
 

Accepted Manuscript

A novel ensemble method for k-nearest neighbor

Youqiang Zhang , Guo Cao , Bisheng Wang , Xuesong Li

PII: S0031-3203(18)30279-6
DOI: https://doi.org/10.1016/j.patcog.2018.08.003
Reference: PR 6632

To appear in: Pattern Recognition

Received date: 10 April 2018
Revised date: 19 June 2018
Accepted date: 1 August 2018

Please cite this article as: Youqiang Zhang , Guo Cao , Bisheng Wang , Xuesong Li ,
A novel ensemble method for k-nearest neighbor, Pattern Recognition (2018), doi:
https://doi.org/10.1016/j.patcog.2018.08.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.patcog.2018.08.003
https://doi.org/10.1016/j.patcog.2018.08.003


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1 

Highlights: 

• We proposed a weighted heterogeneous distance metric (WHDM). 

• We presented WHDM and Dempster-Shafer theory based kNN algorithm. 

• We proposed a multimodal perturbation method (RRSB) for kNN ensemble. 

• The effectiveness of our algorithms was shown on multiple UCI data sets and a KDD data set. 
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A novel ensemble method for k-nearest neighbor 

 

Abstract: In this paper, to address the issue that ensembling k-nearest neighbor (kNN) classifiers 

with resampling approaches cannot generate component classifiers with a large diversity, we 

consider ensembling kNN through a multimodal perturbation-based method. Since kNN is 

sensitive to the input attributes, we propose a weighted heterogeneous distance Metric (WHDM). 

By using a WHDM and evidence theory, a progressive kNN classifier is developed. Based on a 

progressive kNN, the random subspace method, attribute reduction, and Bagging, a novel 

algorithm termed RRSB (reduced random subspace-based Bagging) is proposed for construct 

ensemble classifier, which can increase the diversity of component classifiers without damaging 

the accuracy of the component classifiers. In detail, RRSB adopts the perturbation on the learning 

parameter with a weighted heterogeneous distance metric, the perturbation on the input space with 

random subspace and attribute reduction, the perturbation on the training data with Bagging, and 

the perturbation on the output target of k neighbors with evidence theory. In the experimental stage, 

the value of k, the different perturbations on RRSB and the ensemble size are analyzed. In addition, 

RRSB is compared with other multimodal perturbation-based ensemble algorithms on multiple 

UCI data sets and a KDD data set. The results from the experiments demonstrate the effectiveness 

of RRSB for kNN ensembling.  

Keywords:  Distance metric; k-nearest neighbor; ensemble learning; random subspace; evidence 

theory  

1. Introduction 

  Ensemble learning has been a prominent topic in the field of machine learning in recent years, 

and it is listed as the first of four research directions in machine learning research by Dietterich [1]. 

To enhance the generalization performance of ensemble learning, many different approaches have 

been proposed for training accurate but diverse component classifiers. According to the mode of 

training the classifier, the typical ensemble approaches can be divided into three cases [2]:  

 component classifier is trained on a different attribute subspace.  

 component classifier is trained on different resampling training data.  

 component classifier is trained on a data set with several different parameters.  

  The ensemble scheme may take into account any of the above three techniques. For example, 

each component classifier is trained on a randomly selected attribute space in the case of the 

random subspace method (RSM) [3, 4]. Ho [3] first proposed RSM and applied it in a decision 

tree ensemble and then investigated RSM in a kNN ensemble [4]. Gu et al. [5] proposed a random 

subspace-based sparse representation ensemble algorithm, where sparse representations in 

multiple subspaces are integrated into an ensemble sparse representation. Rotation forest (RoF) [6, 

7] is an improved version of RSM. Genetic algorithm (GA) is also used to select a best fitting 

attribute space for each component classifier [8]. Bagging obtains different component classifiers 

through training on bootstrap sampling data [9]. Boosting is another resampling-based ensemble 
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method, which considers the weight probability distribution of resampling at each trial [10]. The 

perturbation of parameters is often applied in neural network ensembles. For instance, random 

initial weights are used to train each neural network [11]. Gabrys and Ruta [12] used GA for 

selecting classifier prototypes, attribute space and combination rules simultaneously.  

  Unlike neural network and decision tree classifiers have many parameters, kNN classifier has 

only two parameters, i.e., the distance measure for computing the distance of a given test sample 

to the training samples and the number of neighbors k, which makes kNN ensembles challenging. 

Although Bagging has achieved great success on decision trees [13] and neural networks [14], it 

can hardly work well on kNN classifier because kNN is a stable classifier. As Breiman [9] pointed 

out that Bagging can hardly work on kNN because Bagging uses the bootstrap resampling 

technique to generate accurate but diverse component classifiers, which is effective on unstable 

methods such as decision tree and neural network.  

  Many research papers have investigated kNN ensembles with the aim of improving their 

performance. For instance, Bao et al. [15] applied multiple distance metrics to generate diverse 

ensemble members, where the distance metrics were treated as learning parameter perturbations. 

Ishii et al. [16] ensembled kNN by using GA to weight different distance functions. Multiple 

random subspaces used to obtain component kNN classifiers was investigated by Ho [4], which 

trained each kNN on a random attribute subset rather than on the whole attribute space. Zhou and 

Yu [2] used bootstrap sampling, attribute filtering and randomly configured distance metrics for 

kNN ensembles, which simultaneously employed perturbations on training data, attribute space 

and learning parameters. Altinçay [17] proposed GA-based multimodal perturbation for kNN 

ensembles, which uses GA to jointly estimate both the best fitting attribute subsets and learning 

parameters of each member classifier. Nanni and Lumini [18] proposed PSO-based multimodal 

perturbation for kNN ensembles, where RSM is used to perturb the attribute space, and PSO is 

adopted to perturb the learning parameters of each member classifier.  

  There are some issues in the above kNN ensemble methods: 1) Euclidean distance metrics 

handle the heterogeneous attributes in a simple way and do not consider the weight of different 

attributes; 2) Perturbation of the attribute space using RSM may damage the accuracy of 

component classifiers, since kNN is sensitive to the input attribute space; and 3) GA- and 

PSO-based multimodal perturbation for kNN ensembles require a large computation cost.  

  In this work, to address the above issues for kNN ensembles, we introduce a novel multimodal 

perturbation approach, termed RRSB. The main idea is to simultaneously encourage diversity and 

individual accuracy within an ensemble classifier. There are four perturbations in RRSB. First, we 

perturb the learning parameter of distance metric. A weighted heterogeneous distance metric is 

proposed, which takes the importance of different attributes into consideration during the distance 

calculations. Second, we perturb the attribute space. The attribute reduction technique is used to 

reduce irrelevant attributes after the random subspace method. Third, we perturb the output target 

of k neighbors. The Dempster-Shafer theory is introduced to compute the output of the k 

neighbors' prediction. Finally, we perturb the training samples. The Bagging technique is used, 

which can improve the performance of the kNN ensemble when combined with the other 

perturbations.  

  The main contributions of this paper can be summarized as follows:  

  1) A weighted heterogeneous distance metric called WHDM is proposed;  

  2) The evidence theory and WHDM-based progressive kNN is used as a base classifier;  
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  3) Random subspace and attribute reduction are used to perturb the attribute space; and  

  4) Combining several different perturbations, RRSB is proposed for kNN ensemble.  

  RRSB uses the idea of multimodal perturbation to generate diverse component classifiers, 

which has been previously published [2, 4, 15, 16, 17, 18]. However, RRSB considers the weight 

of attributes during the distance calculations and removes the irrelevant attributes for constructing 

each component classifier, which guarantees the accuracy of the component classifiers. 

Furthermore, RRSB can save on computational costs compared with GA- and PSO-based 

methods.  

