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The moment-based method is a fundamental approach to the extraction of affine invariants. However,
only integer-order traditional moments can be used to construct affine invariants. No invariants can be
constructed by moments with an order lower than 2. Consequently, the obtained invariants are sensitive
to noise. In this paper, the moment order is generalized from integer to non-integer. However, the mo-
ment order cannot simply be generalized from integer to non-integer to achieve affine invariance. The
difficulty of this generalization lies in the fact that the angular factor owing to shearing in the affine
transform can hardly be eliminated for non-integer order moments. In order to address this problem, the
Mellin polar coordinate moment (MPCM) is proposed, which is directly defined by a repeated integral.
The angular factor can easily be eliminated by appropriately selecting a repeated integral. A method is
provided for constructing affine invariants by means of MPCMs. The traditional affine moment invariants
(AMIs) can be derived in terms of the proposed MPCM. Furthermore, affine invariants constructed with
real-order (lower than 2) MPCMs can be derived using the proposed method. These invariants may be
more robust to noise than AMIs. Several experiments were conducted to evaluate the proposed method

performance.

© 2018 Published by Elsevier Ltd.

1. Introduction

Images of an object captured from different viewpoints are of-
ten subject to perspective distortions [1-4]. If the object is small
compared to the camera-to-scene distance, the perspective effect
becomes negligible and the affine model provides a reasonable ap-
proximation of the projective model [2,5]|. Therefore, the extrac-
tion of affine invariant features plays an important role in object
recognition and registration [6-10]. This method has been used
extensively in numerous fields, such as shape recognition and re-
trieval [11,12], watermarking [13], aircraft identification [14,15], tex-
ture classification [16], and image registration [17,18].

The moment-based method is the most commonly used tech-
nique for the extraction of affine invariant features. However, only
integer-order moments can be used to construct affine invariants
[4]. It has been reported that high-order moments are sensitive
to noise [19]. Hence, in practice, a moment of the lowest possi-
ble order should be used [20]. For similarity transform (including
only translation, scaling, and rotation), Fourier Mellin descriptors
[21] can be viewed as the invariants constructed by complex num-
ber order moments. However, similarity transform is only a spe-
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cial case of affine transform [4]. Thus far, an order of moments for
constructing affine invariants can only be an integer. In this paper,
we consider generalizing the moment order from integer to non-
integer, and construct affine invariants by means of the proposed
moment.

1.1. Extraction of features invariant to similarity transform by
moment

Similarity transform includes translation, scaling, and rotation
[4]. Numerous methods for the extraction of similarity invariants
are moment-based [22]. The geometric moment of image Im(x, y)
is defined as gmpq= [/*AIm(x.y)dxly, where p, q are non-negative
integers, and p +q is known as the order of moment gm,q. Then,
the central moment ppq of the image is defined as

Jpg = / f (X — %0)P(y — yo)'Im(x, y)dxdy. (1)

where xg = %v Yo = g’;%. We note that the geometric moment
order is an integer. In this paper, we refer to the central moment
as the traditional moment.

The integer order moment has been used extensively to con-
struct similarity invariants. Hu [23] introduced the moment to pat-
tern recognition for the first time and constructed seven similarity

invariants with moments of an order less than 3. Since then, the
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rotational moment [24], complex moment [25], and others, have
been proposed and used to construct similarity invariants. It was
reported in [19] that high-order moments are sensitive to noise.
However, moments used in these methods are all of an integer or-
der. Furthermore, the orders of these moments are no less than 2.
As a result, methods based on the traditional moment are noise
sensitive.

The Fourier Mellin descriptor, proposed by Sheng et al. [21], is
the generalization of the traditional moment. This descriptor is de-
fined as follows:

M, = / f Bf(r,0)el drdf, 2)

where f(r, 8) is an image expressed in the polar coordinate system
and s denotes a complex number. It was also reported in [21] that
Hu's moments are special cases of the Fourier Mellin descriptors
provided in Eq. (2). Note that the traditional moment in the polar
coordinates system can be expressed as follows:

Mpq://r”+q+‘f(r,9)sinq9cospt9d0. (3)

Comparing Egs. (2) and (3), we note that the exponent of r in
Eq. (2) is generalized from an integer p +q+ 1 to a complex num-
ber s — 1. That is, the Fourier Mellin descriptor can be viewed as
complex number order moment.

Therefore, moment-based methods have been thoroughly devel-
oped for the construction of similarity invariants. A moment of any
order (even a complex number order) can be used to construct
similarity invariants. However, similarity transform is only a spe-
cial case of affine transform [4]. We consider the problem of con-
structing affine invariants by means of non-integer order moments
in this paper.

1.2. Problems for construction of affine invariants by moment

1.2.1. Construction of affine invariants based on traditional moment

Affine transform provides a reasonable approximation of the
projective model [2]; therefore, affine transform and affine invari-
ants are very important in computer vision. Affine transform con-
sists of a linear transformation, as follows:

X =anXx+apy+ by, (4)
V= anx+ any + bs.

a0z
ay1 042
tation, and skewing, while b = (bq, by)T corresponds to the trans-
lation. Similarity transform is simply a special case of affine trans-
form. In fact, when a;; = ay; and aj; = —ay;, Eq. (4) describes the
similarity transform (see [4]).

Affine moment invariants (AMIs) were proposed by Flusser
et al. [4,26]. AMIs are the generalization of Hu's moment invari-
ants. Recently, Flusser et al. [27] derived affine invariants by means
of graph theory. Using this method, AMIs can be constructed by
any integer (no less than 2) order moment. The kernel of these
AMIs is defined in terms of the “cross-product” of points (xq,
y1)and (x5, y,) in an image [4,27]:

Ci2 = X1y2 — X2¥1. (5)

AMIs have been used in numerous fields, such as image registra-
tion [4], object recognition [28], and color image processing [29].

As mentioned previously, high-order moments are sensitive to
noise. Therefore, the order of moments used to construct affine in-
variants should be lower in practice. However, AMIs can only be
constructed by integer order moments with methods in [4,26], and
the lowest order of moments used for constructing AMIs is 2. As a
result, AMIs are more sensitive to noise [30].

The nonsingular matrix A = |: :| represents the scaling, ro-

1.2.2. Need for modification of moment definition

Numerous moment-based methods have been proposed to im-
prove the robustness of affine invariants to noise. In [31], cross-
weighted moments were proposed. Although this method over-
comes the sensitivity of the moment to noise to a certain degree,
it significantly increases the computation amount. Rahtu et al. pro-
posed a series of algorithms for constructing affine invariants by
using properties of the random variable function (see, for example,
[30,32,33]). In order to improve the recognition rate, additional pa-
rameters should be selected. As a result, the computation is greatly
increased. Overall, affine invariants based on traditional moments
are sensitive to noise. Certain new methods are computationally
expensive.

