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a b s t r a c t 

In this paper, a novel method for introducing multiplex data relationships to the SVM optimization pro- 

cess is presented. Different properties about the training data are encoded in graph structures, in the form 

of pairwise data relationships. Then, they are incorporated to the SVM optimization problem, as modified 

graph-regularized basekernels, each highlighting a different property about the training data. The con- 

tribution of each graph-regularized kernel to the SVM classification problem, is estimated automatically. 

Thereby, the solution of the proposed modified SVM optimization problem lies in a regularized space, 

where data similarity is expressed by a linear combination of multiple single-graph regularized kernels. 

The proposed method exploits and extends the findings of Multiple Kernel Learning and graph-based 

SVM method families. It is shown that the available kernel options for the former can be broadened, 

and the exhaustive parameter tuning for the latter can be eliminated. Moreover, both method families 

can be considered as special cases of the proposed formulation, hereafter. Our experimental evaluation 

in visual data classification problems denote the superiority of the proposed method. The obtained clas- 

sification performance gains can be explained by the exploitation of multiplex data relationships, during 

the classifier optimization process. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Computer vision/visual analysis methods have found industrial

applications in several areas such as in robotic systems e.g., un-

manned aerial vehicles and virtual reality, and their growth over

the past few years have been immense. Such visual analysis ap-

plications including face recognition, object recognition, human

action recognition, human/object tracking and many other appli-

cations, are commonly addressed as classification problems [1,2] .

One of the most widely studied classification methods in visual

analysis applications is the Support Vector Machines (SVM) clas-

sifier. SVM-based methods and extensions have been employed in

mathematical/engineering problems including one-class and mul-

ticlass classification, regression and semi-supervised learning [3–

6] . In its simplest form, SVM learns from labeled data examples

originating from two classes, the hyperplane that separates them

with the maximum margin, at the training data input (or feature)

space. After its first proposal, SVM has been extended to deter-

mine decision functions in feature spaces obtained by employing

non-linear data mappings, where data similarity is implicitly ex-

pressed by a kernel function. The explicit data mapping is not re-

quired to be known, if the adopted kernel function satisfies Mercer
∗ Corresponding author. 
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onditions [7] . Common practices for determining a feature space

here SVM provides satisfactory performance to a given classifica-

ion/regression problem, involve selecting a kernel function from a

et of widely adopted kernel functions e.g., polynomial, sigmoid,

adial Basis Function (RBF), and thereby tuning the correspond-

ng hyperparameters using e.g., cross validation, based on previ-

us knowledge about the problem at hand. In every case, the per-

ormance of SVM heavily depends on the adopted kernel function

hoice, since the optimal solution for each problem might lie in

nknown feature spaces. 

In order to determine the optimal feature space for SVM op-

ration, Multiple Kernel Learning (MKL) methods have been pro-

osed. Their basic assumption is that the optimal underlying data

apping, i.e., the optimal kernel function, is a weighted combina-

ion (either linear or non-linear) of Multiple Kernel functions, the

o-called basekernels [8–11] . The participation of each kernel to

he optimal solution is determined by a parameter vector, i.e., the

asekernel weights. The weights of the basekernels are estimated

n an automated fashion along with the SVM hyperplane, by fol-

owing an additional optimization procedure (e.g., single-step se-

uential optimization, two-step optimization). Standard MKL meth-

ds employ L p or L 1 loss functions for determining the kernel

eights, with the latter producing sparse solutions and the former

roviding fast convergence [12,13] . Besides the important theoret-

cal advancements of MKL methods, only few basekernel combi-

ations have found to be successful in realistic applications, i.e.,

https://doi.org/10.1016/j.patcog.2018.07.032
http://www.ScienceDirect.com
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KL methods method might suffer from overfitting issues or lim-

ted performance gains [11–13] . 

A alternative approach for improving classification perfor-

ance, are methods that introduce additional optimization

ptions to the standard SVM optimization problem, exploiting

iscriminant/manifold learning criteria [6] . That is, slightly mod-

fied SVM-based optimization problems have been proposed, that

ead to standard SVM solutions in regularized spaces, expressed

y a geometric transformation of the derived SVM hyperplane

ith the adopted criteria. For example, employing discriminant

earning information e.g., within-class variance information [14] ,

romotes SVM hyperplanes that span along low data variance

irections [15,16] . Alternatively, SVM-based methods have been

roposed for semi-supervised learning case, by integrating SVM

ith manifold learning [6] , by exploiting k NN graphs as additional

egularization criteria. It has been shown that exploiting such cri-

eria at the fully supervised learning case is also beneficial to the

lassification performance. Since advances in graph-theory allow

everal manifold/discriminant learning criteria to be expressed

sing generic graph-based representation [17] , methods incor-

orating the underlying data geometry in the SVM optimization

roblem can be implemented through graph-based SVM methods

18–20] . The adoption of generic graph structures within the

VM optimization process, containing e.g., intrinsic (within-class),

r between-class data relationships, promotes solutions that are

ess prone to over-fitting. The disadvantage of graph-based SVM

ethods is that deriving the optimal classification space requires

he evaluation of different graph settings, as well as tuning the

dditional introduced hyperparameters. 

