data set.

In predicting 2-PS, DL-based methods outperform other
methods [see Fig. 2(c)]. When applied on two data sets
(CASP11 and TS1199), the stacked sparse autoencoder
(StSAE)-based method achieved superior prediction accuracy
(80.8% and 81.8%) in comparison with other NN-based
methods (FFNN: 79.9% and 82%, MSNN: 78.8% and 81%,
and PSIPRED: 78.8% and 79.7%) [87]. Another DL method
with conditional neural fields, when tested on five different
data sets (CullPDB53, CB513, CASP1054, CASP1155, and
CAMEO), better predicted the 2-PS (Q8 accuracy: 75.2%,
68.3%, 71.8%, 72.3%, and 72.1%) in comparison with other
nontemplate-based methods (SSPro: 66.6%, 63.5%, 64.9%,
65.6%, and 63.5% and CNF: 69.7%, 64.9%, 64.8%, 65.1%,
and 66.2%) [98]. However, when a template of solved protein
structure from protein data bank (PDB) was used, the SSpro
with template obtained the best accuracy (SSProT: 85.1%,
89.9%, 75.9%, 66.7%, and 65.7%).

To annotate GV in identifying pathogenic variants from two
data sets [TS and CVESP in Fig. 2(d)], a DNN-based method
performed better (72.2% and 94.6%) than LR-based (63.5%
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and 95.2%) and SVM-based (63.1% and 93%) methods.
Another CNN-based approach to predict DNA sequence acces-
sibility was tested on data from ENCODE and REC databases
and was reported to outperform gapped k-mer SVM method
(a mean area under the receiver operating characteristic curve
or AUC of 0.89 versus 0.78) [94]. In classifying cancer based
on somatic point mutation using raw TCGA data containing
12 cancer types, a DNN-based method outperformed non-DL
methods [60.1% versus (SVM: 52.7%, kNN: 40.4%, and Naive
Bayes (NB): 9.8%)] [90]. To detect breast cancer using GE
data from the TCGA database, a stacked denoising autoen-
coder (StDAE) was employed to extract features. Accord-
ing to the reported accuracies of non-DL classifiers (ANN,
SVM, and SVM-RBF), StDAE outperformed other feature
extraction methods, such as PCA and kernel-PCA (SVM-
RBF classification accuracies for StDAE, PCA, and kernel-
PCA were 98.26%, 89.13%, and 97.32%, respectively) [77].
Also, deeply connected genes were better classified with
StDAE extracted features (accuracies—ANN: 91.74%, SVM:
91.74%, and SVM-RBF: 94.78%) [77]. Another study on
classifying cancer, using 13 different GE data sets taken from
the literature, reported that the use of PCA in data dimen-
sionality reduction, before applying SAE, StAE, and StAE-FT
for feature extraction, facilitates more accurate extraction of
features [except AC and OV in Fig. 2(d)] for classification
using SVM with Gaussian kernel [76].

Sequence specificities of (D/R)BPs prediction was per-
formed more accurately using a deep CNN-based method in
comparison with other non-DL methods that participated at
the DREAM51 challenge [93]. As seen in Fig. 2(e), the CNN
based method (DeepBind-CNN or DBCNN) outperformed
other methods in ChIP AUC values (top two values- DBCNN:
0.726 versus BEEML-PBM_sec: 0.714) and PBM scores (two
top scores- DBCNN: 0.998 versus FeatureREDUCE: 0.985)
[201], [202].

Moreover, in predicting RBP, DL-based methods outper-
formed non-DL methods, as seen in Fig. 2(f). As reported
using CLIP AUC values, the DBCNN outperforms Ray et al.
(0.825 versus 0.759) [93], multimodal DBN outperforms
GraphProt (0.902 versus 0.887) [84], and DBN-CNN hybrid
outperforms NMF-based methods (0.9 versus 0.85) [82].

Also, in predicting miRNA precursor Fig. 2(g), an RNN
with DA outperformed other non-DL methods [RNNAE:
0.97 versus (MIL: 0.58, PFM: 0.77, PFM: 0.59, PBM:
0.58, EN: 0.71, and MDS: 0.64)] [100]. And LSTM out-
performed SVM methods [LSTM: 0.93 versus (Boost-SVM:
0.89, CSHMM: 0.65, SVM-LSS: 0.79, SVM-MFE: 0.86,
and RBS: 0.8)] [99].