As mentioned previously, AMIs can only be constructed by in-
teger order moments, and two is the lowest order of moments
for constructing AMIs. A natural question arises: can we con-
struct affine invariants by means of a moment with an order
lower than 2? The zero-order moment gmgg is generally used to
normalize other quantities to achieve invariance. One-order mo-
ments gmg;, gmqo are generally used to calculate the centroid in
order to achieve translation invariance. Therefore, it is impossi-
ble to construct invariants with a traditional moment of an order
lower than 2. Consequently, the question changes to the following:
can we construct affine invariants with non-integer moments? As
mentioned previously, the traditional moment order is an integer.
Therefore, we need to modify the moment definition so that we
can construct affine invariants with moments of an order lower
than 2.

1.2.3. Modification difficulties

In the Cartesian system, the integer power of the “cross-
product” must be employed to construct affine invariants in or-
der to lower the computational burden. The power of the “cross-
product” Cy, in Eq. (5) is fundamental in affine invariants (see
Eq.(3.12) in [4]). Only an integer power of this “cross-product” can
enable AMIs to be calculated by a polynomial of moments. For ex-
ample, an affine invariant with a second-order moment (without
normalization), I;, can be derived as follows (see [4]):

2
I =/// (x1y2 — X291)? l_[lm(x,-,y,-)dxldyldxzdy2 (6)
i=1

=//<//X%Im()<1,y1)dxldy1>y%Im(Xz,yz)ddeyz 4

= 2(gmaogMo; — gm2, ). (7)

We observe from Eq. (6) that I; is defined by a quadruple integral.
From Eq. (7), we see that I; can be calculated by gm,q, gmg,, and
gmyy, which are defined by a double integral. Therefore, the com-
putational complexity of AMIs is low. If the power of Cy; is not an
integer (for example, (C;2)? is changed to (C;3)% in Eq. (6)), this
will result in a quantity that cannot be calculated directly by gmypq.
The amount of computation for this is very expensive (see [31]).

In the polar coordinate system, the power for radial factors may
differ from the power for the angular part. In the expression of the
“cross-product” Cj,, the radial factors r; and r, are separated with
sin(6; — 6;):

T'1T25iﬂ(01 —92), (8)

Consequently, the power of the “cross-product” can be generalized
into the following form:

rir (sin(0; — 6))5. (9)

Here, it is not necessary for I3 to be equal to [; or ;. Furthermore,
if we employ an integer I3, the quantity defined in Eq. (9) will re-
sult in a polynomial of r, ry, and a certain trigonometric function
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Fig. 1. Main concept of this paper.

of 61 and 6,. As an example, we generalize the quantity provided
in Eq. (6) to the following form (I3 is set as 2):

2
PIl = /f// T'I]lrlzz (Sil‘l (91 —92))2l_[f(ri,9,‘)T]T2dl‘]d9]dr2d92
i=1

2
= //// e sin®ycos?6; [ £ (i, 6)drid6ydryd6; + - -
i1

The main concept is illustrated in Fig. 1. The contributions of this
paper are listed as follows.

(10)

= (// r?”sinzelf(rl,91)dr1d91> (// r’zz“coszG]f(rz,92)dr2d92) +-

We observe from Eq. (10) that PI; is defined with a quadruple in-
tegral; however, it can be calculated using a double integral, ow-
ing to the integer I3 = 2. Its computational complexity is also low.
Therefore, we can generalize the power of the “cross-product” C;,
to Eq. (9) (I3 is an integer) for the construction of affine invariants.

However, the definition of the moment should be modified fur-
ther. In the polar coordinate system, the integral along the ra-
dial direction will result in a factor about the angular («(0) in
Eq. (20)). In order to achieve affine invariance, this angular factor
should be eliminated. As an example, we consider the quantity Pl
in Eq. (10). Following affine transform, it will be changed to the
following 1511:

2
8 :/// P (sin (8, — 62))2 [ F (7 0 FpdFydd dFads. (1)
i=1

It follows from Egs. (20), (33), and (34) that

1,41, _ 2 2
Py = dercany® [ [ [ [ B2 IO = 97 1, Byydrydoydrade,
i=1

(@(01)° " (@(62))*"

We compare Eq. (10) with (12). In order to ensure that 1311 is a rel-
ative affine invariant of PI;, we should set [; and [, to be equal to
2. As a result, PI; in Eq. (10) is the same as I in Eq. (6). Conse-
quently, no further affine invariants will be constructed by gener-
alizing the power of the “cross-product” to Eq. (9). Simply general-
izing the moment from integer to non-integer is of no use.

1.3. Contributions and organization of this paper
In this paper, the moment order is generalized from integer to

non-integer. The Mellin polar coordinate moment (MPCM) is pro-
posed and a method is provided for constructing affine invariants.

o The MPCM, the order of which is a complex number, is pro-
posed.

The order of the traditional moment is an integer, but high-
order moments are sensitive to noise [19]. We generalize the tra-
ditional moment so that the moment order can be a non-integer.
However, the moment order cannot simply be generalized to a
non-integer. The traditional moment is defined by a double in-
tegral. In the polar coordinate system, a repeated integral is em-
ployed to calculate the traditional moment. However, the integral
along the radial direction will result in an angular factor «(6) ow-
ing to the shearing in the affine transform (see «(6) in Eq. (20)).
In order to eliminate this angular factor, only high-order moments
can be employed to construct affine invariants. The MPCM pro-
posed in this paper is defined directly by a repeated integral (see
top right in Fig. 1). By using an appropriate repeated integral (the
power t in the definition of MPCM), the factor (@) by the inte-

(12)

gral along the radial direction can easily be eliminated. As a result,
non-integer order (even for complex number order) moments can
be used to construct the affine invariants. The traditional moment
is only a special case of the proposed MPCM.

Mellin transform has been used for the extraction of invariant
features [34-39]. However, features extracted by these methods are
only invariants to similarity transform. In this paper, we propose
the MPCM to extract affine invariants by employing Mellin trans-
form.

o A method is provided for constructing affine invariants by
means of MPCM.
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The MPCM is defined by a repeated integral, and affine in-
variants can be constructed by moments of any order. Based on
the MPCM, the method for constructing affine invariants is pre-
sented in this paper. As the MPCM is the generalization of the tra-
ditional moment, all AMIs can be derived by means of the pro-
posed method. Furthermore, we provide several affine invariants
constructed by real-order MPCMs. The experimental results verify
the affine invariance of the invariants constructed by MPCMs.

e The invariants constructed by lower real-order MPCMs are ro-
bust to noise.

High-order traditional moments are sensitive to noise [19]. A
low-order moment should be used to extract invariant features.
However, the order of the traditional moment used to construct
affine invariants is no less than 2. With the MPCM, the moment or-
der is generalized from an integer to a non-integer. As a result, mo-
ments with real number (lower than 2) orders can be used to con-
struct affine invariants. We conduct several experiments to test the
robustness of these invariants to noise. Certain Chinese characters,
English capital letters, the Coil-20 database and various images in
ILVRC2012 are used as test images. The results demonstrate that
the invariants constructed by low real-order (less than 2) MPCMs
are more robust to noise.