In visual analysis applications, MKL and graph-based SVM

ethods have been successfully employed over the past few years.

heir success can be mainly attributed to the exploitation of the

ultimodal/multiplex structure of images and video data [21] , re-

ated to e.g., spatial and temporal information, information ex-

racted by multiple descriptor types, or even noise generated

y camera movement, multiple viewing angles and illumination

hanges. All this information cannot be efficiently encoded with a

ingle kernel matrix. Our work was inspired by the successful ex-

loitation of multiple graphs in related application scenarios, e.g.,

abel propagation [22–26] . Therefore, we have devised a classifica-

ion method that introduces multiple graphs to the SVM optimiza-

ion problem, by exploiting the intuitions of both MKL and graph-

ased SVM method families. 

In this paper, a novel classification method that incorporates

ultiplex data relationships to the SVM optimization process, is

resented. Multiplex data relationships are encoded in the form of

ultiple graph structures, containing pairwise data relationships,

ach corresponding to a specific data property. We propose a mod-

fied SVM optimization problem, that incorporates this informa-

ion. As an effect, the generated SVM hyperplane is driven to di-

ections where the most discriminant training data properties are

ighlighted. From our derivations, it is shown that the solution of

he proposed optimization problem lies in a modified space, where

ata similarity is explicitly determined by a linear combination of

raph-regularized kernel matrices. Moreover, it is proven that both

ultiple Kernel Learning and Graph-based SVM method families

ethod families can be formulated as special cases of the pro-

osed method, hereafter. Finally, the proposed method exploits and

xtends the findings of Multiple Kernel Learning and graph-based

VM method families, by broadening the available kernel options

or the former, and eliminating exhaustive parameter tuning for

he latter. 

. Related work 

In this section, we overview the preliminary material re-

uired to introduce the proposed method. Section 2.1 contains the

escription of the generic MKL–SVM optimization problem and

ection 2.2 contains an overview of the recently proposed Graph-
mbedded Support Vector Machines, exploiting a single graph in

ts optimization problem for regularization purposes. 

.1. Multiple Kernel learning support vector machines 

Let a set of labeled data S = { x i , y i } , i = 1 , . . . , N sampled from

 × Y, where X ∈ R 

D and Y ∈ {−1 , 1 } , that is employed in order

o train an SVM classifier. MKL–SVM methods optimize for im-

licitly determining the optimal feature space for solving the SVM

ptimization problem. Similarity in that space is reproduced by

 linear or non-linear combination of Multiple Kernel functions

10,13,27–30] . Let M mapping functions φm 

(·) �→ H 

m , m = 1 , . . . , M

hat have been employed as base data mappings. Similarity in

he respective spaces is reproduced by the associated basekernel

unction κm 

(·, ·) = φm 

(·) T φm 

(·) , and H 

m is a Reproducing Kernel

ilbert Space (RKHS). Assuming M basekernels have been linearly

ombined, then the obtained space H is also a RKHS, reproduced

y kernel κ( · , · ). Similarity in that space can be calculated explic-

tly by a weighted summation of the basekernels, as follows: 

(·, ·) = 

M ∑ 

m =1 

μm 

κm 

(·, ·) , (1)

here κm 

is the m th kernel function weighted by a parameter

m 

≥ 0. 

In order to learn the kernel weighting parameters μm 

and the

ptimal SVM hyperplane at the same time, the MKL–SVM opti-

ization problem is formed as a max-min optimization problem: 

ax 
α

min 

μ

N ∑ 

i =1 

αi −
1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

αi α j y i y j 

M ∑ 

m =1 

μm 

κm 

(x i , x j ) 

s . t . 0 ≤ αi ≤ c and 

M ∑ 

m =1 

μp 
m 

= 1 , (2) 

here a is the support vector coefficient vector and p ≥ 1 is a pa-

ameter that affects the sparsity of the obtained basekernel com-

ination. The above defined optimization problem can be solved

equentially or in an iterative manner, keeping a or μ as con-

tants in the respective optimization steps. Assuming that the

ernel weighting parameters μ have been determined, then K =
 M 

m =1 μm 

K m 

is the kernel matrix that can be employed for solving

he standard SVM classification problem. According to Representer

heorem [7] , the relevant SVM hyperplane w = �a that lies in the

KHS H, can be reconstructed by the determined support vector

oefficient vector a and the arbitrary training data representations

∈ H. Data similarity in that space can only be reproduced by the

asekernel combination, since the kernel K cannot be calculated,

therwise. 

After training the classifier, a test sample x is classified to the

ositive or negative training class, according to the outputs of the

ollowing decision function: 

f (x ) = 

N ∑ 

i =1 

y i αi 

M ∑ 

m =1 

μm 

κm 

(x i , x ) + b, (3)

here b is the standard SVM bias term. Finally, the test sample is

lassified to the positive class if sign ( f ( x )) ≥ 0 or the negative class,

therwise. 

