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The moment-based method is a fundamental approach to the extraction of affine invariants. However, 

only integer-order traditional moments can be used to construct affine invariants. No invariants can be 

constructed by moments with an order lower than 2. Consequently, the obtained invariants are sensitive 

to noise. In this paper, the moment order is generalized from integer to non-integer. However, the mo- 

ment order cannot simply be generalized from integer to non-integer to achieve affine invariance. The 

difficulty of this generalization lies in the fact that the angular factor owing to shearing in the affine 

transform can hardly be eliminated for non-integer order moments. In order to address this problem, the 

Mellin polar coordinate moment (MPCM) is proposed, which is directly defined by a repeated integral. 

The angular factor can easily be eliminated by appropriately selecting a repeated integral. A method is 

provided for constructing affine invariants by means of MPCMs. The traditional affine moment invariants 

(AMIs) can be derived in terms of the proposed MPCM. Furthermore, affine invariants constructed with 

real-order (lower than 2) MPCMs can be derived using the proposed method. These invariants may be 

more robust to noise than AMIs. Several experiments were conducted to evaluate the proposed method 

performance. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

Images of an object captured from different viewpoints are of-

en subject to perspective distortions [1–4] . If the object is small

ompared to the camera-to-scene distance, the perspective effect

ecomes negligible and the affine model provides a reasonable ap-

roximation of the projective model [2,5] . Therefore, the extrac-

ion of affine invariant features plays an important role in object

ecognition and registration [6–10] . This method has been used

xtensively in numerous fields, such as shape recognition and re-

rieval [11,12] , watermarking [13] , aircraft identification [14,15] , tex-

ure classification [16] , and image registration [17,18] . 

The moment-based method is the most commonly used tech-

ique for the extraction of affine invariant features. However, only

nteger-order moments can be used to construct affine invariants

4] . It has been reported that high-order moments are sensitive

o noise [19] . Hence, in practice, a moment of the lowest possi-

le order should be used [20] . For similarity transform (including

nly translation, scaling, and rotation), Fourier Mellin descriptors

21] can be viewed as the invariants constructed by complex num- 

er order moments. However, similarity transform is only a spe-
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ial case of affine transform [4] . Thus far, an order of moments for

onstructing affine invariants can only be an integer. In this paper,

e consider generalizing the moment order from integer to non-

nteger, and construct affine invariants by means of the proposed

oment. 

.1. Extraction of features invariant to similarity transform by 

oment 

Similarity transform includes translation, scaling, and rotation

4] . Numerous methods for the extraction of similarity invariants

re moment-based [22] . The geometric moment of image Im ( x, y )

s defined as gm pq = 

∫ ∫ 
x p y q Im(x,y) dxdy, where p, q are non-negative

ntegers, and p + q is known as the order of moment gm pq . Then,

he central moment μpq of the image is defined as 

pq = 

∫ ∫ 
(x − x 0 ) 

p (y − y 0 ) 
q Im (x, y ) d xd y, (1)

here x 0 = 

gm 10 
gm 00 

, y 0 = 

gm 01 
gm 00 

. We note that the geometric moment

rder is an integer. In this paper, we refer to the central moment

s the traditional moment. 

The integer order moment has been used extensively to con-

truct similarity invariants. Hu [23] introduced the moment to pat-

ern recognition for the first time and constructed seven similarity

nvariants with moments of an order less than 3. Since then, the

https://doi.org/10.1016/j.patcog.2018.07.036
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rotational moment [24] , complex moment [25] , and others, have

been proposed and used to construct similarity invariants. It was

reported in [19] that high-order moments are sensitive to noise.

However, moments used in these methods are all of an integer or-

der. Furthermore, the orders of these moments are no less than 2.

As a result, methods based on the traditional moment are noise

sensitive. 

The Fourier Mellin descriptor, proposed by Sheng et al. [21] , is

the generalization of the traditional moment. This descriptor is de-

fined as follows: 

M s,l = 

∫ ∫ 
r s −1 f (r, θ ) e ilθ d rd θ, (2)

where f ( r, θ ) is an image expressed in the polar coordinate system

and s denotes a complex number. It was also reported in [21] that

Hu’s moments are special cases of the Fourier Mellin descriptors

provided in Eq. (2) . Note that the traditional moment in the polar

coordinates system can be expressed as follows: 

μpq = 

∫ ∫ 
r p+ q +1 f (r, θ ) sin 

q θ cos p θdθ . (3)

Comparing Eqs. (2) and (3) , we note that the exponent of r in

Eq. (2) is generalized from an integer p + q + 1 to a complex num-

ber s − 1 . That is, the Fourier Mellin descriptor can be viewed as

complex number order moment. 

Therefore, moment-based methods have been thoroughly devel-

oped for the construction of similarity invariants. A moment of any

order (even a complex number order) can be used to construct

similarity invariants. However, similarity transform is only a spe-

cial case of affine transform [4] . We consider the problem of con-

structing affine invariants by means of non-integer order moments

in this paper. 

1.2. Problems for construction of affine invariants by moment 

1.2.1. Construction of affine invariants based on traditional moment 

Affine transform provides a reasonable approximation of the

projective model [2] ; therefore, affine transform and affine invari-

ants are very important in computer vision. Affine transform con-

sists of a linear transformation, as follows: {
˜ x = a 11 x + a 12 y + b 1 , 
˜ y = a 21 x + a 22 y + b 2 . 

(4)

The nonsingular matrix A = 

[
a 11 a 12 

a 21 a 22 

]
represents the scaling, ro-

tation, and skewing, while b = (b 1 , b 2 ) 
T corresponds to the trans-

lation. Similarity transform is simply a special case of affine trans-

form. In fact, when a 11 = a 22 and a 12 = −a 21 , Eq. (4) describes the

similarity transform (see [4] ). 

Affine moment invariants (AMIs) were proposed by Flusser

et al. [4,26] . AMIs are the generalization of Hu’s moment invari-

ants. Recently, Flusser et al. [27] derived affine invariants by means

of graph theory. Using this method, AMIs can be constructed by

any integer (no less than 2) order moment. The kernel of these

AMIs is defined in terms of the “cross-product” of points ( x 1 ,

y 1 ) and ( x 2 , y 2 ) in an image [4,27] : 

 12 = x 1 y 2 − x 2 y 1 . (5)

AMIs have been used in numerous fields, such as image registra-

tion [4] , object recognition [28] , and color image processing [29] . 

As mentioned previously, high-order moments are sensitive to

noise. Therefore, the order of moments used to construct affine in-

variants should be lower in practice. However, AMIs can only be

constructed by integer order moments with methods in [4,26] , and

the lowest order of moments used for constructing AMIs is 2. As a

result, AMIs are more sensitive to noise [30] . 
.2.2. Need for modification of moment definition 

Numerous moment-based methods have been proposed to im-

rove the robustness of affine invariants to noise. In [31] , cross-

eighted moments were proposed. Although this method over-

omes the sensitivity of the moment to noise to a certain degree,

t significantly increases the computation amount. Rahtu et al. pro-

osed a series of algorithms for constructing affine invariants by

sing properties of the random variable function (see, for example,

30,32,33] ). In order to improve the recognition rate, additional pa-

ameters should be selected. As a result, the computation is greatly

ncreased. Overall, affine invariants based on traditional moments

re sensitive to noise. Certain new methods are computationally

xpensive. 

As mentioned previously, AMIs can only be constructed by in-

eger order moments, and two is the lowest order of moments

or constructing AMIs. A natural question arises: can we con-

truct affine invariants by means of a moment with an order

ower than 2? The zero-order moment gm 00 is generally used to

ormalize other quantities to achieve invariance. One-order mo-

ents gm 01 , gm 10 are generally used to calculate the centroid in

rder to achieve translation invariance. Therefore, it is impossi-

le to construct invariants with a traditional moment of an order

ower than 2. Consequently, the question changes to the following:

an we construct affine invariants with non-integer moments? As

entioned previously, the traditional moment order is an integer.

herefore, we need to modify the moment definition so that we

an construct affine invariants with moments of an order lower

han 2. 