The remainder of this paper is organized as follows. In
Section 2, MPCM is introduced. In Section 3, a method is pre-
sented for the extraction of affine invariants by means of MPCM.
Thereafter, we construct several affine invariants using the pro-
posed method. Meanwhile, we explain that affine invariants con-
structed by traditional moments are only special cases of invari-
ants constructed by MPCMs. The proposed method performance is
evaluated experimentally in Section 4. Finally, concluding remarks
are provided in Section 5.

2. Mellin polar coordinate moment

Let h be a 1D function. The Mellin transform of h is a function
defined by [40]:

M (s) = / h(x)x1dx, (13)

where s = o +it. The real part o of s is a constant, selected so
that the integral in Eq. (13) converges. The imaginary part 7 of s is
the transform variable.

In order to define the MPCM, the Cartesian coordinate system
should first be converted into the polar coordinate system. The ori-
gin of the reference system is translated into the image centroid.
We denote the image as f(r, 8) in the polar coordinate system,
in which a point (x, y) can be described as x =rcosf,y =rsin6,
6 el0, 2m), and r = \/x2 4 y2, where r represents the distance be-
tween point (x, y) and the image centroid.

Definition 1. The MPCM of image f(r, ) is defined as follows:
¢
M(s,t, p,q) :/ ‘/r“]f(r, 9)dr‘ sin? 0 cos? d0, (14)

where s = o +it (0 > 1), p, q, t are non-negative real numbers, and
s — 2 is known as the order of the MPCM.

Remark 1. The MPCM is the generalization of the traditional mo-
ment.

According to Definition 1, the central moment can be expressed
by the MPCM:

Hpg =/ [/ P f (7, G)dr] sin? 0 cos? 0dO = M(p+q+2,1, p, q).
That is, the MPCM is the generalization of the traditional moment.

Remark 2. The MPCM is defined in terms of a repeated integral.

As mentioned previously, (pq, the traditional moment, is de-
fined by a double integral. In the polar coordinate system, fipq is
calculated by a repeated integral. The integral along the radial di-
rection results in an angular factor «(6) in Eq. (20). High-order tra-
ditional moments are employed in order to eliminate this factor.
In this paper, the MPCM is directly defined by a repeated integral
(see Eq. (14)). Consequently, the angular factor «(0) provided in Eq.
(20) can be eliminated by selecting an appropriate t in Eq. (14).

Remark 3. The MPCM can be viewed as complex number order
moment.

The traditional moment order is an integer (p, q in Eq. (3) are
all integers). Using the traditional method, only moments with or-
ders no less than 2 can be used to construct affine invariants. How-
ever, s in Eq. (14) is a complex number, and an integer is only a
special case of a complex number. Therefore, the MPCM can be
viewed as a complex number order moment.

Furthermore, the MPCM exhibits the following property.

Theorem 1. For s =0 +7Ti,s; =0 —71i, teR" and any non-
negative real numbers p, q, the following equation holds:

M(sy.t, p,q) = M(s2, t, p. q). (15)

Proof.

t
M(s1.t,p. q) = / ’/e(sl’”’”rf(rﬁ)dr) sin? 0 cosP HdO
. t
= / ‘/e("‘”’"r“””rf(r,G)dr‘ sin? 6 cos? Hd6

— / ’/e(a—l)lnr—irlnrf(r’e)dr
= M(s2.t. p.q)
This completes the proof. O

t
sin? @ cos? Hd6O

3. Construction of affine invariants by MPCMs

In this section, we provide a general method for the extraction
of affine invariant features based on the MPCM. Firstly, the affine
transformation in the polar coordinate system is briefly reviewed
in Section 3.1. Thereafter, a general method is presented for con-
structing affine invariants by MPCMs in Section 3.2, In Section 3.3,
we construct several affine invariants using the proposed method.
We demonstrate that affine invariants constructed by traditional
moments [4,27] are only special cases of invariants constructed
by MPCMs. Furthermore, we construct several affine invariants by
MPCMs with orders that are real numbers.

3.1. Affine transformation in polar coordinate system

In order to achieve translation invariance, the reference system
origin is translated into the image centroid, as mentioned previ-
ously. Consequently, the relation of Eq. (4) can be expressed as fol-
lows:

X =AxX. (16)

Suppose that the Cartesian coordinate system has been con-
verted into the polar coordinate system, in which a pair of affine-
related points (x, ¥) and (%, ¥) in the Cartesian coordinate system
can be described as follows:

X =rcosf
y=rsinf J=

where 0,0 €[0,21), r=+/x2 +y2, and 7 = /%2 + j2.

(17)

=
I
= =%

cosf
sin@



J. Yang et al./Pattern Recognition 85 (2019) 37-49 41

According to Eqgs. (16) and (17), we obtain the following equa-
tions:

{Fcosé:anrcosé—i—a]zrsin@ (18)

Fsinf = ayrcos6 + ayrsinf

It follows that

F= r\/(au €os B + arp sin6)2 + (az cos O + ay; sinf)?2,
and

a1 COS 0+ azy sin6d

tand = = = .
a1 cos6 + apy sind

> =

We set

a(0) = \/(au cos 8 + arp sinf)2 + (ay; cos B + ay, sinf)?2,
a1 €086 +ax sind
p©) = ay cosO +ap sinf -’

It follows that
F=a(@)r, (20)

tand = (). (21)
From Eq. (18), we know that

acosf + bsinf
a(d) '

ccosf +dsinf

cosf = sinf = «(0)

3.2. Method for constructing affine invariants

In this subsection, we provide a method for constructing affine
invariants by means of the MPCM. Firstly, we obtain the following
result.

Theorem 2. Select g € Z*, s; = 0y +it; (0; > 1), and mj, > 0 (j, k=
1,---,8). Furthermore, let my =0 (1<j<k<g). Set

1 g i-1
ti:g Z mj,-—i-Zmik—i-Z s (23)
b\ j=it+1 k=1
n= Y my+g (24)
g>j>k>1

Then, the following quantity is an affine invariant:

= woraw) [ /11

[1 sin@—6)"+d6,d6, ---db,. (25)

g=j>k=1

t
[ r s ooar

We provide the proof of Theorem 2 in Appendix A.

In the above theorem, mj, is only a non-negative real number.
Therefore, sin(6;, — Hj)mfk may not be expressed in a polynomial of
sinfy, costy, sind;, and cosf;. As a result, I in Eq. (25) may not be
expressed by the MPCM. In the following theorem, we restrict my
to be an integer. Consequently, a method is provided for construct-
ing affine invariants by means of the MPCM.