B. Bioimaging

A DNN was used for detecting 12 different cellular
compartments from microscopy images and reported to have
achieved a classification accuracy of 87% compared to 75%
for RF [111]. The mean performance of the detection was
83.24% ± 5.18% using the DNN and 69.85% ± 6.33% using
the RF [Fig. 3(a)]. In classifying flow cytometry images for

1DREAM5 challenge: http://dreamchallenges.org/ and [201], [202].

Fig. 3. Performance comparison of some DL and conventional ML techniques
when applied to bioimaging application domain. (a) Performances in classi-
fying EMIs for cell compartments, cell cycles, and cells. (b) Performances in
analyzing images to automatically annotate features and detect mitosis and
cell nuclei.

cell-cycle phases, a deep CNN with nonlinear dimension
reduction outperformed boosting (98.73% ± 0.16% versus
93.1% ± 0.5%) [Fig. 3(a)] [114]. The DNN, trained using a
genetic algorithm with AUC as a cost function, performed
labelfree cell classification at higher accuracy (95.5%±0.9%)
than SVM with Gaussian kernel (94.4% ± 2.1%), LR
(93.5% ± 0.9%), NB (93.4% ± 1%), and DNN trained with
cross entropy (88.7% ± 1.6%) [Fig. 3(a)] [107].

Colon histopathology images were classified with higher
accuracy using the DNN and MIL (97.44%) compared with
K-means clustering (89.43%) [106] [Fig. 3(b)]. Deep max-
pooling CNN detected mitosis in breast histology images with
higher accuracy (88%) in comparison with statistical-feature-
based classification (70%) [Fig. 3(b)] [109]. Using StSAE
with softmax classifier (SMC), nuclei were more accurately
detected from breast cancer histopathology images (88.8% ±
2.7%) when compared with other techniques with SMC–CNN
(88.3% ± 2.7%), three-layer SAE (88.3% ± 1.9%), StAE
(83.7% ± 1.9%), SAE (84.5% ± 3.8%), AE (83.5% ±
3.3%), SMC alone (78.1% ± 4%), and EM (66.4% ± 4%)
[Fig. 3(b)] [105].

C. Medical Imaging

Comparative test results on the performance of various
DL/non-DL techniques in segmenting medical images to
detect pathology or organ parts are reported in Fig. 4(a).
A multiscale, dual pathway, 11-layered, 3-D CNN-based
method with conditional random fields outperformed an RF
method (DSC metric values: 63±16.3 versus 54.8±18.5) when
segmenting brain lesion in MRIs obtained from the TBI data-
base. The classifier’s accuracy improved when three similar
networks were ensembled (i.e., used as an ensembled method)
and their outputs were averaged (64.5±16.3 versus 63±16.3)
[130]. In a similar task, a (two pathway/cascaded) CNN trained
using a two-phase training procedure, with local and global
features, outperformed other methods participating at the
MCCAI-BRATS20132 as reported using Dice coefficients
(InputCascadeCNN: 0.88 versus Tustison: 0.87) [125]. The
StAE-based method performed similarly or superior to other
non-DL methods [see “ON” in Fig. 4(a), DSC values–StAE:

2See [203] for MICCAI-BRATS2013.
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Fig. 4. Performance comparison of representative DL techniques when applied to medical imaging. (a) Performance of image segmentation techniques in
segmenting tumors (BT: brain tumor), and different organ parts (ON: optic nerve, GL: gland, LV: left ventricle of heart, BP: blood pool, and MC: myocardium).
(b) Image denoising techniques to improve image quality during the presence of GN, PN, SPN, and SN. (c) Detecting anomalies and diseases in mammograms.
(d) Classification and detection of AD and MCI, along with healthy controls (NC). (e) Performance of prominent techniques for LNC, organ classification,
brain tumor detection, colon polyp detection, and chemotherapy response detection.