.2. Support Vector Machines exploiting geometric data relationships 

Graph-based SVM methods exploit data relationships expressed

y a single graph in the SVM optimization problem [18,20] . To

his end, it is assumed that the training data X = { x 1 , . . . , x N }
ave been embedded in an undirected weighted graph G = {X , W } ,
here W ∈ R 

N×N is the graph weight matrix. It should be noted

hat non-linear data relationships might be expressed as well, by
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employing the explicit data mappings in a feature space i.e., X =
{ φ(x 1 ) , . . . , φ(x N ) } , where φ(·) : R 

D �→ H is mapping function. In

either case, the matrix S can be employed to preserve data rela-

tionships expressed by G, in the feature space H. The definition of

S is the following: 

S = 

1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

W i j 

(
φ(x i ) − φ(x j ) 

)(
φ(x i ) − φ(x j ) 

)T = �L�T , (4)

where L ∈ R 

N×N is the graph Laplacian matrix defined by L =
D − W , where D ∈ R 

N×N is the (diagonal) degree matrix having ele-

ments [ D ] ii = 

∑ 

i � = j [ W ] i j , i = 1 , . . . , N, and � is a matrix containing

the data representations in H. Depending on the exploited graph

type [17] , L can be used in order to describe geometric data rela-

tionships employed in several dimensionality reduction and man-

ifold learning techniques, such as Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA), Clustering-based Dis-

criminant Analysis (CDA), Laplacian Eigenmap (LE) and Locally Lin-

ear Embedding (LLE) [17,19,20] . Finally, the Graph-Embedded SVM

(GE-SVM) optimization problem is defined as follows [18,20] : 

min 

w, ξ,b 

1 

2 

‖ w‖ 

2 + 

λ

2 

w 

T Sw + c 

N ∑ 

i =1 

ξi + b, 

s . t . y i 
(
w 

T φ(x i ) + b 
)

≤ 1 − ξi , i = 1 , . . . , N, 

ξi ≥ 0 , (5)

while an additional constraint w 

T Sw > 0 is also imposed demand-

ing that the matrix S is positive semi-definite. Compared to stan-

dard SVM, an additional parameter λ≥ 0 is introduced, that con-

trols the amount of regularization introduced by the second term.

GE-SVM can be considered a generalization of other SVM-based

methods, e.g., given a value of λ = 0 , the method degenerates to

standard SVM. Depending on the definition of S , GE-SVM is equiv-

alent to previously devised regularized SVM methods such as the

Minimum Variance SVM [15] or Laplacian SVM [6] . 

The equivalent dual problem is defined as follows: 

max 
α

N ∑ 

i =1 

αi −
1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

αi α j y i y j φ(x i ) 
T ( I + λS ) 

−1 φ(x j ) , 

s . t . 0 ≤ αi ≤ c. (6)

Finally, in order to classify a test sample, the standard SVM de-

cision function is employed, by employing a regularized kernel of

the following form: 

˜ κ(x i , x j ) = φ(x i ) 
T ( I + λS ) 

−1 φ(x j ) . (7)

GE-SVM can be solved using standard SVM implementations, by

replacing the standard kernel matrix with the one defined above.

As have been shown in recent work, GE-SVM outperforms the

standard SVM [18,20] , in almost every SVM classification task, in-

cluding one-class classification [19] , and in some cases by a large

extent. However, the increased classification performance comes

with the cost of increased computational complexity, related to in-

efficient parameter tuning. The required parameters to be tuned

include the standard SVM parameter c and the introduced param-

eter λ, and moreover, depending on the adopted graph type, even

more hyperparameters are required to be tuned as well, e.g., k for

the k NN graph case. Graph-hyperparameter selection is even more

complex for the state-of-the-art performing positive and negative

graph exploitation case [20] . The demanding computational com-

plexity of GE-SVM limit its exploitation options in realistic appli-

cation scenarios. 

3. Multiplex data relationships in Support Vector Machines 

In this Section, we describe in detail the proposed method,

which extends the standard SVM problem, by incorporating ad-
itional optimization criteria, in addition to maximizing the clas-

ification margin. These criteria include incorporating geometric

r semantic information about the training data, e.g., within-class

ariance information, local geometric data relationships informa-

ion, expressed with multiple graph structures, i.e., multiplex data

elationships. Their detailed mathematical description is given in

ection 3.1 . The introduced terms have the effect of projecting the

VM hyperplane in such directions, where the respective informa-

ion of each additional term is emphasized. Moreover, a weight-

ng parameter is introduced, that determines the contribution of

ach term to the final solution. From our derivations, analytically

escribed in Section 3.2 , it is proven that each of the proposed ad-

itional optimization term can also be expressed with a separate

egularized kernel matrix. Thus, the proposed optimization prob-

em can be solved using standard MKL–SVM methods, only by em-

loying graph-regularized kernel matrices as basekernels, instead

f standard ones, while the optimal weighting parameters are opti-

ally estimated. Finally, computational complexity of the proposed

ethod, as well as its generalization properties are discussed in

ection 3.3 . 