Theorem 3. Select ge Z*, g>j>k=>1. Let s; = 0; +it; (0; > 1). Set
my >0 (j,k=1,---,g) to be non-negative integers. Furthermore,
if 1<j<k<g let my =0. Set t; (i=1,---,8), and n as in Egs.
(23) and (24). Then, the following quantity is an affine invariant:

mij g
1 d Y )

I= Mn(2 1.0 O)( | |(_1)Z(m1k ij)cr%]jil |M(5i7fi,Pi7Qi)),
> 1, U, 0

Qjk i=1
(26)

fori=1,..-,g p; and q; are provided by the following equations:

g i1
pi= ) Qi+ (my—Qu). (27)
=it k=1
g i—1
qi = Z (mji—jS)+ZQik~ (28)
j=i+1 k=1

We provide the proof of Theorem 3 in Appendix A.

Theorem 3 provides the method for constructing affine invari-
ants by means of MPCMs. In the following subsection, we employ
this method to construct affine invariants.

3.3. Affine invariants constructed by MPCMs

In this subsection, we apply the method provided in
Theorem 3 to construct affine invariants. Firstly, we drive several
AMIs listed in [4,27] by means of Theorem 3. These invariants are
constructed by traditional moments with integer orders. There-
after, we construct certain affine invariants using MPCMs with
real-number orders.

3.3.1. Derivation of certain AMIs

As mentioned previously, traditional moments are only special
cases of the MPCM. Therefore, AMIs, which are constructed by tra-
ditional moments, can be derived using Eq. (26). The following
three AMIs were provided by Flusser et al. [4,27] (we denote these
by AMI1, AMI2, and AMI3, respectively):

2
AMI1 = llzolloz4 l‘«n’
Hoo

AMI2 = U333 —61L30 a1 1o fhos +4itso 3, +A13, fos — 313, 13,

oy '

—ul)— _ _ 2
AMI3 — a0 (21 o3 — 47,) — 1t (M30M03 a1 f12) + Moz (L3112 ll«21)' (29)
Hoo

We derive these using Theorem 3.
In fact, if we set g = 2,51 =s, =4, and my; = 2, it follows from
Eq. (26) that

2

AM“:M4(2,1,0, 0)

(M(4,1,2,00M(4,1,0,2)-M?(4,1,1,1)).
(30)

In other words, AMI1 can be derived by MPCMs.

Similarly, we can derive AMI2 and AMI3 by means of Eq. (26).
We put the derivation of AMI2 and AMI3 in Appendix B. In fact,
any AMIs constructed using traditional moments can be derived
by MPCMs.

That is, we generalize the traditional moments from an integer
order to a non-integer order. Theorem 3 is in fact the generaliza-
tion of the method for constructing AMIs.

3.3.2. Affine invariants with real-order MPCMs

AMIs [4,27] are constructed by traditional moments with inte-
ger orders. The lowest order for constructing AMIs is 2 (see Eq.
(29), AMI1 is constructed by two order moments ugy, Upg, Uq)-
Affine invariants cannot be constructed using traditional moments
with orders of less than 2. In contrast, the order of a MPCM can
be a real number. Consequently, we can construct affine invari-
ants using moments with orders that are real numbers less than
2. These invariants may be more robust to noise than AMIs. Here,
we provide a method for constructing affine invariants with real-
order MPCM:s.

In Theorem 3, if we set s; to be a real number (s; > 1), we ob-
tain the method for constructing affine invariants by means of real-
order MPCMs. Here, we set g=2,mj, =2, sy >1 and s > 1. Then,
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Fig. 2. (a) 30 Chinese characters, (b) 26 English capital letters, (c) Columbia Coil-20 images, and (d) 20 images from ILSVRC2012.

we obtain the following invariant:

5‘ fl’sz 1f(Tz 6,)dr, 52 sin(6; — 92)2d91d92

[f[rf, 6)drd61*

ST f (. 61)dry

I=

(31)

This can be written in terms of the MPCM based on Theorem 3, as
follows:

1 4 4
I= a1 o0 M6 5, 2 OME:. .0.2)

4 4
+ M(s1, —,0,2)M(sz, —,2,0)
$1 S2

—2M(S1,i,1,1)M(52,i,1,1). (32)
$1 S2

We observe that I in Eq. (32) is the same as AMI1 provided in
Eq. (30) if we set s; =s, =4. If we set 1<sq, S <4, sy —2 and
s, —2 are less than 2. Consequently, the orders of MPCMs in
Eq. (32) are less than 2. As mentioned previously, no affine in-
variants can be constructed by traditional moments with orders
less than 2. Using Eq. (32), we can construct affine invariants by

means of Theorem 3, using MPCMs with orders of less than 2. In
Section 4, we use Eq. (32) to extract invariants, and the experimen-
tal results demonstrate that these invariants are more robust than
AMIs to noise.

4. Experiments

In this section, we test the proposed method performance. Four
groups of images are used as the test database. The performance
on binary images is tested using the images in Fig. 2(a) and (b).
Fig. 2(a) includes 30 Chinese characters with regular script font,
and these images have a size of 128 x 128. Fig. 2(b) includes all
of the English capital letters with Times New Roman font, and the
size of each letter is 256 x 256. The Columbia Coil-20 database
[41] (Fig. 2(c)) is used to test the performance on gray-scale im-
ages. The backgrounds of the images in the above three databases
are clean. In order to make the situation challenging, we test
the proposed method performance on 20 images from ILSVRC2012
[42] (see Fig. 2(d)). In Section 4.1, we verify the affine invariance
of the constructed invariants. We compare the computational com-
plexity of the MPCM with traditional moments in Section 4.2. Fi-
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Fig. 3. Images before and after affine transformation.

Table 1
The feature 2 extracted from the images in Fig. 3.
Original  Case 1 Case2 Case3 Case4 Case5
“Jia” (x107°) 7.8518 7.7369 7.7903 7.8024 76299 76771
“Shen” (x10-5)  8.6192 8.5372  8.4459 85427  8.4824 85208
“G” (x1077) 7.9160 79520 79407 79719 7.9374 7.9446
“Q" (x1077) 8.4227 83725 83858 83895 84634 84496
“Gray1” 0.0040 0.0041 0.0041 0.0041 0.0041 0.0041
“Gray2” 0.0057 0.0056  0.0057 0.0056 0.0056 0.0056

nally, we test the robustness of the affine invariants constructed by
real-order MPCMs to noise in Section 4.3.

4.1. Affine invariance

In order to verify the affine invariance of the invariants con-
structed by Theorem 3, the experimental results for two groups of
invariants are presented in this subsection. The first group is com-
posed of two invariants constructed by real-order MPCMs, which
are derived by setting g=2 and my; =2 in Theorem 3. More-
over, s; and s, are selected as s; =1.5, s; =1.5 and sy =2.5,
s, = 3.0, respectively. These two invariants are denoted by I}:S and
I%:(s) for the sake of convenience. The second group is composed
of two invariants constructed by imaginary-order MPCMs. We set
g=2 and my; =2 in Theorem 3 and select two sets of parame-
ters: s; =1.0+1.5i, s, =1.0+4.0i and s; =1.0+2.0i, s, =10+
3.0i, respectively. These two invariants are denoted by I!-9+49 and

1.0+1.5i
1191335, respectively. Three groups of images and their affine trans-

formation images are used to test the affine invariance (see Fig. 3).
The first group of images consists of two similar Chinese charac-
ters, “Jia” and “Shen”, as illustrated in Fig. 2(a). These two Chinese
characters are similar in structure; only partially different. The sec-
ond group of images consists of two similar English capital letters,
“G” and “Q”, in Fig. 2(b). The third group of images consists of two
similar gray images in Fig. 2(c), denoted by “Gray1” and “Gray2".