.2.3. Modification difficulties 

In the Cartesian system, the integer power of the “cross-

roduct” must be employed to construct affine invariants in or-

er to lower the computational burden. The power of the “cross-

roduct” C 12 in Eq. (5) is fundamental in affine invariants (see

q.(3.12) in [4] ). Only an integer power of this “cross-product” can

nable AMIs to be calculated by a polynomial of moments. For ex-

mple, an affine invariant with a second-order moment (without

ormalization), I 1 , can be derived as follows (see [4] ): 

 1 = 

∫ ∫ ∫ ∫ 
(x 1 y 2 − x 2 y 1 ) 

2 
2 ∏ 

i =1 

Im (x i , y i ) d x 1 d y 1 d x 2 d y 2 (6)

= 

∫ ∫ (∫ ∫ 
x 2 1 Im (x 1 , y 1 ) dx 1 dy 1 

)
y 2 2 Im (x 2 , y 2 ) dx 2 dy 2 + · · ·

= 2(gm 20 gm 02 − gm 

2 
11 ) . (7)

e observe from Eq. (6) that I 1 is defined by a quadruple integral.

rom Eq. (7) , we see that I 1 can be calculated by gm 20 , gm 02 , and

m 11 , which are defined by a double integral. Therefore, the com-

utational complexity of AMIs is low. If the power of C 12 is not an

nteger (for example, ( C 12 ) 
2 is changed to ( C 12 ) 

0.5 in Eq. (6) ), this

ill result in a quantity that cannot be calculated directly by gm pq .

he amount of computation for this is very expensive (see [31] ). 

In the polar coordinate system, the power for radial factors may

iffer from the power for the angular part. In the expression of the

cross-product” C 12 , the radial factors r 1 and r 2 are separated with

in (θ1 − θ2 ) : 

 1 r 2 sin (θ1 − θ2 ) . (8)

onsequently, the power of the “cross-product” can be generalized

nto the following form: 

 

l 1 
1 

r l 2 
2 
( sin (θ1 − θ2 )) 

l 3 . (9)

ere, it is not necessary for l 3 to be equal to l 1 or l 2 . Furthermore,

f we employ an integer l 3 , the quantity defined in Eq. (9) will re-

ult in a polynomial of r , r , and a certain trigonometric function
1 2 
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Fig. 1. Main concept of this paper. 
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means of MPCM. 
f θ1 and θ2 . As an example, we generalize the quantity provided

n Eq. (6) to the following form ( l 3 is set as 2): 

 I 1 = 

∫ ∫ ∫ ∫ 
r l 1 

1 
r l 2 

2 ( sin ( θ1 − θ2 ) ) 
2 

2 ∏ 

i =1 

f ( r i , θi ) r 1 r 2 dr 1 dθ1 dr 2 dθ2 

= 

∫ ∫ ∫ ∫ 
r l 1 +1 

1 
r l 2 +1 

2 
sin 

2 θ1 cos 2 θ2 

2 ∏ 

i =1 

f ( r i , θi ) d r 1 d θ1 d r 2 d θ2 + · · ·

= 

(∫ ∫ 
r l 1 +1 

1 
sin 

2 θ1 f ( r 1 , θ1 ) dr 1 dθ1 

)(∫ ∫ 
r l 2 +1 

2 
cos 2 θ1 f ( r 2 , θ2 ) d

e observe from Eq. (10) that PI 1 is defined with a quadruple in-

egral; however, it can be calculated using a double integral, ow-

ng to the integer l 3 = 2 . Its computational complexity is also low.

herefore, we can generalize the power of the “cross-product” C 12 

o Eq. (9) ( l 3 is an integer) for the construction of affine invariants.

However, the definition of the moment should be modified fur-

her. In the polar coordinate system, the integral along the ra-

ial direction will result in a factor about the angular ( α( θ ) in

q. (20) ). In order to achieve affine invariance, this angular factor

hould be eliminated. As an example, we consider the quantity PI 1 
n Eq. (10) . Following affine transform, it will be changed to the

ollowing ˜ P I 1 : 

˜ 

 I 1 = 

∫ ∫ ∫ ∫ 
˜ r l 1 
1 ̃

 r l 2 
2 
(sin ( ̃  θ1 − ˜ θ2 )) 

2 
2 ∏ 

i =1 

˜ f ( ̃ r i , ˜ θi ) ̃ r 1 ̃  r 2 d ̃ r 1 d ̃  θ1 d ̃ r 2 d ̃  θ2 . (11) 

t follows from Eqs. (20) , (33) , and (34) that 

˜ I 1 = ( det ( A ) ) 
8 
∫ ∫ ∫ ∫ 

r l 1 + 1 
1 

r l 2 + 1 
2 ( sin ( θ1 − θ2 ) ) 

2 

( α( θ1 ) ) 
2 −l 1 ( α( θ2 ) ) 

2 −l 2 

2 ∏ 

i =1 

f ( r i , θi ) d r 1 d

e compare Eq. (10) with (12) . In order to ensure that ˜ P I 1 is a rel-

tive affine invariant of PI 1 , we should set l 1 and l 2 to be equal to

. As a result, PI 1 in Eq. (10) is the same as I 1 in Eq. (6) . Conse-

uently, no further affine invariants will be constructed by gener-

lizing the power of the “cross-product” to Eq. (9) . Simply general-

zing the moment from integer to non-integer is of no use. 

.3. Contributions and organization of this paper 

In this paper, the moment order is generalized from integer to

on-integer. The Mellin polar coordinate moment (MPCM) is pro-

osed and a method is provided for constructing affine invariants.
(10) 

2 

)
+ · · ·

 2 d θ2 . (12) 

he main concept is illustrated in Fig. 1 . The contributions of this

aper are listed as follows. 

• The MPCM, the order of which is a complex number, is pro-

osed. 

The order of the traditional moment is an integer, but high-

rder moments are sensitive to noise [19] . We generalize the tra-

itional moment so that the moment order can be a non-integer.

owever, the moment order cannot simply be generalized to a

on-integer. The traditional moment is defined by a double in-

egral. In the polar coordinate system, a repeated integral is em-

loyed to calculate the traditional moment. However, the integral

long the radial direction will result in an angular factor α( θ ) ow-

ng to the shearing in the affine transform (see α( θ ) in Eq. (20) ).

n order to eliminate this angular factor, only high-order moments

an be employed to construct affine invariants. The MPCM pro-

osed in this paper is defined directly by a repeated integral (see

op right in Fig. 1 ). By using an appropriate repeated integral (the

ower t in the definition of MPCM), the factor α( θ ) by the inte-

ral along the radial direction can easily be eliminated. As a result,

on-integer order (even for complex number order) moments can

e used to construct the affine invariants. The traditional moment

s only a special case of the proposed MPCM. 

Mellin transform has been used for the extraction of invariant

eatures [34–39] . However, features extracted by these methods are

nly invariants to similarity transform. In this paper, we propose

he MPCM to extract affine invariants by employing Mellin trans-

orm. 
• A method is provided for constructing affine invariants by
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The MPCM is defined by a repeated integral, and affine in-

variants can be constructed by moments of any order. Based on

the MPCM, the method for constructing affine invariants is pre-

sented in this paper. As the MPCM is the generalization of the tra-

ditional moment, all AMIs can be derived by means of the pro-

posed method. Furthermore, we provide several affine invariants

constructed by real-order MPCMs. The experimental results verify

the affine invariance of the invariants constructed by MPCMs. 
• The invariants constructed by lower real-order MPCMs are ro-

bust to noise. 

High-order traditional moments are sensitive to noise [19] . A

low-order moment should be used to extract invariant features.

However, the order of the traditional moment used to construct

affine invariants is no less than 2. With the MPCM, the moment or-

der is generalized from an integer to a non-integer. As a result, mo-

ments with real number (lower than 2) orders can be used to con-

struct affine invariants. We conduct several experiments to test the

robustness of these invariants to noise. Certain Chinese characters,

English capital letters, the Coil-20 database and various images in

ILVRC2012 are used as test images. The results demonstrate that

the invariants constructed by low real-order (less than 2) MPCMs

are more robust to noise. 

The remainder of this paper is organized as follows. In

Section 2 , MPCM is introduced. In Section 3 , a method is pre-

sented for the extraction of affine invariants by means of MPCM.

Thereafter, we construct several affine invariants using the pro-

posed method. Meanwhile, we explain that affine invariants con-

structed by traditional moments are only special cases of invari-

ants constructed by MPCMs. The proposed method performance is

evaluated experimentally in Section 4 . Finally, concluding remarks

are provided in Section 5 . 

2. Mellin polar coordinate moment 

Let h be a 1D function. The Mellin transform of h is a function

defined by [40] : 

M h (s ) = 

∫ 
h (x ) x s −1 dx, (13)

where s = σ + iτ . The real part σ of s is a constant, selected so

that the integral in Eq. (13) converges. The imaginary part τ of s is

the transform variable. 