0.79 versus (MAF: 0.77, MAF: 0.76, and SVM: 0.73)] in
segmenting optic nerve from MRI data [116]. Several DL
methods were evaluated for identifying glands in colon histol-
ogy images, and a DCAN-based method outperformed other
CNN-based methods at the GlaS contest3 [DCAN: 0.839 ver-
sus (MPCNN1: 0.834, UCNN-MHF: 0.831, MFR-FCN: 0.833,
MPCNN2: 0.819, and UCNN-CCL: 0.829)] [156]. Also, left
ventricles were segmented from cardiac MRI, where a CNN-
StAE-based method outperformed other methods [CNN-StAE:
0.94 versus (TLVSF: 0.9, DRLS-DBN: 0.89, GMM-DP: 0.89,
MF-GVF: 0.86, and TSST-RRDP: 0.88)] [204]. In segment-
ing volumetric medical images for BP and MC, CNN-based
methods outperformed other methods as reported using Dice
coefficients—BP (MAF: 0.88, DCNN: 0.93, 3DMRF: 0.87,
TVRF: 0.79, 3DUNet: 0.926, and 3DDSN: 0.928) and MC
(MAF: 0.75, DCNN: 0.8, 3DMRF: 0.61, TVRF: 0.5, 3DUNet:
0.69, and 3DDSN: 0.74) [157].

DL-based methods outperformed other methods in denois-
ing MMM and dental radiographs [144], and brain CT
scans [132] [Fig. 4(b)]. StDAE-CNN performed more accurate
denoising in the presence of Gaussian noise (GN)/Poisson
noise (PN) as reported using structural SIMilarity (SSIM)

3See [156] for MICCAI15-GlaS.

index scores (Noisy: 0.63, NL Means: 0.62, MedFilt: 0.8,
CNNDAEa: 0.89, and CNNDAEb: 0.9) [144]. Adaptive
MCStSDA outperformed MCStSDA in denoising CT images
as reported using peak signal-to-noise ratio (PSNR) values for
GN, salt and pepper (SPN), and speckle noise (SN) (SSIM4

scores—GN: 26.5 versus 22.7, SPN: 25.5 versus 22.1, and SN:
26.6 versus 25.1) [132].

CNN-based methods performed very well in detecting
breast mass and lesion in MMM obtained from different data
sets [see Fig. 4(c)]. For MMM obtained from the FFDM
database, trained with labeled and unlabeled features, CNN
outperformed other methods (CNN-LU: 87.9%, SVM-LU:
85.4%, ANN-LU: 84%, SVM-L: 82.5%, and ANN-L: 81.9%)
[153]. In detecting masses in MMM from the BCDR data-
base, the CNN with two convolution layers and one fully
connected layer (CNN3) performed similar to other methods
(CNN3:82%, HGD: 83%, HOG: 81%, and DeCAF: 82%),
and the CNN with one convolution layer and one fully con-
nected layer performed poorly (CNN2: 78%) [151]. Pretrained
CNN with RF outperformed other methods [e.g., RF with
handcrafted features and sequential forward selection with
linear discriminant analysis (LDA)] while analyzing MMM

4SSIM = (PSNR − 15.0865)/20.069, with σfg = 102 [205].
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from the INBreast database (RF-CNNPT: 95%, CNNPT: 91%,
RF-HF: 90%, and SFS-LDA: 89%) [155]. In yet another study,
the CNN with a linear SVM outperformed other methods
on MMM from the DDSM database (CNN-LSVM: 96.7%,
SVM-ELM: 95.7%, SSVM: 91.4%, AANN: 91%, SCNN:
88.8%, and SVM: 83.9%) [152]. However, for the MMM
from the MIAS database, a DWT with backpropagating NN
outperformed its SVM/CNN counterparts (DWT-GMB: 97.4%
versus SVM-MLP: 93.8%) [152].