The results of these four affine invariants are displayed in
Tables 1-4. From these results, we can observe that the invari-
ants constructed by MPCMs are affine invariants. Moreover, differ-
ent objects often exhibit varying features, despite their structures
being similar, such as “Jia” and “Shen”.

4.2. Computational complexity

We compare the computational efficiency of MPCM with that of
the traditional moment by means of experiments. We employ the

20 gray images in Fig. 2(c) with different sizes for this test. The
sizes of these images are adjusted to 64 x 64, 128 x 128, ---, and
640 x 640, respectively.

Firstly, we test the computation times for the calculation of a
MPCM and a traditional moment. Here, we only list the results for
traditional moments with p=2 and g =1 in Eq. (1), and MPCMs
with s=3,t=1, p=1, and g=1 in Eq. (14) (similar results are
obtained for other parameters). Table 5 presents the average times
for 20 images with different sizes. From this table, we can observe
that the MPCM requires slightly more time than the traditional
moment (owing to the coordinate transform) for small-size images.
As the size increases, the MPCM calculation speed approaches that
of the traditional moment. As mentioned previously, the MPCM is
directly defined by a repeated integral (see Eq. (14)). Consequently,
the MPCM may theoretically exhibit the same computational com-
plexity as that of the traditional moment.

Thereafter, we test the computation times for calculating an in-
variant by means of MPCM and by means of the traditional mo-
ment (AMI1). We list the results for the traditional moment with
AMI1, and the invariant by means of MPCM with s; = 1.5,5, = 2.5,
and my; =2 in Eq. (26) (the results are similar for other invari-
ants). Table 6 presents the average times for 20 images with dif-
ferent sizes. We observe that the computation time of the invariant
by means of MPCM is greater than that of AMIs for images of small
sizes. However, the computation time of the invariant by means of
MPCM is smaller than that of the AMIs for images with large sizes.

4.3. Performance of affine invariant with real-order MPCM against
noise

In this paper, we generalize the traditional moment from the
integer to non-integer order. It was reported in [19] that high-order
moments are sensitive to noise. The order of the traditional mo-
ment used to construct the affine invariant is only an integer that
is no less than 2. In this paper, real-order MPCMs with orders of
less than 2 can be used to construct affine invariants. In this sub-
section, we test the robustness of invariants using real-order (less
than 2) MPCMs to noise.

In order to discuss the robustness of invariants constructed by
MPCMs to noise, the relative error is defined to measure the differ-
ence between the invariant of the original and noised images. The
relative error is defined as follows:

I =T
114

where I and T represent the invariants extracted from the origi-
nal and noised images, respectively, while || - || represents the Eu-
clidean norm.

AMI1 is the affine invariant constructed using the lowest-
order traditional moment (the order is 2). For the sake of com-
parison with the traditional moment, we set g=2, my; =2 in
Theorem 3 and construct affine invariants with various s; and s,
as described in subsection 3.3.2.

EUD =

4.3.1. Performance of affine invariant in binary images

As the binary image only has two values, namely 0 and 1, we
only test the robustness of this image to Salt & Pepper noise.
Firstly, we select a binary image displaying the Chinese character
“Jia” in Fig. 2(a) as the test image. The other binary image exhibits
similar results (see Fig. 5). We add Salt & Pepper noise with the
intensity set to 0.03 to this binary image (see Fig. 4(a)). Moreover,
s1 and s, vary from 1 to 6, and the step length is set to 0.2. As the
noise is random, we record the average of 50 tests. The results are
displayed in Fig. 4(b), and the following facts can be observed.

o In general, the relative error will increase with increasing s,
and s, within the region {(s1,53) | s; +5; <4,51 > 1,5, > 1} (in a
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Table 2
The feature I3- extracted from the images in Fig. 3.
Original ~ Case 1 Case 2 Case 3 Case 4  Case 5
“Jia” (x1076) 5.0891 5.0786 5.0571 5.0773 4.9911 5.0492
“Shen” (x10-6) 4.5715 4.5626 4.5331 4.6223 4.5541 4.5666
“G” (x1076) 5.2230 5.3415 5.3414 5.3093 5.3412 5.3444
“Q” (x107) 4.9494 4.9467 4.9557 4.9367 4.9588 4.9482
“Gray1” (x1072) 6.2411 6.2500 6.2520 6.2510 6.2509 6.2499
“Gray2” (x107%)  5.6913 56801 56785 56742 56782  5.6791
Table 3 )
The feature I}J19 extracted from the images in Fig. 3.
Original ~ Case 1 Case 2 Case 3 Case 4 Case 5
“fia” (x1077) 1.7741 1.8468 19148 1.7016 1.7849 1.8377
“Shen” (x1077) 2.1909 2.3991 2.2321 23171 24373 2.1877
“G” (x1078) 9.5382 9.2252 9.2104 9.3212 9.2270 9.2207
“Q” (x107%) 9.6513 9.5360 9.5609 9.6092 9.6843 9.7504
“Gray1” 52.8549  48.2271 482127 474189 477799  48.2819
“Gray2” 57.7545 562940  51.8988 543771  57.7729  52.1590
Table 4 )
The feature I}0735! extracted from the images in Fig. 3.
Original  Case 1 Case 2 Case 3 Case 4 Case 5
“Jia” (x1077) 1.0055 0.9271 0.9511 0.9383 0.8844 0.9270
“Shen” (x1077) 1.2489 11289 1.2379 1.2770 1.0923 1.2300
“G” (x1077) 1.1067 1.0671 1.0561 1.0795 1.0675 1.0665
“Q" (x1077) 1.1188 1.1053 11078 11147 11232 11302
“Gray1” 76.3832 69.6025 71.2137 71.1419 70.5615 70.4280
“Gray2” 64.8341 623518  65.8400 631210 622727  63.6968
Table 5
Computational time (in s) of traditional moment and MPCM for images of different sizes.
64 x 64 128 x 128 256 x 256 384 x 384 512 x 512 640 x 640
AMI1 0.0037 0.0057 0.0179 0.0409 0.0853 0.1389
MPCM 0.0134 0.0245 0.0504 0.0764 0.1048 0.1354
Table 6
Computational time (in s) for AMI1 and invariant by means of MPCM for images of different sizes.
64 x 64 128 x 128 256 x 256 384x384 512x512 640 x 640
AMI1 0.0044 0.0101 0.0406 0.1077 0.2738 0.4112
Invariant by MPCM 0.0275 0.0533 0.1064 0.1584 0.2203 0.2809

Relative error

(a)

Fig. 4. (a) noised binary image, (b) relative error with different s; and s, (the black
“/! represents the result for s; = s, = 4 (AMI1)).

less strict sense). Moreover, it will decrease with increasing s; and
s, within the region {(s1,s3) | $1 +52 <4,51 > 1,5, > 1} (in a less
strict sense). The relative error will reach its minimum near the
line s; +s, = 4.

e The affine invariants constructed by MPCMs with (sq, $p) in
the region {(s1, s2)|1<s; <4, 1<s, <4} are more robust to noise
than AMI1 (marked by “*” in the image).