.1. Multiplex data relationships 

Multiplex data relationships can be expressed by using a set

f graphs, each describing a different pairwise property about the

raining set. Pairwise properties of the training data may include

.g., local geometric data information (encoded by k NN graphs)

r global geometric data information (encoded in fully connected

raphs). In addition, hand-crafted graph types or graphs that might

e introduced in the future could be employed, as well. Let us de-

ote by G m = {X , W 

m } , m = 1 , . . . , M the m th graph with W 

m its

orresponding graph weight matrix, containing the weights of the

onnections between the graph vertices X = { φ(x 1 ) , . . . , φ(x N ) } . 
In order to express local geometric data information for our

ultiplex graph paradigm, let us denote by G l a k NN graph. Also

et N i be the neighborhood of each vertex, connecting it with the

 most similar vectors. Then, the corresponding graph weights can

e initiated with a heat kernel function: 

 

l 
i j = 

{
exp 

(
−γ || x i − x j || 2 2 

)
, if x j ∈ N i 

0 , otherwise , 
(8)

here γ is a free parameter that scales the Euclidean distances

etween the graph vertices x i and x j . Let S l encode the local ge-

metry of the training data, defined in a similar manner as in (4) :

 l = �L l �
T , (9)

here L l is the corresponding Laplacian matrix. 

In order to encode the global geometry of the training data,

ully connected graphs ( k = N) of similar definition could be em-

loyed. Alternatively, we exploit a different fully connected graph

ype definition. From a discriminant analysis point of view [17] , we

ould require that items belonging to the same class (e.g., class

, c = 1 , . . . , C) to be connected with equal weights, expressed in

he graph G w , using the following weight matrix: 

 

w 

i j = 1 /N c , if y i = y j = c, (10)

here N c is the number of items belonging to the c th class. In fact,

he corresponding matrix S w 

that expresses global geometric data

elationships as in Eq. (4) , is the within-class scatter matrix, as can

e shown below: 

 w 

= 

C ∑ 

c=1 

N c ∑ 

i =1 

(φc 
i − φ̄c )(φc 

i − φ̄c ) T 

= �

( 

I −
C ∑ 

c=1 

1 

N c 
e c e 

T 
c 

) 

�T = �L w 

�T , (11)
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here c is an index denoting the class of sample x i , φi is a short-

and for φ( x i ), φ̄c is the mean sample of class c in the feature

pace, e c ∈ R 

N is a vector of ones in the positions where y i = c,

r zeros, otherwise, and L w 

is the corresponding graph Laplacian

atrix. 

In the following Subsection, we describe how multiplex data re-

ationships are introduced to the SVM optimization problem. 

.2. Proposed method 

The proposed method aims at generating a decision function

n a space where multiplex data relationships are emphasized. In

rder to model the multiple data relationships, we employ the

atrices S m 

, m = 1 , . . . , M, where the m th matrix encode the data

roperties that are described by the m th graph type. Then, a de-

ision function can be obtained, by combining SVM hyperplanes

 m 

that have been regularized with the corresponding matrix S m 

.

he introduced regularization effect is controlled by the parame-

ers λm 

> 0. Finally, multiplex data relationships are weighted ac-

ording to their effect in the final decision function with the pa-

ameters μm 

. In order to determine the weighting parameters μm 

,

nd obtain the decision function at the same time, we propose the

ollowing optimization problem: 

min 

 w} , ξ,b, μ

1 

2 

M ∑ 

m =1 

μ−p 
m 

(‖ w m 

‖ 

2 + λm 

w 

T 
m 

S m 

w m 

)
+ c 

N ∑ 

i =1 

ξi + b, 

s . t . 

M ∑ 

m =1 

y i 
(
w 

T 
m 

φm 

(x i ) + b 
)

≤ 1 − ξi , i = 1 , . . . , N, 

ξi ≥ 0 , 

M ∑ 

m =1 

μp 
m 

= 1 , μm 

> 0 , (12) 

here each hyperplane w m 

, as well as each of the matrices S m 

are

efined in the feature space H m 

, and p ≥ 1 is a parameter that af-

ects the sparsity of the final solution, similar to MKL methods. For

implicity reasons, we consider the case where p = 1 , hereafter.

he Lagrangian function corresponding to the proposed optimiza-

ion problem is of the following form: 

 = 

1 

2 

M ∑ 

m =1 

1 

μm 

w 

T 
m 

( I + λm 

S m 

) w m 

+ b −
N ∑ 

i =1 

αi 

( 

M ∑ 

m =1 

y i 
(
w 

T 
m 

φm 

(x i ) 

+ b ) − 1 + ξi ) + 

N ∑ 

i =1 

(c − βi ) ξi −
M ∑ 

m =1 

γm 

μm 

− δ

( 

M ∑ 

m =1 

μm 

− 1 

) 

, 

(13) 

here αi , β i , γ m 

and δ are the Lagrange multipliers corresponding

o the constraints of (12) and I is an identity matrix of appropriate

imensions. 