Despite having been all applied on images from the ADNI
database, reported methods displayed different performances
in detecting and classifying “AD versus NC” and “MCI versus
NC” (AD and MCI, in short) varied greatly [see Fig. 4(d)].
An approach employing deep-supervised-adaptable 3-D-CNN
(DSA-3-D-CNN) outperformed other DL and non-DL meth-
ods, as reported using their accuracies, in detecting AD
and MCI [AD, MCI—DSA-3-D-CNN: 99.3%, 94.2% versus
(DSAE: 95.9% and 85%, DBM: 95.4% and 85.7%, SAE-3-D-
CNN: 95.3% and 92.1%, SAE: 94.7% and 86.3%, DSAE-SLR:
91.4% and 82.1%, MK-SVM: 96% and 80.3%, ISML: 93.8%
and 89.1%, and DDL: 91.4% and 77.4%)] [126]. A stacked
RBM with dropout-based method outperformed the same
method without dropout and multikernel-based SVM method
in detecting AD and MCI [AD, MCI—SRBMDO: 91.4% and
77.4% versus (SRBMWODO: 84.2% and 73.1% and MK-
SVM: 85.3% and 76.9%)] [121]. In another method with
StAE extracted features, MK-SVM was more accurate than
SK-SVM method [(AD, MCI)—MK-SVM: 85.3% and 76.9%
versus SK-SVM: 95.9% and 85%)] [117]. Another method,
where features from MRI and PET were fused and learned
using MStDPN algorithm, outperformed other multimodal
learning methods in detecting AD and MCI (AD, MCI—MTL:
95.38% and 82.99%, StSDAE: 91.95% and 83.72%,
MStDPN-SVM: 97.13% and 87.24%, and MStDPN-LC:
96.93% and 86.99%) [124].

Different techniques reported varying accuracies in detect-
ing a range of anomalies from different medical images
[Fig. 4(e)]. The CNN had a better accuracy in classify-
ing ILD (85.61%) when compared with RF (78.09%), kNN
(73.33%), and SVM-RBF (71.52%) [147]. Lung nodule clas-
sification (LNC) was accurately done using StDAE (95%)
compared with RT-SVM (72.5%) and CT-SVM (77%) [138].
Multicrop CNN achieved a better accuracy (87.14%) than the
DAE with binary DT (80.29%) and quantitative radiomics-
based approach (83.21%) in LNC [140]. MTANNs out-
performed CNNs variants in LNC [MTANN: 88.06% ver-
sus (SCNN: 77.09%, LeNet: 75.86%, RDCNN: 78.13%,
AlexNet: 76.85%, and FT-AlexNet: 77.55%)] [141]. A hier-
archical CNN with extreme learning machine (ELM) out-
performed other CNN and SVM methods [HCNN-NELM:
97.23% versus (SIFT-SVM: 89.79%, CNN: 95%, and
CNN-SVM: 97.05%)] in classifying digestive organs [149].
A multichannel CNN with PCA and handcrafted fea-
tures better detected BT (89.85%) in comparison with
2-D-CNN (81.25%), scale-invariant transform (78.35%), and
manual classification with handcrafted features (62.8%) [129].
A 2-D-CNN-based method trained with stochastic gradient
descent learning outperformed other non-DL methods [AUC

Fig. 5. Accuracy comparison of DL and conventional ML techniques
when applied to BMI signals. (a) Performance comparison in detecting
motor imagery, recognizing emotion and cognitive states (ER), and detecting
anomaly (AnD) from EEG signals. (b) Accuracies of MD from EMG signals.
(c) Accuracies of ECG signal classification.

values—CNN: 0.93 versus (HoG-SVM: 0.87 and RF-SVM:
0.76)] in detecting colon polyp from CT colonographs [137].
In addition, 3Slice-CNN was successfully employed to detect
chemotherapy response in PET images, which outperformed
other shallow methods (3S-CNN: 73.4% ± 5.3%, 1S-CNN:
66.4%±5.9%, GB: 66.7%±5.2%, RF: 57.3%±7.8%, SVM:
55.9%±8.1%, GB-PCA: 66.7%±6%, RF-PCA: 65.7%±5.6%,
and SVM-PCA: 60.5% ± 8%) [143].

D. (Brain/Body)–Machine Interfaces

Test results in the form of performance comparison of
DL/non-DL methods applied to EEG data to detect MoI, emo-
tion and affective state, and anomaly are shown in Fig. 5(a).