  In the experimental stage, we first demonstrate the superior performance of evidence theory- 

and WHDM-based kNN compared with other types of kNN. We then analyze the influence of 

different perturbations and the effect of ensemble size on RRSB. Finally, we compare RRSB with 

state-of-the-art multimodal perturbation-based kNN ensemble methods on multiple UCI data sets 

and apply RRSB to network intrusion detection. The experimental results demonstrate the 

effectiveness of our algorithms.  

  The remainder of this paper is organized as follows. Section 2 presents neighborhood rough sets 

and an evidence theory-based kNN algorithm. Section 3 shows WHDM and an evidence 

theory-based weighted kNN algorithm. Section 4 presents the RRSB algorithm. Experiments are 

given in Section 5, and Section 6 concludes the work and raises several issues for future work.  

2. Preliminaries 

2.1 Neighborhood rough sets 

  The classical rough set theory proposed by Pawlak [19] has been proven to be an effective 

mathematical tool for dealing with uncertain and inaccurate data, especially for attribute selection. 

It employs a dependency function to evaluate the classification quality of a subset of attributes. 

However, this model is only applicable to nominal data. In practical problems, it is most often the 

case that the values of features may be both crisp and real-valued.  

  Neighborhood rough set theory is an extension of traditional rough set theory. The core idea of 

rough set theory is based on approximation and granules. To define the approximation of mixture 

data, a neighborhood relation can be used to generate a family of neighborhood granules 

characterized with numerical features. Yao [20] discussed the relationship between neighborhood 

operations and rough approximation operations and presented a neighborhood rough set model by 

using a distance function. The neighborhood rough set model was used for classification and 

attribute reduction by Hu et al. [21, 22], which could handle a knowledge classification system 

with not only continuous data but also with categorical data.  

  Next, we introduce some basic notions of neighborhood rough sets. Formally, the structure data 

used for the classification task can be written as a decision table, denoted by DT = (U, C, D), 

where U is a nonempty finite set of instances {x1, x2, , xn}, called a universe. In neighborhood 

rough set theory, the attribute set and class label are often put together for analyzing the inner 

structure and relation of samples, i.e., A = C ∪ D, where C is the attribute set, and is a nonempty 

finite set of attributes {a1, a2,  am} to characterize the instance (sample), and D denotes class 

label (D = {c}). In other words, A is the union of predictor variables and class variable. For a 

given sample, each ai has a determined value for characterizing the sample, and the class label c 

represents the class to which the sample belongs.  

Definition 1. Given arbitrary xi  U and B  C, the neighborhood B(xi) of xi in the input space B 
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is defined as [22]: B(xi) = {xj | xjU, B(xi, xj)  }, where  is a distance metric.  

Definition 2. Let B  A and C  A be the numerical attributes and nominal attributes, respectively. 

The neighborhood granule of instance x induced by B, C and B ∪ C are defined as follows [22]:  

  1) B(x) = {xi| B(x, xi)  , xiU}; 

  2) C(x) = {xi| C(x, xi) = 0, xiU}; 

  3) B∪C(x) = {xi|B(x, xi)    C(x, xi) = 0, xiU}, where  means "and" operator.  

  The first equation is used to handle numerical features, the second equation is based on classical 

rough sets, which is used to address nominal features, and the last equation can handle both 

numerical and nominal features, which is the most important part of neighborhood rough set 

theory.  

Definition 3. Given a set of instances U and its neighborhood relation N over U, we call (U, N) a 

neighborhood approximate space. For any X  U, one subset of instance, called the lower 

approximation of X in (U, N), is defined as [22]:  

  𝑁𝑋 = *𝑥𝑖|𝛿𝐵(𝑥𝑖) ⊆ 𝑋, 𝑥𝑖 ∈ 𝑈+.  

Clearly, 𝑁𝑋 ⊆ 𝑋.  

Definition 4. Given the neighborhood decision table NDT = (U, C, D, N), X1, X2, , XN are the 

instance sets with decisions 1 to N, i.e., all instances in set Xj have the same decision label, and 

there are a total N different decision labels. B(xi) is the neighborhood information granule 

generated by attributes B  C. The lower approximation of decision D with respect to attributes B, 

also called the positive region of decision D with respect to B (POSB(D)), is defined as [22]:  

  𝑁𝐵𝐷 = ⋃ 𝑁𝐵𝑋𝑗
𝑁
𝑗=1 = 𝑃𝑂𝑆𝐵(𝐷) 

where 

  𝑁𝐵𝑋 = *𝑥𝑖|𝛿𝐵(𝑥𝑖) ⊆ 𝑋, 𝑥𝑖 ∈ 𝑈+. 

Definition 5. Given the neighborhood decision table NDT = (U, C, D, N), distance function and 

neighborhood size , the dependency degree of D to B is defined as [22]:  

  𝛾𝐵(𝐷) = |𝑃𝑂𝑆𝐵(𝐷)| |𝑈|⁄  

where || is the cardinality of a set. B(D) reflects the ability of B to approximate D. As POSB(D)  

U, we have 0  B(D)  1.  

Definition 6. Given a neighborhood decision table NDT = (U, C, D, N), B  C, and aB, we can 

define the significance of attribute a with respect to B and D as [22]:  

  SIG(a, B, D) = B(D)  B{a}(D). 

Table 1 

Neighborhood decision table 

Sample a1 a2 a3 D 

x1 5.8 2.7 y Virg 

x2 6.3 3.3 n Virg 

x3 7.1 3.0 n Virg 

x4 6.9 3.1 y Vers 

x5 7.0 3.2 y Vers 

x6 6.4 3.2 n Vers 

x7 6.1 2.8 y Virg 

x8 6.0 3.0 y Vers 
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  Next, we give an example of computing the significance of attributes. Given a neighborhood 

decision table, shown as Table 1. The domain U contains eight samples, i.e., U = {x1, , 

x8}.There are three attributes, including two continuous attributes (a1, a2) and one nominal 

attributes (a3).  

  We first normalized two continuous attributes into interval [0, 1], then let B1 = {a1}, B2 = {a2}, 

and B12 = {a1, a2}, we obtained the neighborhood granules of each sample induced by B1, B2 and 

B12 (neighborhood radius  = 0.2) by using Definitions 1 and 2(1). By introducing the nominal 

attribute subset B3 = {a3}, we obtained the partition U/B3 = {{x1, x4, x5 x7, x8}, {x2, x3, x6}} by 

using Definitions 1 and 2(2). Let B13 = {a1, a3}, B23 = {a2, a3}, and A = {a1, a2, a3}, then the 

neighborhood granules of each sample induced by B13, B23, and A were calculated by using 

Definition 2(3). The neighborhood granules of each sample induced by these attribute subsets are 

shown in Table 2.  

Table 2 

Neighborhood relation of samples 

N B1 B2 B3 B12 B13 B23 A 

Bi (x1) {x1, x8} {x1, x7} {x1, x4, x5, x7, x8} {x1} {x1, x8} {x1, x7} {x1} 

Bi (x2) {x2, x6, x7} {x2, x5, x6} {x2, x3, x6} {x2, x6} {x2, x6} {x2, x6} {x2, x6} 

Bi (x3) {x3, x4, x5} {x3, x4, x8} {x2, x3, x6} {x3, x4} {x3} {x3} {x3} 

Bi (x4) {x3, x4, x5} {x3, x4, x5, x6, x8} {x1, x4, x5, x7, x8} {x3, x4, x5} {x4, x5} {x4, x5, x8} {x4, x5} 

Bi (x5) {x3, x4, x5} {x2, x4, x5, x6} {x1, x4, x5, x7, x8} {x4, x5} {x4, x5} {x4, x5} {x4, x5} 

Bi (x6) {x2, x6} {x2, x4, x5, x6} {x2, x3, x6} {x2, x6} {x2, x6} {x2, x6} {x2, x6} 

Bi (x7) {x2, x7, x8} {x1, x7} {x1, x4, x5, x7, x8} {x7} {x7, x8} {x1, x7} {x7} 

Bi (x8) {x1, x7, x8} {x3, x4, x8} {x1, x4, x5, x7, x8} {x8} {x1, x7, x8} {x4, x8} {x8} 

  The domain U was divided into two parts by decision D, i.e., U/D = {{x1, x2, x3, x7}, {x4, x5, x6, 

x8}}. Let X1 = {x1, x2, x3, x7}, X2 ={x4, x5, x6, x8}, we computed the lower approximation and the 

positive region (POS) induced by attribute subsets B12 and A according to Definitions 3 and 4 

through following procedures.  