By setting the partial derivative of the Lagrangian with respect

o each hyperplane equal to zero, ∂L 
∂w m 

= 0 , we obtain: 

1 

μm 

( I + λm 

S m 

) w m 

= 

N ∑ 

i =1 

αi y i φ(x i ) . (14)

y setting the partial derivatives of L with respect to ξ i and

equal to zero, i.e., ∂L 
∂ξ

= 0 and 

∂L 
∂b 

= 0 , we obtain βi = c − αi 

nd 

∑ N 
i =1 αi y i = 1 , respectively. Then, by replacing back in the La-

rangian, the proposed optimization problem takes the following
orm: 

ax 
α

min 
μ

N ∑ 

i =1 

αi −
1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

αi α j y i y j 

( 

M ∑ 

m =1 

μm φm (x i ) 
T ( I + λm S m ) 

−1 φm (x j ) 

) 

s . t . 0 ≤ αi ≤ c and 

M ∑ 

m =1 

μm = 1 . (15) 
We observe that the above defined optimization problem is

imilar to the standard SVM optimization problem, if we employ

 kernel q (x i , x j ) = 

∑ M 

m =1 μm 

φm 

(x i ) 
T ( I + λm 

S m 

) 
−1 φm 

(x j ) . This ker-

el can be explicitly determined by a linear combination of multi-

le basekernels ˜ κm 

, weighted by parameters μm 

, such that: 

 (x i , x j ) = 

M ∑ 

m =1 

μm ̃

 κm 

(x i , x j ) , (16)

here ˜ κm 

(x i , x j ) = φm 

(x i ) 
T ( I + λm 

S m 

) 
−1 φm 

(x j ) contains data sim-

larity in the space where the m −th training data property is em-

hasized. We recall that S m 

= �L m 

�T , where L m 

is the Laplacian

atrix of the m th graph. In order to obtain the basekernel ma-

rix, we first calculate the inversion ( I + λm 

S m 

) 
−1 

, by exploiting

he Woodbury matrix inversion identity [31] : 

I + λm 

�L m 

�T 
)−1 = I − �

(
1 

λm 

L −1 
m 

+ �T �
)−1 

�T , (17) 

here �T � = K, which is a Kernel matrix that expresses similar-

ty in the space associated with the employed mapping function.

oreover, this formula can be further simplified by exploiting the

earle matrix inversion identity [31] : 

1 

λm 

L −1 
m 

+ K 

)−1 

= K 

−1 
(
λm 

L m 

+ K 

−1 
)−1 

λm 

L m 

, (18) 

inally, each regularized kernel matrix can be explicitly calculated

s follows: 

˜ 
 m 

= �T 
[ 

I − �K 

−1 
(
λm 

L m 

+ K 

−1 
)−1 

λm 

L�T 
] 
�

= K −
(
λm 

L m 

+ K 

−1 
)−1 

λm 

L m 

K 

= 

[ 
I −

(
λm 

L m 

+ K 

−1 
)−1 

λm 

L m 

] 
K. (19) 

y replacing the calculated basekernels back to the Lagrangian, we

btain a MKL–SVM optimization problem: 

ax 
α

min 

μ

N ∑ 

i =1 

αi −
1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

αi α j y i y j 

M ∑ 

m =1 

μm ̃

 κm 

(x i , x j ) 

s . t . 0 ≤ αi ≤ c and 

M ∑ 

m =1 

μm 

= 1 , (20) 

hich is similar to the optimization problem defined in (2) , only

y replacing the basekernels K m 

with 

˜ K m 

. In order to solve this op-

imization problem, any MKL–SVM method can be employed [12] .

o this end, we have employed the recently proposed soft-margin

KL–SVM method [11] in all our experiments, since it outperforms

ther widely adopted MKL methods [32,33] in video classification

roblems, by providing an efficient compromise between sparse

olutions and fast convergence. That is, the min–max optimization

roblem is broken into two quadratic programming optimization

roblems that are solved sequentially, one for the standard SVM,

nd a separate soft-margin optimization one for determining the

arameters μm 

. Finally, in order to classify a test sample, we em-

loy the MKL decision function (3) , using the appropriate matrices.

.3. Discussion 

The proposed method employs multiple graphs for regulariza-

ion purposes, in the form of multiple single-graph regularized

ernels. The optimization problem is formulated as a MKL–SVM

ptimization problem. The advantage of this approach is the elim-

nation of exhaustive parameter fine-tuning, related to estimating

he graph-hyperparameters. Their effect, along with the parameter

, can be implicitly determined only by optimally determining the

ase kernel weights μm 

. In order to demonstrate how important
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p  
is this property, let us consider the related GE-SVM case. Let

a set of M k NN graphs that can be derived from Eq. (9) , to be

employed for regularization purposes. The graph hyperparameters

that require tuning for each graph include the number of nearest

neighbors k and the RBF parameter γ k . Along with these, an

additional RBF γ parameter for creating the standard SVM kernel

function that will be regularized using the graphs, is also required

to be tuned. Finally, tuning is required for determining the amount

of the introduced regularization effect λ, as well as the standard

SVM parameter c , totaling 5 parameters. Without an optimization

procedure for these, i.e., the proposed approach, determining the

optimal parameter combination with traditional methods, e.g., grid

search, is computationally intensive. 