A linear parallel CNN with MLP classified EEG energy
dynamics more accurately (70.6%) than SVM (67%), MLP
(65.8%), and CNN (69.6%) to detect MoI from the BCI
Competition (BCIC) IV-2a data set [174]. A CNN better
classified frequency complementary feature maps of aug-
mented CSP and SFM as features (68.5% and 69.3%)
than filter-bank CSP (67%) to detect MoI from the BCIC
IV-2a data set [172]. CNN, StAE, and their combina-
tion (CNN-StAE) were tested in classifying MoI from
BCIC IV-2b EEG data. Using time, frequency, and location
information as features, CNN-StAE achieved best accuracy
(77.6% ± 2.1%) in comparison with SVM (72.4% ± 5.7%),
CNN (74.8% ± 2.3%), and StAE (57.7% ± 5.5%) [173].
A DBN with Ada-boost-based classifier had higher accuracy
(∼81%) than SVM (∼76%) in classifying hand movements
from EEG [162]. Another DBN-based method reported better
accuracy (0.84) using frequency representations of EEG (using
FFT and wavelet package decomposition) rather than FCSP
(0.8), and CSP (0.76) in classifying MoI [161]. A DNN-based
method, with layerwise relevance propagation heatmaps,
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performed comparably (75%) with CSP-LDA (82%) in MoI
classification [170].

A deep learning network (DLN) was built using StAE with
PCA and covariate shift adaptation to classify valence and
arousal states from DEAP EEG data with multichannel power
spectral densities as features. The mean accuracy of the DLN
was 52.7% ± 9.7% compared with SVM (40.1% ± 7.9%)
[160]. A supervised DBN-based method classified affective
states more accurately (75.6% ± 4.5%) when compared with
SVM (64.7% ± 4.6%) by extracting deep features from
thousands of low-level features using the DEAP EEG data
[163]. A DBN-based method, with differential entropy as
features, explored critical frequency bands and channels
in EEG, and classified three emotions (positive, neutral,
and negative) with higher accuracy (86.1%) than SVM
(83.9%) [165]. As reported through Az-score, in predicting
driver’s drowsy and alert state from EEG data, CCNN
and CNNR methods outperformed (79.6% and 82.8%,
respectively) other DL (CNN: 71.4% ± 7.5% and
DNN: 76.5% ± 4.4%) and non-DL (LDA: 52.8% ± 4%
and SVM: 50.4% ± 2.5%) methods [176].

A DBN was used to model, classify, and detect anomalies
from EEG waveforms. It has been reported that using raw
data, a comparable classification and superior anomaly detec-
tion accuracy (50% ± 3%) can be achieved compared with
SVM (48% ± 2%) and kNN (40% ± 2%) classifiers [166].
Another DBN- and HMM-based method performed com-
parable sleep stage classification from raw EEG data
(67.4%±12.9%) with respect to DBN with HMM and features
(72.2%±9.7%) and Gaussian observation HMM with features
(63.9% ± 10.8%) [168].

Fig. 5(b) shows the performances of various methods
in movement decoding (MD) from (s)EMG. A CNN-based
method’s hand movement classification accuracy using three
sEMG data sets (from the Ninapro database) were comparable
with other methods [CNN versus (kNN, SVM, RF)]—data
set 1: 66.6% ± 6.4% versus (60% ± 8%, 62.1% ± 6.1%, and
75.3% ± 5.7%), data set 2: 60.3% ± 7.7% versus (68% ± 7%,
75%±5.8%, and 75.3%±7.8%), and data set 3: 38.1%±14.3%
versus (38.8% ± 11.9%, 46.3% ± 7.9%, and 46.3% ± 7.9%)
[184]. Another method, a user-adaptive one, using CNN with
deep feature learning, decoded movements more accurately
compared with SVM (95% ± 2% versus 80% ± 10%) [185].

Fig. 5(c) compares different techniques’ performances in
classifying ECG signals from MIT-BIH arrhythmia database
and detecting anomalies in them. A nonlinear SVM with
Gaussian kernel (DBN1) outperformed (98.5%) NN (97.5%),
LDA (96.2%), SVM with genetic algorithm (SVM1: 96%),
SVM with kNN (SVM2: 98%), Wavelet with PSO (88.8%),
and CA (94.3%) in classifying ECG features extracted using
the DBN [186]. Comparable accuracy in classifying ECG
beats was obtained using the DBN with softmax (DBN2:
98.8%) compared to SVM with Wavelet and independent
component analysis (ICA) (SVM3: 99.7%), SVM with higher
order statistics and Hermite coefficients (SVM4: 98.1%),
SVM with ICA (SVM5: 98.8%), DT (96.1%), and Dynamic
Bayesian network (DyBN: 98%) [187]. Using the DBN (with
contrastive divergence and persistent contrastive divergence

learning), arrhythmias were classified more accurately (98.6%)
in comparison with block NN1 (98.1%), feedforward-based
NN with PSO (NN2: 97.0%), mixture of experts (97.6%), and
LDA (95.5%) [188].