In order to define the MPCM, the Cartesian coordinate system

should first be converted into the polar coordinate system. The ori-

gin of the reference system is translated into the image centroid.

We denote the image as f ( r, θ ) in the polar coordinate system,

in which a point ( x, y ) can be described as x = r cos θ, y = r sin θ,

θ ∈ [0, 2 π ), and r = 

√ 

x 2 + y 2 , where r represents the distance be-

tween point ( x, y ) and the image centroid. 

Definition 1. The MPCM of image f ( r, θ ) is defined as follows: 

M(s, t, p, q ) = 

∫ ∣∣∣∫ r s −1 f (r, θ ) dr 

∣∣∣t 

sin 

q θ cos p θdθ, (14)

where s = σ + iτ ( σ ≥ 1), p, q, t are non-negative real numbers, and

s − 2 is known as the order of the MPCM. 

Remark 1. The MPCM is the generalization of the traditional mo-

ment. 

According to Definition 1 , the central moment can be expressed

by the MPCM: 

μpq = 

∫ [ ∫ 
r p+ q +1 f (r, θ ) dr 

] 
sin 

q θ cos p θdθ = M( p + q + 2 , 1 , p, q ) .

That is, the MPCM is the generalization of the traditional moment.

Remark 2. The MPCM is defined in terms of a repeated integral. 
As mentioned previously, μpq , the traditional moment, is de-

ned by a double integral. In the polar coordinate system, μpq is

alculated by a repeated integral. The integral along the radial di-

ection results in an angular factor α( θ ) in Eq. (20) . High-order tra-

itional moments are employed in order to eliminate this factor.

n this paper, the MPCM is directly defined by a repeated integral

see Eq. (14) ). Consequently, the angular factor α( θ ) provided in Eq.

20) can be eliminated by selecting an appropriate t in Eq. (14) . 

emark 3. The MPCM can be viewed as complex number order

oment. 

The traditional moment order is an integer ( p, q in Eq. (3) are

ll integers). Using the traditional method, only moments with or-

ers no less than 2 can be used to construct affine invariants. How-

ver, s in Eq. (14) is a complex number, and an integer is only a

pecial case of a complex number. Therefore, the MPCM can be

iewed as a complex number order moment. 

Furthermore, the MPCM exhibits the following property. 

heorem 1. For s 1 = σ + τ i, s 2 = σ − τ i, t ∈ R 

+ and any non-

egative real numbers p, q, the following equation holds: 

(s 1 , t, p, q ) = M(s 2 , t, p, q ) . (15)

roof. 

(s 1 , t, p, q ) = 

∫ ∣∣∣∫ e (s 1 −1) lnr f (r, θ ) dr 

∣∣∣t 

sin 

q θ cos p θdθ

= 

∫ ∣∣∣∫ e (σ−1) l nr+ iτ l nr f (r, θ ) dr 

∣∣∣t 

sin 

q θ cos p θdθ

= 

∫ ∣∣∣∫ e (σ−1) l nr−iτ l nr f (r, θ ) dr 

∣∣∣t 

sin 

q θ cos p θdθ

= M(s 2 , t, p, q ) 

his completes the proof. �

. Construction of affine invariants by MPCMs 

In this section, we provide a general method for the extraction

f affine invariant features based on the MPCM. Firstly, the affine

ransformation in the polar coordinate system is briefly reviewed

n Section 3.1 . Thereafter, a general method is presented for con-

tructing affine invariants by MPCMs in Section 3.2 . In Section 3.3 ,

e construct several affine invariants using the proposed method.

e demonstrate that affine invariants constructed by traditional

oments [4,27] are only special cases of invariants constructed

y MPCMs. Furthermore, we construct several affine invariants by

PCMs with orders that are real numbers. 

.1. Affine transformation in polar coordinate system 

In order to achieve translation invariance, the reference system

rigin is translated into the image centroid, as mentioned previ-

usly. Consequently, the relation of Eq. (4) can be expressed as fol-

ows: 

˜ 
 = A x . (16)

Suppose that the Cartesian coordinate system has been con-

erted into the polar coordinate system, in which a pair of affine-

elated points ( x, y ) and ( ̃  x , ̃  y ) in the Cartesian coordinate system

an be described as follows: 

x = r cos θ
y = r sin θ

, 

{
˜ x = 

˜ r cos ˜ θ

˜ y = 

˜ r sin 

˜ θ
(17)

here θ, ˜ θ ∈ [0 , 2 π) , r = 

√ 

x 2 + y 2 , and ˜ r = 

√ 

˜ x 2 + ˜ y 2 . 
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According to Eqs. (16) and (17) , we obtain the following equa-

ions: 

˜ r cos ˜ θ = a 11 r cos θ + a 12 r sin θ

˜ r sin 

˜ θ = a 21 r cos θ + a 22 r sin θ
(18) 

t follows that 

˜ 
 = r 

√ 

(a 11 cos θ + a 12 sin θ ) 2 + (a 21 cos θ + a 22 sin θ ) 2 , 

nd 

an 

˜ θ = 

˜ y 

˜ x 
= 

a 21 cos θ + a 22 sin θ

a 11 cos θ + a 12 sin θ
. 

e set 

α(θ ) = 

√ 

(a 11 cos θ + a 12 sin θ ) 2 + (a 21 cos θ + a 22 sin θ ) 2 , 

(θ ) = 

a 21 cos θ + a 22 sin θ

a 11 cos θ + a 12 sin θ
. (19) 

t follows that 

˜ r = α(θ ) r, (20) 

tan 

˜ θ = β(θ ) . (21) 

rom Eq. (18) , we know that 

os ˜ θ = 

a cos θ + b sin θ

α(θ ) 
, sin 

˜ θ = 

c cos θ + d sin θ

α(θ ) 
. (22) 

.2. Method for constructing affine invariants 

In this subsection, we provide a method for constructing affine

nvariants by means of the MPCM. Firstly, we obtain the following

esult. 

heorem 2. Select g ∈ Z 

+ , s i = σi + iτi (σi ≥ 1) , and m jk ≥ 0 ( j, k =
 , · · · , g) . Furthermore, let m jk = 0 (1 ≤ j ≤ k ≤ g ) . Set 

 i = 

1 

σi 

( 

g ∑ 

j= i +1 

m ji + 

i −1 ∑ 

k =1 

m ik + 2 

) 

, (23) 

 = 

∑ 

g≥ j>k ≥1 

m jk + g. (24) 

hen, the following quantity is an affine invariant: 

 = 

1 

M 

n (2 , 1 , 0 , 0) 

∫ ∫ 
· · ·

∫ g ∏ 

i =1 

∣∣∣∫ r s i −1 
i 

f (r i , θi ) dr i 

∣∣∣t i 

∏ 

g≥ j>k ≥1 

sin (θk − θ j ) 
m jk d θ1 d θ2 · · · d θg . (25) 

We provide the proof of Theorem 2 in Appendix A . 

In the above theorem, m jk is only a non-negative real number.

herefore, sin (θk − θ j ) 
m jk may not be expressed in a polynomial of

in θ k , cos θ k , sin θ j , and cos θ j . As a result, I in Eq. (25) may not be

xpressed by the MPCM. In the following theorem, we restrict m jk 

o be an integer. Consequently, a method is provided for construct-

ng affine invariants by means of the MPCM. 

heorem 3. Select g ∈ Z 

+ , g ≥ j > k ≥ 1 . Let s i = σi + iτi (σi ≥ 1) . Set

 jk ≥ 0 ( j, k = 1 , · · · , g) to be non-negative integers. Furthermore,

f 1 ≤ j ≤ k ≤ g, let m jk = 0 . Set t i (i = 1 , · · · , g) , and n as in Eqs.

23) and (24) . Then, the following quantity is an affine invariant: 

 = 

1 

M 

n (2 , 1 , 0 , 0) 

( 

m jk ∑ 

Q jk =0 

∏ 

(−1) 
∑ 

(m jk −Q jk ) C 
Q jk 
m jk 

g ∏ 

i =1 

M(s i , t i , p i , q i ) 

) 

, 

(26) 
or i = 1 , · · · , g, p i and q i are provided by the following equations: 

p i = 

g ∑ 

j= i +1 

Q ji + 

i −1 ∑ 

k =1 

(m ik − Q ik ) , (27) 

q i = 

g ∑ 

j= i +1 

(m ji − Q ji ) + 

i −1 ∑ 

k =1 

Q ik . (28) 

We provide the proof of Theorem 3 in Appendix A . 