As mentioned previously, the traditional moment can be viewed
as special case of the proposed MPCM. AMI1 is the invariant con-
structed by the traditional moment with the lowest order of 2, and
corresponds to the invariants constructed by MPCM with s; =4
and s, = 4. As reported in [19], a higher-order moment is more
sensitive to noise for the traditional moment. Therefore, AMI1 is
more robust to noise than the other AMlIs. From Fig. 4(b), we ob-
serve that the relative error of AMI1 is greater than that of the
affine invariants constructed by MPCMs with (sq, s;) in the region
{(s1, $2)|1<s1 <4, 1<s;<4}. Consequently, the AMIs are more
sensitive to noise than the invariants constructed by MPCMs with
(s1, S2) in the region {(s1, $)|1 <51 <4, 1 <5y <4}.

In order to compare the performance of the invariants by
means of real-order MPCMs with those of AMI1, AMI2, and AMI3
in terms of quantity, we add various intensities of Salt & Pepper
noise to the above-mentioned binary image “Jia”. The noise inten-
sity is set to 0.01, 0.02, ---, and 0.06. The relative errors are de-
noted by E3, E;, .-+, and Eg, respectively. Furthermore, we record
the average value of 50 tests. Several values of s; and s, are used
for the test (sq, s, >1). The results are listed in Table 7, includ-
ing those for AMI1, AMI2, and AMI3. From Table 7, we can observe
that the affine invariants with low real-order (1<s; <4, 1<s; <4)
MPCMs are more robust to Salt & Pepper noise than the invari-
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Fig. 5. From (a) to (f): average relative errors of 30 binary images with Salt & Pepper noise of different intensities (the black

Table 7
Relative errors of affine invariants under different degrees of Salt & Pepper
noise for Chinese character “Jia”.

E§ E§ E§ E; E% E}

S1, S2

1.0, 1.0 0.1818 0.3381 0.4452 05304 05843  0.6329
11, 1.2 0.1506 0.2941 0.3880 04696  0.5254  0.5710
14, 14 0.1265 0.2265  0.3101 0.3800 0.4398 0.4781
15,15 0.1135 02076  0.2864 0.3536  0.4057 0.4457
15, 2.2 0.0830  0.1504 0.2167 0.2679 0.3119 0.3506
20,25 0.0532 0.0966 0.1388 0.1734 0.2036  0.2237
25,25 00371 0.0608 0.0855  0.1127 0.1313 0.1486
3.0,3.0 0.0112 0.0190 0.0280 0.0349 0.0405  0.0442
32,34 00408 0.0780 0.1167 0.1417 0.1559 0.1870
AMI1 0.1688 0.3254  0.4471 0.5639  0.6318 0.7180
AMI2 0.6557 1.0988 1.3573 1.4478 1.5336 1.5780
AMI3 0.2119 04527  0.6353 0.8202 0.9218 1.0343

ants with an order of two (s; = s, = 4) MPCMs (AMI1). As sq or s,
varies from 1 to 4, the robustness to noise of the constructed in-
variants first increases and then decreases. Compared to AMIs, the
invariants constructed by the MPCM with orders lower than 2 are
more robust to Salt & Pepper noise than AMI1, AMI2, and AMI3.
That is, the affine invariants constructed by low-order MPCMs ex-
hibit stronger robustness. In the following experiment, further bi-
nary images of Chinese characters are tested.

In order to illustrate the performance of invariants constructed
by real-order MPCMs further, 30 binary images of Chinese charac-
ters, illustrated in Fig. 2(a), are used as test images. Salt & Pepper
noise with an intensity set to 0.01, 0.02, ---, and 0.06 is added to
each binary image of Chinese characters. Here, s; and s, vary from
1 to 6, and the step length is also set to 0.2. Each result repre-
sents the average value of the relative error of 30 binary images
(the result of each binary image is the average value of 10 tests).
The results are illustrated in Fig. 5, from which we observe that the

Relative error

(f)

represents the result for s; = s, = 4 (AMI1)).

wgn

Table 8
Average relative errors of 30 Chinese characters with Salt & Pepper noise.
E§ E5 E§ E; E% Eg

51, S2
1.0, 1.0 0.0763 0.1200 0.1627 0.1946 0.2280  0.2582
11, 1.2 0.0606  0.0978  0.1339 0.1604 0.1953 0.2227
14, 14 0.0492  0.0781 0.1088 0.1394 0.1692 0.1934
15, 1.5 0.0466  0.0737 0.1023 0.1318 0.1606 0.1837
15, 2.2 0.0381 0.0599 0.0809 0.1016 0.1234 0.1421
20,25 00305 00439 00580 0.0706  0.0821 0.0935
25,25 00282 0.0377 0.0480 0.0577 0.0655 0.0730
3.0,3.0 0.0339 00450 0.0548 0.0561 0.0720  0.0810
32,34 00500 0.0771 0.1000  0.1228 0.1400 0.1554
AMI 0.1122 02026 02849 0.3514 0.4039  0.4467
AMI2 11617 2.2315 2.8412 4.0415 43884 49111
AMI3 0.2676 04496 05883 0.7352  0.8516 0.9373

affine invariants constructed by real-order MPCMs exhibit stronger
robustness to Salt & Pepper noise when s; and s, are relatively
small.

Similarly, we compare the performances of the invariants con-
structed by real-order MPCMs with those of AMI1, AMI2, and AMI3
in terms of quantities, and list the results in Table 8. Salt & Pep-
per noise with an intensity set to 0.01, 0.02, ---, and 0.06, re-
spectively, is also added to each binary image of Chinese charac-
ters in Fig. 2(a). The relative errors are again denoted by Ej, E5,
.-+, and E§. The relative error of 30 binary images is averaged and
listed in Table 8. From Table 8, we can also observe that the affine
invariants with low real-order (1<s; <4, 1<s,<4) MPCMs are
more robust to Salt & Pepper noise than invariants with two-order
(s1 =S, = 4) MPCMs (AMI1). As s; or s, varies from 1 to 4, the ro-
bustness to noise of the constructed invariants first increases and
then decreases. Compared to the AMIs, the invariants constructed
by MPCMs with orders lower than 2 are more robust to Salt & Pep-



46 J. Yang et al./Pattern Recognition 85 (2019) 37-49

Relative error

Fig. 6. (a) Noised gray image, and (b) relative error with different s; and s, (the
black “*” represents the result for s; = s, =4 (AMI1)).

per noise than AMI1, AMI2, and AMI3. Hence, the affine invariants
constructed by low-order MPCMs exhibit stronger robustness.