  𝑁𝐵12
𝑋1 = *𝑥1, 𝑥7+, 𝑁𝐵12

𝑋2 = *𝑥5, 𝑥8+; 

  𝑁𝐵12
𝐷 = 𝑁𝐵12

𝑋1 ∪ 𝑁𝐵12
𝑋2 = *𝑥1, 𝑥5, 𝑥7, 𝑥8+ = 𝑃𝑂𝑆𝐵12

(𝐷). 

  Next, we computed the positive region induced by attribute set A.  

  𝑁𝐴𝑋1 = *𝑥1, 𝑥3, 𝑥7+, 𝑁𝐴𝑋2 = *𝑥4, 𝑥5, 𝑥8+; 

  𝑁𝐴𝐷 = 𝑁𝐴𝑋1 ∪ 𝑁𝐴𝑋2 = *𝑥1, 𝑥3, 𝑥4, 𝑥5, 𝑥7, 𝑥8+ = 𝑃𝑂𝑆𝐴(𝐷). 

  Since {a3} = A  B12, we computed the significance of the attribute a with respect to A and D by 

using Definitions 5 and 6.  

  𝛾𝐴(𝐷) = |𝑃𝑂𝑆𝐴(𝐷)| |𝑈|⁄ = 6 8⁄ , 𝛾𝐴−*𝑎3+(𝐷) = 𝛾𝐵12
(𝐷) = |𝑃𝑂𝑆𝐵12

(𝐷)| |𝑈|⁄ = 4 8⁄ ; 

  𝑆𝐼𝐺(𝑎3, 𝐴, 𝐷) = 𝛾𝐴(𝐷) − γ𝐴−*𝑎3+(𝐷) = 6 8⁄ − 4 8⁄ = 0.250. 

  By calculating the values of 𝛾𝐴−*𝑎1+(𝐷) and 𝛾𝐴−*𝑎2+(𝐷)  using the similar procedure in 

previous, we obtained that 𝑆𝐼𝐺(𝑎1, 𝐴, 𝐷) = 0, 𝑆𝐼𝐺(𝑎2, 𝐴, 𝐷) = 0.375.  

2.2 D-S theory-based k-nearest neighbor classifier 

  Evidential kNN (EkNN) classification proposed by Denoeux [23] is an improvement of 

traditional kNN. Compared with voting-based kNN, EkNN can obtain a smooth output result of 

the k neighbors' prediction. EkNN is based on the Dempster-Shafer (D-S) theory (also called 
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evidence theory), which takes the distance value and class label together to determine the final 

class label. The main idea of EkNN is explained as follows. For a pending sample t, we seek k 

different neighbors of t in the training set at first, then we regard each neighbor as a piece of 

evidence in D-S theory, which is used as a support degree to support each class that t belongs to. 

Finally, we use the basic probability assignments from k neighbors to determine which class t 

belongs to.  

  Next, we explain the principle of EkNN. For a classification problem, let  = {w1, …, wc} be 

the set of class labels ( is called frame of discernment), and T ={(x1, L(x1)), …, (xn, L(xn))} be the 

training samples, where for any 1 ≤ i ≤ n, xi and L(xi)   are the training sample and class label, 

respectively. For a test sample ts, let Fs = {(y1, L(y1)), …, (yk, L(yk))}  T be the set of the k 

neighbors of ts in T, where for 1 ≤ i ≤ k each neighbor yi of ts has a class label L(yi). For any 1 ≤ i ≤ 

k, if we suppose that L(yi) = wq  , then (yi, wq) can be treated as an individual piece of evidence 

in favor of the classification of ts, and we can use the following basic probability assignment (BPA) 

functions in Eqs. 1 and 2 to express the information contained in (yi, wq),  

 m
s,i

({wq}) = α, (1) 

 m
s,i

() = 1 − α. (2) 

where α  [0, 1]. The value of α is determined by the distance d between yi and ts (i.e., the 

increase of d results in the increase of α), and we can use a similarity function to describe the 

relation between α and d. In reference [23], Denoeux defined the similarity function as follows:  

 𝛼 = 𝛼0 ∙ 𝑒−𝛾𝑞∙𝑑2
, (3) 

where α0 and γq are two given parameters, 0 < α0 <1 and γq > 0. For any 1 ≤ i, j ≤ k (i ≠ j), m
s,i

 and 

m
s,j

 are independent from each other, since they are induced by different training samples. By 

using the combination rule of Dempster described in Eq. 4, the orthogonal sum of k belief 

structures m
s,1

, …, m
s, k

 can be combined together.  

 𝑚𝑠 =⊕𝑦𝑖∈𝐹𝑠
𝑚𝑠,𝑖. (4) 

The combination of any two pieces of evidence in Eq. 4 can be written by Eq. 5.  

 (𝑚1⨁𝑚2)(𝐶) =
∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴∩𝐵=𝐶

1−∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴∩𝐵=∅
, (5) 

where A   and B  , m1(A) and m2(B) are the basic probabilities. The basic probability of 

their conjunction C = A ⋂ B is proportional to m1(A)  m2(B). The computation of Eq. 5 represents 

the sum over all conjunctions of arguments which support C. Finally, we can classify ts through 

computing the belief degree function of each class label based on m
s
. For instance, the joint 

decision may be the class wq, which gets the maximum belief value formulated as Eq. 6,  

 𝑤𝑞 = arg max𝑤𝑖
∑ 𝑚(𝐹𝑗)𝐹𝑗⊆𝛺 . (6) 

For more detailed information about EkNN, please refer to [23].  

3. Weighted heterogeneous distance metric for kNN algorithm 

3.1 Weighted heterogeneous distance metric 

  kNN classification has no independent training stage, but when a pending sample is given to be 

classified, the algorithm will seek k nearest training samples through calculating distances and 

then use the majority voting to make a classification decision. Euclidean distance is often used to 

measure the distance between each pair of instances. Euclidean distance is a special case of 

Minkowski distance, which is defined in Eq. 7 [24], where x1 and x2 are two instances 
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characterized by d dimensional attribute vectors. Let p = 2, it is Euclidean distance.  

 𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖𝑝(𝑥1, 𝑥2) = (∑ |𝑥1,𝑛 − 𝑥2,𝑛|𝑝𝑑
𝑛=1 )1/𝑝 (7) 

  Minkowski distance is suitable for continuous or numerical attributes, but it cannot address 

nominal attributes. For nominal attributes, Stanfill and Waltz [25] proposed value difference 

metric (VDM), which works well in many nominal domains, but it does not handle continuous 

attributes directly. Instead, it uses a discretization method, which may lead to information loss and 

degrade the generalization performance. Many real world applications have both nominal and 

continuous attributes, for example, over half of the datasets in the UCI machine learning data 

repository. To address this issue, Wilson and Martinez [26] proposed HEOM and HVDM for 

heterogeneous attributes. HEOM and HVDM are defined as follows [26]:  

 𝐻𝐸𝑂𝑀(𝑥, 𝑦) = √∑ 𝑑𝑎(𝑥, 𝑦)2𝑚
𝑎=1  (8) 

where da(x, y) is defined as follows: 

 𝑑𝑎(𝑥, 𝑦) = {

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑎(𝑥, 𝑦)    if 𝑎 is a nominal attribute,

𝑟𝑛_𝑑𝑖𝑓𝑓𝑎(𝑥, 𝑦)     if 𝑎 is a numerical attribute,
        1                      if the value of  𝑎 on 𝑥 or 𝑦 is unknown

 (9) 

where 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑎(𝑥, 𝑦) = {
1      if 𝑁(𝑥, 𝑎) ≠ 𝑁(𝑦, 𝑎),
0      otherwise.

 and rn_𝑑𝑖𝑓𝑓𝑎(𝑥, 𝑦) =
|𝑥−𝑦|

𝑟𝑎𝑛𝑔𝑒𝑎
. 