Theorem 3 provides the method for constructing affine invari-

nts by means of MPCMs. In the following subsection, we employ

his method to construct affine invariants. 

.3. Affine invariants constructed by MPCMs 

In this subsection, we apply the method provided in

heorem 3 to construct affine invariants. Firstly, we drive several

MIs listed in [4,27] by means of Theorem 3 . These invariants are

onstructed by traditional moments with integer orders. There-

fter, we construct certain affine invariants using MPCMs with

eal-number orders. 

.3.1. Derivation of certain AMIs 
As mentioned previously, traditional moments are only special

ases of the MPCM. Therefore, AMIs, which are constructed by tra-
itional moments, can be derived using Eq. (26) . The following
hree AMIs were provided by Flusser et al. [4,27] (we denote these
y AMI 1, AMI 2, and AMI 3, respectively): 

MI1 = 

μ20 μ02 − μ2 
11 

μ4 
00 

, 

MI2 = 

μ2 
30 μ

2 
03 −6 μ30 μ21 μ12 μ03 +4 μ30 μ

3 
12 +4 μ3 

21 μ03 −3 μ2 
21 μ

2 
12 

μ10 
00 

, 

MI3 = 

μ20 (μ21 μ03 −μ2 
12 ) −μ11 (μ30 μ03 −μ21 μ12 ) + μ02 (μ31 μ12 −μ2 

21 ) 

μ7 
00 

. (29) 

e derive these using Theorem 3 . 

In fact, if we set g = 2 , s 1 = s 2 = 4 , and m 21 = 2 , it follows from

q. (26) that 

M I1= 

2 

M 

4 (2 , 1 , 0 , 0) 

(
M (4 , 1 , 2 , 0) M(4 , 1 , 0 , 2) −M 

2 (4 , 1 , 1 , 1) 
)
. 

(30) 

n other words, AMI 1 can be derived by MPCMs. 

Similarly, we can derive AMI 2 and AMI 3 by means of Eq. (26) .

e put the derivation of AMI 2 and AMI 3 in Appendix B . In fact,

ny AMIs constructed using traditional moments can be derived

y MPCMs. 

That is, we generalize the traditional moments from an integer

rder to a non-integer order. Theorem 3 is in fact the generaliza-

ion of the method for constructing AMIs. 

.3.2. Affine invariants with real-order MPCMs 

AMIs [4,27] are constructed by traditional moments with inte-

er orders. The lowest order for constructing AMIs is 2 (see Eq.

29 ), AMI1 is constructed by two order moments u 02 , u 20 , u 11 ).

ffine invariants cannot be constructed using traditional moments

ith orders of less than 2. In contrast, the order of a MPCM can

e a real number. Consequently, we can construct affine invari-

nts using moments with orders that are real numbers less than

. These invariants may be more robust to noise than AMIs. Here,

e provide a method for constructing affine invariants with real-

rder MPCMs. 
In Theorem 3 , if we set s i to be a real number ( s i ≥ 1), we ob-

ain the method for constructing affine invariants by means of real-
rder MPCMs. Here, we set g = 2 , m jk = 2 , s 1 ≥ 1 and s 2 ≥ 1. Then,
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Fig. 2. (a) 30 Chinese characters, (b) 26 English capital letters, (c) Columbia Coil-20 images, and (d) 20 images from ILSVRC2012. 
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we obtain the following invariant: 

I = 

∫ ∫ ∣∣∫ r s 1 −1 
1 

f (r 1 , θ1 ) dr 1 
∣∣ 4 

s 1 

∣∣∫ r s 2 −1 
2 

f (r 2 , θ2 ) dr 2 
∣∣ 4 

s 2 sin (θ1 −θ2 ) 
2 dθ1 dθ2 

[ 
∫ ∫ 

r f (r, θ ) d rd θ ] 
4 

. 

(31)

This can be written in terms of the MPCM based on Theorem 3 , as

follows: 

I = 

1 

M 

4 (2 , 1 , 0 , 0) 
(M(s 1 , 

4 

s 1 
, 2 , 0) M(s 2 , 

4 

s 2 
, 0 , 2) 

+ M(s 1 , 
4 

s 1 
, 0 , 2) M(s 2 , 

4 

s 2 
, 2 , 0) 

− 2 M(s 1 , 
4 

s 1 
, 1 , 1) M(s 2 , 

4 

s 2 
, 1 , 1) . (32)

We observe that I in Eq. (32) is the same as AMI1 provided in

Eq. (30) if we set s 1 = s 2 = 4 . If we set 1 ≤ s 1 , s 2 < 4, s 1 − 2 and

s 2 − 2 are less than 2. Consequently, the orders of MPCMs in

Eq. (32) are less than 2. As mentioned previously, no affine in-

variants can be constructed by traditional moments with orders

less than 2. Using Eq. (32) , we can construct affine invariants by
eans of Theorem 3 , using MPCMs with orders of less than 2. In

ection 4 , we use Eq. (32) to extract invariants, and the experimen-

al results demonstrate that these invariants are more robust than

MIs to noise. 

. Experiments 

In this section, we test the proposed method performance. Four

roups of images are used as the test database. The performance

n binary images is tested using the images in Fig. 2 (a) and (b).

ig. 2 (a) includes 30 Chinese characters with regular script font ,

nd these images have a size of 128 × 128. Fig. 2 (b) includes all

f the English capital letters with Times New Roman font , and the

ize of each letter is 256 × 256. The Columbia Coil-20 database

41] ( Fig. 2 (c)) is used to test the performance on gray-scale im-

ges. The backgrounds of the images in the above three databases

re clean. In order to make the situation challenging, we test

he proposed method performance on 20 images from ILSVRC2012

42] (see Fig. 2 (d)). In Section 4.1 , we verify the affine invariance

f the constructed invariants. We compare the computational com-

lexity of the MPCM with traditional moments in Section 4.2 . Fi-
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Fig. 3. Images before and after affine transformation. 

Table 1 

The feature I 1 . 5 1 . 5 extracted from the images in Fig. 3 . 

Original Case 1 Case 2 Case 3 Case 4 Case 5 

“Jia” (×10 −6 ) 7.8518 7.7369 7.7903 7.8024 7.6299 7.6771 

“Shen” (×10 −6 ) 8.6192 8.5372 8.4459 8.5427 8.4824 8.5208 

“G” (×10 −7 ) 7.9160 7.9520 7.9407 7.9719 7.9374 7.9446 

“Q” (×10 −7 ) 8.4227 8.3725 8.3858 8.3895 8.4634 8.4496 

“Gray1” 0.0040 0.0041 0.0041 0.0041 0.0041 0.0041 

“Gray2” 0.0057 0.0056 0.0057 0.0056 0.0056 0.0056 
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ally, we test the robustness of the affine invariants constructed by

eal-order MPCMs to noise in Section 4.3 . 

.1. Affine invariance 

In order to verify the affine invariance of the invariants con-

tructed by Theorem 3 , the experimental results for two groups of

nvariants are presented in this subsection. The first group is com-

osed of two invariants constructed by real-order MPCMs, which

re derived by setting g = 2 and m 21 = 2 in Theorem 3 . More-

ver, s 1 and s 2 are selected as s 1 = 1 . 5 , s 2 = 1 . 5 and s 1 = 2 . 5 ,

 2 = 3 . 0 , respectively. These two invariants are denoted by I 1 . 5 
1 . 5 

and

 

3 . 0 
2 . 5 

for the sake of convenience. The second group is composed 

f two invariants constructed by imaginary-order MPCMs. We set

 = 2 and m 21 = 2 in Theorem 3 and select two sets of parame-

ers: s 1 = 1 . 0 + 1 . 5 i, s 2 = 1 . 0 + 4 . 0 i and s 1 = 1 . 0 + 2 . 0 i, s 2 = 1 . 0 +
 . 0 i, respectively. These two invariants are denoted by I 1 . 0+4 . 0 i 

1 . 0+1 . 5 i 
and

 

1 . 0+3 . 0 i 
1 . 0+2 . 0 i 

, respectively. Three groups of images and their affine trans-

ormation images are used to test the affine invariance (see Fig. 3 ).

he first group of images consists of two similar Chinese charac-

ers, “Jia” and “Shen”, as illustrated in Fig. 2 (a). These two Chinese

haracters are similar in structure; only partially different. The sec-

nd group of images consists of two similar English capital letters,

G” and “Q”, in Fig. 2 (b). The third group of images consists of two

imilar gray images in Fig. 2 (c), denoted by “Gray1” and “Gray2”. 