On the other hand, we consider the complexity of the proposed

method. Since the proposed method can be solved using any MKL–

SVM solver, its computational complexity in the training phase is

equal to the complexity of the solver, along with the complexity

required to calculate the regularized basekernels using Eq. (19) . Let

us consider that all of the employed kernels are regularized ver-

sions of the same standard basekernel K (e.g., RBF), having size

equal to N × N , where N is the number of the employed training

data. First, the basekernels need to calculated and inverted. Then,

in order to obtain each regularized basekernel version, a Laplacian

matrix L m 

of size N × N needs to be determined. Then, an addi-

tional inversion of the quantity inside the parenthesis of size N × N

is required. Finally, this quantity is multiplied with L m 

, and this re-

sult is then saved and stored, since this result will be employed for

deriving the regularized basekernel at the inference stage, as well.

Therefore, the complexity of the training stage is equal to the com-

plexity of the MKL–SVM solver, plus two inversions of size N × N ,

the calculation of the Laplacian matrix and two matrix multiplica-

tions of size N × N for each basekernel. In the inference stage, the

computational complexity is equal to standard MKL–SVM, plus one

matrix multiplication for each of the resulted basekernels. Thus,

assuming hardware restrictions e.g., embedded systems, adopting

sparse solutions is preferred. 

Finally, another aspect of the proposed method includes its gen-

eralization features. The proposed formulation is generic, since re-

lated methods may be presented as special cases of the proposed

method, hereafter. That can be achieved by changing the basek-

ernel matrix combination. For example, replacing the derived ker-

nel matrix Q with the standard SVM kernel matrix K and μ = 1 ,

the proposed method degenerates to standard SVM. Using a set of

standard SVM kernel matrices derived by employing several map-

ping functions, or similar mapping functions with different param-

eters, the proposed method represents the basic MKL formulation.

Finally, introducing a single graph regularized kernel matrix (i.e.,

μ = 1 ) in the SVM optimization process, the proposed method de-

generates to GE-SVM. 

4. Experiments 

In order to evaluate the performance of the proposed method,

we have conducted experiments in visual analysis classification

problems. To this end, we have employed publicly available

datasets for face recognition, object classification and human ac-

tion recognition. The employed datasets were carefully selected to

demonstrate the effectiveness of the proposed method in various

classification problems. For each of the employed datasets, differ-

ent descriptor types we employed, including pre-extracted feature

vectors, deep features, pre-computed kernel matrices, feature vec-

tors minimal pre-processing i.e., pixel luminosities and advanced

hand-crafted features. Since all employed datasets are well bal-

anced in terms of instances per class, for both training and test-

ing purposes, the Classification Rate (CR) was employed as perfor-

mance metric. 
Along with the proposed method, we have also implemented

he standard SVM [5] , the GE-SVM [18] and MKL–SVM [11] . Our ex-

erimental platform was a PC with 32GB of RAM on a i7 processor,

sing a Matlab implementation. For comparison fairness, the same

VM solver was employed for all methods [34] , and the parameter

ettings were also set to be equal for all methods, where applica-

le. The SVM parameter c was set equal to 10 � , � = −2 , . . . , 6 for

ll methods. In all our experiments, we have employed the kernel

ersions of the competing algorithms for each experiment, by em-

loying the RBF kernel: 

 (x i , x j ) = exp 
(
−γ ‖ x i − x j ‖ 

2 
2 

)
, (21)

here γ = 1 / 2 aσ 2 , σ 2 is the standard deviation of the train-

ng data, which is the normal scaling factor and the optimal γ
as determined from a range of different values of a , equal to

 = −1 , 0 , 0 . 5 , 1 , 5 , 10 . All the constructed RBF kernel matrices that

ere employed for standard SVM were also employed as baseker-

els in MKL–SVM. In order to construct the kernel matrices that

ere used for GE-SVM, we employed the regularized version of

he kernel matrices using two types of regularizers, i.e., S l from

q. (9) and S w 

from Eq. (11) . The additional parameter λ was set

qual to 10 s , s = −3 , . . . , 3 . The k NN graph being employed in S l 
as containing local geometric data relationships from k = 5 , 10 , 15

eighbors. In GE-SVM, the best performing regularized kernel dur-

ng cross validation was employed for testing the classifier. The

ame regularized kernels constructed for GE-SVM were employed

s basekernels in the proposed method, with the difference that

nly a value λm 

= 10 −1 was used, since its effects can be implicitly

imulated by optimally solving for the kernel weights μm 

. The op-

imal parameter settings for standard SVM and GE-SVM methods

ere determined using grid search, using a 5 −fold cross validation

rocedure on the training set. The parameter μ of MKL–SVM and

he proposed method was determined from solving the optimiza-

ion problem. 

Detailed description for the experimental protocol followed for

ach classification problem is analytically described in Sections 4.1,

.2 and 4.3 , respectively. Finally, we describe the conducted signif-

cance analysis of the obtained results in Section 4.4 . 

.1. Experiments in face recognition 

In our experiments in face recognition, we have employed the

ubFig + LFW [35] , AR [36] , Yale [37] and ORL [38] datasets. The

ubFig + LFW [35] is a benchmark dataset for open-universe face

dentification, consisting of 13, 002 facial images representing 83

ndividuals from PubFig83, divided into 2/3 training (8720 faces)

nd 1/3 testing set (4282 faces), as well as 12, 0 6 6 images repre-

enting over 50 0 0 faces which form the distractor set from LFW.

or each facial image, the extracted features include the Histogram

f Oriented Gradients (HOG), Local Binary Patterns (LBP) and Ga-

or wavelet features. The extracted features were reduced to 2048

imensions with Principal Component Analysis (PCA), from which

e only employed the first 1536 dimensions, as advised by the

ataset providers [35] . 