 𝐻𝑉𝐷𝑀(𝑥, 𝑦) = √∑ 𝑑𝑎(𝑥, 𝑦)2𝑚
𝑎=1  (10) 

where da(x, y) is defined as follows: 

 𝑑𝑎(𝑥, 𝑦) = {

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑣𝑑𝑚𝑎(𝑥, 𝑦)   if 𝑎 is a nominal attribute,
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_ 𝑑𝑖𝑓𝑓𝑎(𝑥, 𝑦)   if 𝑎 is a numerical attribute,
                     1                           if the value of  𝑎 on 𝑥 or 𝑦 is unknown

 (11) 

where 𝑣𝑑𝑚𝑎(𝑥, 𝑦) = ∑ |𝑃𝑎,𝑥,𝑐 − 𝑃𝑎,𝑦,𝑐|2𝐶
𝑐=1 , 𝑃𝑎,𝑥,𝑐 is the conditional probability that the output 

class is c given that attribute a has the value x.  

The biggest difference between HEOM and HVDM is that HEOM uses the overlap metric for 

nominal attributes but HVDM adopts the VDM for nominal attributes.  

  In some situations, the effect of some attributes may be higher than other attributes [27]. For 

example, in a tourism recommendation system, a sample (person) has seven conditional attributes 

(gender, age, salary, house, number of children, job, and education level) in the information 

system. The attributes of salary and number of children may have more weight than the other five 

attributes in determining whether to travel, and the attribute of education level may have the 

lowest importance in the decision. Therefore, an attribute-weighted measure scheme needs to be 

designed for distance metrics, which can take the importance of different attributes into 

consideration.  

  The above idea of weighting attributes in distance metric has been successfully applied to 

metric learning. For instance, an efficient multi-modal geometric mean metric learning 

(EMGMML) structure to deal data with multiple modalities was proposed by Liang et al. [42]. In 

EMGMML, each modality is assigned a weight to emphasize the difference of multi-modalities. 

Zhai et al. [43] proposed parametric local multi-view hamming distance metric learning (PLMH) 

based on a set of local hash functions, in which different local hash functions are learned at 

different positions in the input feature space. A novel distance metric learning method by fusing 

multiple features was investigated by Lv and Duan [44], which can learn the distance metric on 

single feature as well as the weights of different features in a joint framework. By maximizing the 

Jeffrey divergence between two multivariate Gaussian distributions for linear transformations, an 
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optimization framework for distance metric learning was proposed by Nguyen et al. [45]. Wang et 

al. [46] proposed a new weakly supervised distance metric learning method, called multi-view 

metric learning (MML), which integrates compatible and complementary information from 

multiple views using KL-divergence. Most of these methods used multi-view for metric learning, 

our method weights each feature directly by using the attribute significance in rough sets, which 

can mine the intrinsic information.  

  Neighborhood rough sets proposed by Hu et al. [22], as an extension of classical rough sets, has 

been widely used in pattern analysis and feature metrics. In neighborhood rough set, the 

significance of attribute a is defined as definition 6, that is, the dependency degree of all attributes 

B to class label minus the dependency degree of attributes B  {a} to class label. In other words, 

the attribute significance of a represents the importance of the classification task; the bigger the 

attribute significance of a, the more important the attribute a is. Therefore, we can use the attribute 

significance to design a weight scheme in distance metrics. Based on the above, a weighted 

heterogeneous distance metric (WHDM) is proposed in definition 7.  

Definition 7. (Weighted Heterogeneous Distance Metric) Given a neighborhood decision table 

NDT = (U, C, D, N), for any two samples x, yU, the distance whd between x and y is defined as 

follows:  

 𝑤𝑑(𝑥, 𝑦) = ∑ 𝑤𝑒𝑖𝑔𝑡(𝑎)𝑎∈𝐶 × 𝑑𝑎(𝑥, 𝑦) (12) 

where weight(a) reflects the weight of attribute a, da(x, y) represents the distance between x and y 

with respect to attribute a, and da(x, y) and weight(a) are defined as follows:  

 𝑑𝑎(𝑥, 𝑦) = {

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑎(𝑥, 𝑦)   if 𝑎 is a nominal attribute,

    𝑑𝑖𝑓𝑓𝑎(𝑥, 𝑦)      if 𝑎 is a numerical attribute,
        1                     if the value of  𝑎 on 𝑥 or 𝑦 is unknown

 (13) 

where 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑎(𝑥, 𝑦) = {
1      if 𝑁(𝑥, 𝑎) ≠ 𝑁(𝑦, 𝑎),
0      otherwise.

 and 𝑑𝑖𝑓𝑓𝑎(𝑥, 𝑦) =
|𝑁(𝑥,𝑎)−𝑁(𝑦,𝑎)|

4𝛾𝑎
. We 

define the weight of attribute a as follows: 

 𝑤𝑒𝑖𝑔𝑡(𝑎) =
𝑆𝐼𝐺(𝑎)

𝑚𝑎𝑥𝑎∈𝐶 𝑆𝐼𝐺(𝑎)
 (14) 

  In the above definition, the distance da(x, y) can be used for both nominal and numerical 

attributes, where the overlap metric is used for nominal attributes, the normalized Manhattan 

metric is used for numerical attributes, and when the value of attribute a on x or y is unknown, the 

value of da(x, y) is assigned as 1. In diffa(x, y), a is the standard deviation of the numeric values of 

attribute a; this can avoid the outlier influencing the distance by the range of that attribute, where 

N(x, a) and N(y, a) represent the values of x and y on attribute a, respectively.  

  In Eq. 14, the SIG(a) denotes the significance of attribute a in a neighborhood decision system, 

and the weight(a) used to characterize the weight of attribute a in WHDM is calculated based on 

SIG(a). It is obvious that if SIG(a) > 0 then weight(a) is proportional to SIG(a), and weight(a) 

ranges from 0 to 1.  

3.2 The WHDM-based kNN algorithm and its extension to D-S theory 

  In this section, based on the proposed WHDM in the previous section, we use the WHDM as a 

distance metric for kNN. It can address heterogeneous attributes and consider the importance of 

attributes in calculating the distance. Different from the traditional kNN, weighted kNN 

adequately takes the weight of different attributes into account, and weighted kNN can work well 
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with both continuous attributes and nominal attributes. The detailed procedure of weighted kNN is 

described in Algorithm 1.  

Algorithm1: The weighted heterogeneous distance metric-based kNN 

Input: neighborhood decision table NDT = (U, C, D, N), where |U| = n, |C| = m; the number of 

neighbors k; the instance x to be classified;  (controls the size of the neighborhood).  

Output: the class label of instance x. 

1   For any attribute aC do: 

2     Compute the positive region POSC(D) and POSC{a}(D) by using Definition 4 

3     Compute the dependency degree C(D) and C{a}(D) by using Definition 5 

4     Compute the significance of attribute a SIG(a) = C(D)  C{a}(D) by using Definition 5 

5   End for 

6   Find SIG(ak) such that SIG(ak) = maxi SIG(ai), and denote it as MAX 

7   For each attribute aC, compute the weight of a weight(a) = SIG(a)/MAX 

8   For any yiU (1  i < k+1) do: 

9     For any attribute aC do: 

10      Compute the distance da(x, yi) between x and yi on attribute a 

11    End for 

12    Compute the distance whd(x, yi) = ∑ 𝑤𝑒𝑖𝑔𝑡(𝑎)𝑎∈𝐶   da(x, yi) between x and yi on C 

13    Deposit i and whd(x, yi) into map D. //D is a map structure, it contains two value (key and 

vlaue), i.e., each key maps to a value, where D[i].key = i, and D[i].value = whd(x, yi), 

respectively.  