The results of the 26 English capital letters in Fig. 2(b) are sim-
ilar to those of the 30 Chinese characters in Fig. 2(a), and we omit
these here.

4.3.2. Performance of affine invariant in gray images

In order to test the robustness of affine invariants constructed
by real-order MPCMs for gray images, the images in Fig. 2(c) are
used as test images. The test process is similar to that for the bi-
nary images in the above subsection. We test the performance of
invariants in these images for Salt & Pepper noise and Gaussian
noise. We only list the results for the Gaussian noise in order to
avoid redundancy. The results for the Salt & Pepper noise are sim-
ilar.

Firstly, we select a gray image (denoted by “Gray3”) in Fig. 2(c)
as the test image (other images yield similar results). We add
Gaussian noise with a mean value set to 0 and intensity set to 0.03

Relative error
Relative error

L
L

Relative error
Relative error

(d)

Y00
ORI
582527
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to this image (see Fig. 6(a)). The results for other intensities are
similar. The sq, s values also vary from 1 to 6, and the step length
is set to 0.2. The results are illustrated in Fig. 6(b). Similarly, we
record the average value of 50 tests. From Fig. 6(b), it can be ob-
served that the affine invariants constructed by real-order MPCMs
exhibit stronger robustness to Gaussian noise when s; and s, are
relatively small (s; <4, sy <4). With an increase of s; and s, used
to construct the affine invariants, the robustness of the affine in-
variants will decrease.

For the gray image “Gray3”, we compare the performance of
the invariants constructed by real-order MPCMs for Gaussian noise
to those of AMI1, AMI2, and AMI3 in terms of quantity. We add
Gaussian noise with a mean value of 0 and intensity set to 0.01,
0.02, ---, and 0.06, respectively. The relative errors are denoted
by Ef. E5. ---, and ES. We also record the average value of 50
tests. Different values of s; and s, are used for the test (sq, s, >1).
The results are listed in Table 9, including those for AMI1, AMI2,
and AMI3. By Table 9, we can observe that the affine invariants
with low real-order (1 <s; <4, 1<s; <4) MPCMs are more robust
to Gaussian noise than those with two-order (s; = s, = 4) MPCMs
(AMI1). As sy or s, varies from 1 to 4, the robustness to noise of
the constructed invariants first increases and then decreases. Com-
pared to the AMIs, the invariants constructed by MPCM with or-
ders lower than 2 are more robust to Gaussian noise than AMI],
AMI2, and AMI3. That is, the affine invariants constructed by low-
order MPCMs exhibit stronger robustness to Gaussian noise.

In order to avoid the special case, we conduct experiments on
the gray images in Fig. 2(c). Gaussian noise with a mean value of 0
and intensity set to 0.01, 0.02, ---, and 0.06, respectively is added
to each gray image. Moreover, s; and s, vary from 1 to 6, and the
step length is also set to 0.2. We use Fig. 7 to demonstrate the
average relative error values for 20 gray images in Fig. 2 (c) (the
result of each image is the average value of 10 tests). It can be
observed from Fig. 7 that the affine invariants constructed by real-

Relative error
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Fig. 7. From (a) to (f): average relative errors of 20 gray images in Fig. 2(c) for Gaussian noise with different intensities (the black “*” represents the result for s; =s, =4

(AMI1)).
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Table 9
Relative errors of affine invariants under different degrees of Guassian
noise for gray image “Gray3”.

E¢ ES E§ E§ E¢ E¢
S1, 52
1.0, 1.0 0.1175 0.1732 0.2163 02602  0.2830  0.3096
11, 1.2 0.1015 0.1487 0.1852 0.2177 0.2420  0.3607
14, 14 0.0766  0.1105 0.1340 0.1557 0.1752 0.1892
15,15 0.0674  0.0995 0.1166 0.1352 0.1499 0.1625
15,22 0.0287 0.0388 0.0475 0.0537 0.0593 0.0638
20,25 0.0181 0.0282  0.0371 0.0436  0.0500  0.0557
25,25 0.0502 00734 0.0926 0.1076 0.1228 0.1353
3.0,3.0 0.1301 0.1850 0.2251 02593  0.2871 0.3142
32,34 0.1881 0.2617 0.3157 0.3587 03985  0.4347
AMI1 0.3667 0.4928 0.5868 0.6608  0.7243 0.7816
AMI2 1.0400 1.2300 1.2667 1.3144 1.3318 1.3342
AMI3 0.7219 0.8985  0.9717 0.9843 1.0158 1.0405
Table 10
Average of relative errors of 20 images in Fig. 2(d) for different Gaussian
noise levels.
E¢ E E§ E§ E¢ E¢
S1, 52
1.0, 1.0 0.0164 0.0300 0.0437 0.0566 0.0702  0.0841
11, 1.2 0.0114 0.0209 0.0309 0.0407 0.0504 0.0606
14, 14 0.0062  0.0118 0.0173 0.0230 0.0286  0.0342
15, 1.5 0.0049 0.0093 0.0137 0.0183 0.0227  0.0270
15,22 0.0030 0.0055 0.0080 0.0103 0.0126  0.0147
2.0,25 0.0026 0.0047 0.0069 0.0089 0.0110 0.0129
25,25 00029 0.0057 0.008  0.0115 0.0145 0.0174
3.0,3.0 00045 0.0088 0.0133 0.0180 0.0226  0.0270
32,34 0.0053 0.0104 0.0158 0.0211 0.0265  0.0318
AMI1 0.0070  0.0135 0.0204  0.0272 0.0340  0.0407
AMI2 0.1374 0.2318 0.3092 03699 04143 0.4590
AMI3 0.1149 0.2023 03258 04378 05405 0.6232

order MPCMs exhibit stronger robustness to Gaussian noise when
s1 and s, are relatively small (s; <4, 55 <4).

Here, we also compare the performances of the invariants con-
structed by real-order MPCMs with those of AMI1, AMI2, and AMI3
in terms of quantities for Gaussian noise. Gaussian noise with a
mean value of 0 and intensities set to 0.01, 0.02, ---, and 0.06, re-
spectively is added to each gray image in Fig. 2(c) and (d). The rel-
ative errors are also denoted by E$, ES, ---, and E£. For each image,
we take the average value of 50 tests. Then, the relative errors of
20 gray images in Fig. 2 (d) are averaged and listed in Table 10. The
results for the images in Fig. 2 (c) are similar, and we omit these
here. From Table 10, we can also observe that the affine invariants
constructed by low-order MPCMs exhibit stronger robustness.