The results of these four affine invariants are displayed in

ables 1–4 . From these results, we can observe that the invari-

nts constructed by MPCMs are affine invariants. Moreover, differ-

nt objects often exhibit varying features, despite their structures

eing similar, such as “Jia” and “Shen”. 

.2. Computational complexity 

We compare the computational efficiency of MPCM with that of

he traditional moment by means of experiments. We employ the
0 gray images in Fig. 2 (c) with different sizes for this test. The

izes of these images are adjusted to 64 × 64, 128 × 128, ���, and

40 × 640, respectively. 

Firstly, we test the computation times for the calculation of a

PCM and a traditional moment. Here, we only list the results for

raditional moments with p = 2 and q = 1 in Eq. (1) , and MPCMs

ith s = 3 , t = 1 , p = 1 , and q = 1 in Eq. (14) (similar results are

btained for other parameters). Table 5 presents the average times

or 20 images with different sizes. From this table, we can observe

hat the MPCM requires slightly more time than the traditional

oment (owing to the coordinate transform) for small-size images.

s the size increases, the MPCM calculation speed approaches that

f the traditional moment. As mentioned previously, the MPCM is

irectly defined by a repeated integral (see Eq. (14) ). Consequently,

he MPCM may theoretically exhibit the same computational com-

lexity as that of the traditional moment. 

Thereafter, we test the computation times for calculating an in-

ariant by means of MPCM and by means of the traditional mo-

ent (AMI1). We list the results for the traditional moment with

MI1, and the invariant by means of MPCM with s 1 = 1 . 5 , s 2 = 2 . 5 ,

nd m 21 = 2 in Eq. (26) (the results are similar for other invari-

nts). Table 6 presents the average times for 20 images with dif-

erent sizes. We observe that the computation time of the invariant

y means of MPCM is greater than that of AMIs for images of small

izes. However, the computation time of the invariant by means of

PCM is smaller than that of the AMIs for images with large sizes.

.3. Performance of affine invariant with real-order MPCM against 

oise 

In this paper, we generalize the traditional moment from the

nteger to non-integer order. It was reported in [19] that high-order

oments are sensitive to noise. The order of the traditional mo-

ent used to construct the affine invariant is only an integer that

s no less than 2. In this paper, real-order MPCMs with orders of

ess than 2 can be used to construct affine invariants. In this sub-

ection, we test the robustness of invariants using real-order (less

han 2) MPCMs to noise. 

In order to discuss the robustness of invariants constructed by

PCMs to noise, the relative error is defined to measure the differ-

nce between the invariant of the original and noised images. The

elative error is defined as follows: 

(I , ̃  I ) = 

‖ I − ˜ I ‖ 

‖ I ‖ 

, 

here I and 

˜ I represent the invariants extracted from the origi-

al and noised images, respectively, while ‖ · ‖ represents the Eu-

lidean norm. 

AMI1 is the affine invariant constructed using the lowest-

rder traditional moment (the order is 2). For the sake of com-

arison with the traditional moment, we set g = 2 , m 21 = 2 in

heorem 3 and construct affine invariants with various s 1 and s 2 ,

s described in subsection 3.3.2 . 

.3.1. Performance of affine invariant in binary images 

As the binary image only has two values, namely 0 and 1, we

nly test the robustness of this image to Salt & Pepper noise.

irstly, we select a binary image displaying the Chinese character

Jia” in Fig. 2 (a) as the test image. The other binary image exhibits

imilar results (see Fig. 5 ). We add Salt & Pepper noise with the

ntensity set to 0.03 to this binary image (see Fig. 4 (a)). Moreover,

 1 and s 2 vary from 1 to 6, and the step length is set to 0.2. As the

oise is random, we record the average of 50 tests. The results are

isplayed in Fig. 4 (b), and the following facts can be observed. 
• In general, the relative error will increase with increasing s 1 

nd s within the region { (s , s ) | s + s < 4 , s ≥ 1 , s ≥ 1 } (in a
2 1 2 1 2 1 2 
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Table 2 

The feature I 3 . 0 2 . 5 extracted from the images in Fig. 3 . 

Original Case 1 Case 2 Case 3 Case 4 Case 5 

“Jia” (×10 −6 ) 5.0891 5.0786 5.0571 5.0773 4.9911 5.0492 

“Shen” (×10 −6 ) 4.5715 4.5626 4.5331 4.6223 4.5541 4.5666 

“G” (×10 −6 ) 5.2230 5.3415 5.3414 5.3093 5.3412 5.34 4 4 

“Q” (×10 −6 ) 4.9494 4.9467 4.9557 4.9367 4.9588 4.9482 

“Gray1” (×10 −9 ) 6.2411 6.2500 6.2520 6.2510 6.2509 6.2499 

“Gray2” (×10 −9 ) 5.6913 5.6801 5.6785 5.6742 5.6782 5.6791 

Table 3 

The feature I 1 . 0+4 . 0 i 
1 . 0+1 . 5 i 

extracted from the images in Fig. 3 . 

Original Case 1 Case 2 Case 3 Case 4 Case 5 

“Jia” (×10 −7 ) 1.7741 1.8468 1.9148 1.7016 1.7849 1.8377 

“Shen” (×10 −7 ) 2.1909 2.3991 2.2321 2.3171 2.4373 2.1877 

“G” (×10 −8 ) 9.5382 9.2252 9.2104 9.3212 9.2270 9.2207 

“Q” (×10 −8 ) 9.6513 9.5360 9.5609 9.6092 9.6843 9.7504 

“Gray1” 52.8549 48.2271 48.2127 47.4189 47.7799 48.2819 

“Gray2” 57.7545 56.2940 51.8988 54.3771 57.7729 52.1590 

Table 4 

The feature I 1 . 0+3 . 0 i 
1 . 0+2 . 0 i 

extracted from the images in Fig. 3 . 

Original Case 1 Case 2 Case 3 Case 4 Case 5 

“Jia” (×10 −7 ) 1.0055 0.9271 0.9511 0.9383 0.8844 0.9270 

“Shen” (×10 −7 ) 1.2489 1.1289 1.2379 1.2770 1.0923 1.2300 

“G” (×10 −7 ) 1.1067 1.0671 1.0561 1.0795 1.0675 1.0665 

“Q” (×10 −7 ) 1.1188 1.1053 1.1078 1.1147 1.1232 1.1302 

“Gray1” 76.3832 69.6025 71.2137 71.1419 70.5615 70.4280 

“Gray2” 64.8341 62.3518 65.8400 63.1210 62.2727 63.6968 

Table 5 

Computational time (in s) of traditional moment and MPCM for images of different sizes. 

64 × 64 128 × 128 256 × 256 384 × 384 512 × 512 640 × 640 

AMI1 0.0037 0.0057 0.0179 0.0409 0.0853 0.1389 

MPCM 0.0134 0.0245 0.0504 0.0764 0.1048 0.1354 

Table 6 

Computational time (in s) for AMI1 and invariant by means of MPCM for images of different sizes. 

64 × 64 128 × 128 256 × 256 384 × 384 512 × 512 640 × 640 

AMI1 0.0044 0.0101 0.0406 0.1077 0.2738 0.4112 

Invariant by MPCM 0.0275 0.0533 0.1064 0.1584 0.2203 0.2809 

Fig. 4. (a) noised binary image, (b) relative error with different s 1 and s 2 (the black 

“∗′ ′ represents the result for s 1 = s 2 = 4 (AMI1)). 

 

 

 

 

 

 

a  

s  

c  

a  

s  

m  

s  

a  

{  

s  

(

 

m  

i  

n  

s  

n  

t  

f  

i  

t  

M  
less strict sense). Moreover, it will decrease with increasing s 1 and

s 2 within the region { (s 1 , s 2 ) | s 1 + s 2 < 4 , s 1 ≥ 1 , s 2 ≥ 1 } (in a less

strict sense). The relative error will reach its minimum near the

line s 1 + s 2 = 4 . 
• The affine invariants constructed by MPCMs with ( s 1 , s 2 ) in

the region {( s 1 , s 2 ) | 1 ≤ s 1 < 4, 1 ≤ s 2 < 4} are more robust to noise

than AMI1 (marked by “∗” in the image). 
As mentioned previously, the traditional moment can be viewed

s special case of the proposed MPCM. AMI1 is the invariant con-

tructed by the traditional moment with the lowest order of 2, and

orresponds to the invariants constructed by MPCM with s 1 = 4

nd s 2 = 4 . As reported in [19] , a higher-order moment is more

ensitive to noise for the traditional moment. Therefore, AMI1 is

ore robust to noise than the other AMIs. From Fig. 4 (b), we ob-

erve that the relative error of AMI1 is greater than that of the

ffine invariants constructed by MPCMs with ( s 1 , s 2 ) in the region

( s 1 , s 2 ) | 1 ≤ s 1 < 4, 1 ≤ s 2 < 4}. Consequently, the AMIs are more

ensitive to noise than the invariants constructed by MPCMs with

 s 1 , s 2 ) in the region {( s 1 , s 2 ) | 1 ≤ s 1 < 4, 1 ≤ s 2 < 4}. 