14    Sort map D by D.value in ascending order. //D[k].value is largest. 

15  End for 

16  For any yiU (k+1  i < n) do 

17    Compute the distance whd(x, yi) between x and yi 

18    If whd(x, yi) < D[k].value, then let D[k].key = i, D[k].value = whd(x, yi), and rearrange map D 

by D.value in ascending order. //The aim is to make D[k] be the farthest in the neighbors of 

x. 

19  End for 

20  Count the number of class label of instances in map D  

21  Find the class label c, which has the maximum number  

22  Return the predicted class label c  

  As described in Section 2.2, Dempster-Shafer theory-based EkNN can provide a soft 

combination result of k different neighbors [23]. To further explore the development of weighted 

kNN, an evidence theory-based weighted kNN algorithm is developed to improve the output 

combination of k neighbors' prediction. Compared with weighted kNN, evidence theory-based 

weighted kNN only modifies the output target of k neighbors by using Dempster-Shafer theory; 

the combination of k neighbors' prediction in evidence theory-based weighted kNN is the same as 

that in EkNN. Considering that EkNN has been used in many studies [17, 18, 23, 28] and that 

Section 2.2 describes the principles of EkNN, here we give a brief description of evidence 

theory-based weighted kNN as follows:  

1) Compute the distance based on WHDM;  

2) Treat the class information of k neighbors and distances as evidence. Use the BPA functions in 
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Eqs. 1 and 2 to generate evidence rules;  

3) Fuse these evidence rules using Dempster rules in Eqs. 4 and 5;  

4) Compute the belief degree of possible class labels according to the belief function in Eq. 6; and 

5) Make a decision based on Eq. 6.  

4. RRSB 

  Bagging used for kNN ensemble can hardly increase the generalization performance, which has 

been proven by Breiman [9]. This is because Bagging uses a bootstrap sampling technique to 

generate accurate but diverse component classifiers, which is effective on unstable classifiers such 

as decision trees and neural networks.  

  To address this issue, several different methods have been proposed. For instance, Zhou and Yu 

[2] used bootstrap sampling, attribute filtering and randomly configured distance metrics for kNN 

ensembles. Nanni and Lumini [18] proposed a PSO-based multimodal perturbation for kNN 

ensembles, where RSM is used to perturb the attribute space, PSO is adopted to perturb the 

learning parameters of each component classifier, and evidence theory is used for combining the 

outputs of k different neighbors. Altinçay [17] proposed a GA-based multimodal perturbation for 

kNN ensembles, which uses GA to jointly estimate both the best-fitting attribute subsets and 

learning parameters of each member classifier.  

  RSM used in [2] and [18] can increase the diversity of component classifiers, but it might 

damage the accuracy. GA- and PSO-based multimodal perturbation methods [17, 18] cost too 

much time, and these methods do not perturb the training data. In this paper, we propose a novel 

multimodal perturbation method named RRSB for kNN ensembles. In detail, we use a weighted 

heterogeneous distance metric to perturb the learning parameter, adopt the attribute reduction 

technique to reduce irrelevant attributes after the random subspace method, which perturbs the 

attribute space, and introduce the Dempster-Shafer theory into the output target of kNN, which 

increases the performance of the component classifiers. With the above three perturbations, we 

adopt Bagging to perturb the training data. The main contribution of RRSB is that the multimodal 

perturbation-based RRSB not only increases the diversity of member classifiers but also 

guarantees the accuracy of member classifiers.  

  RSM, as first proposed by Ho [3], was used for decision tree ensembles. Ho [4] further applied 

RSM to kNN ensembles. For kNN classification, when calculating distances between a pending 

sample and training samples, only attributes corresponding to the selected subspace are used. In 

other words, each component classifier in the ensemble model corresponds to a random subspace, 

and in the ensemble stage, the predicted results of different classifiers are combined by majority 

voting. Ho [4] explained why RSM can work on kNN as follows: RSM is a derivative of 

stochastic discrimination where many stochastically generated weak member classifiers are 

combined to obtain nearly monotonic increase in accuracy [29]. The member classifiers do not 

have full discriminative power but they generalize very well to unseen data for the same problem. 

A stochastic procedure is adopted to introduce independence among the member classifiers. 

Combining their decisions together leads to increased discriminative power. RSM follows the 

same approach. By ignoring some dimensions of the attribute space, invariance of classification is 

maintained for samples that ignore different dimensions. By randomly selecting the combination 

of dimensions to be ignored, certain independence is introduced among the component classifiers. 

By combining the component decisions, discriminative power of ensemble classifier is improved.  
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  RSM improves the performance of kNN ensembles through increasing the diversity of 

component classifiers by injecting randomness. However, the accuracy of the component 

classifiers trained on the random subspace data is not sufficient, because redundancy may exist in 

attributes generated by RSM, and the redundant attributes that are irrelevant to the learning target 

may disturb the learning on the relevant attributes, which is harmful for the accuracy of 

component classifiers. The component classifiers are trained on subsets generated by RSM, and 

the irrelevant attributes might influence the accuracy of component classifiers. To address this 

issue, we use the attribute reduction method in neighborhood rough sets to remove irrelevant 

attributes after employing RSM. Here, we remove irrelevant attributes with the attribute reduction 

method after employing RSM rather than before, because all of the remainding attributes after 

attribute reduction might be indispensable, and employing RSM on reduced attribute space will 

not guarantee the accuracy of component classifiers. In this paper, we use F2HARNRS [22] to 

reduce irrelevant attributes from the attribute space generated by RSM. The procedure of the 

F2HARNRS algorithm is shown as Algorithm 2.  

Algorithm 2: F2HARNRS 

Input: Data set T = (U, C, D, N), where |U| = n, |C| = m;  (controls the size of the neighborhood). 

Output: Reduct red. 

Initialization: red ←, S ←U, where red denotes the reduct of C, and S denotes the set of samples 

out of positive region POS, where POS as defined in Definition 4 is used to compute reduct red. 

1   While S   do: 

2     For each aiC  red do: 

3       Generate a temporary decision table Ti = (U, red ∪ ai, D, N) 

4       POSi ← 

5       For each sample OjS do 

6         Compute  (Oj) in the neighborhood decision table Ti 

7         If there exists XkU/D such that  (Oj)  Xk 

8           POSi = POSi∪Oj 

9         End if 

10      End for 

11    End for 

12    Find ak such that |POSk| = maxi |POSi| 

13    If POSk   

14      red = red∪ak 

15      S = S  POSk 

16    Else 

17      Exit while 

18    End if 

19  End while 

20  Return red 

  Based on the above, a multimodal perturbation-based ensemble learning method named RRSB 

is proposed, where evidence-based weighted kNN is used as a base classifier. In detail, RRSB 

includes the following steps:  

1) Given a training set T with C dimensional attributes, we randomly select attributes from C to 
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form a subset Csub;  

2) We use the attribute reduction method (F2HARNRS) to reduce the irrelevant attributes in Csub, 

and hence a reduced attribute subset Csub-red of Csub is generated;  

3) Resampling samples from T via bootstrap sampling to generate a new sample set Tsmp;  

4) A member classifier C is obtained through training Tsmp on the attribute subset Csub-red using the 

evidence theory-based weighted kNN;  

5) Repeat the above steps t times to obtain t member classifiers; and  

6) The obtained t member classifiers are combined into an ensemble by majority voting.  