Moreover, we have also employed classic face recognition

atasets, i.e. the AR [36] , Yale [37] and ORL [38] datasets, con-

aining 2600, and 2432 and 400 frontal facial images belonging

o 100, 38 and 40 subjects, respectively. As feature vectors, we

ave employed the grayscale resized images to 40 × 30 pixels,

nd vectorized them so that to produce a D = 1200 dimensional

ector for each facial image. Since no standard experimental pro-

ocol have been defined on these datasets, we have performed a

 −fold cross-validation procedure and report the average obtained

erformance among the folds. 

Experimental results are drawn in Table 1 . As can be seen, the

roposed method outperformed all competing methods in every
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Table 1 

Classification rates (CR) in face recognition datasets. 

Algorithm/dataset PubFig + LFW ORL AR Yale 

SVM 36.24 98.75 99.11 97.94 

GE-SVM 34.35 98.75 99.19 97.94 

MKL–SVM 84.17 98.75 90.57 96.08 

PROPOSED 88.77 99.25 99.42 98.06 
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Table 2 

Classification rates (CR) in object recognition 

datasets. 

Algorithm/dataset CIFAR-100 Caltech101 

SVM 73.20 66.17 

GE-SVM 72.30 66.56 

MKL–SVM 75.40 72.42 

PROPOSED 79.80 73.39 

Table 3 

Classification rates (CR) in human action recognition datasets. 

Algorithm/dataset I3DPost IMPART Olympic sports Hollywood 3D 

SVM 94.39 85.32 73.13 29.87 

GE-SVM 94.87 86.47 74.63 29.87 

MKL–SVM 94.39 85.33 73.88 30.52 

PROPOSED 95.51 85.75 74.63 32.14 
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ase, in terms of classification accuracy. More specifically, by ob-

erving the performance of all competing methods in PubFig + LFW

ataset, whose feature vectors include information from hand-

rafted descriptors, employing Multiple Kernel matrices seem to

ave been beneficial to classification performance. This can be ex-

lained by the fact that the extracted features may lie in multi-

le distributions, not modeled adequately by a single normal dis-

ribution (i.e., the standard SVM case), or even a regularized one

i.e., the GE-SVM case). The performance of MKL–SVM denoted that

xploiting multiple distributions for modeling data similarity was

eneficial to performance. In every case, the proposed method out-

erformed the competition, by exploiting the additional global and

ocal geometric particularities of each class, modeled by the added

raph structures. This information acted as an advanced regular-

zer to the solution, offering more accurate feature representation,

n comparison with the competition. 

In our experiments on classic face recognition datasets, we have

bserved that employing the MKL–SVM, seem to have not influ-

nced positively the classification performance, maybe related to

ver-fitting issues. This effect is supported by the performance of

E-SVM, which outperformed the standard SVM and MKL–SVM,

y having one graph regularizing the classification space. How-

ver, the proposed method was able to alleviate the negative over-

tting effects, by optimally determining the most efficient regular-

zed kernel combination. 

.2. Experiments in object classification 

In our experiments on object classification, we have employed

he CIFAR-100 [39] and Caltech101 [40] datasets. In CIFAR-100

ataset, we have employed pre-extracted features [41] . That is, the

eature vectors were computed by performing a forward pass to

 pre-trained CNN network from the fully connected layer ‘fc2’,

aving feature dimensionality D = 255 , based on a Hadamard cod-

ng pre-processing [41,42] . We have employed the small dataset

ersion, which includes 50 0 0 training and 10 0 0 testing samples,

elonging to 10 classes, corresponding to ones predefined by the

ataset providers [39] . We have constructed the RBF kernel ma-

rices by employing the above mentioned features, and employed

hem to the SVM and MKL–SVM methods. Their regularized alter-

atives were employed for the GE-SVM and the proposed method.

n Caltech101 dataset, we have employed 10 pre-computed ker-

el matrices [43] , derived from employing the Geometric blur [44] ,

ense visual words [45] and Self-similarity [46] descriptors. 

In standard SVM, we have reported the maximum performance

btained by employing each of the 10 pre-computed kernel ma-

rices. In GE-SVM, we have employed the regularized kernel alter-

atives, by employing S l with k = 5 , 10 , 15 neighbors and S w 

with

m 

= 10 −1 , leading to a total of 40 kernel matrices. Finally, these

ernel matrices were employed by proposed method, as well. Clas-

ification rates on both datasets is shown in Table 2 . As can be

een in both cases, the proposed method greatly outperformed

he competition. The proposed method outperformed MKL–SVM by

.5%. This demonstrates the effectiveness of the proposed method,

or the case where pre-computed kernel matrices have been em-

loyed. 
.3. Experiments in human action recognition 

In our experiments in human action recognition, we have em-

loyed the i3DPost multi-view action database [47] , the IMPART

ulti-modal/Multi-view Dataset [48] , the Olympic Sports [49] and

he Hollywood3D [50] publicly available datasets. In i3DPost and

MPART datasets, we have employed a 3-fold cross validation pro-

edure, where we have split the datasets in 3 mutually exclusive

ets, having 6/8 people for training purposes, and 2/8 for testing

n i3DPost dataset, and 2/3 and 1/3 in IMPART dataset, respec-

ively. The reported performance is the average obtained classifica-

ion rate among the 3 folds. In Hollywood 3D and Olympic Sports

atasets, we employed the standard training and test videos, pro-

ided by the dataset providers [49–51] . 