In order to compare the performance of the invariants by

eans of real-order MPCMs with those of AMI1, AMI2, and AMI3

n terms of quantity, we add various intensities of Salt & Pepper

oise to the above-mentioned binary image “Jia”. The noise inten-

ity is set to 0.01, 0.02, ���, and 0.06. The relative errors are de-

oted by E s 
1 
, E s 

2 
, ���, and E s 

6 
, respectively. Furthermore, we record

he average value of 50 tests. Several values of s 1 and s 2 are used

or the test ( s 1 , s 2 ≥ 1). The results are listed in Table 7 , includ-

ng those for AMI1, AMI2, and AMI3. From Table 7 , we can observe

hat the affine invariants with low real-order (1 ≤ s 1 < 4, 1 ≤ s 2 < 4)

PCMs are more robust to Salt & Pepper noise than the invari-



J. Yang et al. / Pattern Recognition 85 (2019) 37–49 45 

Fig. 5. From (a) to (f): average relative errors of 30 binary images with Salt & Pepper noise of different intensities (the black “∗” represents the result for s 1 = s 2 = 4 (AMI1)). 

Table 7 

Relative errors of affine invariants under different degrees of Salt & Pepper 

noise for Chinese character “Jia”. 

E s 1 E s 2 E s 3 E s 4 E s 5 E s 6 

s 1 , s 2 
1.0, 1.0 0.1818 0.3381 0.4452 0.5304 0.5843 0.6329 

1.1, 1.2 0.1506 0.2941 0.3880 0.4696 0.5254 0.5710 

1.4, 1.4 0.1265 0.2265 0.3101 0.3800 0.4398 0.4781 

1.5, 1.5 0.1135 0.2076 0.2864 0.3536 0.4057 0.4457 

1.5, 2.2 0.0830 0.1504 0.2167 0.2679 0.3119 0.3506 

2.0, 2.5 0.0532 0.0966 0.1388 0.1734 0.2036 0.2237 

2.5, 2.5 0.0371 0.0608 0.0855 0.1127 0.1313 0.1486 

3.0, 3.0 0.0112 0.0190 0.0280 0.0349 0.0405 0.0442 

3.2, 3.4 0.0408 0.0780 0.1167 0.1417 0.1559 0.1870 

AMI 1 0.1688 0.3254 0.4471 0.5639 0.6318 0.7180 

AMI 2 0.6557 1.0988 1.3573 1.4478 1.5336 1.5780 

AMI 3 0.2119 0.4527 0.6353 0.8202 0.9218 1.0343 
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Table 8 

Average relative errors of 30 Chinese characters with Salt & Pepper noise. 

E s 1 E s 2 E s 3 E s 4 E s 5 E s 6 

s 1 , s 2 
1.0, 1.0 0.0763 0.1200 0.1627 0.1946 0.2280 0.2582 

1.1, 1.2 0.0606 0.0978 0.1339 0.1604 0.1953 0.2227 

1.4, 1.4 0.0492 0.0781 0.1088 0.1394 0.1692 0.1934 

1.5, 1.5 0.0466 0.0737 0.1023 0.1318 0.1606 0.1837 

1.5, 2.2 0.0381 0.0599 0.0809 0.1016 0.1234 0.1421 

2.0, 2.5 0.0305 0.0439 0.0580 0.0706 0.0821 0.0935 

2.5, 2.5 0.0282 0.0377 0.0480 0.0577 0.0655 0.0730 

3.0, 3.0 0.0339 0.0450 0.0548 0.0561 0.0720 0.0810 

3.2, 3.4 0.0500 0.0771 0.10 0 0 0.1228 0.1400 0.1554 

AMI 1 0.1122 0.2026 0.2849 0.3514 0.4039 0.4467 

AMI 2 1.1617 2.2315 2.8412 4.0415 4.3884 4.9111 

AMI 3 0.2676 0.4496 0.5883 0.7352 0.8516 0.9373 
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nts with an order of two ( s 1 = s 2 = 4 ) MPCMs (AMI1). As s 1 or s 2 
aries from 1 to 4, the robustness to noise of the constructed in-

ariants first increases and then decreases. Compared to AMIs, the

nvariants constructed by the MPCM with orders lower than 2 are

ore robust to Salt & Pepper noise than AMI1, AMI2, and AMI3.

hat is, the affine invariants constructed by low-order MPCMs ex-

ibit stronger robustness. In the following experiment, further bi-

ary images of Chinese characters are tested. 

In order to illustrate the performance of invariants constructed

y real-order MPCMs further, 30 binary images of Chinese charac-

ers, illustrated in Fig. 2 (a), are used as test images. Salt & Pepper

oise with an intensity set to 0.01, 0.02, ���, and 0.06 is added to

ach binary image of Chinese characters. Here, s 1 and s 2 vary from

 to 6, and the step length is also set to 0.2. Each result repre-

ents the average value of the relative error of 30 binary images

the result of each binary image is the average value of 10 tests).

he results are illustrated in Fig. 5 , from which we observe that the
ffine invariants constructed by real-order MPCMs exhibit stronger

obustness to Salt & Pepper noise when s 1 and s 2 are relatively

mall. 

Similarly, we compare the performances of the invariants con-

tructed by real-order MPCMs with those of AMI1, AMI2, and AMI3

n terms of quantities, and list the results in Table 8 . Salt & Pep-

er noise with an intensity set to 0.01, 0.02, ���, and 0.06, re-

pectively, is also added to each binary image of Chinese charac-

ers in Fig. 2 (a). The relative errors are again denoted by E s 
1 
, E s 

2 
,

��, and E s 
6 
. The relative error of 30 binary images is averaged and

isted in Table 8 . From Table 8 , we can also observe that the affine

nvariants with low real-order (1 ≤ s 1 < 4, 1 ≤ s 2 < 4) MPCMs are

ore robust to Salt & Pepper noise than invariants with two-order

 s 1 = s 2 = 4 ) MPCMs (AMI1). As s 1 or s 2 varies from 1 to 4, the ro-

ustness to noise of the constructed invariants first increases and

hen decreases. Compared to the AMIs, the invariants constructed

y MPCMs with orders lower than 2 are more robust to Salt & Pep-
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Fig. 6. (a) Noised gray image, and (b) relative error with different s 1 and s 2 (the 

black “∗” represents the result for s 1 = s 2 = 4 (AMI1)). 
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per noise than AMI1, AMI2, and AMI3. Hence, the affine invariants

constructed by low-order MPCMs exhibit stronger robustness. 

The results of the 26 English capital letters in Fig. 2 (b) are sim-

ilar to those of the 30 Chinese characters in Fig. 2 (a), and we omit

these here. 

4.3.2. Performance of affine invariant in gray images 

In order to test the robustness of affine invariants constructed

by real-order MPCMs for gray images, the images in Fig. 2 (c) are

used as test images. The test process is similar to that for the bi-

nary images in the above subsection. We test the performance of

invariants in these images for Salt & Pepper noise and Gaussian

noise. We only list the results for the Gaussian noise in order to

avoid redundancy. The results for the Salt & Pepper noise are sim-

ilar. 

Firstly, we select a gray image (denoted by “Gray3”) in Fig. 2 (c)

as the test image (other images yield similar results). We add

Gaussian noise with a mean value set to 0 and intensity set to 0.03
Fig. 7. From (a) to (f): average relative errors of 20 gray images in Fig. 2 (c) for Gaussian

(AMI1)). 
o this image (see Fig. 6 (a)). The results for other intensities are

imilar. The s 1 , s 2 values also vary from 1 to 6, and the step length

s set to 0.2. The results are illustrated in Fig. 6 (b). Similarly, we

ecord the average value of 50 tests. From Fig. 6 (b), it can be ob-

erved that the affine invariants constructed by real-order MPCMs

xhibit stronger robustness to Gaussian noise when s 1 and s 2 are

elatively small ( s 1 < 4, s 2 < 4). With an increase of s 1 and s 2 used

o construct the affine invariants, the robustness of the affine in-

ariants will decrease. 