The detailed procedure of RRSB is described in Algorithm 3.  

Algorithm 3: RRSB 

Input: Training set T = (U, C, D, N), where |U| = n, |C| = m; the number of member classifiers t, 

the ratio of random subspace r. 

Output: Ensemble classifier EC. 

Initialization: BC ←ϕ, Tsmp ←ϕ, where BC denotes the set of all member classifiers, and Tsmp 

denotes the temporary training set; 

1   For i = 1 to t do: 

2     Randomly select attributes from C to form attribute subset Csub such that the ratio of Csub to 

C is r 

3     Use the algorithm 2 to reduce Csub, to get a reduced set Csub-red of Csub 

4     Tsmp ← 

5     For j =1 to n do: 

6       Randomly select a sample smp from U 

7       Tsmp = Tsmp∪smp 

8     End for 

9     Construct a classifier C by training on Tsmp corresponding to Csub-red using the given 

classification algorithm 

10    BC = BC ∪ C 

11  End for 

12  Obtain an ensemble classifier EC from the set BC by voting 

13  Return EC 

  In algorithm RRSB, evidence theory-based weighted kNN is used to train component classifiers, 

which can allow RRSB perturb the training set through multiple perspectives, i.e., perturbing the 

training data, attribute space, and learning parameter and output targets. We know that the 

complexity of kNN is O(nm), where n is the number of instances in the training set, and m is the 

dimension of attribute space. Luo et al. [30] demonstrated that kNN is very applicable to the 

number of instances far larger than the dimension. In other words, the dimensions have a greater 

effect on the complexity for kNN. Calvo-Zaragoza et al. [31] reduced the training set by using a 

prototype selection method to decrease the computational cost. Prasartvit et al. [32] used the 

artificial bee colony method for dimension reduction and then used kNN for analysis, which can 

save much time. García-Pedrajas and Ortiz-Boyer [33] proposed multiple input space projections 

for Boosting kNN. The input space projection can save much time in calculating the distance, but 

Boosting, as an iterative algorithm, is time consuming. In RRSB, the attribute space is reduced by 

RSM and attribute techniques, which can decrease the time cost during distance computing. The 
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Bagging used for perturbing the training data can easily be implemented in parallel, which 

guarantees the efficiency of RRSB. The computational time of attribute reduction in Algorithm 2 

is O(mnlog n(k+1)/2) [22], where n is the number of samples in decision table T, m is the 

number of raw attributes in T and k is the number of attributes in a reduced attribute space. The 

computational cost of EkNN is linearly related to the number of classes [23], and evidence 

theory-based weighted kNN only weights the attributes in distance metric; therefore, the 

computational cost of that is c times as much as EkNN, that is O(cn), where c is number of class 

labels. Finally, the complexity of RRSB is O(t((c+m log n(k+1)/2)n)), where t is the ensemble 

size. In the experiment, we compared the testing time of RRSB with other methods.  

5. Experimental results 

5.1 Individual classifier performance 

  In this section, we compared weighted kNN (kNN1) and evidence theory based weighted kNN 

(kNN2) with other types of kNN, including traditional kNN, EkNN (kNN3), HVDM-based kNN 

(kNN4) and HEOM based-kNN (kNN5). To verify the effectiveness of kNN1 and kNN2, multiple 

data sets from the UCI machine learning data repository [34] were used in the experiments. The 

size of data sets ranged from 208 to 11,500, and the number of attributes varied from 6 to 178. 

Details of the data sets are shown in Table 3.  

 

Table 3 

Summary of the data sets 

No. Data sets Size 
Attribute 

Class 
categorical continuous 

1 sonar 208 0 60 2 

2 ionosphere 351 2 32 2 

3 liver 345 0 6 2 

4 vowel 990 3 10 11 

5 vehicle 846 0 18 4 

6 heart 303 8 5 5 

7 wdbc 569 0 30 2 

8 pima 768 1 7 2 

9 credit-g 1000 21 3 2 

10 cardiotocography 2126 14 26 10 

11 thoracic 470 13 3 2 

12 diabetic 1151 3 16 2 

13 epileptic 11500 0 178 5 

14 firm teacher 10800 16 0 4 

15 pubchem 4279 114 30 2 

16 biodegradation 1055 8 33 2 

17 seismic-bumps 2584 12 6 2 

18 turkiye student 5820 32 0 5 

19 z-alizadeh 303 34 21 2 

20 movement-libras 360 0 90 15 
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  There are two popular methods for calculating the generalization performance of an algorithm, 
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i.e., hold-out and K-fold cross-validation techniques [35]. In the hold-out method, the data set is 

randomly separated into two parts, a training set and a test set. For the K-fold cross-validation 

method, the data set is randomly separated into K equal sized-parts, where the training process is 

carried out using K-1 parts, and the remaining part is used for computing the generalization 

performance. In general, the K-fold cross-validation usually needs to be performed several times 

to obtain mean results.  

  The K-fold cross-validation costs much time and the large number of instances used for training 

may result in small difference on classification results. In this paper, in order to be consistent with 

the processes of kNN and EkNN in the literature [17], we use the hold-out method in the 

experiments. In particular, for each data set, we repeated the experiments 50 times. Each time the 

data set was randomly separated into an equal-sized training set and test set, and the average of 50 

results was computed. The Euclidean distance metric is used for the traditional kNN and kNN3 

algorithms, the WHDM is used for the kNN1 and kNN2 algorithms, and kNN4 and kNN5 use two 

different heterogeneous distance metrics.  

  Considering that the value of k can influence the classification accuracy, we tested the 

experiments with several k values (k = 3, 5, 7). For the D-S theory-based kNN2 and kNN3 

algorithms, the values of parameter α0 and γ’s should be set, which is mentioned in Section 2.2. In 

our experiments, α0 = 0.95 and γ’s were equal to the inverse of mean distance among the training 

instances of the corresponding class, which were also used in [17]. Since we used the 

neighborhood rough set to compute the weighted heterogeneous distance in kNN1 and kNN2, we 

needed to set the size of neighborhood  in the experiments, and the parameter  for controlling 

the size of neighborhoods is set as 0.2, which has been proven to be a suitable value [22]. The 

classification accuracy of different types of kNN algorithms with various k values are listed in 

Table 4.  

  From Table 4, we can find the following results. First, when k was equal to 3, 5 and 7, kNN2 

obtained 9, 10 and 10 times the best individual accuracy, respectively, and kNN2 always had the 

best accuracy on 8 data sets (No. 2, 3, 5, 12, 13, 14, 16 and 19) regardless of whether k was equal 

to 3, 5 or 7. Second, kNN2 achieved the best average accuracy on three different k values 

compared with other types of kNN. Particularly, when the value of k was selected as 5, kNN2 

achieved the highest average accuracy. Third, being the same as kNN3, kNN2 is also not sensitive 

to the value of k; the maximum difference of mean accuracy in kNN2 is 0.72%, i.e., the highest 

average accuracy (78.43%) minus the lowest average accuracy (77.71%). Finally, compared with 

kNN, kNN4 and kNN5, kNN1 clearly improves the classification accuracy.  