In order to obtain vectorial video representations for each

ideo segment depicting each action, we have employed the dense

rajectory-based video description [52] . This video description cal-

ulates five descriptor types on the trajectories of densely-sampled

ideo frame interest points that are tracked for a number of con-

ecutive video frames, namely the Histogram of Oriented Gra-

ients, Histogram of Optical Flow, Motion Boundary Histograms

long directions x, y and the normalized trajectory coordinates.

ideo segment representations are thereby obtained by using the

ag-of-Words model [53,54] , creating a video description of hav-

ng 5 descriptors of 10 0, 50 0, 40 0 0 and 40 0 0 dimensions, for

3DPost, IMPART, Olympic sports and Hollywood3D, respectively.

n standard SVM and GE-SVM methods, information from the 5

escriptor types was fused with kernel methods as in [55] , i.e.,:

 (X i , X j ) = exp (− 1 
d 
γd 

∑ 

d ‖ x d i 
− x d 

j 
‖ 2 2 ) , x d 

i 
∈ R 

D is a video feature

ector for d = 5 (number of descriptor types) and γd = 2 σ 2 
d 

is a

arameter scaling the Euclidean distance between x d 
i 

and x d 
j 
. In

KL–SVM and the proposed method, besides the fused kernel ma-

rix, each separate kernel matrix containing data similarity derived

or each descriptor type was employed. 

Experimental results in human action recognition are drawn

n Table 3 . As can be observed, the proposed method outper-

ormed the competition in almost every case. Using MKL–SVM

or fusing information from the specific descriptor types provided

lightly improved classification performance in comparison with

tandard SVM. In addition, by observing the performance of GE-

VM, employing graph-based regularization provided furthermore 

ncreased classification performance. The proposed method outper-

ormed both GE-SVM and MKL–SVM, by exploiting multiple regu-

arized basekernels, i.e., combining the performance gains of both

KL and GE-SVM approaches. 
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Table 4 

Statistical test details. 

Mean ranks SVM GE-SVM MKL–SVM Proposed 

3.35 2.65 2.85 1.15 

Posthoc procedure Nemenyi Bergman–Hommel’s 

α 0.05 0.0083 

CD 1.48 1.38 
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4.4. Significance analysis 

After obtaining the performance of the competing methods in

all experiments, we determined whether the observed differences

of the proposed method with the competition are statistically sig-

nificant, or not [56–58] . To this end, we have tested the null hy-

potheses that all classifiers perform the same, using the Friedman’s

test. The mean ranks for each algorithm according to their per-

formance in all classification problems are shown in Table 4 . By

employing 10 datasets and 4 classifiers, the degrees of freedom is

equal to 27. The Friedman statistic is equal to χ2 
F = 16 . 14 , and the

critical value was 7.81. Therefore, the null hypotheses that all clas-

sifiers perform the same, was rejected. After employing the Ne-

menyi post-hoc procedure for pairwise comparison, using a signif-

icance level of 95%, i.e., a = 0 . 05 , the Critical Distance (CD) was

found at 1.48, which means that the proposed method performed

significantly better than all competing methods. Moreover, we have

also used the Bergman–Hommel’s posthoc procedure, which am-

plifies the test power by using an exhaustive sets of hypothesis, i.e

hypothesis that can be true at the same time. The critical distance

was calculated at 1.38. Therefore, the proposed method performs

significantly better than the competition. 

5. Conclusion 

We have presented a novel method for introducing multiplex

data relationships to the SVM optimization process, by exploiting

pairwise data information expressed in multiple graph structures.

Our experiments denoted that the proposed method provided con-

sistently increased classification performance against the competi-

tion, in different visual data classification problems. The improved

classification accuracy was mainly achieved, due to the exploitation

of advanced graph-based regularization settings in an optimal fash-

ion, effectively representing the multimodal/multiplex image and

video data characteristics. Since the proposed method provided en-

hanced classification performance using various descriptor settings,

including simple pixel luminosities, advanced handcrafted feature

types and deep representations, it should be expected that it will

perform well in other standard classification problems, as well. 

Moreover, since the proposed method is a generic formulation

for Graph-based SVM methods and Multiple Kernel methods, evo-

lution in both fields shall favor the proposed method as well. That

is, novel advanced regularization settings using graph types un-

known at the present, perhaps exploiting deep learning architec-

tures, could be integrated with the proposed formulations. In ad-

dition, advanced Multiple Kernel Learning solvers that will be in-

troduced in the future can be employed for solving the proposed

optimization problem. Evolution in both domains can serve as a

feature research direction. 
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