For the gray image “Gray3”, we compare the performance of

he invariants constructed by real-order MPCMs for Gaussian noise

o those of AMI1, AMI2, and AMI3 in terms of quantity. We add

aussian noise with a mean value of 0 and intensity set to 0.01,

.02, ���, and 0.06, respectively. The relative errors are denoted

y E 
g 
1 
, E 

g 
2 
, ���, and E 

g 
6 
. We also record the average value of 50

ests. Different values of s 1 and s 2 are used for the test ( s 1 , s 2 ≥ 1).

he results are listed in Table 9 , including those for AMI1, AMI2,

nd AMI3. By Table 9 , we can observe that the affine invariants

ith low real-order (1 ≤ s 1 < 4, 1 ≤ s 2 < 4) MPCMs are more robust

o Gaussian noise than those with two-order ( s 1 = s 2 = 4 ) MPCMs

AMI1). As s 1 or s 2 varies from 1 to 4, the robustness to noise of

he constructed invariants first increases and then decreases. Com-

ared to the AMIs, the invariants constructed by MPCM with or-

ers lower than 2 are more robust to Gaussian noise than AMI1,

MI2, and AMI3. That is, the affine invariants constructed by low-

rder MPCMs exhibit stronger robustness to Gaussian noise. 

In order to avoid the special case, we conduct experiments on

he gray images in Fig. 2 (c). Gaussian noise with a mean value of 0

nd intensity set to 0.01, 0.02, ���, and 0.06, respectively is added

o each gray image. Moreover, s 1 and s 2 vary from 1 to 6, and the

tep length is also set to 0.2. We use Fig. 7 to demonstrate the

verage relative error values for 20 gray images in Fig. 2 (c) (the

esult of each image is the average value of 10 tests). It can be

bserved from Fig. 7 that the affine invariants constructed by real-
 noise with different intensities (the black “∗” represents the result for s 1 = s 2 = 4 



J. Yang et al. / Pattern Recognition 85 (2019) 37–49 47 

Table 9 

Relative errors of affine invariants under different degrees of Guassian 

noise for gray image “Gray3”. 

E g 
1 

E g 
2 

E g 
3 

E g 
4 

E g 
5 

E g 
6 

s 1 , s 2 
1.0, 1.0 0.1175 0.1732 0.2163 0.2602 0.2830 0.3096 

1.1, 1.2 0.1015 0.1487 0.1852 0.2177 0.2420 0.3607 

1.4, 1.4 0.0766 0.1105 0.1340 0.1557 0.1752 0.1892 

1.5, 1.5 0.0674 0.0995 0.1166 0.1352 0.1499 0.1625 

1.5, 2.2 0.0287 0.0388 0.0475 0.0537 0.0593 0.0638 

2.0, 2.5 0.0181 0.0282 0.0371 0.0436 0.0500 0.0557 

2.5, 2.5 0.0502 0.0734 0.0926 0.1076 0.1228 0.1353 

3.0, 3.0 0.1301 0.1850 0.2251 0.2593 0.2871 0.3142 

3.2, 3.4 0.1881 0.2617 0.3157 0.3587 0.3985 0.4347 

AMI 1 0.3667 0.4928 0.5868 0.6608 0.7243 0.7816 

AMI 2 1.0400 1.2300 1.2667 1.3144 1.3318 1.3342 

AMI 3 0.7219 0.8985 0.9717 0.9843 1.0158 1.0405 

Table 10 

Average of relative errors of 20 images in Fig. 2 (d) for different Gaussian 

noise levels. 

E g 
1 

E g 
2 

E g 
3 

E g 
4 

E g 
5 

E g 
6 

s 1 , s 2 
1.0, 1.0 0.0164 0.0300 0.0437 0.0566 0.0702 0.0841 

1.1, 1.2 0.0114 0.0209 0.0309 0.0407 0.0504 0.0606 

1.4, 1.4 0.0062 0.0118 0.0173 0.0230 0.0286 0.0342 

1.5, 1.5 0.0049 0.0093 0.0137 0.0183 0.0227 0.0270 

1.5, 2.2 0.0030 0.0055 0.0080 0.0103 0.0126 0.0147 

2.0, 2.5 0.0026 0.0047 0.0069 0.0089 0.0110 0.0129 

2.5, 2.5 0.0029 0.0057 0.0086 0.0115 0.0145 0.0174 

3.0, 3.0 0.0045 0.0088 0.0133 0.0180 0.0226 0.0270 

3.2, 3.4 0.0053 0.0104 0.0158 0.0211 0.0265 0.0318 

AMI 1 0.0070 0.0135 0.0204 0.0272 0.0340 0.0407 

AMI 2 0.1374 0.2318 0.3092 0.3699 0.4143 0.4590 

AMI 3 0.1149 0.2023 0.3258 0.4378 0.5405 0.6232 
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rder MPCMs exhibit stronger robustness to Gaussian noise when

 1 and s 2 are relatively small ( s 1 < 4, s 2 < 4). 

Here, we also compare the performances of the invariants con-

tructed by real-order MPCMs with those of AMI1, AMI2, and AMI3

n terms of quantities for Gaussian noise. Gaussian noise with a

ean value of 0 and intensities set to 0.01, 0.02, ���, and 0.06, re-

pectively is added to each gray image in Fig. 2 (c) and (d). The rel-

tive errors are also denoted by E 
g 
1 
, E 

g 
2 
, ���, and E 

g 
6 
. For each image,

e take the average value of 50 tests. Then, the relative errors of

0 gray images in Fig. 2 (d) are averaged and listed in Table 10 . The

esults for the images in Fig. 2 (c) are similar, and we omit these

ere. From Table 10 , we can also observe that the affine invariants

onstructed by low-order MPCMs exhibit stronger robustness. 

In summary, the affine invariants constructed by low real-order

less than 2) MPCMs are more robust to noise than invariants

onstructed by traditional moments. When using the traditional

ethod, affine invariants can only be constructed by integer-order

oments, and the lowest moment order used to construct invari-

nts is 2. As a result, invariants by traditional moments are sen-

itive to noise. By using the proposed method, invariants can be

onstructed with any order MPCMs, and invariants with low real-

rder MPCMs are more robust to noise. 

. Conclusions 

In this paper, the MPCM has been introduced for the construc-

ion of affine invariants, which can be viewed as the generaliza-

ion of the traditional moment. The order of the traditional mo-

ent is generalized from integer to non-integer. In order to deal

ith the angular factor α( θ ) owing to shearing in affine transform,

 repeated integral is directly employed to define the MPCM. The

ngular factor can easily be eliminated by using an appropriate

epeated integral. As a result, non-integer order moments can be
sed to construct affine invariants. Based on the MPCM, a method

or constructing affine invariants was provided. AMIs derived from

raditional moments can be constructed by means of the proposed

ethod with MPCMs. Furthermore, affine invariants can be con-

tructed by any order MPCMs. Consequently, invariants constructed

y real-order (less than 2) MPCMs can be derived. The experimen-

al results demonstrated that these invariants are more robust to

oise. 

Although the order of the traditional moment has been gener-

lized from integer to non-integer, the selection of an appropriate

rder is a problem that should be addressed, and will form our

esearch direction in the future. 