5.2 The influence of different perturbations on the performance of ensemble classifier 

  RRSB makes use of multimodal perturbations to generate accurate but diverse component 

classifiers. If we breakdown the RRSB algorithm, several variants of RRSB can be derived that 

can be used to analyze the influence of different perturbations on the performance. We first 

employ two types of perturbation, and BagE (Bagging + EkNN), BagW (Bagging + weighted kNN) 

and BagR (Bagging + RSM) are generated. Next, three types of perturbation are employed, and 

BagEW (Bagging + evidence theory + weighted kNN) and REW (RSM + evidence theory + 

weighted kNN) are generated. Finally, we employ four types of perturbation, RAEW (RSM + 

attribute reduction + evidence theory + weighted kNN) and RBEW (RSM + Bagging + evidence 

theory + weighted kNN) are obtained. These algorithms are summarized in Table 5.  
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  In this section, we compared RRSB with its variants. In the experiments, all parameters are the 

same as those in the previous experiments in Section 5.1. To simplify the experiments, we only did 

the experiments with k = 5 because of the best mean accuracy obtained in our previous 

experiments. The size of the ensemble is set as 25, which was found to be a reasonable value after 

exhaustive experiments [36]. Since the random subspace method needs to set the subspace ratio, 

Table 6 

Classification accuracy of RRSB and its degenerated variants with k = 5 (in %) 

Data sets BagE BagW BagR BagEW REW RAEW RBEW RRSB 

sonar 75.97 76.51 75.15 76.44 76.92 78.84 78.37 83.98 

ionosphere 84.62 83.43 83.26 84.62 86.32 86.32 86.89 91.54 

liver 55.17 54.87 54.57 55.94 63.77 64.47 65.22 65.22 

vehicle 68.14 69.25 68.78 68.91 70.75 71.86 70.75 73.51 

vowel 81.25 83.56 83.15 84.14 88.82 90.35 90.72 91.29 

heart 76.21 74.86 75.26 75.12 75.09 76.18 78.77 81.71 

wdbc 95.64 95.58 95.58 97.01 96.84 96.73 95.26 96.73 

pima 73.32 74.11 74.24 73.88 75.57 75.57 77.66 77.66 

credit-g 72.18 72.20 72.21 72.94 73.64 73.15 73.78 75.81 

cardiotocography 100.00 100.00 100 100.00 100.00 100.00 100.00 100.00 

thoracic 83.51 84.45 83.14 84.58 86.27 87.38 88.17 91.37 

diabetic 63.68 64.98 64.05 64.47 68.42 71.36 74.17 76.58 

epileptic 51.25 50.36 50.25 49.25 54.32 52.38 55.55 58.75 

firm teacher 79.85 79.56 79.56 80.18 79.65 81.87 81.14 83.36 

pubchem 96.53 97.11 97.12 98.25 98.23 98.45 98.41 98.76 

biodegradation 84.12 83.65 83.14 85.51 86.14 89.35 91.57 92.17 

seismic-bumps 92.26 93.31 93.26 93.42 94.57 93.45 93.26 93.82 

turkiye student 80.84 81.74 81.17 82.36 84.97 85.51 86.18 88.56 

z-alizadeh 78.96 79.83 78.83 79.94 82.87 84.14 84.92 87.51 

movement-libras 65.28 64.52 64.28 64.93 69.70 75.14 77.89 83.19 

Ave 77.94 78.19 77.85 78.59 80.64 81.63 82.43 84.58 

 

Table 5 

RRSB and its degraded variants 

Methods  

Perturb training 

data with  

Perturb learning 

parameter with  
Perturb attribute space with 

 

Perturb individual 

output target with 

bootstrap sampling WHDM random subspace attribute reduction D-S theory 

BagE  YES  NO  NO NO  YES 

BagW  YES  YES  NO NO  NO 

BagR  YES  NO  YES NO  NO 

BagEW  YES  YES  NO NO  YES 

REW  NO  YES  YES NO  YES 

RAEW  NO  YES  YES YES  YES 

RBEW  YES  YES  YES NO  YES 

RRSB  YES  YES  YES YES  YES 
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here the subspace ratio r is randomly selected in the range [M/3, 2M/3] in each trial, where M 

denotes the number of attributes in each data set. Table 6 shows the classification accuracy of 

RRSB and its degenerated variants.  

  In contrast to the experimental results from Table 6, it can be seen that BagE and RRSB 

obtained the worst and the best average accuracy, respectively. The classification accuracy 

increased with the increase of perturbation, that is, the more perturbations are used, the greater is 

the diversity of the obtained component classifiers. Compared with the single kNN2 in Table 4, the 

experimental results demonstrate that the single perturbation Bagging (BagE, BagW and BagR) 

can barely increase the classification accuracy, which has also been proven by Breiman [9]. 

However, when combined with other types of perturbations, the classification performance will 

obviously increase, that is, when compared with BagE, BagW and BagR, REW and RAEW 

obtained higher classification accuracies because kNN2 is sensitive to the input space. Furthermore, 

RAEW achieved a higher accuracy than REW, since RAEW removed the irrelevant attributes that 

can influence the classification performance. Moreover, the perturbation of the attribute space and 

  
 (a) ionosphere (b) wdbc 

  
 (c) credit-g (d) epileptic 

  
 (e) pubchem (f) z-alizadeh 

Fig. 1. Classification accuracies of different algorithms versus the size of ensemble on 6 data sets. 
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the training data-based RBEW and RRSB obtained higher classification accuracies compared with 

other algorithms. RRSB has the highest accuracy since the most perturbations are used on it to 

guarantee the diversity of member classifiers.  

5.3 The impact of ensemble size on the performance of RRSB. 

  In the previous Section 5.2, for all ensemble algorithms, the ensemble size was set to 25, 

according to [32]. In this section, in order to further explore the influence of the ensemble size on 

the classification performance in the experiments, we did the experiments on different ensemble 

sizes. The ensemble size was set in the range [10, 50], with steps of 10. The other parameters were 

set in Section 5.2, and the experimental results are shown in Fig. 1.  

  As shown in Fig. 1, for all data sets, the classification accuracy of most algorithms initially 

increased, achieved at peak value, and then either decreased or remained stable. The size of 

ensemble with the best accuracies was 20 or 30, which was also demonstrated by Maclin and 

Opitz [36]. Compared with the other algorithms, RRSB achieved the best accuracies, and the 

accuracies of RRSB showed the least change when the ensemble size was increased, in other 

words, the size of ensemble had little influence on the classification performance.  

5.4 Comparison with other multimodal perturbation based ensemble algorithms 

  In this section, we compared RRSB with other multimodal kNN ensemble algorithms, including 

FASBIR [2], GA [17] and EPSO [18]. These are all multimodal perturbation-based ensemble 

learning methods. Brief descriptions of these methods are given as follows:  

1) FASBIR: This is a multimodal perturbation method, i.e., disturbing the learning parameter by 

randomly selecting a value of p in Minkowski distance function for each classifier, the training 

samples by Bagging and input attributes by random subspace method on filtered attributes [2].  

2) GA: This is a multimodal perturbation method that uses GA to jointly estimate both the 

best-fitting attribute subsets and the learning parameters of each kNN classifier [17].  

3) EPSO: This is a multimodal perturbation method, where RSM is used to perturb the attribute 

space, and PSO is adopted to perturb the learning parameters and the attribute subset of each base 

classifier [18].  

4) RRSB: This is the proposed method in this paper. It is also a multimodal perturbation method, 

i.e., perturbing the learning parameter by weighting the heterogeneous distance metric, the 

attribute space through the random subspace method and attribute reduction, the training samples 

by bootstrap sampling and the output target of k different neighbors through evidence theory.  

  We performed experiments on multiple UCI data sets (shown in Table 3) to compare the 

classification performance of RRSB with other multimodal perturbation-based ensemble 

algorithms.  

  To minimize potential inaccuracies caused by the partition of the training set, the results from 

each data set have been averaged over 50 times. For each experiment we randomly split the data 

set into two equal-sized sets — the training set (50% of the data) and the test set (the remaining 

50%). For all algorithms, the ensemble size was set to 25. For RRSB, the parameters were set as in 

Section 5.2, that is, α0 = 0.95 and γ’s are equal to the inverse of mean distance among the training 

instances of the corresponding class.  = 0.2, the random subspace ratio r was randomly set in the 

range [M/3, 2M/3] for each random subspace, where M denotes the number of attributes in the 

data set, and k for the number of neighbors was set as 5. Table 7 shows the performances obtained 
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by FASBIR, GAv1, GAv2, EPSO and RRSB, where GAv1 and GAv2 are two different versions of 

GA-based ensemble algorithms in [17], and EPSO is the PSO-based ensemble algorithm in [18]. 