In summary, the affine invariants constructed by low real-order
(less than 2) MPCMs are more robust to noise than invariants
constructed by traditional moments. When using the traditional
method, affine invariants can only be constructed by integer-order
moments, and the lowest moment order used to construct invari-
ants is 2. As a result, invariants by traditional moments are sen-
sitive to noise. By using the proposed method, invariants can be
constructed with any order MPCMs, and invariants with low real-
order MPCMs are more robust to noise.

5. Conclusions

In this paper, the MPCM has been introduced for the construc-
tion of affine invariants, which can be viewed as the generaliza-
tion of the traditional moment. The order of the traditional mo-
ment is generalized from integer to non-integer. In order to deal
with the angular factor «(6) owing to shearing in affine transform,
a repeated integral is directly employed to define the MPCM. The
angular factor can easily be eliminated by using an appropriate
repeated integral. As a result, non-integer order moments can be

used to construct affine invariants. Based on the MPCM, a method
for constructing affine invariants was provided. AMIs derived from
traditional moments can be constructed by means of the proposed
method with MPCMs. Furthermore, affine invariants can be con-
structed by any order MPCMs. Consequently, invariants constructed
by real-order (less than 2) MPCMs can be derived. The experimen-
tal results demonstrated that these invariants are more robust to
noise.

Although the order of the traditional moment has been gener-
alized from integer to non-integer, the selection of an appropriate
order is a problem that should be addressed, and will form our
research direction in the future.

From Figs. 4(b) and 5, among others, we can observe that the
robustness to noise of the constructed invariants first increases and
then decreases when s; or s, varies from 1 to 4. This may be ow-
ing to the normalization by M4(2, 1, 0, 0) in Eq. (32). The further
modification of MPCM is an additional research direction.
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Appendix A. Proofs of Theorems 2 and 3
Proof of Theorem 2

Proof. It follows from Egs. (20) and (21) that df = «(6)dr and

~ a1 €os O + ay, sinf
§ = arctan 2! 22>
a1 cos6 +ap sind

= arctan (0).
Consequently,

a @ cos O + ax, sinf
ay cosf + app sinf

d(B9))

110y COS2 0401 Gz SIN% O —a120a; SIN% O —a12a1 OS2 O "
(aj; cos @ +ay, sinf)?
_ andy — 41201
(aq1 cosO +app sinf@)2 -

We note that det(A) = a;;ay — dy2ay;, and
a(0)?

2 _
1+p0)" = (aj; cos@ + apsinf)?2’
Therefore,
~ dpg o) det(A)
do = 15 B0 = 2(0)? do. (33)

It follows from Eq. (22) that

sin(f, — 5j) =sin6, coséj — cos G, sinéj
(ccos By+dsinby)(acosd;+bsind;) —(ccosOj+dsind;)(acos Oy +bsin6y)

a (@ )a(0))
_ bceos O sin8;+ad sin 6 cos 0 —ad cos 0y sin §; —bc sin 6 cos 0
B a (B (0))
_ det(A) . )
= a@a®) sin(6y, — 6;). (34)

We note that
1\71(2,1,0,0):/(/ ff(f,é)df)dé

_ / / a(e)rf(r,e)a(e)‘if((g)) drdo

— det(A)M(2,1,0,0).
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Consequently,

“waro ) [T T s

[T sinbk—6,)mxd6:db; ---db,
g=j>k=1

—~
|

ti

1 £ .
= @wmratoo ) 11|/ @@ a@o.o

(det (A)) Zei-t=1 Mik (det (A))E & [sin(ek_ej)
]g[aZ(Q,-) a(B)a(0))
i=1

mj
:| o - - - dbs.
k.j=1

It follows from Egs. (23) and (24) that

1= wweran | [ [T 2]

1_[ sin(@k - ej)mj"d91 dez s d@g =1L

g>j>k>1

This completes the proof. O

Proof of Theorem 3

Proof. As my (j,k=1,---,8) is a non-negative integer, sin(6 —
Gj)mik can be obtained by the following equation:

mjy
[sin(B;—0;)] ™ = Z (-1 )mfk‘WCr”,Vl}_k (sin®; cos 6;)" (cos 0 sin G )™+,

w=0

Consequently, the quantity provided in Eq. (25) can be expressed
in a polynomial of MPCMs.

= o [ [Tl w1 com

g=j=k=1
[sin(62 — 61)]™ -- - [sin(6g — 61)]™ [sin(65 — 6)]™2
- [sin(Bg — 6)]"=
< [Sin(Bg — Og_1) ™= d61 G, - - - dB,

- m//“/}jV'f"]f(n-,ef)dr,- ’

my

> C% [sin0;]% [cos O; ™~ %1 [sin 6, ]~ @1 [cos B, ] % (~1)&+mar ..
Q=0

mg

M C,%i [sin6;]% [cos O; |1 =%t [sin O] ™ =% [cos O] %t (—1) %1 +Mar
Q=0

ms;

> G2 [sin6;]%2[cos 6™~ %2 [sin O3] ™2~ %2 [ cos 03 |42 (—1) L2tz ..
Q32=0

g2

mg,
> C¥ [sin 6,]% [os 6, ™=~ [ sin O |2~ %2 [ cos O | %2 (—1) &t Maz ...
Q=0

Mg(g-1) o
(g-1) 1 = Mg(g_1)— =
Z Cmg(gil)[sm@ _1]%1 [cos By_q Mt G0
Qg-1=0

[sin O]Msen ~Qe1[cos Qg]Qgtg—n (=1) %0t Mse-0 4O dB, - - - db,.

It follows from Eq. (27), and (28) that

1 & O T
I= oo | 2 [TEDEm G TIMe: 6. pi.ap
» LU, Q=0 i=1

This completes the proof. O

Appendix B. Derivation of AMIs

In Section 3.3, we illustrate the derivation of AMI1 by means of
Eq. (26). The derivation of AMI2 and AMI3 is provided below.

If we set g=4,51 =5y =53 =S4 =4, My; =My3 =2, and m3; =
myy = 1, it follows from Eq. (26) that

2 5 ,
WoE 100 (MG 1.0.3M(5.1.3,0)

+ 6M(5,1,0,3)

M(5,1,2,1)M(5,1,3,0)M(5,1,1,2)

— 4M3(5,1,2,1)M(5,1,0,3)

— 4M3(5,1,1,2)M(5,1,3,0)

+ 3M2(5,1,2, )M?(5,1,1,2)).

Ifwesetg=3,s1 =4,y =53 =5, my; =m3 =1, and m3; =2,
it follows from Eq. (26) that
2

M7(2,1,0,0)
— M(4,1,0,2)M?(5,1,2,1)
— M(4,1,1,1)M(5,1,0,3)M(5,1,3,0)
+4M(4,1,1,1)M(5,1,1,2)M(5,1,2,1) + M(4,1,2,0)
M(5,1,0,3)M(5.1,2,1) = M(4,1,2,0)M*(5,1.1,2)).

AMI2 =

AMI3 = (M(4,1,0,2)M(5,1,1,2)M(5,1,3,0)

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.patcog.2018.07.036.
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