From Figs. 4 (b) and 5 , among others, we can observe that the

obustness to noise of the constructed invariants first increases and

hen decreases when s 1 or s 2 varies from 1 to 4. This may be ow-

ng to the normalization by M 

4 (2, 1, 0, 0) in Eq. (32) . The further

odification of MPCM is an additional research direction. 
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ppendix A. Proofs of Theorems 2 and 3 

roof of Theorem 2 

roof. It follows from Eqs. (20) and (21) that d ̃ r = α(θ ) dr and 

˜ = arctan 

a 21 cos θ + a 22 sin θ

a 11 cos θ + a 12 sin θ
= arctan β(θ ) . 

onsequently, 

(β(θ )) = d 

(
a 21 cos θ + a 22 sin θ

a 11 cos θ + a 12 sin θ

)
= 

a 11 a 22 cos 2 θ+a 11 a 22 sin 

2 θ−a 12 a 21 sin 

2 θ−a 12 a 21 cos 2 θ

(a 11 cos θ+a 12 sin θ ) 2 
dθ

= 

a 11 a 22 − a 12 a 21 

(a 11 cos θ + a 12 sin θ ) 2 
dθ . 

e note that det(A ) = a 11 a 22 − a 12 a 21 , and 

 + β(θ ) 2 = 

α(θ ) 2 

(a 11 cos θ + a 12 sin θ ) 2 
. 

herefore, 

 ̃

 θ = 

dβ(θ ) 

1 + β(θ ) 2 
= 

det(A ) 

α(θ ) 2 
dθ . (33) 

t follows from Eq. (22) that 

sin ( ̃  θk − ˜ θ j ) = sin ̃  θk cos ̃  θ j − cos ̃  θk sin ̃  θ j 

= 

(c cos θk +d sin θk )(a cos θ j +b sin θ j )−(c cos θ j +d sin θ j )(a cos θk +b sin θk ) 

α(θk ) α(θ j ) 

= 

bc cos θk sin θ j +ad sin θk cos θ j −ad cos θk sin θ j −bc sin θk cos θ j 

α(θk ) α(θ j ) 

= 

det(A ) 

α(θk ) α(θ j ) 
sin (θk − θ j ) . (34) 

e note that 

˜ 
 (2 , 1 , 0 , 0) = 

∫ (∫ 
˜ r ̃  f ( ̃ r , ˜ θ ) d ̃ r 

)
d ̃  θ

= 

∫ ∫ 
α(θ ) r f (r, θ ) α(θ ) 

det(A ) 

α2 (θ ) 
d rd θ

= det(A ) M(2 , 1 , 0 , 0) . 

https://doi.org/10.13039/501100001809
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Consequently, 

˜ I = 

1 

˜ M 

n (2 , 1 , 0 , 0) 

∫ ∫ 
· · ·

∫ g ∏ 

i =1 

∣∣∣∫ ˜ r s i −1 
i 

˜ f ( ̃ r i , ˜ θi ) d ̃ r i 

∣∣∣t i 

∏ 

g≥ j>k ≥1 

sin ( ̃  θk − ˜ θ j ) 
m jk d ̃  θ1 d ̃  θ2 · · · d ̃  θg 

= 

1 

(det(A )) n M 

n (2 , 1 , 0 , 0) 

∫ 
· · ·

∫ g ∏ 

i =1 

∣∣∣∫ (α(θi )) r 
s i −1 
i 

α(θi ) f (r i , θi ) dr i 

∣∣∣
(det(A )) 

∑ 

g≥ j>k ≥1 m jk (det(A )) g 

g ∏ 

i =1 

α2 (θi ) 

g ∏ 

k, j=1 

[
sin (θk − θ j ) 

α(θk ) α(θ j ) 

]m jk 

d θ1 · · · d θg . 

It follows from Eqs. (23) and (24) that 

˜ I = 

1 

M 

n (2 , 1 , 0 , 0) 

∫ ∫ 
· · ·

∫ g ∏ 

i =1 

∣∣∣∫ r s i −1 
i 

f (r i , θi ) dr i 

∣∣∣t i 

∏ 

g≥ j>k ≥1 

sin (θk − θ j ) 
m jk d θ1 d θ2 · · · d θg = I. 

This completes the proof. �

Proof of Theorem 3 

Proof. As m jk ( j, k = 1 , · · · , g) is a non-negative integer, sin (θk −
θ j ) 

m jk can be obtained by the following equation: 

[ sin (θk −θ j )] m jk = 

m jk ∑ 

w =0 

(−1) m jk −w C w m jk 
( sin θ j cos θk ) 

w ( cos θ j sin θk ) 
m jk −w . 

Consequently, the quantity provided in Eq. (25) can be expressed
in a polynomial of MPCMs. 

I = 

1 

M 

n (2 , 1 , 0 , 0) 

∫ ∫ 
· · ·

∫ g ∏ 

i =0 

∣∣∣∫ r s i −1 
i 

f (r i , θi ) dr i 

∣∣∣t i ∏ 

g≥ j>k ≥1 

(−1) m jk 

[ sin (θ2 − θ1 )] m 21 · · · [ sin (θg − θ1 )] m g1 [ sin (θ3 − θ2 )] m 32 

· · · [ sin (θg − θ2 )] m g2 

· · · [ sin (θg − θg−1 )] m g(g−1) d θ1 d θ2 · · · d θg 

= 

1 

M 

n (2 , 1 , 0 , 0) 

∫ ∫ 
· · ·

∫ g ∏ 

i =0 

∣∣∣∫ r s i −1 
i 

f (r i , θi ) dr i 

∣∣∣t i 

m 21 ∑ 

Q 21 =0 

C Q 21 
m 21 

[ sin θ1 ] 
Q 21 [ cos θ1 ] 

m 21 −Q 21 [ sin θ2 ] 
m 21 −Q 21 [ cos θ2 ] 

Q 21 (−1) Q 21 + m 21 · · ·

m g1 ∑ 

Q g1 =0 

C 
Q g1 

m g1 
[ sin θ1 ] 

Q g1 [ cos θ1 ] 
m g1 −Q g1 [ sin θg ] 

m g1 −Q g1 [ cos θg ] 
Q g1 (−1) Q g1 + m g1 

m 32 ∑ 

Q 32 =0 

C Q 32 
m 32 

[ sin θ2 ] 
Q 32 [ cos θ2 ] 

m 32 −Q 32 [ sin θ3 ] 
m 32 −Q 32 [ cos θ3 ] 

Q 32 (−1) Q 32 + m 32 · · ·

m g2 ∑ 

Q g2 =0 

C 
Q g2 

m g2 
[ sin θ2 ] 

Q g2 [ cos θ2 ] 
m g2 −Q g2 [ sin θg ] 

m g2 −Q g2 [ cos θg ] 
Q g2 (−1) Q g2 + m g2 · · ·

m g(g−1) ∑ 

Q g(g−1) =0 

C 
Q g(g−1) 

m g(g−1) 
[ sin θg−1 ] 

Q g(g−1) [ cos θg−1 ] 
m g(g−1) −Q g(g−1) 

[ sin θg ] 
m g(g−1) −Q g(g−1) [ cos θg ] 

Q g(g−1) (−1) Q g(g−1) + m g(g−1) d θ1 d θ2 · · · d θg . 

It follows from Eq. (27) , and (28) that 

I = 

1 

M 

n (2 , 1 , 0 , 0) 

( 

m jk ∑ 

Q jk =0 

∏ 

(−1) 
∑ 

(m jk −Q jk ) C 
Q jk 
m jk 

g ∏ 

i =1 

M(s i , t i , p i , q i ) 

) 

. 
This completes the proof. �
ppendix B. Derivation of AMIs 

In Section 3.3 , we illustrate the derivation of AMI 1 by means of

q. (26) . The derivation of AMI2 and AMI3 is provided below. 

If we set g = 4 , s 1 = s 2 = s 3 = s 4 = 4 , m 21 = m 43 = 2 , and m 31 =
 42 = 1 , it follows from Eq. (26) that 

MI2 = 

2 

M 

10 (2 , 1 , 0 , 0) 

(
−M 

2 (5 , 1 , 0 , 3) M 

2 (5 , 1 , 3 , 0) 

+ 6 M(5 , 1 , 0 , 3) 

M(5 , 1 , 2 , 1) M(5 , 1 , 3 , 0) M(5 , 1 , 1 , 2) 

− 4 M 

3 (5 , 1 , 2 , 1) M(5 , 1 , 0 , 3) 

− 4 M 

3 (5 , 1 , 1 , 2) M(5 , 1 , 3 , 0) 

+ 3 M 

2 (5 , 1 , 2 , 1) M 

2 (5 , 1 , 1 , 2) 
)
. 

If we set g = 3 , s 1 = 4 , s 2 = s 3 = 5 , m 21 = m 31 = 1 , and m 32 = 2 ,

t follows from Eq. (26) that 

MI3 = 

2 

M 

7 (2 , 1 , 0 , 0) 
( M(4 , 1 , 0 , 2) M(5 , 1 , 1 , 2) M(5 , 1 , 3 , 0) 

− M(4 , 1 , 0 , 2) M 

2 (5 , 1 , 2 , 1) 

− M(4 , 1 , 1 , 1) M(5 , 1 , 0 , 3) M(5 , 1 , 3 , 0) 

+ 4 M(4 , 1 , 1 , 1) M(5 , 1 , 1 , 2) M(5 , 1 , 2 , 1) + M(4 , 1 , 2 , 0) 

M(5 , 1 , 0 , 3) M(5 , 1 , 2 , 1) − M(4 , 1 , 2 , 0) M 

2 (5 , 1 , 1 , 2) 
)
. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.patcog.2018.07.036 . 
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