To make the experimental results comparable, we did the experiments using the same conditions 

for all algorithms.  

  To compare the difference between RRSB and other ensemble algorithms, we selected the 

paired t-test [37] for statistical analysis and set the significance level to 0.05. In the experiments, 

each of the other ensemble algorithms was paired with RRSB, and a paired t-test was employed by 

using the classification results on different data sets. Table 8 shows the different paired t-test 

results over multiple data sets.  

 

  It can be seen from Table 7 that FASBIR, GAv1, GAv2, EPSO and RRSB obtained the best 

accuracies (2, 1, 1, 3 and 12 times, respectively), and the best mean average accuracy was 

obtained by RRSB. Although RRSB had the lower accuracy on other 7 data sets compared with 

the other methods, the accuracies of RRSB had small differences compared with the best 

accuracies, and the biggest difference (2.29%) appeared at the ―heart‖ of the data set.  

  From Table 8, it can be seen that for each pair of ensemble methods, the P-values of different 

pairs of ensemble algorithms are less than 0.05, i.e., the null hypothesis that the average difference 

is zero can be rejected. In other words, the difference between RRSB and each of other ensemble 

methods is statistically significant.  

Table 7 

Comparison of the proposed algorithm with other 

algorithms. 

Data set FASBIR GAv1 GAv2 EPSO RRSB 

sonar 81.76 77.57 76.89 83.65 83.98 

ionosphere 84.05 89.43 89.43 93.00 91.54 

liver 59.42 65.35 65.81 65.12 65.22 

vehicle 69.03 69.91 69.19 70.52 73.51 

vowel 87.57 92.24 91.64 85.00 91.29 

heart 82.15 77.75 78.61 84.00 81.71 

wdbc 95.96 93.17 93.56 95.80 96.73 

pima 74.09 74.01 74.24 74.00 77.66 

credit-g 72.33 72.36 71.84 73.70 75.81 

cardiotocography 100.00 100.00 100.00 100.00 100.00 

thoracic 86.11 85.68 86.25 88.31 91.37 

diabetic 71.29 66.24 67.31 70.55 76.58 

epileptic 55.58 53.38 54.26 59.74 58.75 

firm teacher 78.53 77.35 79.54 78.95 83.36 

pubchem 98.55 98.59 98.68 98.72 98.76 

biodegradation 89.02 87.81 88.24 89.84 92.17 

seismic-bumps 95.38 93.15 94.25 93.78 93.82 

turkiye student 85.31 85.34 84.89 86.58 88.56 

z-alizadeh 88.83 87.25 86.14 86.84 87.51 

movement-libras 72.83 77.26 78.59 75.54 83.19 

Average 81.39 81.19 81.47 82.68 84.57 
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  Fig. 2 shows the testing time of different methods on 6 data sets, where two of them have 

hundreds of attributes. The results show that the GA-based methods are the most time consuming, 

the PSO-based method cost less time than GA, FASBIR requires the shortest time, and the time 

cost of RRSB is only slightly longer than FASBIR. The reason behind the results is that GA needs 

much more time for selecting a best attribute subset, especially in high dimensional data sets. 

Although PSO adopts the random subspace method for selecting an attribute subset, it needs much 

time to optimize the other parameters. FASBIR and RRSB adopt random subspace and attribute 

filtering techniques to select attribute subsets, which take less time compared with GA- and 

PSO-based algorithms.  

5.5 Application on network intrusion detection 

  To test the effectiveness of RRSB on big data set, we used the benchmark of intrusion detection 

KDD Cup 99 [38] for experiments. The KDD Cup 99 data set is an intrusion detection data set, 

where each sample in the data set describes a network connection record. Each sample of the data 

set contains 41 conditional attributes describing the connection records and a class label assigning 

either normal or attack type to the connection records, where the 41 attributes are divided into 34 

numeric attributes and 7 nominal attributes, and all attack types belong to four categories, i.e., 

PROBE, DOS, U2R and R2L. Since the original data set is too large and contains too many 

duplicate records, here we use the well-known 10%-KDD Cup 99 data set [38], it contains 

 
Fig. 2 Testing time on six data sets 

Table 8 

Paired t-test results 

The pair of ensemble methods P-values 

RRSB vs. FASBIR 0.017 

RRSB vs. GAv1 0.019 

RRSB vs. GAv2 0.023 

RRSB vs. EPSO 0.021 
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494,021 records. The detail of the 10%-KDD Cup 99 data set is described in Table 9.  

 

  We computed the detection rate for all ensemble algorithms, where the detection rate is defined 

as the ratio of the number of detected attack samples to the total number of attack samples. The 

KDD Cup 99 data set is a representative imbalanced data set [39], and it can be seen from Table 9 

that the R2L and U2R types are very rare. The number of attack samples is much less than that of 

normal samples, but classifying attack samples correctly often has a greater significance than 

classifying normal samples in intrusion detection. So it is more significant to compute the 

detection rate for each attack type than to compute the overall detection rate with respect to all 

connection samples. In the experiments, we computed the detection rate and F-Measure [40] value 

for each attack type.  

  In the experiments, we randomly split the data set into two parts (10% of the data for training, 

and the remaining for testing). The parameters of all algorithms are set the same as those in 

Section 5.4. The average of 50 times' results are computed, Table 10 and 11 showed the detection 

rates and F-Measure values of different ensemble methods on 10%-KDD Cup 99 data set, 

respectively.  

  From Table 10, it can be seen that for each attack type, RRSB obtained higher detection rate 

than other ensemble algorithms. In particular, the detection rates on U2R and R2L are significantly 

higher than those of other ensemble methods, which indicates that RRSB is more effective in 

detecting rare but important attack categories (U2R and R2L). Moreover, the overall detection rate 

of RRSB is also higher than those of the other ensemble methods. Table 11 shows that RRSB 

achieved the highest F-Measure values on "PROBE", "U2R" and "R2L", and the F-Measure value 

of "DOS" from RRSB is only less than that of FASBIR with 0.04%. This experiment demonstrates 

that RRSB can be effectively used in big data set. Furthermore, RRSB can obtain good 

performance on big data set.  

Table 9 

Number of samples for various attack types and 

normal connections 

 Attack categories and 

normal connections 

Original number of records in 

10%-KDD Cup 99 

PROBE 

ipsweep 1,247 

nmap 231 
portsweep 1,040 

satan 1,589 

DOS 

back 2,203 

land 21 
neptune 107,201 

pod 264 
smurf 280,790 

teardrop 979 

U2R 

buffer_overflow 30 

loadmodule 9 

perl 3 

rootkit 10 

R2L 

ftp_write 8 
guess_passwd 53 

imap 12 

multihop 7 
phf 4 

Spy 2 

warezclient 1,020 
warezmaster 20 

Normal  97,278 

Total  494,021 
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6. Conclusions 

  In this paper, a novel multimodal perturbation-based ensemble algorithm, RRSB, is proposed, 

which generates accurate but diverse component classifiers to improve the performance of 

ensemble classification. The experimental results from multiple UCI data sets show that our 

proposed method can improve the classification performance in most cases. Compared with other 

methods, the RRSB is robust, with different k values. In addition, the testing time of RRSB is less 

than GA- and PSO-based methods and is comparable to FASBIR. Finally, the experimental results 

from the KDD Cup 99 data set show that RRSB is effective for a big and imbalanced data set.  

  Since the output target of member classifiers only uses majority voting in this paper, in future 

work, we will study other combination rules on the ensemble. The study of diversity measures [41] 

among multimodal perturbations is clearly worthy of attention.  
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