V. OPEN ISSUES AND FUTURE PERSPECTIVES

Overall, it is believed that the brain solves problems through
reinforcement learning and neuronal networks organized as
hierarchical processing systems. Though since the 1950s the
field of AI has been trying to adopt and implement this strategy
in computers, notable progress has been seen only recently due
to our better understanding about learning systems, increase
of computational power, decline of computing costs, and last
but not least, the seamless integration of different technological
and technical breakthroughs. However, there are still situations
where these methods fail, underperform against traditional
methods, and, therefore, must be improved. In the following,
we outline, what in our opinion are, the shortcomings of
current techniques and existing open research challenges, and
speculate about some future perspectives that will facilitate
further development and advancement of the field.

The combined computational capability and flexibility pro-
vided by the two prominent ML methods (i.e., DL and RL)
also has limitations [33]. Both of these methods require heavy
computing power and memory, and therefore, are not worthy
of being applied to moderate size data sets. Additionally,
the theory of DL is not completely understood, making the
high-level outcomes obscure and difficult to interpret. This
turns into a situation when the models are considered as
“Black box” [206]. In addition, like other ML techniques,
DL is also susceptible to misclassification [72] and over-
classification [207]. Furthermore, in representing action-value
pairs in RL, it is not possible to use all nonlinear approx-
imators, which may cause instability or even divergence in
some cases [31]. Also, bootstrapping makes many of the
RL algorithms NP-hard and inapplicable to real-time appli-
cations, as they are too slow to converge and in some cases
too dangerous (e.g., autonomous driving). Moreover, very
few of the existing techniques support harnessing the poten-
tial power of distributed and parallel computation through
cloud computing. Arguably, in case of cloud, distributed, and
parallel computing, data privacy and security concerns are
still prevailing [208], and real-time processing capability of
the gigantic amount of experimentally acquired data is still
underdeveloped [209], [210].

To proceed toward mitigating shortcomings and addressing
open issues, firstly, improving the existing theoretical founda-
tions of DL on the basis of experimental data becomes crucial
to be able to quantify the performances of individual NN
models [211]. These improvements should be able to address
issues, such as specific assessment of an individual model’s
computational complexity and learning efficiency in relation
to well-defined parameter tuning strategies, and the ability to
generalize and topologically self-organize based on data-driven
properties. Also, novel data visualization techniques should
be incorporated so that the interpretation of data becomes
intuitive and less cumbersome. In terms of learning strategies,
updated hybrid on- and off-policy with new advances in
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optimization techniques is required. The problems pertaining
to observability of RL are yet to be completely solved, and
optimal action selection is still a huge challenge.

As seen in Table I, there are timely opportunities to employ
deep RL in biological data mining, for example, deriving
dynamic information from biological data coming from mul-
tiple levels to reduce data redundancy and discover novel
biomarkers for disease detection and prevention. Also, new
unsupervised learning for deep RL methods is required to
shrink the necessity of large sets of labeled data at the training
phase. Multitasking and multiagent learning paradigm should
advance in order to cope with dynamically changing problems.

In addition, to keep up with the rapid pace of data growth in
biological application domains, computational infrastructures
in terms of distributed and parallel computing tailored to those
applications are needed.

VI. CONCLUSION

The recent bliss of technological advancement in life sci-
ences came with the huge challenge of mining the multimodal,
multidimentional, and complex biological data. Triggered by
that call, interdisciplinary approaches have resulted in the
development of cutting edge machine learning-based analyt-
ical tools. The success stories of ANN, deep architectures,
and reinforcement learning in making machines more intelli-
gent are well known. Furthermore, computational costs have
dropped, computing power has surged, and quasi-unlimited
solid-state storage is available at a reasonable price. These
factors have allowed to combine these learning techniques
to reshape machines’ capabilities to understand and decipher
complex patterns from biological data. To facilitate wider
deployment of such techniques and to serve as a reference
point for the community, this paper provides a comprehensive
survey of the literature of techniques’ usability with different
biological data. Further, a comparative study is presented on
performances of various DL techniques, when applied to data
from different biological application domains, as reported in
the literature. Finally, some open issues and future perspectives
are highlighted.
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